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Abstract

This paper presents an alternate approach to the formulation

of the Model Elimination proof procedure presented in [Ll] . By

exploiting fully the ability to linearize the procedure format

(isolating the format from a tree structure form) and by

representing lemmas by clauses, the description of the Model

Elimination procedure is greatly simplified.
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A SIMPLIFIED FORMAT FOR THE MODEL ELIMINATION

THEOREM-PROVING PROCEDURE

D. W. Loveland

§1. In [Ll] a proof procedure for first order predicate calculus

is presented and arguments showing the possibility of increased

efficiency over some existing procedures are offered. The format

of the procedure in [Ll] is somewhat cumbersome, a fault which

this paper attempts to overcome. In this paper, several related

proof procedures are given of which the final procedure is

equivalent to the Model Elimination procedure presented in [Ll].

This paper can be read independently of [Ll] although here

only the description and proof of its soundness and completeness

are given. [Ll] should be consulted for a non-trivial example

of an appliction of the procedure as well as a discussion of the

relative efficiency of the procedure. Knowledge of one of [Ll] ,

[Rl] or [R2] is desirable for §1 and §2; 43 utilizes results

from [Rl] and [R2] which are quoted without proof here. §3

contains the proofs of the lemma and theorems of ^2.

It is well known that the question of validity of a first

order well-formed formula is equivalent to the corresponding

question for the closure of the formula. Validity of a (closed)

formula is equivalent to unsatisfiability of the formula1s nega-

tion. We are concerned with establishing the unsatisfiability

of a given closed formula. With no loss of generality, we may
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presume the formula to be in Skolem functional form (for satis-

fiability) ; that is, a (closed) well-formed formula (wff) in

prenex normal form having only universal quantifiers and allowing

constants and function symbols. We also include the requirement

that the quantifier free matrix be in conjunctive normal form.

The matrix then is a conjunction of clauses with each clause a

disjunction of literals. A clause instance of a given clause

C is a clause C6 where 0 is a substitution of terms (elements

of a given set H) for some (perhaps all) of the variables of C.

The same replacement must be used at each occurrence of a

designated variable. The null substitution e such that

Ce = C is permitted.

The procedures considered in this paper are built upon

Herbrand!s theorem. Herbrand* s theorem formulated for unsatis-

fiable sentences states that a closed wff W in Skolem functional

form is unsatisfiable if and only if there are a finite number

of clause instances of W whose conjunction is truth functionally

unsatisfiable. The set H(W) of terms from which the clause

instances of the theorem are derived is defined recursively as

follows:

a) all variables of the logic and all constants of W

are in H(W);

b) if t,,...,t are elements (terms) of H(W) and f is

an n-place function symbol appearing in W, then

f(tx,•..,tn) is in H(W);
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c) only terms derivable from a) and b) appear in H(W).

A proof of this theorem appears in [R2]. The concern of the

procedures presented here as with the other proof procedures

based on Herbrand1s theorem is the efficient and correct deter-

mination of the finite contradictory conjunction of clause instances

whenever such a conjunction exists. As is frequently done, we

identify a set of clauses with the conjunction of the members

of the set. Thus we use phrases such as 'the set of matrix

clauses' etc.

Recent Herbrand-type proof procedures including the pro-

cedures developed here employ a technique first applied to

mechanical theorem proving by Prawitz. Robinson [Rl] employs

the same principle; we follow his development. Let A.. and

Ao be two atomic formulas (attorns) . The set (A-,A9} is said to

te unifiable if there exists a substitution 9 such that

A..0 = A^G. The substitution 0 is then said to be the unifier

of A, and A~ . The null substitution is permitted. We

present an algorithm,, called the unification algorithm by Robinson,

which by a series of substitutions in A, and A~ unifies

{A^A^} if unification is possible.

Unification Algorithm

1) Set two pointers, one on the first (leftmost) symbol of

each atom A.. and A~ .

2) Advance the pointers through each atom in parallel one

symbol at a time until the first (next) point of disa-
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is met, if any. If the pointers simultaneously

reach the end of each atom without (further) disagreement,

the algorithm terminates in mode S (success). Otherwise,

go to 3) .

3) Unless at the point of disagreement one pointer points

to a variable V and the other pointer points to the

first symbol of a well formed expression (term) not

containing V, terminate the algorithm in mode F

(failure). Otherwise replace the variable V at each

occurrence of V in both A. and A2 by the term

whose first symbol is at the point of disagreement. If

both atoms have a variable at the point of disagreement

let V be the variable of atom A,. Return to 2).

Note that at each stage in the algorithm there is agreement

in A, and A~ to the left of the parallel pointers. Thus the

algorithm has transformed A.. and A2 into identical atoms if

the algorithm terminates in mode S. Using the fact that the

composition of two substitutions is also a substitution,, it is

seen that the Unification Algorithm, when successful,, defines a

substitution a which we designate the mqsjt general unifier

of {A..,A }. The justification for the name given a comes from

the following theorem proved in [Rl].

Unification theorem (Robinson). If An and A~ are atoms and

{A^A^} is unifiable, then there exists a most general unifier

a of {A13A9}. Moreover, for any 0 that unifies {A1,AO} there



expression E£ where the substitution £„ replaces V-> ...V,
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exists a substitution A such that A^G = (Â cr) A - (A2cx) X .

Two literals are said to be complementary if one is the

negation of the other. For two given literals LIJL 2 if there

exists a most general unifier a such that L,cr and L2a

are complementary, then we say a match is possible for L, and

L2.

For any expression E and substitution 9 we call EG

an instance or refinement of E. If V.. , . . .V, are the variables

appearing in E, then by the x-instance of E we mean the

.V,

by variables x,,...x, respectively. Likewise-, by the y~instance

of E we mean the expression Er]E where r)E replaces V, , . . .V,

by variables y1j,...j,yk respectively.

Example of (most general) unification: For A.. = P (x5 f (y, a) 9 z) 9

Ap = P(z,w,x) we have A,a = A<® = P (z, f (y, a) 9 z) whereas A

and AI = Ptz^x^y) have no unifier.

§2. We define in this section three closely reLated procedures

which deal with structures called chains. A chain, denoted by

K or K for non-negative integer n9 is a finite ordered

list of literals. Two types of literals occur in a chain, class

A literals (A-literals) and class B literals (B-literals).

A non-negative integer called the deficit of K is associated

with each chain K and used to indicate if a chain has been

derived from a chain with more A-literals. An elementary

chain is an ordered clause with all literals considered B-
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literals and a deficit of zero. Not all chains are equally

desirable; we distinguish two subclasses. A chain is preadmissible

if the following three conditons are met:

a) if two B-literals are complementary they must be separated

by an A-literal;

b) if a B-literal is identical to an A-literal the

B-literal must precede the A-literal in the chain;

c) no two A-literals have identical atoms.

A chain is admissible if it is preadmissible and the last element

in the chain is a B-literal. The empty chain 0, a chain con-

taining no literals, is defined to be admissible.

New chains are produced from existing chains by use of

three operations defined below. Each operation has an input chain

called the parent chain; the Extension operation also has a

second chain as input, always an elementary chain. The output

chain is called the derived chjain of the operation (or, alternately,

derived chain from the parent chain), The operations have the

form of applying a substition 8 (possibly null) to the parent

chain K then adding or deleting literals to obtain the derived

chain. If L is a literal of K and L0 appears in the

derived chain, then L is called the parent literal and L9

its derived literal. A finite sequence K ,...,K of chains

such that K..-I is a derived chain from K., 0 <_ i <^ n - 1,

is termed a deduction of K from K . (The accompanying set

of elementary chains is not acknowledged by this notation but

will always be clear by context.) Within a given deduction, K
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is an ancestor chain of Kfe if K^ precedes K^ in the deduction,

K, is then a descendant chain from K . Ln in K lb anxD —— a i a

ancestor literal of L2 in K^ if there is a sequence of parent

literal--derived literal relationships connecting L^ and L2.

L9 is then the descendent literal of L,. Note that if L2

is a descendent of L., there exists a substitution A such that

L- = L1X but the converse need not be true.

We define the operations Basic Extension, Basic Reduction

and Basic Contraction which are the operations used in the

first two procedures to be defined. The prefix 'basic1 dis-

tinguishes these operations from their slightly modified successors

which incorporate a useful lemma device.

1) Basic Extê nŝ iqri. This operation has as input two chains,

an admissible chain K as the parent chain and also an

elementary chain C taken from the auxiliary set G

of elementary chains. The x-instance K£__ of K and

the y-instance Cr\ of C are formed. If a match

is possible between the last literal L, of K£__ and
JL K

the first literal L2 of Crjc, let a denote the

associated most general unifier of the match. If a

match is impossible the operation terminates. If a

match is possible,, the derived chain is formed as

follows: L2cr (the first literal) is removed from the

chain C77 cr and the remaining part of the chain is
appended to K£T,cr following the last literal Lna

K 1
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of K£ a5 preserving the order of C77 a. The literal
K c

L,cr becomes an A-literal. All other literals with

parents in K receive their parent's classification.

All appended literals derived from C are B-literals.

If the deficit of K is positive, the deficit of the

derived chain is one less than the deficit of K,

otherwise the deficit is zero.

2) Basic Reduction. This operation has an admissible

chain K as input. A match of literals {L,,L2} is

sought for some A-literal L. and a B-literal "L

following L.. in the order of K. If a match is

impossible9 the operation terminates. If a match is

possible, then let a be the most general unifier

such that L,a and L~cr are complements. The derived

chain is YSJ with L-Cr deleted. The deficit of the

derived chain is that of the parent chain. All*literals

have the classification of their parent literals.

3) Basic Contraction. This operation has a preadmissible

chain K as input. The derived chain is the parent

chain with all A-literals that follow the last B-

literal deleted. The deficit of the derived chain is

that of K plus the number of A-literals deleted.

All derived literals have the classification of their

parent literals.

Note that except for the Basic Contraction operation, the

derived chains may be non-preadmissible. The non-preadmissible
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chains may be discarded immediately as they are input chains

to no operation. The Basic Contraction operation produces

admissible chains given preadmissible chains• this operation is

regarded as always performed immediately upon the creation of a

preadmissible chain.

A matrix chain is an elementary chain formed from a matrix

clause. For a matrix clause of n literals there are ni possible

matrix chains. However, except for possible value for added

heuristics, the distinction among matrix chains created from

the same clause and having the same first element is unnecessary.

Thus we let 1ft (S) represent a set of matrix chains formed

from the given set S of matrix clauses such that there is

precisely one chain in Ift (§>) from a given clause with a given

first literal.

We present a procedure by defining sets C of chains such

that C c C n = 0,1,2,3,... . The set C is regarded as

the set of chains that have been produced by the conclusion of an

nth stage of the procedure. The order of production of chains

within a stage is of relative unimportance. Two of the pro-

cedures are now defined. These first two procedures are partial

constructs of the third procedure which is the procedure of major

interest. We also make use of the first procedure in the proof of

completeness.

Definition. A deduction of a chain K from a chain C is n-bounded

if no more than n (Basic) Extension operations are employed in
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the deduction. A deduction K is conditionally n-bounded

if no more than n (Basic) Extension operations are employed

on chains of zero deficit in the deduction.

First procedure:

C ^ ^ = to (S) ,

o oN ' 9

C^ ' = [K | K is an admissible chain and there is an

n-bounded deduction of K from a chain of to (§) .

The auxiliary set is to (S).}
Second procedure:

C ( 2 ) = to (S),o o
12)

Cl ;= (K | K is an admissible chain and there is a

conditionally n-bounded deduction of K from a

1 chain of to (§). The auxiliary set is to (S)J

(2)
It is easily shown that each set G is finite.

Theorem 1. A set § of clauses is unsatisfiable if and only
(i)

if there exists an N such that C* contains the empty chain,

i = 1,2.

This theorem stated for the sequence [C^ '} is sufficient
(2)

to establish the corresponding theorem for the sequence {Cv '}as for each n there is an m such that G^ c .
n — n m

The second procedure, however, states an important strategy employed

in the Model Elimination procedure, namely, to give preference

to deductions which give some indication that progress towards

achieving the empty chain has been made (this corresponds to
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the !partially contradictory set1 notion of [Ll]). In the second

procedure we treat as a special case each deduction whose

A-literal count on the last chain of the deduction is strictly

less than some earlier chain in the deduction. The procedure

allows continued development within stage n of the special

deductions as long as contractions occur sufficiently often to

keep the A-literal count condition valid.

To define the third procedure the operations are altered

to allow the introduction of lemmas. A lemma is an elementary

chain. Lemmas, as formed, are 'added1 to the set to (S) of

matrix chains to form new auxiliary sets to be used with the

Extension operation. A lemma can sometimes be used to extend

a chain resulting (perhaps after use of the Reduction operation)

in a preadmissible chain where no matrix chain would have led

to a preadmissible chain at the same point. (See [Ll] for an

example of the advantageous use of lemmas).

To aid in the production of lemmas, a non-negative integer

is associated with each A-literal and called the scope of the

A-literal. Every derived A-literal has its parent1s scope

unless otherwise stated. We introduce a set variable to(S)

which shall denote the auxiliary set used in a particular appli-

cation of the Extension operation. to(S) is regarded as containing

the matrix chains and the lemmas already generated at the time

the particular application of the Extension operation occurs.

Because we have not specified a completely sequential develop-

ment of chains (and the corresponding deductions) we approximate
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here this status by formally defining (a slightly more restricted)

to(S) as follows (recall the definition is dependent on the point

of application of the Extension operation): to(S) contains 1)

the matrix chains of to (§), 2) the lemma chains created in the

deduction $ of K where K is the chain to which the

Extension operator is applied, 3) the lemma chains defined in

C* ^ if $ is a deduction of maximal length in Cl ' or if

We define now the full operations of Extension, Reduction

and Contraction.

1) Extens ion--the same as the basic extension operation

except the auxiliary set is to(S) instead of to (S)1.

The newly formed A-literal is assigned scope 0.

2) Reduction--the same as basic reduction except the scope

of the A-literal responsible for the deletion of the

B-literal may be increased. Let m be the scope of

the parent A-literal involved. If n is the number

of A-literals (strictly) between this A-literal and

the B-literal to be removed and n > m, the scope

of the derived A-literal is n.

3) Contraction--the basic Contraction operation is modified

as follows. The A-literals to be removed are removed indi-

vidually in reverse of chain order. After each remwal a chain

(lemma) is formed consisting of the complement of the

removed A-literal L. as the first element of the

chain plus the complement of each preceding A-literai
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Lo satisfying the following: the number of A-literals

(strictly) between L- and L, is less than the scope

of Lp. As with matrix literals, only the placing of

the first element is significant, ordering the remain-

ing A-literals (if any) in the lemma may be done by

any convenient algorithm. Finally, every A-literal

in the derived chain whose scope would otherwise exceed

the number n of A-literals greater than that A-literal

has its scope reduced to n.

Definition: By a jfulJL conditionally n-bounded deduction

we mean a conditionally n-bounded deduction employing

the full operations just defined in place of the basic

operations,

Third procedure:

m (S)
o o v '

C^ ' = {K I K is an admissible chain and there is a full
n '

conditonally n-bounded deduction of K from a chain

of too(S)}.

Theorem 2. A set S of clauses is unsatisfiable if and only

if there exists an N such that C^ contains the empty chain.

A procedure of the form of the third procedure is called a

Model Elimination procedure. If the A-literals are identified

with the members of the S-list in [I/I] , then this procedure is

seen to be essentially that of [LI]. The procedure given here

does extend the procedure of [LI] by enabling lemmas to be

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSITY
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used in a similar manner to matrix chains to develop new

chains by extension. No parallel exists in the method of [Ll].

We consider a simple example contrived to exhibit the

use of the three operations of the Model Elimination procedure.

The problem is set up by presenting a set S of clauses. The

demonstration below establishes that (the closure of) the con-

junction of the given clauses is an unsatisfiable wff.

Given clauses: I. Fg(a)x ^ Fg(y)a

II. ~Fg (a)x ^ Fyy

III. -Fax ^ ~Fg(x)y.

IU (S) contains six chains, two chains from each clause.

In stating the reason for each step of the deduction given below,

reference is made to the clause from which the appropriate chain

is obtained. Order in the chains below is left to right (i.e.

literal L-. precedes literal L^ in the chain ordering if

LL is to the left of h?) .

Deduction (A-literals are underlined) Reason

1. Fg(a)x Fg(y)a Initial chain I;

2. Fg(a)x Fq(a)a Fyy Extension using II;

3. Fg(a)x Fq (a)a Faa ~Fg(a)y Extension using III;

4. Fg(a)x Fq(a) a Fa.a Reduction (the scope of

Fq(a)a is now 1);

5. Fg(a)x Contraction;

lemmas produced: (1) ~Faa ~Fg(a)a, instance of III;

(2) ~Fg(a)a
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„ , v Extension using lemma (2) ;
6. Fg(a)a
7. 0 (empty chain) Contraction;

(lemma produced: ~Fg(a)a, same as Lemma (2)).

The chain of step 5 has a deficit of 2, the chain of step

6 has a deficit of 1. (The empty chain has a deficit of 2).

Therefore there are only two Extension operations on 0 deficit

chains so 0eC^ '.

§3. In this section theorems 1 and 2 are established. It suffices

to show the ?only if1 statement of theorem 1 for i = 1 and to

show the !if? statement of theorem 2. Both theorems then follow

as each succeeding procedure terminates with the empty chain if

the preceding procedure so terminates.

We show first the ! i f statement of theorem 2 which

establishes the soundness of the three procedures. This is

done by making use of the clash defined within the resolution

method (see [R2]). A lemma chain viewed as a clause is shown

to be obtained by a suitable clash over previously defined

lemmas and perhaps a matrix clause. Using the fact that the

use of clashes in resolution leads to a sound procedure, we

establish the soundness of the procedures of this paper. Through-

out the proof of soundness the lemma is to be viewed as a clause

without further comment. That is, the lemma (clause) is the dis-

junction of the literals which comprise the lemma chain; we

will consider the clauses to be a set of literals. These remarks

hold also for the matrix clause.
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and a substitution 9 such that (0^0,0^9,... ,Ĉ .9) is a

clash. C is the nucleus of a latent clash. A literal L
o

of C is active if L!9 is an active literal of C!0.
o o

We now prove a lemma which gives the needed induction step

to carry out the proof outlined above. We assume that chain

K1 has been deduced (i.e. there is given a deduction of KT)

and the Contraction operation is being performed on K!. More-

over, this application of the contraction operation may already

have removed some A-literals from Kf (and created the corres-

ponding lemma chains). Let K represent the parent chain just

prior to the removal of A-literal L . Thus K is obtained

from Kr by removal of the A-literals following L,. in Kf :

We are concerned with the lemma clause H created as La is removed,

By a previous Ĵ emma we mean a lemma (clause) created in any

deduction by the procedure prior to this immediate stage in the

procedure's development. By a preceding lemma ôf the deduct ion

we mean a lemma (clause) created earlier in the deduction of

K1 or a lemma already created by this application of the

Contraction operation.

Lemma JL. Under the assumptions of the above paragraph, H is

a clash resolvent whose latent clash has as nucleus a matrix

clause or previous lemma and whose remaining clauses are pre-

ceding lemmas of the deduction.

Proof; We recall a key property of a lemma. We state the

property in terms of H. A literal can appear in lemma H
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only if it is the complement of an A-literal in the chain K.

As L_ is an A-literal there is an ancestor chain in the

deduction of K! to which the Extension operation was applied

which resulted in a chain containing literal AL, where L

is the earliest ancestor of L that is an A-literal. Let

K be the chain containing L. Loosely speaking, it is the
A A

point in the deduction where an ancestor of LA was Tmade!

an A-literal* The elementary chain C chosen for that appli-

cation of the Extension operation is the nucleus of the latent

clash. The latter statement is well defined only if we regard

C as a clause which we now agree to do. It is clearly either

a matrix clause or a previous lemma. The literals of C

which have descendents in the deduction of K1 which are

A-literals are the active literals of C. Let L-. , . . . ,L

denote the active literals of C and C -,...,L denote the

remaining literals of C. There is one clause in the latent

clash for for each L. 3 1 <^ i ;< r, namely the lemma produced when

a descendent of L. is removed by Contraction. This completes

the specification of the latent clash and it remains to show

that a clash associated with this latent clash has H as its

clash resolvent. We actually show that the clash resolvent R

satisfies the key property of a lemma, i.e. that R is a subset

of the set S of complements of A-literals of K. We leave

to the reader the exercise of convincing himself that the use

of the !scope' mechanism does produce precisely the desired

subset of S, namely that R = H given that R c s.
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Case 1. We first show there is a substitution y such that,

for r < i < n, L.ycS. We in fact will have that cy is the
1

nucleus of the desired clash.

If K ,K,,...,K.,...,K is the given deduction of

K! (thus K' = K ) there is a j, 0 < j ;< m such that K = K..
m /TL 3

Because K. and C form the chain K. by the Extension

operation there must exist a substition 0 such that C9 = C

contains only literals appearing in K. plus the complement of

AL. Let Av denote the substitution (often null) such that
A K.
K
j +k

 = K j + k - l V 1 < ^ < m- j. Let C*k> = C<k-L> V
1 < k < in - j. Then Ĉ ™""-3' is the nucleus of the clash we seek
and y = 0A,A~...A .. We establish that L.yeS, r < i < n.1 2 m-j l —

As by lemma hypothesis we are concerned with removing LA from

K by Contraction, all literals of C have already had their

descendent literals removed from some appropriate parent chain.

In particular all descendents of L. , r < i <^ n have been

removed. The removal must have been by the Reduction operation

or else some descendent of L. would have been an A-literal.
(k) (k)This implies some A, made the descendent L. eCv of L.

the complement of a preceding A-literal L* in K. , . We

have L.y = L | k ) V l V 2 - V j ( ° r hi7 = ^ ' ^ i f ^ = m - j)

c o m p l e m e n t a r y to L * A V , 1 . . . A . ( o r L* if k = m - j ) . We
K.I j . m — ~2

must show L*\ , n An , o. . . A . is an A - l i t e r a l of K. C l e a r l y

i f a d e s c e n d e n t of L* i s in K i t i s L*X, , , . . . \ . (or
K-r i m — j

if k = m - j) . Thus the only way the statement could not



20

be true is if no descendent of Lx is in K. But C minus

the complement of L is appended following L in K = K . . Because
Pi r\ t\ J

new A-literals are formed only from last elements of parent chains no

new A-literal formed in K. , p > 0, can precede any descendent
of C in K. . Hence L* must be a descendent of L or ofj+p A

an A-literal preceding L and hence must have a descendent in K.
A

Thus L.yeS, r < i <^ n and case 1 is shown.

Case 2. Let H. denote the lemma formed when a descendent
(V)

L; of L.eC, 1 <. i <. r* is removed by Contraction from some

chain K - + w k >_ 0. We must show for each i, 1 <_ i <_ r, there

exists a substitution 0. such that H.0. has precisely one

literal complementing a literal in Cy = C^™"^' and all other

literals appear as members of S. (Note that as S contains

no pair of complementary literals the remaining condition on

defining a clash is satisfied).

The induction hypothesis allows us to assume that H. is
(k)composed of a literal which complements L. and perhaps

(k)complements of A-literals of K. , preceding L. in K. ,

for a suitable k > 0 . If j + k<m J, then 0. = A, , >,, 2 • • •
>;

If j + k = m let 0. be the null substitution. Then H.0.

contains a literal which complements L.y. The other literals

of H.0. complement A-literals of K. ,0. which contains

every literal of K because every literal of K is a descendent

of a literal of K. , . An argument such as for L* in Case 1 shows

any A-literal preceding L.y in K . ,0. must be L or an

A-literal preceding L hence an A-literal of K.
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As the above proof may be carried out independently for

each L., 1 < i < r. Case 2 is complete. It should be noted

that (obvious) modifications of the substititions 0. must be

applied to the ^-unconnected variant of the latent clash

because of the change of variable names in clauses representing

H. .

The proof of the lemma is complete.

It is quite easy to prescribe an order of development of the

third procedure so that the previous lemmas and the preceding

lemmas of the deduction precede in development the creation of

a given lemma H. (The use of H\(S) as given in the previous

section suffices, in particular). Then by induction, supposing

earlier lemmas to be obtainable from the matrix clauses by

Resolution using clashes, Lemma 1 establishes that H is obtain-

able from the matrix clauses by Resolution using clashes. Thus

every lemma is obtainable from the matrix clauses by Resolution

using clashes.

We now show that if the empty chain is derivable by the

third procedure of the previous section there is a clash involving

matrix clauses and lemmas only whose resolvent is the empty clause.

Using the observation of the preceding paragraph, the empty

clause is then seen to be derivable from the matrix clauses using

Resolution with clashes. Let K be the first chain of a deduction
o

of the empty chain. Let C denote the clause containing the

same literals as K ; thus C is a matrix clause. There is a
ô
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latent clash with C as nucleus with all literals Li of C

active such that the lemmas H. associated with each L. com-

prise the remaining clauses of the latent clash. The associated

clash has the empty clause as clash resolvent.

To establish these last statements note that there can be

no A-literal preceding any descendent of a literal of K in

any chain of a deduction beginning with elementary chain K .

Hence in a deduction of the empty chain every literal of K

has a descendent which is an A-literal as the Reduction operation

cannot be used to eliminate any of these literals. Thus each

L. of K (hence C) has a lemma H. associated with it created

when the descendent was eliminated. Hence each L. of C is

active. Each lemma H. must be a one-literal clause also by

the above observation and the requirement that each literal of

H. must be the complement of an A-literal in a chain that in

this instance contains only one A-literal. Hence the clash

resolvent must be empty if a clash is possible at all. But the

proof of Lemma 1 determines the substitutions needed to form the

clash from the latent clash so a clash is possible.

We have established that the empty clause is derivable

using Resolution with clashes if the empty chain is derivable.

The soundness of Resolution assures us that if the empty claus e

is derivable the set of matrix clauses is unsatisfiable; thus

the same is true if the empty chain is derivable. The f if *

part of theorem 3 is established.
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It remains to establish the ? only if1 statement of theorem

1 for i = 1. The *only if1 statement requires us to prove that

if a set of matrix clauses forms an unsatisfiable set of clauses,

then Ĉ _ ' contains the empty chain for some positive integer

N. This property, the completeness property, then follows for

all procedures as for any non-negative integer k, c-̂  £ CT! £ Cv

We represent the given unsatisfiable set § of matrix

clauses by {M,, ...,M }. We let M. also represent any matrix

chain derived from matrix clause M. by a suitable ordering

of the literals of M.. Let {C,,...,C } denote the truth-

functionally contradictory set of clauses corresponding to §.

This set is guaranteed to exist by Herbrand1s theorem. We will

also use C. to represent an (elementary) chain determined by

a suitable ordering over the clause C.. For each i <_ r, C. = M.0.

for some matrix clause M., 1 < j < m^ and a suitable substitution

9.. When this latter property holds we say {jyL,...,M ) generates

We are entirely concerned with deductions within the first

procedure where the operations are Basic Extension (BE)9 Basic

Reduction (BR) and Basic Contraction (BC), and no deficit counter

is present. It is convenient to work with a certain type of

deduction defined here in terms of the first procedure.

Definition: A ground deduction is a deduction where no substi-

tutions are performed on the chains of the deduction by BE or

BR. Hence, any literal appearing in any chain of a ground

deduction appears as a literal of the given set of chains com-

prising ^o(
g) .
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The term !given set1 in the above definition replaces the

term fset of matrix chains* as the initial set of chains, i.e.

C , as we will use other sets than matrix chain sets as

starting sets for the first procedure. In particular, we shall

use {C,,.,.,C }. The following lemma in fact allows us to

work entirely with ground deductions from the given set {C,,...,C }.

Lemma 2, Let G = {M^,...,]^) 9 e n e r a t e B = (C]L,...,Cr). Then

for every ground deduction G S, , . . . ,G from given set B of

chains there is a deduction K ,...,K of the first procedure

from the given set G of chains and a set {A.,,...,A } of sub-

stitutions such that K.A. = G., 0 <_ i <^ n •

Let us first observe why this lemma allows us to work simply

with ground deductions. If we can show for every contradictory

set of clauses there is a ground deduction of the empty chain,

then Lemma 2 asserts there is a deduction of the first procedure

yielding the empty chain which has as the given set the set of

matrix clauses generating the contradictory set. This is the

result we seek.

Proof: The proof is by induction on the length n of the deduction,

n = 0. G must be a C. eJi. Thus there exists a j ando I J

6. such that C. = M.6., M. eG then K is M. and A = 6 . .
1 l j l ' j O j O l

n = k. We assume the lemma holds for n = k - 1. G, may

be derived from G, , using BE, BR or BC. We investigate

each possibility in turn.
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BE. The operation BE has two input chains, G, , and

some C. eB. We have C. = M.0. for some M . rG . Let L,

denote the last literal of K, - and let L? denote the first

literal of chain M.. Let A, and A be the atoms associated
D 1 Z

with L, and Lo respectively. By the assumption that G,
1 Z K

is a chain of a ground deduction and derived from Gv i bY BE>

we have A^. , = AO0. . Let K, .^ denote the x- instance of
1 K—1 Z 1 K—1 J\

K, , and M.7? denote the y-instance of M., then from the

above there exists a substitution y such that Kn -, £T,7 = G, ,,
K — 1 Jtx K — 1

M.T7My = C. and A- L.y = Ao77_.y. By the Uni f ica t ion theorem
] M 1 JL i\ Z M.

there exists a most general unifier a such that A,£ or = A^Tha.

That is^ Ln i^o and LoT]T̂ a are complementary literals. From the
IK Z JK

definition of BE it follows that K, is composed of chain
Ki i^ti® with the chain M, 7) p appended minus its first literal.
K—1 K KM

By the Unification theorem there exists a substitution A, such

that Gk = KkAk.

BR. Let L.. denote the A-literal and Lo denote the

B-literal in K, n such that Ln Av 1 and LOAV n are comple-
K—1 1 JC — JL Z K. — 1

ments in G, , and L
2^k 1

 is om:i-tted from G, due to the use

of BR on G, , . Let A.. and A2 denote the atoms of L..

and L2 respectively. Then ^i^ i = A2^k 1- T h u s bY t h e

Unification theorem there exists a most general unifier a

such that A..CF = A^a. Then L,a and L̂ cr are complements in

K, ,a. Thus by definition of BR, K, is K, ,a with Lpa

removed. By the Unification theorem there exists a substitution

Ak such that Gk = Kk\k.
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BC. If G, is derived from G- . by BC then K, is

directly derivable from Kv , as BC uses no matching operation.
.K -• JL

Thus \ = \ , (or \ may be a restriction of 7\, n , that is,

simply ftransform1 fewer variables if some variables present

in K , are absent in K^)•

This completes the proof of the lemma.

We are now able to limit our attention to ground deductions.

We must show that for every truth-functionally contradictory set

{C-,...,C ) (which we assume to be minimal) there exists a ground

deduction of the empty chain. We now refer to !ground deductions'

simply as !deductionsT . A deduction $* extends deduction &

(or &* is an extension of &) if &, a deduction of length n,

comprises the first n chains of J8*. We define a literal L

appearing in a chain of deduction & to be live in & if there

is no extension &* of & in which a descendent of L can be

eliminated by either BR or BC. Clearly a descendent of a live

literal is also live. Also a live literal cannot be an A-literal

and the last literal of a chain in a deduction for it would be

removed by BC.

Let B represent the given minimal contradictory set of

clauses {C^...,C^}. Let C denote an arbitrary member of B

which is taken to be G . Call this one-step deduction & .
o ^ o

(We continue the practice of regarding C. as a clause and also,

under an often unnamed ordering, as an elementary chain. When

the ordering is important it is specified.) If we can show that

no literal of C is live in & then there must exist a deduction
o o
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of the empty chain. For suppose there is no deduction & such

that * is an extension of. &Q and & derives the empty chain.

Then the first literal L of CQ must be live in fiQ because

its descendent Lf could only be removed by BC which can only

remove last literals of chains. Hence removal of L1 by BC

must leave the empty chain as derived chain. Thus we need show

only that no literal of Co is live in &Q.

For convenience we will hereafter omit the terms !descendent1

and 'ancestor1 of a literal L in a deduction $ and refer

simply to L. With no substitutions occurring in (ground)

deductions the descendents and ancestors of L are the same

literal as L. Thus we shall say 'L is never removed in &\

for fa descendent of L is never removed in #!, for example.

We shall assume that at least one literal of C is a live
o

literal in $ and produce a contradiction with the fact that

B is a minimal contradictory set. We use in the argument chains

whose last literal is live in the deduction in which the chain

appears. In particular, we see below that when we apply BE to

such a chain we must introduce a new live literal (in the extended

deduction). A chain whose last literal is live (in the deduction

in which it appears; if an isolated chain then in the deduction

in which it is sole chain) is called a primary chain. We have

the following lemma.

Lemma 3_. Given a deduction $ of a chain K we can extend $

to a deduction $! of chain K1 where K! is either a primary

chain or the empty set. Moreover,, every literal of K! is a

literal of K and the ordering of K holds in KT (i.e. K?

is a subchain of K).
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Proof: Let L be the last live literal of K and let

L,,...,L denote the (non-live) literals following L. (if
j_ s

K contains no live literal let L,,...,L denote the literals
j_ s

of K.) K! will be K minus all literals following L (i.e.

K1 is the initial subchain of K with last literal L). We

define the extension $' of fi such that there exist chains

K ,KWKO,...,K where K = K and K = K', K. is a sub-
O -L £ S \ O S JL"t" X

chain of K. with one of L,,...,L removed, and K.+^ follows
K. as a chain in $! . It suffices to show how to obtain K.
1 i

from K.. There are two cases, one each for removal by BR and

BC.

Removal by BR. For this case K. , follow K. as next

chain in &? . The appropriate literal L., 1 <. j <. s, is removed

by BR due to preceding complementary A-literal. All possible

removals by BR are assumed performed prior to a removal by BC.

That is, there exists a t, 1 < t < s, such that i < t implies

K. , comes from K. by BR, i >_ t implies K. , comes from

K. by BC.

Removal by BC. K, 1 from K. is the first case of removal

by BC • If t = s, no removal by BC is necessary. Otherwise,

the last literal of K, is not live hence removable by BC.

Append the deduction which removes this literal. K is the

last chain of this deduction, K+-+i must be an initial subchain

of K because BC only removes last literals of a chain. It

is possible to remove several of the L.!s on one operation if

literals just preceding the last literal are already A-literals.
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Then K. coincides with K^ in which case we define K i + 1

as following K. in #! . Each last literal of K^, t <_ i - s,

can be removed in this fashion so K is deduced by fi1 as
s

prescribed.

This completes the proof of the lemma.

Given a deduction $ of K we denote by &* and K* the

deduction and primary chain respectively obtained by means of

Lemma 3. Thus #* is an extension of &. If we apply BE

to primary chain K (having deduction &) and let K, denote

the derived chain of BE and #.. the associated deduction then

K* contains K as a proper initial subchain. This means there

is a new live literal following the last literal of K within

K* . For suppose these assertions false. Note the manner of the

proof of Lemma 3 results in no removal of literals before the

last live literal so all literals of K in K. remain in Kt.

Hence K* is an initial subchain of K. BE makes the last

literal L of K an A-literal. If L is the last live

literal in K, , then by Lemma 3, K* = K. But a primary chain

cannot have its last literal an A-literal because BC can

remove the literal contradicting the fact it is live. The

assertions are thus seen to be true.

Let BE* denote the operation which takes primary chain K

to primary chain K* as above thus extending deduction $ to

deduction $* . We develop a collection of (ground) deductions

whose existence is shown to contradict the minimality of B.

We need only the operation BE* (which of course employs BE,

BR and BC) .



30

We start with the basic assumption: C contains a live

literal in deduction $ . We extend $ to deduce C* a
o o o

non-empty primary chain. We define two lists we maintain which

determine which deductions we develop. One list^ the L-list,

will consist of all the live literals which appear as last literals

of primary chains derived using BE*, and also the last literal
of C*. This list will include all A-literals of the deductions

o

we form. No literal entered on the L-list is ever removed.

The other list is the clause list initially containing the clauses

of (B . Every time a literal L1 is added to the L-list,, all

clauses containing L-. are removed from the clause list (and

never replaced). When BE* is applied to a primary chain, the

first step of its execution is an application of BE. The

elementary chain used by BE must be formed from a clause

remaining on the clause list.

We define the list 1,1,,, MJ5 of deductions* & is

determined as follows. We have deduction $! of C* . The last
o

literal of C* is placed on the L-list as required and all

clauses containing that literal are removed from the clause

list. Now apply BE* to C* . The resulting primary chain has

its last literal placed on the L-list and the clauses containing

that literal removed from the clause list. This continues until

BE* can no longer be applied. This occurs when it is impossible

to form an elementary chain from a remaining clause of the

clause list such that the operation BE can be applied. When

the deduction cannot be extended by an application of BE*. we
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say the deduction has terminated. The terminated deduction

is fi1. The last literal L of the last chain of $, (now a

member of the L-list) has the property that no literal identical

or complementary to L occurs in a clause of the clause list.

No identical literal occurs as all clauses containing L are

removed when L is added to the L-list. No complementary

literal occurs as $.. is a terminated deduction. Such a literal

on the L-list is said to be closed. Deduction *- + i
 is formed

from deduction &. by taking as given as large an initial part

of &. as allows an extension to be made by BE*. The deduction

is extended until termination. The terminated deduction is ^-.-i-

Note that any subsequent extension of any initial part of $.

by BE* cannot be an initial part of $.. For the chain used

by BE* originally in developing $. is no longer obtainable

as the corresponding clause is not in the clause list. Thus

&. ,. is distinct from $.. One may view the construction of
l+l 1

$. - from $. as removing chains from the end of the deduction

&. until one first encounters a primary chain that can be extended

by BE* because a complementary literal exists in some remaining

clause of the clause list. Then extend (the deduction) by BE*

until termination. In the !backing upT process to find the

appropriate initial part of &. all literals on the L-list

whose chains were dropped are now closed literals. That is,

all literals on the L-list whose chains (of which they are last

literal) are in $. but not in $. are closed.
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Because the clauses of the initial clause list (i.e. g)

are finite9 only finitely many &, can be formed in the above

manner, i.e. t is a positive integer. After &t is defined,

all literals of the L-list are closed. We observe first that

the literals of the L-list form a consistent set of literals. We

show no literal shares the same atom with a following entry on

the L-list. Let L be a given literal of the L-list. A

literal following L is either a live literal on a chain con-

taining L as a preceding A-literal or is entered on the

L-list after L is closed. In each case the possibility of

sharing the same atom is ruled out. Thus the L-list literals

form a consistent set. Thus the collection of clauses removed

from the clause list forms a consistent conjunction of clauses.

Hence,, the clause list must still be non-empty. Moreover^ it

must contain a contradictory set of clauses. This is true

because no literal of a clause of the clause list shares an

atom with a member of the L-list (as all L-list literals are

closed) . But the remaining clauses of the clause list is a

proper subset of (B (as at least C is missing) . This con-

tradicts the fact that B is a minimal contradictory set of

clauses. Hence no literal of C is live.
o

This establishes the 'only if1 statement of theorem 1,

for i = 1. Thus all theorems are now proven.

We should note why it is sufficient to consider only

preadmissible chains in building deductions. The reason of
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course is that only these chains are used in building the deductions

needed to obtain a contradictory set smaller than B. There are

three restrictions on a preadmissible clause. Part a) follows

as B-literals between successive A-literals come from the

same clause and no tautological clause is needed in a contradictory

set of clauses. Part b) and one half of part c) occur because

BE uses only chains (clauses) from the clause list devoid of

clauses containing literals which are also A-literals. The

remaining half of part c) follows as BR could remove a

complementary literal before it becomes an A~literal.

A final word concerning the procedures and the completeness

proof. One might regard the philosophy of these procedures as

!attempt to show B consistent and show this attempt must fail!.

(The interest in a procedure of this type is that it wastes

minimal time on its mistakes, the consistent sets it 'constructs'

seeking B). Making a literal an A-literal may be regarded as

fixing a truth assignment for an atom of B. (We regard A-literals

as assigned the truth value T. The atoms are in effect state-

ment letters of a propositional statement corresponding to B.)

If a sufficient number of atoms of B are given truth assignments,

a false clause (a clause with all literals receiving truth

assignment F) must appear. The essence of the completeness

proof is to show we can always define a sufficient number of

A-literals to force a false clause under constraint of linking

clauses together by complementary literals. That is, we had to

establish that a string of clauses exists that links an arbitrary
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clause of ft with a false clause. (The false clause is defined,

of course, only in the process of developing the string of clauses

itself). Once such a linkage is completed (which results in a

preadmissible chain) all !modelsf for B sharing that partial

assignment of truth values to atoms of B can be eliminated as

1 proofs1 of consistency of 6. Hence the name Model Elimination.

Forcing the linking condition on the string of clauses connecting

an initial clause with a false clause forces considerable structure

on the collection of clauses containing the false clause. Often

quite a bit about B is known when the first (non-trivial)

false clause is found. It is this last fact which makes useful

the notion of !partially contradictory! set of clauses (utilizing

the device of !positive deficit1 clauses).
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