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Abstract

This paper presents an alternate approach to the fornulation
of the Model Elimnation proof procedure presented in [LI] . By
exploiting fully the ability to linearize the procedure fornat
(isolating the format froma tree structure forn) and by
representing |lemmas by clauses, the description of the Mde

Elimnation procedure is greatly sinplified.
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A SI MPLI FI ED FORVAT FOR THE MODEL ELI M NATI ON
THEOREM PROVI NG PROCEDURE

D. W Lovel and

81. In [LI] a proof procedure for first order predicate cal cul us
is presented and argunents showi ng the possibility of increased
ef ficiency over some existing procedures are offered. The fornmat
of the procedure in [LI] is somewhat cunbersone, a fault which
this paper attenpts to overconme. |In this paper, several related
proof procedures are given of which the final procedure is

equi valent to the Moddel Elimnation procedure presented in [LI].

Thi s paper can be read independently of [LI] although here

only the description and proof of its soundness and conpl et eness .
are given. [LIT should be consulted for a non-trivial exanple

of an appliction of the procedure as well as a discussion of the
relative efficiency of the procedure. Know edge of one of [LI] ,
[R] or [R] is desirable for 81 and 82; 43 utilizes results
from [R] and [R2] which are quoted w thout proof here. 83

contains the proofs of the |emma and theorens of 2.

It is well known that the question of validity of a first
order well-fornmed formula is equivalent to the correspondi ng
question for the closure of the formula. Validity of a (closed)
formula is equivalent to unsatisfiability of the fornula’s nega-
tion. W are concerned with establishing the unsatisfiability

of a given closed formula. Wth no loss of generality, we may
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presune the fornmula to be in Skolem functional form (for satis-

fiability) ; that is, a (closed) well-formed formula (wf) in
prenex normal form having only universal quantifiers and allow ng
constants and function synbols. W also include the requirenent
that the quantifier free matrix be in conjunctive normal form
The matrix then is a conjunctioh of clauses with each clause a

disjunction of literals. A clause instance of a given clause

C is aclause C6 where 0O is a substitution of terns (elenents

of a given set H for sone (perhaps all) of the variables of C
The same replacenent nust be used at each occurrence of a
designated variable. The null éubstitution e such that

Ce =C is permtted.

The procedures considered in this paper are built upon
"Herbrand's theorem Herbrand* s theorem fornul ated for unsatis-
fiable sentences states that a closed wif W in Skolem functiona
formis unsatisfiable if and only if there are a finite nunber
of clause instances of W whose conjunction is truth functionally
unsatisfiable. The set H(W of terns fromwhich the clause
i nstances of the theorem are derived is defined recursively as
fol |l ows:

a) all variables of the logic and all constants of W

are in H(W;

by if t,,....t

an n-place function synbol appearing in W then

f(te .. ta) isin HOW;

n are elements (terns) of HW and f is
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c) only terms derivable froma) and b) appear in H(W.

A proof of this theorem appears in [R2]. The concern of the
procedures presented here as with the other proof procedures
based on Herbrand's theoremis the efficient and correct deter-
m nation of the finite contradictory conjunction of clause instances
whenever such a conjunction exists. As is frequently done, we
identify a set of clauses with the conjunction of the menbers
of the set. Thus we use phrases such as 'the set of matrix
cl auses' etc.

Recent Herbrand-type proof procedures including the pro-

cedures devel oped here enploy a technique first applied to

mechani cal theorem proving by Prawitz. Robi nson [R] enploys
the sane principle; we follow his devel opnent. Let Al and
A, be two atomc fornulas (attorns) . The set (A;,Aq} is said to

teunifiable if there exists a substitution 9 such that
AJ:O = A*G.  The substitution O is then said to be the unifier
of A,L and A~z' The null substitution is permtted. W

present an algorithm, called the unification algorithmby Robinson,

whi ch by a series of substitutions in A,L and AZ uni fies

{AMAN} if unification is possible.

Unification Algorithm

1) Set two pointers, one onthe first (leftnost) symbol of
each atom Al and A]'
2) Advance the pointers through each atom in parallel one

symbol at a time until the first (next) point of disa-
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greement is met, if any. [If the pointers sinultaneously
reach the end of each atomw thout (further) di sagr eenent,
the algorithmtermnates in node S (success). O her wi se,
goto 3) .

3) Unless at the point of disagreenment one pointer points
to a variable V and the other pointer points to the
first synmbol of a well forned expression (term not
containing V, termnate the algorithmin node F
(failure). Oherw se replace the variable V at each
occurrence of V in both Al and A, by the term
whose first synbol is at the point of disagreenment. |If
bot h .at ons have a variable at the point of disagreenent

let V be the variable of atom A, Return.to 2).

Note that at each stage in the algorithmthere is agreenent
in Al and AZ to the left of the parallel pointers. Thus the
al gori thm has transforned A1 and Ag into identical atons if
the algorithmtermnates in node S. Using the fact that the
conposition of two substitutions is also a substitution,, it is
seen that the Unification Al gorithm when successful,, defines a

substitution a which we designate the nusjt general unifier

of {AL’AZ}' The justification for the nane given a cones from

“the followi ng theoremproved in [R].

Unification theorem (Robinson). If A, and A~ are atons and

{AA"} is unifiable, then there exists a nost general unifier

a of {A;3Ag}. Moreover, for any 0 that unifies {A;, Aj} there




exists a substitution A such that A'G = (A‘cr) A --—(Acx) X.

Two literals are said to be complenentary if one is the

negation of the other. For two given literals LIJL. if there
exi sts a nost general unifier a such that L cr and Lpa
are conpl enmentary, then we say a match is possible for L,l and
Lo.

For any expression E and substitution 9 we call EG

an instance or refinenment of E If M., .. .V are the vari abl es

appearing in E, then by the x-instance of E we nean the

expressi on E£E where the substitution £ repl aces V'f B/

B X
by vari abl es Xop oo Xy respectively. Likewse-, by the y~instance
of E we mean the expression Er]e where r)e replaces V,, . . .Vg

by variables yij,...;,yx respectively.

Exanpl e of (nost general) unification: For A. =P(xsf(y, a)ez)o
Ap = P(z,w, x) we have A,i\ = A<@: P(z, f (y, a) 9z) whereas A1

and AIA = Ptz”x"y) have no unifier.

82. W define in this section three closely rélLated procedures
whi ch deal with structures called chains. A chain, denoted by
K or Kn for non-negative integer ng is a finite ordered
list of literals. Two types of literals occur in a chain, class
A literals (Aliterals) and class B literals (B-literals).

A non-negative integer called the deficit of K is associated
with each chain K and used to indicate if a chain has been

derived froma chain with nore A-literals. An elenentary

chain is an ordered clause with all literals considered B-




literals and a deficit of zero. Not all chains are equally
desirabl e; we distinguish two subclasses. A chain is preadnissible

if the followng three conditons are net:
a) if two B-literals are conplenentary they nust be separated
by an A-literal;
b) if a B-literal is identical to an A-literal the
B-literal nust precede the A-literal in the chain;

c) no tw Aliterals have identical atons.

A chain is admssible if it is preadm ssible and the |ast el enent

in the chain is a B-literal. The enpty chain 0, a chain con-

taining no literals, is defined to be adm ssible.
‘New chai ns are produced from existing chains by use of
three operations defined below Each operation has an input chain

~called the parent chain; the Extension operation also has a

second chain as input, always an elenentary chain. The out put

chain is called the derived chjain of the operation (or, alternately,

derived chain fromthe parent chain), The operations have the

formof applying a substition 8 (possibly null) to the parent
chain K then adding or deleting literals to obtain the derived
chain. If L is a literal of K and LO appears in the

derived chain, then L 1is called the parent literal and L9

its derived literal. A finite sequence Ko""’Kh of chains

such t hat i® @ derived chain from K, 0<_i <tn- 1

K.-I
1Ta

Is ternmed a deduction of Kn from Ko. (The acconpanyi ng set

of elenmentary chains is not acknow edged by this notation but

will always be clear by context.) Wthin a given deduction, Ka
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is an ancestor chain of K. if K' precedes K in the deduction,
K, is then a _descendant chain from K, . L, in K, I'b an

ancestor literal of L, in K if there is a sequence of parent
literal --derived literal relationships connecting L* and Lo.

Lo is then the descendent literal of L1' Note that if L,

-

is a descendent of Ll there exists a substitution A such that

L; = L,X but the converse need not be true.

We define the operations Basic ExtenéionL,Basic Reduct i on

and Basic Contraction which are the operations used in the

first two procedures to be defined. The prefix 'basic! dis-
ti ngui shes these operations from their slightly nodified successors

whi ch incorporate a useful |emra device.

1) Basic Etetnstigri. This operation has as input two chains,

an adm ssible chain K as the parent chain and al so an

el enentary chain C taken fromthe auxiliary set G

of elenmentary chains. The x-instance KE  of K and

the y-instance Cr\c of C are fornmed. |If a match

is possible between the last literal L, of KE _ and
JL K

the first literal L, of Cj, let a denote the
associ ated nost general unifier of the match. If a
match is inpossible the operation termnates. |If a
match is possible,, the derived chain is fornmed as
follows: Ler (the first literal) is renoved fromthe

chain @7 cr and the remai ning part of the chain is
appended to H%&r followng the last literal Lia
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of K£Ka5 preserving the order of Gﬂca. The litera

Lgr  becomes an A-literal. All other literals Mﬂth
parents in K receive their parent's classification.
Al'l appended literals derived from C are B-literals.
If the deficit of K is positive, the deficit of the
derived chain is one less than the deficit of K
otherwi se the deficit is zero.

2) Basic Reduction. This operation has an admssible

chain K as input. A match of literals {L,, Ly} is

sought for some A-literal L., and a B-literal "L,
followwng L, in the order of K If a match is
i npossi bleg the operation termnates. |f a match is

possible, then let a be the most general unifier

subh that L,a and Lwgr are conplements. The derived
chain is YS) with LGa deleted. The deficit of the
derived chain is that of the parent chain. All*literals
have the classification of their parent literals.

3) Basic Contraction. This operation has a preadm ssible

chain K as input. The derived chain is the parent
chain with all A-literals that follow the last B-
literal deleted. The deficit of the derived chain is
t hat of .K plus the number of A-literals deleted.
Al'l derived literals have the classification of their

parent literals.

Not e that except for the Basic Contraction operation, the

derived chains may be non-preadm ssible. The non-preadm ssible
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chains may be discarded inmmediately as they are input chains
to no operation. The Basic Contraction operation produce§
adm ssi bl e chains given preadm ssible chainse, this operation is
regarded as always perforned imediately upon the creation of a
preadm ssi bl e chain.

A matrix chain is an elenentary chain formed froma matrix

clause. For a matrix clause of n Iliterals there are ni possible
matri x chains. However, except for possible value for added
heuristics, the distinction anmong matrix chains created from
the sanme clause and having the sane first elenent is unnecessary.
Thus we |et ﬂo(53 represent a set of matrix chains forned
fromthe given set S of matrix clauses such that there is
preci sely one chain in Iﬂ0(§% froma given clause with a given
first literal

W present a procedure by defining sets Cn of chains such

t hat c,cC n=20,1,2,3,... . The set C, is regarded as

n+l’
the set of chains that have been produced by the conclusion of an
nth stage of the procedure. The order of production of chains
within a stage is of relative uninportance. Two of the pro-
cedures are now defined. These first two procedures are partia
constructs of the third procedure which is the procedure of major

interest. W also nmake use of the first procedure in the proof of

conpl et eness.

Definition. A deduction of a chain K froma chain C is n-bounded

if no nore than n (Basic) Extension operations are enployed in
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the deduction. A deduction K is conditionally n-bounded

if nonore than n (Basic) Extension operations are enployed

on chains of zero deficit in the deduction.

Fi rst procedure:

Crrzto(9)
:lu 0 ON v 9
CR " = [K|] K is an admssible chain and there is an

o
n- bounded deduction of K froma chain of to (8) .

[0 ]
The auxiliary set is to (9.}
Second procedure:

cg> =1¢,(9),
12)
dn?: (K] K is an admssible chain and there is a
conditionally n-bounded deduction of K from a
! chain of too(§). The auxiliary set is too($J

12
It is easily shown that each set G is finite.
Fhreorem 1. A set 8§ of clauses is unsatisfiable if and only

3
if there exists an N such that C contains the enpty chain
i =1, 2. "1

n
This theoremstated for the sequence [C* '} is sufficient

2
ae é¢soraldacth trhe tdwmrreespsndinng m hesarodm tf foat tha‘seqaéﬁ&eC{c:lg}
n —n m

" The second procedure, however, states an inportant strategy enployed
in the Model Elimnation procedure, nanely, to give preference
to deductions which give sone indication that progress towards

achieving the enpty chain has been made (this corresponds to
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the 'partially contradictory set® notion of [LI]). In the second
procedure we treat as a special case each deduction whose
A-literal count on the Iést chain of the deduction is strictly
| ess than sonme earlier chain in the deduction. The procedure
al l ows continued devel opment within stage n of the special
deductions as long as contractions occur sufficiently often to
keep the A-literal count condition valid.

To define the third procedure the operations are altered
to allow the introduction of lemmas. A lemma is an elenentary
chain. Lemmms, as forned, are 'added' to the set too(S) of
matri x chains to formnew auxiliary sets to be used with the
Ext ension operation. A lenma can sonetinmes be used to extend
a chain resulting (perhaps after use of the Reduction operation)'
in a preadm ssible chain where no matrix chain would have |ed
to a preadm ssible chain at the sanme point. (See [LI] for an

exanpl e of the advantageous use of | emms).

To aid in the production of |emas, a non-negative integer
is associated with each A-literal and called the scope of the
A-literal. Every derived A-literal has its parent's scope
unl ess otherwise stated. W introduce a set variableto(S)
which shall denote the auxiliary set used in a particular appli-
‘cation of the Extension operation. to(S) is regarded as containing
the matri x chains and the Ienngs al ready generated at the tine
t he partfcular applicatfon of the Extension operation occurs.
Because we have not specified a conpletely sequential devel op-

ment of chains (and the corresponding deductions) we approxinate
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here this status by formally defining (a slightly nore restricted)
to(S) as follows (recall the definition is dependent on the point
of application of the Extension operation): to(S).contains 1)
the matrix chains of t00(§), 2) the lemma chains created in the
deduction $ of K where K is the chain to which the
Ext ensi on operator is applied, 3) the |lemma chains defined in
Ci?é if $ is a deduction of maximal length in Cﬁ%} or if
o) '

We define now the full operations of Extension, Reduction

and Contraction.

1) Extension--the same as the basic extension operation

except the auxiliary set is to(S) instead of too(Ql.
The newly formed A-literal is assigned scope O.

2) Reduction--the same as basic reduction except the scope
of the A-literal responsible for the deletion of the
B-literal may be increased. Let m be the scope of
the parent A-literal involved. If n is the nunber
of A-literals (strictly) between this A-literal and
the B-literal to be removed and n > m the scope
of the derived A-literal is n.

3) Contraction--the basic Contraction operation is nodified

as follows. The A-literals to be renoved are renoved indi-
vidually in reverse of chain order. After each remnal a chain
(Lemma) is formed consisting of the conplement of the

removed A-literal L., as the first element of the

chain plus the conmplement of each preceding A-litera
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Lo satisfying the followng: the nunber of A-literals
(strictly) between L; and L,L Is less than the scope
of Lp. As with matrix literals, only the placing of
the first element is significant, ordering the remain-
ing A-literals (if any) in the |ema may be done by
any convenient algorithm Finally, every A-literal
in the derived chain whose scope woul d ot herw se exceed

the nunber n of A-literals greater than that A-literal

has its scope reduced to n.

Definition: By a jfuJL conditionally _n-bounded deduction

we nmean a conditionally n-bounded deduction enpl oying
the full operations just defined in place of the basic
oper ati ons,

Third procedure:

3
*3) . 0 o' . . )
C’r‘] = {K.,I K is an adm ssible chain and there is a full

conditonally n-bounded deduction of K froma chain

of too(S)}.

Theorem 2. A set S of clauses is unsatisfiable if and only
if there exists an N such that C’<3) contains the enpty chain.
A procedure of the formof the third procedure is called a

Model Elimnation procedure. If the A-literals are identified

with the .nenbers of the S-list in [I/I], then this procedure is
seen to be essentially that of [LI]. The procedure given here

does extend the procedure of [LI] by enabling |Iemmas to be

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSITY
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used in a simlar manner to matrix chains to devel op new
chains by extension. No parallel exists in the nethod of [LI].

W consider a sinple exanple contrived to exhibit thé
use of the three operations of the Mdel Elimnation procedure.
The problemis set up by presenting a set S of clauses. The
denmonstration bel ow establishes that (the closure of) the con-

junction of the given clauses is an unsatisfiable wff.

G ven cl auses: l. Fg(a)x ™ Fg(y)a
. ~Fg (a)x " Fyy
I11. -Fax ™ ~Fg(x)y.

Ig (S contains six chains, tw chains fromeach cl ause
In stating the reason for each step of the deduction given bel ow,
reference is made to the clause fromwhich the appropriate chain
Is obtained. Order in the chains belowis left to right (i.e.
literal Ll precedes literal LN in the chain ordering if

L. is to the left of hy) .

Deduction (A-literals are underlined) Reason

1. Fg(a)x Fg(y)a Initial chain |I;

2 Fg(a)x Faq(a)a Fyy Extension using I1I;

3. Fg(a)x Fgq(a)a Faa ~Fg(a)y Extension using II1;

4 Fg(a)x Fg(a) a FRa Reduction (the scope of

Fg(a)a is now 1);
5. Fg(a)x Contracti on;

| emmas produced: (1) ~Faa ~Fg(a)a, instance of I1I1;

(2 ~Fy(a)a | ;
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w sV Extension using lemma (2) ;
6. Fgta)ra
7. 0 (enpty chain) Contraction;
(I emma producedf : ~Fg(a)a, sane as Lemma (2)).

The chain . of step 5 has a deficit of 2, the chain of step
6 has a deficit of 1. (The enpty chain has a deficit of 2).
Therefore there are only two Extension operations on O deficit

) ‘33
chai ns so OeCAa'.

83. In this section theorens 1 and 2 are established. It suffices
to show the “only if' statenent of theorem1 for i =1 and to

?

show the 'if? statement of theorem2. Both theorens then follow
as each succeeding procedure terminates with the enpty chain if
the precedi ng procedure so termn nates.
W show first the 'i f statement of theorem 2 which

~establishes the soundness of the three procedures. This is

done by making use of the clash defined within the resolution
nethod (see [R2]). A lemma chain viewed as a clause is shown

to be obtained by a suitable clash over previously defined

| emmas and perhaps a matrix clause. Using the fact that the

use of blashes in resolution leads to a sound procedure, we
establish the soundness of the procedures of this paper. Through-
out the proof of soundness the lemma is to be viewed as a cl ause
wi t hout further coment. That is, the lemma (clause) is the dis-
junction of the literals which conprise the |Iema chain; we

will consider the clauses to be a set of literals. These renmarks

hold also for the matri x cl ause.
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and a substitution 9 such that (070,079,...,C.9 is a
cl ash. Cb is the nucleus of a latent clash. A literal L

of C0 is active if L'9 is an active literal of CEP-

Ve now prove a lemma which gives the needed induction step
to carry out the proof outlined above. W assune that chain
K! has been deduced (i.e. there is given a deduction of K)
and the Contraction operation is being performed on K'. More-
over, this application of the contraction operation nay already
have renoved sone A-literals from K (and created the corres-
ponding | emma chains). Let K represent the parent chain just
prior to the removal of A-literal L,. Thus K is obtained
from K by renoval of the A-literals follow ng L; in K.
We are concerned with the lenmma clause H created as L, is renoved,
By a pLgMngs_Jﬁﬂnm_me nmean a lemma (clause) created in any
deduction by the procedure prior to this inmediate stage in the
procedure' s devel opnent. By a preceding lenmn of the dediction
we nean a |lema (clause) created earlier in the deduction of
K!' or a lemmm already created by this application of the

Contraction operation.

Lenrma JL.  Under the assunptions of the above paragraph, H is
a clash resol vent whose |atent clash has as nucleus a matrix
cl ause or previous |enma and whose renai ning clauses are pre-

ceding | emmas of the deduction.

Proof; W recall a key property of a lemma. W state the

property in terms of H A literal can appear in lemma H
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only if it is the conplenent of an A-literal in the chain K
As L, is an A-literal there is an ancestor chain in the

deduction of K to which the Extension operation waé appl i ed
which resulted in a chain containing literal AL, where AF

is the earliest ancestor of L. that is an A-literal. Let

AK be the chain containing A“ Loosely speaking, it is the

point in the deduction where an ancestor of L, was 'made’

an A-literal* The elenentary chain C chosen for that appli-
cation of the Extehsion operation is the nucleus of the I|atent
clash. The latter statenent is well defined only if we regard
C as a clause which we now agree to do. It is clearly either
a matrix clause or a previous lemma. The literals of C

whi ch have descendents in the deduction of K!' which are

A-literals are the active literals of C Let L. , L

o

, L

r

denote the active literals of C and C

TR denote the

n
remaining literals of C There is one clause in the |atent
clash for for each L. g 1 <l i ;<r, nanely the | emma produced when
a descendent of L. is renoved by Contraction. This conpletes
the specification of the latent clash and it remains to show
that a clash associated with this latent clash has H as its
clash resolvent. W actually show that the clash resolvent R
satisfies the key property of a lenmma, i.e. that R is a subset
of the set S of conplenents of A-literals of K W |eave
to the reader the exercise of convincing hinself that the use

of the 'scope' nechani sm does produce precisely the desired

subset of S, nanely that R =H given that R c s.
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Case 1. W first show there is a substitution y such that,

for r <i <n, LycS W in fact will have that cy is the
1

nucl eus of the desired cl ash.

If KO,K-, ...,KJ,...,K®™ is the given deduction of
K (thus K =K) thereisa j, 0<j “<m such that K =K. .
m /T 3
J-l . J .
Because K and C formthe chain K by the Extension (O)

operation there nust exist a substition 0O such that C = C
]
contains only literals appearing in K  plus the conpl enent of

al. Let A, denote the substitution (often null) such that
A K - -

Kok TK k-1 V L <A <om > = okt

TR G < <m j. Let CS = C<K5-m>y

1 <k<in-j. Then C@™.3 js the nucleus of the clash we seek
and y = OA,frZ.A . W establish that L. YeS, r-<i <n.

As by lemma hypothesis we are concerned with renmoving L, from
K by Contraction, all literals of C have already had their
descendent literals renoved from sone appropriate parent chain.
In particular all descendents of L., r < i <* n have been

renoved. The renoval nust have been by the Reduction operation

or else sone descendent of L, would have been an A-literal.
This inplies sone Ak made the descendent L.l( k)e@k) of L.l

the conplenent of a preceding A-literal L* in K , . W

have Ly = L|¥2VIV2-Vvj CrhiT=n it A=m_j

complementary to L*Ay,:...A . (or L* if k=m-1j). We
K.aj. m—-—2
must show L*\ , A, ,o .. A . is an A-literal of K. Clearly
if a descendent of L* is in K it is L*X,,,...\' . (or
LS m—

* if k=m- j). Thus the only way the statenment coul d not
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(0)

be true is if no descendent of L* is in K But C m nus

the complenent of . is appended followwng L in K = K. _. Because
Pi r\ t\ J

new A-literals are fornmed only fromlast elenents of parent chains no

newA-literal fornmed in K3*P, p > 0, can precede any descendent

of C in K.j +p- Hence L* nust be a descendent of AL or of

an A-literal preceding_L and hence nust have a descendent in K
A

Thus L.lyeS, r<i <"n and case 1 is shown.

Case 2. Let H.l denote the |lemma forned when a descendent
(X, '

1

L;

of L.8C, 1< i < "™ is renoved by Contraction from sone
chain -3, Wk >"0. W nust showfor each i, 1< i < r, there
exists a substitution 0 such that H@0Y. has precisely one
l[iteral conplenenting a literal in Cy = C*™A" and all other
literal s appear as nenbers of S (Note that as S contains
.no pair of conplenmentary literals the remaining condition on
defining a clash is satisfied).

The induction hypothesis allows us to assume that H is
conposed of a literal which conplenents L.l(k) and per haps

s . (k) .
compl enents of A-literals of K'3+’x precedi ng L.l in K.J+,K

for a suitable k>0. |If |j + k<m;, then 0. =1A, Kt 13+.....>;m—j'
If j +k=m let 0'1 be the null substitution. Then H‘jol
contains a literal which conpl enents L.ly.' The other literals

of H 0. conmplenent A-literals of K ., 0. which contains

every literal of K because every literal of K is a descendent

of aliteral of K ., . An argunent such as for L* in Case 1 shows

any A-literal preceding Ly in K. .,0. nust be L. or an

A-literal preceding LA hence an A-literal of K
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As the above proof may be carried out independently for
each L, 1< i <r. Case 2 is conplete. It should be noted
that (obvious) nodifications of the substititions 0. must be
applied to the ~"-unconnected variant of the latent clash
because of the change of variable names in clauses representing
H'1 .

The proof of the lemma is conplete.

It is quite easy to prescribe an order of devel opnent of the
third procedure so that the previous |emas and the precedi ng
| emmas of the deduction precede in devel opnent the creation of
a given lemma H (The use of H(S as given in the previous
section suffices, in particular). Then by induction, supposing
earlier lemas to be obtainable fromthe matrix clauses by
Resol ution using clashes, Lemma 1 establishes that H is obtain-
able fromthe matrix clauses by Resolution using clashes. Thus
every lemma is obtainable fromthe matrix clauses by Resol ution
usi ng cl ashes.

VW now show that if the enpty chain is derivable by the
third procedure of the previous section there is a clash involving
matri x clauses and | emas only whose resolvent is the enpty cl ause.
Usi ng the observation of the precedi ng paragraph, the enpty
clause is then seen to be derivable fromthe matrix clauses using

Resol ution with cl ashes. Let K be the first chain of a deduction

0
of the enpty chain. Let C denote the clause containing the

sane literals as K ; thus C is a matrix clause. There is a
o
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|atent clash with C as nucleus with all literals L aof C
active such that the |emmas H.1 associ ated with each L1. com
prise the remaining clauses of the latent clash. The associ ated
clash has the enpty clause as clash resol vent.

To establish these last statements note that there can be
no A-literal preceding any descendent of a literal of K0 in
any chain of a deduction beginning with el enmentary chain KO.
Hence in a deduction of the enpty chain every literal of Ko
has a descendent which is an A-literal as the Reduction operation
cannot be used to elimnate any of these literals. Thus each
L.l of KO (hence C) has a |lemma H.1 associated with it created
when the descendent was elimnated. Hence each L.l of C is
active. Each |lemma H.l must be a one-literal clause also by
t he above observation and the requirénent that each literal of
H.l must be the conplenent of an A-literal in a chain that in
this instance contains only one A-literal. Hence the clash
resolvent nust be enpty if a clash is possible at all. But the
proof of Lenmma 1. determ nes the substitutions needed to form the
clash fromthe latent clash so a clash is possible.

W have established that the enpty clause is derivable
using Resolution with clashes if the enpty chain is derivable.
The soundness of Resolution assures us that if the enpty claus e
is derivable the set of matrix clauses is unsatisfiable; thus
the sane is true if the enpty chain is derivable. The "if*

part of theorem 3 is established.
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It remains to establish the “only if' statement of theorem
1 for i = 1. The *only if' statenent requires us to prove that
if a set of matrix clauses forns an unsatisfiable set of clauses,
t hen C;I‘ contains the enpty chain for sone positive integer

N. This property, the conpl eteness property, then follows for

all procedures as for any non-negative integer K, c.nl) £CT£2) £CV£3),
W represent the given unsatisfiable set 8§ of matrix

cl auses by {Nh,...,N%}. Ve | et N& al so represent any matrix

chain derived frommatrix clause Ml by a suitable ordering

of the literals of MI Let {Ci""’cr} denote the truth-

functionally contradictory set of clauses corresponding to 8.

This set is guaranteed to exist by Herbrand's theorem W will

al so use C.1 to represent an :(elenmentary) chain determ ned by

a suitable ordering over the clause C, For each i <_r, C, = I\/lJO.l

for some matrix clause M, 1 < j < nft and a suitable substitution

_ ;)
91. Wien this latter property holds we say {jxy...,wkg gener at es

[cl,...,cr].

W are entirely concerned with deductions within the first
procedure where the operations are Basic Extension (BE)y Basic
Reduction (BR and Basic Contraction (BC), and no deficit counter
Is present. It is convenient to work with a certain type of

deduction defined here in ternms of the first procedure.

Definition: A ground deduction is a deduction where no substi -

tutions are perforned on the chains of the deduction by BE or
BR. Hence, any literal appearing in any chain of a ground

deduction appears as a literal of the given set of chains com

prising ",(9)
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The term'given set! in the above definition replaces the
termfset of matrix chains* as the initial set of chains, i.e.

Cél}, as we will use other sets than matri x chain sets as

starting sets for the first procedure. In particular, we shall

use {C,.,.,Cr}. The followng lemma in fact allows us to

work entirely with ground deductions fromthe given set {C,...,C,}.
Lemma 2, Let G = {M,...,6]7) 9ererate B= (c,,...,C). Then

for every ground deduction Gg . - S fromgiven set B of
chains there is a deduction Ky o0 K, of the first procedure
fromthe given set G of chains and a set {AL,...,An} of sub-
stitutions such that KA. l:G,10<_i <N ne

Let us first observe why this lemma allows us to work sinply
‘with ground deductions. |If we can show for every contradictory
set of clauses there is a ground deduction of the enpty chain,
then Lemma 2 asserts there is a deduction of the first procedure
yielding the enpty chain which has as the given set the set of
matri x clauses generating the contradictory set. This is the

result we seek.

Proof: The proof is by induction on the length n of the deduction,,
n = 0. Go nmust be a C.IeJi. Thus there exists a j and

6. such that C = M6., M eG then K is M and A =6. .
1 [ T I 0 j ol

n==k. W assune the lemma holds for n=k - 1. Gf my

be derived from G*-t wusing BE, BR or BC. W investigate

each possibility in turn.
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BE. The operation BE has two input chains, G’K-l and

sone C.eB. W have C =MO0. for sone M. rG. Let L,
1 1 J 1 J 1

denote the last literal of K,K_J: and let L, denote the first

literal of chain M. Let A and A. be the atons associated
D 1 Z

with L, and L, respectively. By the assunption that G

1 Z K
is a chain of a ground deduction and derived from &% i Py B&s
we have A, |, = A0. . Let K .~ denote the x-instance of
K-l 1 KM Z 1 K— A ]
K, and M7? denote the y-instance of M, then fromthe

above there exists a substitution y such that K, -, £T,7 =G ,,

K— Xx K—
MTiny = C. and A-Ly = A 7y. By the Unification thBorem - 'K
] M 1 A i\ Z M

there exists a nost general unifier a such that A £ or = A*Tha.

K
That is® L,i”o and LJ]{a are conplenentary literals. Fromthe

I K Z XK

definition of BE it follows that K is conposed of chain
i i7i® with the chain M 7) p appended minus its first Kiteral.

K— K KM
By the Unificati Qn theoremthere exists a substitution A, such
t hat G = KA.
BR Let L. denote the A-literal and L, denote the

B-literal in Kyon such Ihat LnA, 1 and LoAy, are corrplle-

K—1 1 Jc—lL Z K4
ments in G , and ',k 1 ‘somiftted fromT™ G  due to the use
of BR on G , . Let A. and A denote the atons of L.
and L, respectively. Then ™~ | =A2nk 1 Thusbythe

Ui cation theoremthere exists a nbst genefat unifier a

such that A.& = A*a. Then . L,a and Lr are conplenents in
K, ,a. Thus by definition of BR K is K ,a wth Lpa'
renoved. By the Unification theoremthere exists a substitution

Ac such that G = K\ .
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BC. If QK Is derived from Gk~L by BC then K S

K
directly derivable from K, , as BC wuses no matching operation.
Ko dL
Thus \ =\ , (or \ rmay be a restriction of @A, ,, that is,

simply "transformt fewer variables if some variables present
in Kk-i are absent in K7)e

This conpletes the proof of the |enma.

W are now able to limt our attention to ground deductions.
W nmust show that for every truth-functionally contradictory set
{C,...,CF) (which we assune to be miniml) there exists a ground
deduction of the enpty chain. W now refer to 'ground deductions
sinply as 'deductions’. A deduction $* extends deduction &
(or & is an extension of & if & a deduction of length n,
conprises the first n chains of J8. W define a literal L
appearing in a chain of deduction & to be Tirve in & if there
is no extension & of & in which a descendent of L can be
elimnated by either BR or BC. Cearly a descendent of a live
literal is also live. Also a live literal cannot be an A-literal
and thellast literal of a chain in a deduction for it would be
renoved by BC.

Let B represent the given mniml contradictory set of
clauses {C*...,C*"}. Let & denote an arbitrary menber of B

which is taken to be G . Call this one-step deduction & .
0 , N 0

(Vv continue the practice of regarding C  as a clause and al so,
under an often unnaned ordering, as an elenmentary chain. Wen
the ordering is inportant it is specified.) |If we can show that

no literal of C is live in & then there nust exist a deduction
0 0
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of the enpty chain. For suppose there is no deduction & such
that * is an extension of. & and & derives the enpty chain.
Then the first literal L of Co mnust be live in fig because
its descendent L' could only be renoved by BC which can only
renove last literals of chains. Hence renoval of L' by BC
must |eave the enpty chain as derived chain. Thus we need show
only that no literal of G is live in &

For convenience we will hereafter omt the terns 'descendent’
and 'ancestor® of a literal L in a deduction $ and refer
sinply to L. Wth no substitutions occurring in (ground)
deducti ons the descendents and ancestors of L are the sane
literal as L. Thus we shall say 'L is never renoved in &
for 'a descendent of L is never renoved in #, forlexanple.

W shall assune that at least one literal of C is a live
0

l[iteral in $° and produce a contradiction with the fact that

B is a mnimal contradictory set. W use in the argunment chains
whose last literal is live in the deduction in which the chain
appears. In particular, we see below that when we apply BE to
such a chain we nust introduce a new live literal (in the extended
deduction). A chain whose last literal is live (in the deduction
in which it appears; if an isolated chain then in the deduction
inwhich it is sole chain) is called a prinary chain. W have
the follow ng | emma.

temma 8_. G ven a deduction $ of a chain K we can extend $
to a deduction $' of chain K' where K is either a primry
chain or the enpty set. Mreover,; every literal of K is a
literal of K and the ordering of k holds in K (i.e. K

I s a stbehar of K) .
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Proof: Let L be the last live literal of K and let

L,,...,L denote the (non-live) literals followng L. (if

_ S

K contains no live literal let L,,...,L denote the literals
i s

of K) K wll be K nmnus all literals following L (i.e.

K!' is the fmitiar subcharm of K with last literal 'L). W

defi ne the extension ¢ of fi such that there exi st chains

K ,KwKo, ...,K where K =K and K =K, K ' is a sub-
(o] -L £ S \ (@] S JL"t" X
chain of Ki wth one of Lt,...,L® renoved, and K, follows
K.1 as a chainin $ . It suffices to show how to obtain K'-+l
I-

from K,. There are two cases, one each for renoval by BR and
BC.

Removal by BR  For this case Kai+y, follow Ki as next
chain in & . The appropriate literal L. 31<—j] <« s, is rerrovedi
by BR due to preceding conplenentary A-literal. Al possible

renmovals by BR are assuned perfornmed prior to a renoval by BC.

That is, there exists a t, 1<1t < s, such that i <t inplies
Ka+r conmes from Ky by BR, i = t inplies Ki+p cones from
Ka by BC

Removal by BC. Kg+. from K¢ is the first case of renoval
by BCe [If t =s, no renoval by BC is necessary. O herw se,
the last literal of K¢ 1is not live hence renovable by BC
Append the deduction which renmoves this literal. Kg+1 is the
| ast chain of this deduction, ™., nust be an initial subchain
of Kt because BC only renoves last literals of a chain. It
is possible to renove several of the Lj's on one operation if

literals just preceding the last literal are already A-literals.
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Then Ki+1 coincides with KA in which case we define K3
as follow ng Kj_ in # . Each last literal of KA t <_i - s,
can be renmoved in this fashion so K is deduced by fil "as

s _
prescri bed.

This conpletes the proof of the lemma. |

Gven a deduction $ of K we denote by & and K* the
deduction and primary chain respectively obtained by neans of
Lemma 3. Thus #* is an extension of & If we apply BE
to primary chain K (having deduction & and |et K' denote
the derived chain of BE and #! the associated deduction then
k* contains K as a proper initial subchain. This nmeans there
is a newlive literal followng the last literal of K wthin
kL.  For suppose these assertions false. Note the manner of the
proof of Lemma 3 results innno renmoval of literals before the
last live literal so all literals of K in K% remain in Kt
Hence KY is an initial subchain of K BE makes the |ast
literal L of K an A-literal. |If L 1is the last live
literal in K', then by Lemma 3, Kk = K But a primary chain
cannot have its last literal an A-literal because BC can
renmove the literal contradicting the fact it is live. The
assertions are thus seen to be true.

Let BE* denote the operation which takes primary chain K
to primary chain Ki as above thus extending deduction $ to
deduction $%. W develop a collection of (ground) deductions
whose existence is shown to contradict the mnimality of B
We need only the operation BE* (which of course enploys BE,

BR and BC) . |
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W start with the basic assunption: C% contains a live

l[iteral in deduction $ . W extend $ to deduce C', a
0 0 0

non-enpty primary chain. W define two lists we maintain which

det erm ne whi ch deductions we devel op. One list™ the L-Iist;
will consist of all the live literals which appear as last literals

of prinar*_chains derived usin BE*, and also the last litera
of CB. his list will include all A-literals of the deductions

we form No literal entered on the L-Iist i's ever renoved.

The other list is fhe.cLause.LLsL initially containing the clauses
of (B. Every time a literal Ly is‘édded to the L-list,, al

cl auses containing L, are renoved fromthe clause list (and
never replaced). Wwen BE* is applied to a primary chain, the
first step of its execution is an application of BE. The

el ementary chain used by BE nust be forned from a cl ause

remai ning on the clause |ist.

We define the list 1,1,,, w5 of deductions* & is
L7z t 1

determined as follows. W have deduction $ of C. The |ast
0

literal of C® is placed on the L-list as required and all
clauses containing that literal are renoved from the clause

list. Now apply BE* to CP. The resulting primary chain has
its last literal placed on the L-list and the clauses containing
that literal renoved fromthe clause list. This continues unti
BE* can no longer be applied. This occurs when it is inpossible
to forman elenentary chain from a remaining clause of the
clause list such that the operation BE can be applied. Wen

t he deduction cannot be extended by an application of BE*. we
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say the deduction has termnated. The term nated deduction

is fij, The last literal L of the last chain of $u (now a
menber of the L-list) has the property that no literal identica
or conplenmentary to L occurs in a clause of the clause Iist.

No identical literal occurs as all clauses containing L are
renoved when L is added to the L-list. No conplenentary
literal occurs as $1 is a termnated deduction. Such a literal
on the L-list is said to be closed. Deduction *-.i 'S forned
from deducti on &.l by taking as given as large an initial part

of _&1 as allows an extension to be made by BE*. The deduction
is extended until termnation. The term nated deduction is A-ig;
Note that any subsequent extension of any initial part of $I
by BE* cannot be an initial part of $1. For the chain used
by BE* originally in devel oping $.l is no |onger obtainable
as the corresponding clause is not in the clause list. Thus

&LH" is distinct from %.. One may view the construction of

$,4¢ from $ as renoving chains fromthe end of the deduction

&, until one first encounters a primary chain that can be extended
by BE* because a conplenentary literal exists in some renaining
clause of the clause list. Then extend (the deduction) by BE*
until termination. In the 'backing up’ process to find the

appropriate initial part of & all literals on the L-Iist

1
whose chains were dropped are now closed literals. That is,
all literals on the L-list whose chains (of which they are |ast

literal) are in $,  but not in $,,, are closed
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Because the clauses of the initial clause list (i.e. Q)
are finiteg only finitely many &, can be fornmed in the above
manner, i.e. t is a positive integer. After & is defined,
all literals of the L-list are closed. W observe first that
the literals of the L-list forma consistent set of literals.
show no literal shares the sane atomw th a following entry on
the L-list. Let L be a given literal of the L-list. A
literal followng L is either a live literal on a chain con-
taining L as a preceding A-literal or is entered on the
L-1ist after L is closed. |In each case the possibility of
sharing the sane atomis ruled out. Thus the L-list literals
forma consistent set. Thus the collection of clauses renoved
fromthe clause list fornms a consistent conjunction of clauses.
Hence,, the clause list nust still be non-enpty. Mreover” it
must contain a contradictory set of clauses. This is true

because no literal of a clause of the clause |list shares an

atomwith a nmenber of the L-list (as all L-list literals are .
closed) . But the remaining clauses of the clause list is a
proper subset of (B (as at |east C0 is mssing) . This con-

tradicts the fact that B is a mniml contradictory set of

cl auses. Hence no literal of C is live.
0

This establishes the 'only if?

statement of theorem 1,
for i = 1. Thus all theorens are now proven.
VW should note why it is sufficient to consider only

preadm ssi ble chains in building deductions. The reason of

Ve
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course is that only these chains are used in building the deductions
needed to obtain a contradictory set smaller than B. There are
three restrictions on a preadm ssible clause. Part a) follows
as B-literals between successive A-literals cone fromthe
sane clause and no tautol ogical clause is needed in a contradictory
set of clauses. Part b) and one half of part c) occur because
BE uses only chains (clauses) fromthe clause |ist devoid of
cl auses containing literals which are also A-literals. The
remai ni ng hal f of bart c) follows as BR could renove a
conplenentary literal before it becones an A-~literal.

A final word concerning the procedures and the conpl et eness
proof. One mght regard the phil osophy of these procedures as
‘attenpt to show B consistent and show this attenpt nust. fail'
(The interest in a procedure of this type is that it wastes
mninmal time on its m stakes, the consistent sets it 'constructs’
seeking B). Miking a literal an A-literal nmay be regarded as
fixing a truth assignnent for an atomof B. (W regard A-literals
as assigned the truth value T. The atons are in effect state-
ment letters of a propositional statenent corresponding to B.)

If a sufficient nunber of atoms of B are given truth assignments,

a false clause (a clause with all literals receiving truth

assignnment F) nust appear. The essence of the conpl et eness
proof is to showwe can always define a sufficient nunber of
A-literals to force a false clause under constraint of I|inking
cl auses together by conplenentary literals. That is, we had to

establish that a string of clauses exists that |inks an arbitrary
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clause of ft with a false clause. (The false clause is defined,
of course, only in the process of devel oping the string of clauses
itself). Once such a linkage is conpleted (which results in a
preadmi ssible chain) all '‘nodels’ for B sharing that parti al
assignment of truth values to atons of B can be elimnated as

proofs' of consistency of 6. Hence the name Mbdel Elinination.

Forcing the linking condition on the string of clauses connecting
an initial clause with a false clause forces considerable structure
on the collection of clauses containing the false clause. Oten
quite a bit about B is known when the first (non-trivial)

false clause is found. It is this last fact which makes useful

the notion of 'partially contradictory' set of clauses (utilizing

the device of 'positive deficit! clauses).
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