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1. Introduction. The Bieberbach conjecture asserts that

the n-th coefficient of the function
CD

f (z) = z + Z Z a z n ,
n=2 n

analytic and univalent in the unit disk, satisfies

|a | < n
n

with equality holding only for the Koebe function

K(z) = z/(l - z ) 2

or one of its rotations. This was proved for the second and

third coefficients by Bieberbach [l] and Loewner [2] respectively.

The proof for the fourth coefficient was first obtained by

Garabedian and Schiffer [3] and was later simplified by

Charzynski and Schiffer [4], Their proof was based on the

Grunsky inequality which gives necessary and sufficient conditions

that an analytic function be univalent in the unit disk. Recently,

a streamlined proof for n = 4 was given by Garabedian, Ross

and Schiffer [5] in which even more striking use was made of

Grunsky1s inequality. In the latter paper the authors proved

the local theorem in the sense that there exists an e > 0
n
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such that if
2n

(1.1) k n

k=2

then Re a2 < 2n . Garabedian and Schiffer [6] complemented

this result by showing for odd n, Re aon+i < 2n + 1 if only

(1.2) 2 - Re a, < e

for some small e
n > ° • They also indicated that their methods

imply a similar result for the even coefficients. The author

[7] showed that the equivalence of the conditions (1.1) and

(1.2) is a simple consequence of Loewner's formulas.

Grunsky!s inequality is based on the fact that an analytic

function f(z) is univalent in the unit disk if and only if

the series

oo

{1.3) log *<•>: *<» - ZL <.mi/r
m,n=U

converges for |z| < 1 , |4| < 1 • Grunsky [8] showed that

this is the case if and only if the symmetric infinite matrix

C = (Cm,n) ' C m n
= ^ dmn

satisfies
oo oo

(1.4) | Z-* Cmnxmxn| < ..'"-> |xn|
2

m,n=l mn m n - n = 1 n'

for every complex vector x = (x_,xQ,...,x , ...)
j. £ n



Grunsky's work prompted Schur [9| to show that every quadratic

form satisfying (1.4) has a matrix of the form

(1.5) C - U'EU

where U is unitary, and IP its transpose and E is a real

diagonal matrix with elements 0 < e. < 1 . This study suggests

a close relationship between unitary matrices and Grunsky matrices

and raises the question of characterizing those univalent functions

which correspond to unitary matrices.



 



 



2- Unitary Grunsky Matrices. The Faber polynomials

associated with f are uniquely defined by the relations

oo

Vnzr> - ? " £ "»•" •
the coefficients b being related to the coefficients C „ by

nm ™n

™~ c

see, for example, Schiffer [10].

The following definition of slit mapping, which appears

to include those in common use, is the most convenient one for

our purpose.

Definition. Let f(z) be analytic and univalent. We

say that f defines a slit mapping if the complement of the

range of f has measure zero (with respect to the ordinary

Lebesgue measure in the plane)•

The classical area theorem is proved by using Green!s

identity together with the fact that the area of a region bounded

by a positively oriented Jordan curve is positive, see, for

example, Nehari [ll]. Golusin [12] obtained a generalization of

the area theorem by using the fact that the integral of a non-

negative function over such a region is non-negative.

Theorem 2.1. Suppose that f(z) is normalized and analytic

in the unit disk. A necessary and sufficient condition that f

be univalent is that



OO OO 00

(2.2) T\ >Z xnCnJ2< Z , IxJ2

m = l m = l n = l

for every square summable complex vector x = (x-,xo, . • . ,x , . . •) .

Equality holds for all sequences if and only if f defines a

slit mapping.

Proof: As was observed by Jenkin [13], it is a consequence

of the Schwartz inequality that (1.4) is implied by the apparently

stronger inequality (2.2). However, as was pointed out by

Schiffer [14], it is only apparently stronger, for it is implied

by (1.4) together with Schu^s observations. Since it is

illuminating to distinguish those properties which belong to

matrix theory from those which require attributes of univalent

functions we give a proof of this fact. Indeed, the left hand

side of (2.2) is equal to ||Cx||2 . It then follows from (1.5)

that

||Cx||2 = (UfEUx , U!EUx) - (EU!*UfEUx , Ux)

- (E 2 U x , U x ) < |lE2||||Uxj|2 < llxjl2

since ||E || < 1 and U is unitary.

It remains to prove the assertion regarding equality for

slit mappings. This follows by noting that in the proof of

Jenkins [14] there is equality in this case. Actually an

examination of the proof of Grunsky!s inequality shows that it

yields both results. In the final expression there is one non-

negative term which is dropped; this expression also yields

Theorem 2.1.
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Our application to the coefficient problem is based on

Theorem 2.2 If f(z) is analytic in the unit disk, then

f defines a univalent slit mapping if and only if the matrix c

is unitary.

Proof; To prove the necessity, suppose that f(z) is

univalent. Let x = 1 and x = 0 if m ^ n . Since (2.2)

is an equality for finite sequences, it follows that
oo

(2.3) JZl|CnJ
2= 1 ,

m—l

that is, the rows of C have norm 1. Now let x = 1, and

x » 0 if m ^ n or k , k ^ n . Thenm
oo



It follows by expanding the left side of the above equality

and using (2.3) that

oo

Re < ̂  C C, x. = O ,
T nm km k 'm—L

or, since x, is an arbitrary complex number

oo

m-1 nm km

that is, the rows of C are pairwise orthogonal. Hence C

is unitary.

The proof of the sufficiency follows from the fact that if

C i» unitary then (2.2) is an equality.

In connection with the method of Garabedian, Ross and

Schiffer, it is interesting to ask for which univalent functions

a truncated Grunsky matrix is unitary. The following theorem

shows that this can happen only if the matrix is diagonal.

Thus, if one could prove that within the class of matrices

arising from univalent functions the extremal function corresponds

to a truncated unitary matrix, one would have an easy proof of

the Bieberbach conjecture.

Theorem 2.3. Let f be an analytic function in |zj < 1

with Grunsky matrix C = (C-) . If there exists a finite set

of integers 1 = ot < oc <...< a such that the matrix
x £ n

(C ) is unitary, then C is diagonal. Moreover,
j «

f(z) = i6 2e z + az + 1
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where 0 is a real constant and a is constant.

Proof: Let C = (C^ ) j,k = 1,2, . . .,n . Since t and C
J ^

are both unitary, it follows that
a

*= 0 unless OL

for some k . In particular, since the first Faber polynomial

is given by

w - a y a = const. ,

we have

m

a + \

OL,
m < n

The a -th Faber polynomial has the form

CL a
(w) = w n + ynw

 ;

n

n"1

n-1 n

hence

a

n' m n
n

m

But since b^ . = 0 if k > a , it follows that a = 1 .an,K n m

The unitary property of e then shows that b-- = e ; hence

It is easy to see from (1.3) that if l/f(z) differs from

l/g(z) by a constant then f and g have the same Grunsky

matrix. In particular if a = 0 one sees that C is diagonal.
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This completes the proof.

If C is a matrix let C denote the m-th row vector
m

and 6C = C - I where I is the identity. The following theorem

puts Theorem 2.3 into more useable form.

Theorem 2.4. If C = (C ) is a symmetric unitary matrix
a n d Cmn = rmn + i Smn w h e r e rmn a n d Smn a r e r e a 1' t h e n

Here A denotes the Kronecker delta.

Proof: Since C and I are unitary, we have

Amn= ' W = (6Cm + V 6Cn + V

= (SCm,6Cn) + (6Cm,In) + (Im,6Cn) + (Im,IQ)

= (6C >&C ) + r + r - A - i(s - s )m n mn nm mn nm mn

The result now follows immediately from the symmetry of C .
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3. A Generalization of the Fourth Coefficient Problem,

In this section we illustrate the previous results by proving

the

Theorem 3.1. If f(z) is normalized, analytic and uni-

valent in the unit disk, then

|a4 + aa2(a3 - §a*)| < 4

for all real a satisfying |a + 2| •< \j 75/17 . Equality

holds only for the Koebe function.

Proof: The polynomial

Pa(a) = a4 + aa2(a3 - | a*)

is homogeneous of degree three in the sense that replacing a.

by e 1 ^ - 1 ) 0 ^ brings out a factor of e 3 i 0 in front of Pa(a)

We therefore may assume that if f is the extremal function

then

(3.1) Pa(a) > 0 , 0 < Re a2 < 2 .

It is easily shown that f satisfies a Schiffer differential

equation and that hence f defines a slit mapping as does

\| f (z ) . By direct computation one shows that

VLf 3 2>i
L13 2^a3 4 a 2 ;

2 10 3 8
a n d a4 = 3 C33 + T Cll + \-~ Cll C13
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where (C,v) Is the Grunsky matrix of V f(z ) . Setting

Cjk " rjk + 4 8jk ' * - r l l ' &Pa = V W ^ " V 2 '

and using (3.1), we have

" 1OtSlV 7 | r13 - | -11 "13

where A = a + 2 and 0 < t < 1 . It i s a consequence of Theorem

2.4 that

(3.2) | ( r 3 3 - 1) + ^ r 1 3 = -JII6C3II2 - %±

MaCjH2 + xVllSCjH2 < 2X2t2(l - t)
" ^3

It is clear that

(3.3) -lot .Jj - H s n s 1 3 - - t tM. ' , + ^ sns13)

1 1 l o —

Now the area theorem (Theorem 2.1 with x- « l,x = 0 otherwise)

asserts that

o o o
T* 4- .Q 4-151 ^ 1

rll + Sll + S13 ̂ X *

Substitution of the above into (3.3) yields

(3.4) -lOt s2., - 1 | si:ls13 < (IJ- tA2 +-?- |A|(l-t))(l - t2)

HURT LIBRARY
CARNEGIE-MELLON UNIVERSITY
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By substituting (3,3) and (3.4) into (3.2) we obtain

(3.5) 6Pa < ^ ( t
3 - 1) + 2A2t2(l - t) +

- t2) .tA §̂ 1 | Cl ))

{3

It is clear that the above estimate is monotone in |A| when

0 < t < 1 . Choosing |A| - \[75/17 , the largest value for

which the right side of (3.5) is negative near t = 1 ,
and using the crude estimate \|25/17 < 3/2 , one obtains the

inequality

6Pa < .- (1 - t)
2(| + ̂ §Y O

with equality only if t = 1 . This completes the proof.

While the above method is adequate for the global theorem

it does not give the best local estimate. Bombieri [15] proved

that

4 - Re a4

lim inf — = r-^ > 1.6
t — > 1- x " x

while the estimate (3.5) gives

4 - Re a
lim inf —= z-̂ - >

This can be improved slightly by considering the contrabution of

of the imaginary parts of the first two components of 5CQ/ 3 +
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Jenkins and Ozawa [I6],[l7] used Theorem 2.1 to

derive the local result for the sixth and eighth coefficients.

However, they picked special values of the parameters rather

than using the unitary property.
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4. Some Remarks on the Sixth Coefficient Problem. By

applying Theorem 2.4 to the formulas for the sixth coefficient9

see Garabedian, Ross and Schiffer [5], we have obtained partial

results toward the solution of the sixth coefficient problem.

If the coefficients are real one readily obtains the known

result |ag| << 6. If a2 and a3 are real the method gives

the same estimates as for real coefficients. Schiffer [18]

has announced a similar result. When a~ is real and positive,

our method can be used to prove Re 6afi <C 0 . The estimate
2

differs from the estimate for real coefficients by A(t)(l - t )

where A(t) is the largest eigen value of a two by two matrix.

Ozawa [l9] proved the result for a2 real by exploiting the

classical form of Grunskyfs inequality. In the general case

we have shown that if f is normalized so that | Arg a« | < TT/5

then

6 Re a6 < Q(t) 3 t = 1/2 Re a2 ,

where Q(t) depends on t and the largest eigen values of

three four by four matrices. We are now conducting computing

machine experiments to see if Q(t) is negative on [0,1) .
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