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In [5], Nehari proved that if Q 1is a bounded real interval,
K a symetric positive definite kernel which is continuous on
£1 X Qg9 and F a non-negative continuous function on _R:X Q

satisfying, for sone e > 0 ,

(1) 0 < T?~f F(r?4, X) <_TJ"2€ F(r?25X) | 0<r?2 <i?< O,
for all xetl , then the integral equation
(2) | y(x) =JnK(x,t)y(t)F(yz(t),t)dt ,

a®©
has a non-trivial,solution which is continuous on £2 . The proof
uses variational methods. In this note we shall prove, using

arguments simlar to those of [5]y that if Q is a bounded. region
in R (n-dinensional Euclidean space), if K is a symetric:
function on fl x fl such that for some pair of conjugate indices

P, g, 1<g<2<p<cD,
(3) [Au] (X) :JQK(x,t)u(t)dt :

defines a conpletely continuous operator A from LA(fl) to iP(ty,

which is positive definite in the sense that
IJQK(x,t)u(x)u(t)dxdt > 0, UELI( 0\ " { 0],

and if in addition to (1)9 F satisfies the appropriate poly-

nomal growth inequality so that the mapping |

y(x)—>y(x) F(y*(x) ,x)
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2
is continuous from LA(fl) to LNfi§ , then (2) has a non-trivial
sol ution yelj®P@#D .

In the concluding section we apply the result described above

to the boundary val ue problem
Au + uF(u=,x) =0 in £ u|"_"__:O,

where A is the Laplace operator and Q is a bounded region in
R* for which the Diriclet problemis solvable.
Rel ated to the problem (2) and the boundary val ue problem

above are the eigenval ue problens,

(4) y(x) = AJK(x, t)y(t)F(y(t), t)dt ,
and
(5) & + AuF(u®,x) =0 in a ul ~=0.

The first of these problens is treated in [3] and in [7]; problens
of the form (5 are treatedin [4 andin [6]. Al so Berger, [1],
has investigated a problemsimlar to (5 but with A replaced
by a nore general elliptic operator. All of these results
contain the linear cases, the results obtained here are strictly

non-linear in character.

2. Statenment_of results. Let O be a bounded region in

Eucl i dean n-space and let K be a real valued symretric function
on £2x Q. W assunme that K(x, ) is measurable for alnost all
xeC 3 and that : (H the operator A defined by (3) is _corrpl etely

continuous from L{flj) to LX(fiD for sbme pair of conjugate



indices p and g with

(6) 1<qg<2<p.
Finally we assune that A is positive definite on LA(fi}, i.e.
(7 f [ K(x,t)u(x)u(t)dtdx > 0 |
~frn
q

for uelj‘ (fl , u(x) not al nost everywhere _equal to zero.

Let F be areal-valued functionon "R*X Qg (R:= {TJ‘:’ 77 real ,77 >0))
whi ch satisfies the follow ng conditions i)__t_he Car at heodory
hypothesis (i.e. F(",x) is continuous on_R" for alnost all
XGO and Krj, ») is neasurable for all 7?eR) , i) thereis a
positive constant e such that (1) holds for alnost all (fixed)
xed , iii) there are posiltive constants c,y and there is a

non-negative function oeL (Q such that for almost all (fixed)
xefd ,

(8) F(TIX) _< oV + c(x) 0 < T < 00

Theorem1l. Let d, K and F be as" above, in particular

assume that (H holds, and that (7) holds for all u€*flr) ,u”™ 0 .

(9) 27 < p - 2, cr€l'($, r =pl(p-2) ,

then the integral equation (2) has at least one non-trivial solu-
tion i | P{Q

Theorem 2. Let £1, K_and F _satisfy the hypotheses of Theorem

1« if£ P i”r_fL non-negative real-valued function

(10) PeL"(g>, r=pi(p-2) ,
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and if the |east eigenvalue A of the symetrizable linear integral

equation

(11) u(x) = A JK(x,t)P(t)u(t)dt ,
Q

is larger than 1 , then the integral equation

(12) y(x) = [ Kx, t)y(t) (P(t) + F(y*(t), tjdt ,

has a__non-trivial solution in LP(.

We note here that -the hypothesis (H is inplied by the condition
(13) €SS SUPyxen J K(x,t) |3t < o0, a>| ,
see [2], Theorem9.5.6, p. 658, The positive definiteness of A
in LNfI§ 1is equivalent, in the presence of hypothesis (H , to
positive definiteness of A restricted to L2{Q together with
the density of the range of A in IP(Q. To see this we use

the fact, [7], p. 189, that when (H holds and A is positive
definite in L*(Q then for u, velL%£2),

(13i) 3 IK(X t) u(x) v(t) dxdt :j;TA1 Ju(t) ¢ (t) dt Jv(t) (A(1) dt
nn K= a a

where the A, are the eigenval ues of A L2(Q and, for each k ,

2
(ﬁ{ is the normalized (in L (Q) eigenfunction of A corresponding
to A ; the tp* actually belong to LP(Q. If A has dense
range in LP(£M it follows, using (13")* that for non-zero UELS(fIO,
J u(t)cpk(t)dt cannot vanish for all k . Putting v =u in (130
we conclude, since u was arbitrary, that A is positive definite

on L%fi) when A|L, is positive definite and A has dense
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range in L*(fl&. The other direction of the equival ence is obvious,

One can construct a synmetric kernel satisfying (13) for sone
2

a> 2 , which is positive definite on L 3 but is not positive
definite on L for any q < 2
The next theorem gives conditions under which an L”-solution

of (2) or of (12) wll be essentially bounded.

Theorem 3. Suppose_that the symretric kernel K ‘satisfies

(13) for sone p> 2, and let F be <a non- negati ve. Car at heodgyy

function on RXft satisfying (8 wth y < (p-2)/2 > and VelL

———————— — N —_

Then every LP solution of (2) is" essentially bounded. If %

assune the safe hypot hesis, and in addition assume that Pel

then every 1J solution of (12) i s essentially bounded.

3. Formul ati on of the variational problem W shall show

that the existence of a non-trivial solution of (2) is inplied by

the existence of a solution to the variational problem fornul ated
bel ow.

We define a function G with the sane donmanin as that of F

(14) qTf,x) = JIOF(s,x) ds

The variational problemis forrmulated in terms of functionals

J(u,v), N(y), Hy) which are defined, for u, v, yeL?, as foll ows,

(15)  J(u,v) =J J K(x,t)u(x)F(u?(x) ,x)v(t)F(v*(t) ,t)dxdt |,
(16) Hly) =3 [Y () F(Y2(x),x) - G(y*(x) ,x) ] dx

(17) N(y) = [_éz(X)F(yz(X) x)dx - J(y,y) e



Notice that H vanishes identically for the |inear problem

Lenmma 1. The functionals H and N are continuous _on LP.

Proof. In viewof (8), (9), the mapping f defined by
[fyl (X)) =y(x)F(y*(x) ,x)

is a continuous mapping from LP to LY ; see [7], Theorem 19.1,
p. 154. It then follows fromhypothesis (H that Af is a contin-
uous mapping of LP into itself ; the continuity of J follows
fromthe continuity of the inner product on LPXLY . Appealing
againto (8), (9 and [7], Theorem19.1, we easily see that the
mappi ngs  y(x)—>y %) F(y*(x) ,x) , and y(x)—=>G(y*(x) ,x) are
continuous from I® to E‘ ; the continuity of H and N on

I foll ows.

A function yelL? will be called adm ssible if it is not

al nrost everywhere equal to zero and can be represented in the form
(18) y = Au , uelL9 o

| f yeLp and y is not alnost everywhere equal to zero (but not
necessarily adm ssible), then it follows from (1) and the positive

definiteness of A that v , defined by
v(x) =J K(x,t)y(t)F(y*t),t)dt ,

is adm ssi bl e.

(*» W Y iJi M adm ssible function then there is <a QdéftiVe

constant a such that

(19) N(oy) =0



(**) Ijf  y -9 adm ssible and satisfies

(20) N(y) =0,
and if
(21) v(x) = a JﬂK(x,t)y(t)F('yz(t) , 1) dt ,.

where a > o s chosen so that

(22) N(v) =0,

then (v is adm ssible and)

(23) a?\ yé(x) F(y?(x) ,x) dx <J yaz(x) F(y?(x) ,x) dx ,
and
(24) H(v) <_H(y)

Equality holds in, (24)_if and only if y i a* solution of (2)+

Finally, if yelL? , then,
(25) Hy) > e(l+€)* J y?(x) F(y?(x) ,x) dx
Q

Results anal ogous to the assertions of (¥ and (*) are proved
in [5]; the proofs are essentially the same for the case considered
here.

The variational problemwhich we consider is that of m nimz-
ing the functional H(y) within the class of adm ssible functions
and subject to the side condition N(y) =0 . It is clear from (**)
that a solution y of this variational problem nmust be a solution

of the integral equation (2)



4. Solution of the vari ati onal probl em In this section we

prove the existence of a solution to the variational problem
posed above. W assune throughout that the hypotheses of Theorem 1

are satisified.

Lemma 2. There is a_ _positive constant m such that for any

adm ssible function, y , satisfving (20)

(26) oy (x)F(y*(x) ,x)dx > m .
Moreover there are positive constants k,, ko, such that

(27) ([JO,thK(x,t)y(t)F(yz(t),t)dupdx)“p
0
< (ke + ke Jy* () F(Y*(1), 1) dt) ¥ <3,

Proof, Because of hypothesis (H), (17) and (20) we have

(28) 3 YA F(y2(x), x)dx < ME [y () F(y*(x) ,x) [%dx) *¢,
where M is the nom of the operator A . By Holder's inequality
q/2
(29 ! ly (X)P(y~(x),x) |%dx < (JI IP(+* () ,x) |"dx) J(\y ) F N9, %%y,
n n O
where” as before, r =g¢g/(2-q) . Conbining (28) and (29) we get,

since the termon the left in (28) is positive,
(30) LM 3_IRYH(0,%) e 1,

The first assertion of the lemma is now proved as follows. Suppose
the assertion is false and that ({y _(x)) is a sequence of adm ss-

i ble functions satisfying (20) and



J YAX)F(y4x),x)dx 0, as n o0o.
1Y ]

We can then conclude, using (1), that a subsequence of {yn(x)),
whi ch can be assuned to be the full sequence, converges al nost
everywhere to zero. Since C has fi nite neasuré we can assume
that 'y = (p-2)/2 , and then a“?Y¢LP . Let E, denote thé
subset of Q where |y rgx) | >. ff{'zy,' by (8 and (9) we then

have, on En,

|FO200) . %) 17 = R0 ) TR0 0 7L

< el ™ty F(yA(x), %),

where c, = (ctl) . Thus

-

J I_F(y__ix) ,X) |"dx—>0, as n—co .

En

If E* =fl\E , then \F(yfa) , x) |" < Ip((a(x)¥Y, x) |" for
XGI%1 . Thus since yn(x)—>0 a.e. in Q , it follows fromthe

dom nat ed convergence theorem that

S(IF(y'ﬁ(X)sx)lfdx_*o, . as nNn—>00 .

Thus our supposition has led to a contradiction of (30) and (26)

is proved.

. xef) ,
For an arbitrary yelLP we have, for alnost all

[FCY?(x), %) |7 < eiv®(x) F(y?(x)sx) + F((a(x))""T x) .

Upon integrating this inequality over Q we obtain-

| TF(y%(x),x) | "dx < ¢, Fy2(x)F(y3(x) ,x)dx + f F((a(x))” Tx) dx.
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Using this inequality in (29) and using the continuity of A from
LY to LP we obtain (27).

We now show that the problem

(31) Hy) =mn., N(y) *0,

has a solution within the class of adm ssible functions. First

we observe that (25 and (26) inply
(32) Ix =inf{Hy) : vy is admssible and N(y)' =0) >0 .

Let y,v and a be as in (**) . The function F(Tj,x) 1is increas--

ingin rj for alnost all x , therefore

0<f (v(x) - y*(x)) (F(v(x),x) - F(y*(x) ,x)) dx,

and this inplies, inviewof (24) and (25 |,

Js\éz(x) F(y*(x), x) dx <J éVZ(X) FvA(x), %) +y2(x) F(y* (%) X)) dx

< 26T (o) H(y)
Using (25) this gives ,
a2 J zz(x) F(y?(x) ,x)dx <_2e~'(1+e) HYy)
From (26) follows

(33) a® < CHy) , C=2(me)"'(l+) |,

and finally from (21) , (27) , (33) and (25 we have

(34) Nl < C_Qaau(y)) 2 /2a
Y o
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For B ¢ L"\{0] we denote by O0(B) the set of all (adm ssible)
functions of the form (21), V\/neré a>0 1is chosen so that (22

hol ds
0(B) ={v: v=0Afy, yeB;, «€R,, N(v) =0} .
V¢ choose |)gl> #4 and take
B={y: vy admssible, N(y) =0, Hy <j"}.
Then by (34) ,
(35 0(B) ¢ (yerP(@: |yl < e r + py FFO/29)

and since. f maps bounded sets in I® into bounded sets in 19

it follows from (35) that
(36) 0%(B) = 0(0(B)) c A{uelL? : ||q|q<_const.}.

The ball {uelL” : ||L”; _< const.} is weakly conpact and A is
conpl etely continuous so the set on the right in (35 is conpact
(in L"). Thus B* , the closure of 02(B) in LM, is conpact in

L* and any non-zero function in B.J_ is adm ssi bl e. By Lemma 1,
(37) inf{H(y) : yeBi} =inf(Hy) : ye0?(B} ,
: 2 : : o :
and since 0 (B) consists entirely of adm ssible functions
(38) li<inf{Hly) : ye0?(B } <.inf{Hy) : yeB} =/x;

the second inequality in (38) follows from (**) and the definition
of O . Fromthe first inequality of (38) and from (37) it follows,

using (32), that O'B" ;3 therefore all functions in B,l are



12

adm ssi ble. Since Bl is conpact it follows from (37) , (38) , and

Lemma 1 that there is a vy 88'1 W th H(y(; =/i . By Lemma 1

N vani shes identically on &1 , thus the admissible function Yo
is a solution of the variational problem (31). As we have already
observed, an adm ssible solution of (31) satisfies (2). Thus we

have proved Theorem 1.

Renark.* Let C denote the cone of al nost everywhere non-
negative functions in LP and assune that K is noh-negative,
or let C denote sonme other closed convex cone in LP and assume
that K and F are such that | &(x,t) y (t) F(y?(t) , t) dt isin
C whenever y is. Then one can add to the definition of adm ssi-
bility the condition that yeC ; with this definition of admssibility
the argunent given above inplies that (2) has a non-trivial solution
in C. In particular, if we add non-negativity to the definition
of adm ssibility, then the condition that A be posifive definite
in L% can be replaced by the condition that K be positive a.e.

in Q X Qg and that AJL- be non-negative definite.

5. Proof of Theorem 2. The only place in the proof of

Theorem 1 where the argunent can break down when F is replaced
by F,L =P+ F is in the denonstration (for which the reader

was referred to [5]) that the normalization (19) is possible for
any adm ssible function Yo - However if F is replaced by Fi
in (15 and (17) then the normalization (19) is still possible
provi ded the | east eigenvalue of (11) exceeds 1. The proof is the

sane as in [5]. Al of the rest of the argunents above remain
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valid as they stand when F is replaced by F,J_ : It shoul d be

noted that H(y) remai ns unchanged when F is replaced by F,J_ .

6. Boundedness. Proof of Theorem 3. The follow ng | emas

constitute the proof cf Theorem 3.

Lemma 3. Suppose that (13) holds for some p > 2 ,__and that
F satisfies (8 where
(39) 0 <y < (p-2)/2 , tfelS s > p/27

P P2
Fherm— Af meps L +te L for

(40) P <p: <_2yS , prt>ptt Hey+l)/p - (a-1)/a.
p
Proof. For vyel I , PiJ_ > P > "™ have by (8 and (39) ,
9
(41) fyelL *,

for qi1 < pr mn ((2y+) l s/ (s+px)) . If p1 < 2ys then

s/fs+p™) > (2y+l)"' and thus (41) holds for q; < pi/(2y+l) . Now

ar . P2
by Theorem 9.5.6" [2], A maps L into L for
p~21> q£l - (a-1j/a, 1 < p, <00,
Pl P2
and we conclude that the conposite Af maps L into L for

Pl » P2 satisfying (40).
Lemma 4. Assume the hypothesis of Lemma 3. Then any LP-solution -

P

2
of (2) detongs to L for every p2 sattsftyrng

P2t > (2y+D/2ys - (a-1)/a, 1 < p,< 00

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSE
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Proof. It is clear fromLema 3 that there is a positive
integer k such that (Af)k maps LR into LPI wher e p1 = 2ys.
It then follows, again by Lemma 3, that (Af) k”(iP) <A E’z for any
P satisfying (42).

It follows fromLemma 4 that any LP solution of (2) wll
belong to L°° if s> (2y+l)a/(2y(a-1)), we shall prove the follow.
ing stronger result which, however, is not needed for the proof

of Theorem 3.

Lenmma 5. Assume again the hypothesis of Lemma_ 3. [

(43) s> (4y+l)aldy(a-1)

t hen any LP sol ution of (2) belongs to L,

Proof. By (8, (39 and Lenma 4, if y 1is an iP solution of

2

(2) then fyeLq for every q9 satisfying

(44) g3t > 2s"' + (2ys) * - (a-l)/a+2y max[O s *-(a -1)/al. .

q
Using HSl der's inequality,, it follows from (13) that A maps L 2

into L% if
(45) gy < (a-l)/a

In order that (44) and (45) be satisfied simnultaneously by sone

gh it suffices that

0> 2s"*' + (27s)"! - 2(a-1)/a + 2y maxfO.s"* - (a-l1)/a] ,

and this holds if and only if (43) holds. Clearly if there is a
g, satisfying both (44) and (45) then the conclusion of the Lemm

foll ows.
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We can conclude fromLemma 4 that, under the hypothesis of
Theorem 3, any LP solution of (2) actually belongs to L. The
.condition (1) is not used in this section so the assertion of
Theorem 3 concerning solutions of (12) follows by applyi ng Lemma 4
with F replaced by F,L:P+F

The argunment used above to prove boundedness is an integral
equations version of the 'bootstrap procedure* for proving regularity

of a generalized solution of a boundary val ue problem

7. Application to a non-linear elliptic boundary val ue probl em

We consider the boundary val ue problem
(46) Ay + yF(y%x) =0, in 0, y| "o =0,

where Q is a bounded region in n-space for which the Diriclet
problemis solvable and A is the Laplace operator. |If Qx,t) is
fhe Green's function for the Diriclet problemin Q then
ess sup r|G(X, t) 1%t < oo, for a<n/(n-2) ,
xef t 'Q
thus if we put K =G the hypothesis H is satisfied for any pair

pP,g wth
(47) 2 < p < 2n/(n-2)

Let such a p be chosen and let A be the operator from L to
L? defined by (3), with K=G . Then, as is well known, A|L% is
positive definite and the range of A <contains all c  functions
W th conpact support in f2 . Thus, in viewof the remarks follow ng

the statenent of Theorem2, A is positive definite on L% If we:
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assune that F satisfies (1) and (8), where
(48) y < 2/n-2), a = const. ,

then, since p can be chosen anywhere on the range (47) it follows

fromTheorens 1 and 3 that the integral equation
(49) y(x) =JnG(x,t)y(t)F(y2(t),t)dt ,

has a non-trivial solution in L®. From (8), (48) and the properties

of the Green's function it follows that an L% solution y of
(49) is continuously differentiable in ft , and continuous inft
and that ngi =0 . If we assune in addition that F 1is locally

Htlder continuous on R.x ft , then y wll be tw ce continuously

differentiable in ft . Thus we have proved the foll ow ng.

Theorem 4. Let F DbE Ideally Holder continuous on R,x O,

and satisfy (8 where (48) holds. _Assune also that for sone e > 0,

(1) holds for all xeft . Then the boundary value problem (46) has

IL_non-trivial Solution y which is continuous in ft and of class

C? in ft

Simlarly we can prove the follow ng.

Theorem 5. Assune the hypothesis of Theorem 4, and assune

that P jjg j*_bounded non-negative function which is locally HJ Ider

continuous on ft . 1f the |east eigenvalue of

Au + AP(x)u =0 , in ft , ulyg =0

exceeds 1 ¢ then the boundary value problem

Ay + y(P(x) + F(y%x)) =0, inft , o yvkgo=0
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has a._non-trivial _solution y which _is continuous in ft and of

2
class C jn ft -

Remarks. 1. FromRemark 1 at the end of section 4 it foll ows
that the sol uti ons whose existence is obtained in Theorens 4 and 5
can al so be asserted to be positive in £i

2. In [6] it is shown that if

0= (xeR"||x] <1}, n>2, andif Hr?2,x) =r\Y where

"y > 2/(n-2) then (46) does not have a solution which is positive
2
and of class C in Q and continuous in Q.
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