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AN EXISTENCE THEOREM FOR A CLASS OF NON-LINEAR INTEGRAL EQUATIONS
WITH APPLICATIONS TO A NON-LINEAR ELLIPTIC BOUNDARY VALUE PROBLEM

Charles V. Coffman

In [5], Nehari proved that if Q, is a bounded real interval,

K a symmetric positive definite kernel which is continuous on

£1 X Q 9 and F a non-negative continuous function on R X Q

satisfying, for some e > 0 ,

(1) o < T?~€ F(r?1,x) < TJ"
€ F(r?25x) , o < r?x < i?2< OD

for all xetl , then the integral equation

(2) y(x) = J K(x,t)y(t)F(y2(t),t)dt ,

a©

has a non-trivial,solution which is continuous on £2 . The proof

uses variational methods. In this note we shall prove, using

arguments similar to those of [5]9 that if Q, is a bounded region

in Rn (n-dimensional Euclidean space), if K is a symmetric

function on fl x fl such that for some pair of conjugate indices

p, q, 1 < q < 2 < p < CD ,

(3) [Au] (x) = J K(x,t)u(t)dt ,

defines a completely continuous operator A from L^(fl) to iP(ty ,

which is positive definite in the sense that

K(x,t)u(x)u(t)dxdt > 0, U€Lq(0\"{0],

and if in addition to (1)9 F satisfies the appropriate poly-

nomial growth inequality so that the mapping

s y(x) >y(x)F(y2(x) ,x)
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is continuous from L̂ (fl) to L̂ (fiS) , then (2) has a non-trivial

solution yelj (flD .

In the concluding section we apply the result described above

to the boundary value problem

Au + uF(u ,x) = 0 in £2 u | ̂ ^ = 0 ,

where A is the Laplace operator and Q is a bounded region in

R for which the Diriclet problem is solvable.

Related to the problem (2) and the boundary value problem

above are the eigenvalue problems,

(4) y(x) = A J K(x,t)y(t)F(y2(t),t)dt ,

and

(5) &u + AuF(u2,x) = 0 in a u | ̂  = 0

The first of these problems is treated in [3] and in [7]; problems

of the form (5) are treated in [4] and in [6]. Also Berger, [1],

has investigated a problem similar to (5) but with A replaced

by a more general elliptic operator. All of these results

contain the linear cases, the results obtained here are strictly

non-linear in character.

2. Statement of results. Let Cl be a bounded region in

Euclidean n-space and let K be a real valued symmetric function

on £2 x Q . We assume that K(x, •) is measurable for almost all

xeCi 3 and that : (H) the operator A defined by (3) is completely

continuous from Lq(flj) to Lp(fiD for sbme pair of conjugate



indices p and q with

(6) 1 < q < 2 < p .

Finally we assume that A is positive definite on L^(fi}, i.e.

(7) f [ K(x,t)u(x)u(t)dtdx > 0 ,
Jfrn

for uelj (flj , u (x) not almost everywhere equal to zero.

Let F be a real-valued function on "R^X Q,9 (R += {TJ: 77 real ,77 >0))

which satisfies the following conditions i) the Caratheodory

hypothesis (i.e. F(#,x) is continuous on R for almost all

X G O and F(rj, •) is measurable for all 7?eR+) , ii) there is a

positive constant e such that (1) holds for almost all (fixed)

xeCl , iii) there are positive constants c,y and there is a

non-negative function oeL (Q such that for almost all (fixed)

(8) F(TJ,X) < cV7 + cr(x) , 0 < T) < 00 .

Theorem 1. Let Cl, K and F be as^ above, in particular

assume that (H) holds, and that (7) holds for all u€L^(flr) ,u ^ 0

If

(9) 27 < p - 2, cr€Lr($} , r = p/(p-2) ,

then the integral equation (2) has at least one non-trivial solu-

tion in lP{Q .

Theorem 2. Let £1, K and F satisfy the hypotheses of Theorem

1 • i£ p i^. fL non -negative real-valued function

(10) PeLr(q>, r = p/(p-2) ,



and if the least eigenvalue A o_f the symmetrizable linear integral

equation

(11) u(x) = A J K(x,t)P(t)u(t)dt ,

Q

is larger than 1 , then the integral equation

(12) y(x) = [ K(x,t)y(t) (P(t) + F (y2 (t) , tjdt ,

has a_ non-trivial solution in L

We note here that -the hypothesis (H) is implied by the condition

(13) ess sup x e n J |K(x,t) |adt < oo , a > | ,

see [2], Theorem 9.5.6, p. 658, The positive definiteness of A
in L̂ (flS) is equivalent, in the presence of hypothesis (H) , to

2
positive definiteness of A restricted to L {Qj together with

the density of the range of A in lP (Q . To see this we use

the fact, [7], p. 189, that when (H) holds and A is positive

definite in L2 (O) then for u, veLq(£2),

oo

(13 i) J JK (X, t) u (x) v (t) dxdt = ) T^1 Ju (t) c^ (t) dt Jv (t) (^ (t) dt ,
n n a a

2where the A, are the eigenvalues of A|L (Q and, for each k ,
2

(p, is the normalized (in L (Q ) eigenfunction of A corresponding

to Ak ; the tp^ actually belong to L P(Q . If A has dense

range in Lp(£^ it follows, using (13T)* that for non-zero U€Lg(fl0,

J u(t)cpk(t)dt cannot vanish for all k . Putting v = u in (13 0

we conclude, since u was arbitrary, that A is positive definite

on Lq(fi) when A | L 2 is positive definite and A has dense



range in Lp(fl& . The other direction of the equivalence is obvious,

One can construct a symmetric kernel satisfying (13) for some
2

a > 2 , which is positive definite on L 3 but is not positive

definite on L^ for any q < 2 .

The next theorem gives conditions under which an L^-solution

of (2) or of (12) will be essentially bounded.

Theorem 3. Suppose that the symmetric kernel K satisfies

(13) for some p > 2 , and let F be <a non-negative Caratheodory

function on RXft satisfying (8) with y < (p-2)/2 > and VeL
— — — — — — — — — _j_ — — — — —

Then every Lp solution of (2) iŝ  essentially bounded. If we

assume the same hypothesis, and in addition assume that PeL

then every IJ solution of (12) i_ŝ  essentially bounded.

3. Formulation of the variational problem. We shall show

that the existence of a non-trivial solution of (2) is implied by

the existence of a solution to the variational problem formulated

below.

We define a function G with the same domain as that of F

(14) G(Tf,x) = F(s,x)ds .
J0

The variational problem is formulated in terms of functionals

J(u,v), N(y), H(y) which are defined, for u, v, yeLP , as follows,

(15) J(u,v) = J J K(x,t)u(x)F(u2(x) ,x)v(t)F(v2(t) ,t)dxdt ,

(16) H(y) = J [y2(x)F(y2(x),x) - G (y2 (x) ,x) ] dx

(17) N(y) = [ y2(x)F(y2(x) ,x)dx - J(y,y) •



Notice that H vanishes identically for the linear problem.

Lemma 1. The functionals H and N are continuous on Lp.

Proof. In view of (8), (9), the mapping f defined by

[fy] (x) = y(x)F(y2(x) ,x)

is a continuous mapping from Lp to Lg ; see [7], Theorem 19.1,

p. 154. It then follows from hypothesis (H) that Af is a contin-

uous mapping of Lp into itself ; the continuity of J follows

from the continuity of the inner product on LpXLq . Appealing

again to (8), (9) and [7], Theorem 19.1, we easily see that the

mappings y(x) >y (x) F (y (x) ,x) , and y (x)—>G(y (x) ,x) are

continuous from Ii to L ; the continuity of H and N on

Ii follows.

A function yeLp will be called admissible if it is not

almost everywhere equal to zero and can be represented in the form

(18) y = Au , ueLq •

If yeL and y is not almost everywhere equal to zero (but not

necessarily admissible), then it follows from (1) and the positive

definiteness of A that v , defined by

v(x) = J K(x,t)y(t)F(y2(t),t)dt ,

is admissible.

(*) UL Y iJi ML admissible function then there is <a positive

constant a such that

(19) N(oy) = 0 .



(**) Ijf y i-ŝ  admissible and satisfies

(20) N(y) = 0 ,

and if

(21) v(x) = a J K(x,t)y(t)F(y2(t) ,t)dt ,

where a > o is^ chosen so that

(22) N(v) = 0 , '

then (v is admissible and)

(23) a2\ y 2 (x) F (y2 (x) ,x) dx < J v 2 (x) F (y2 (x) ,x) dx ,

and

(24) H(v) < H(y) .

Equality holds in, (24) if and only if y i^ a^ solution of (2) f

Finally, if yeL p , then,

(25) H(y) > e ( l + € ) 4 J y2 (x) F (y2 (x) ,x) dx .

Results analogous to the assertions of (*) and (**) are proved

in [5]; the proofs are essentially the same for the case considered

here.

The variational problem which we consider is that of minimiz-

ing the functional H(y) within the class of admissible functions

and subject to the side condition N(y) = 0 . It is clear from (**)

that a solution y of this variational problem must be a solution

of the integral equation (2) .
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4. Solution of the variational problem. In this section we

prove the existence of a solution to the variational problem

posed above. We assume throughout that the hypotheses of Theorem 1

are satisified.

Lemma 2. There is a_ positive constant m such that for any

admissible function, y , satisfying (20) ,

(26) f y2(x)F(y2(x) ,x)dx > m .

Moreover there are positive constants k,, ko such that

(27) ([ f K(x,t)y(t)F(y2(t),t)dt|pdx)1/p

J 0 J to

< (kx + k2 j y
2(t)F(y2(t),t)dt)1/<3.

Proof, Because of hypothesis (H), (17) and (20) we have

(28) J y2(x)F(y2(x),x)dx < M(f |y (x) F (y2 (x) ,x) |qdx) 2/q ,

where M is the norm of the operator A . By Holder's inequality

(29) I |y(x)P(y^(x),x) |qdx < ( |P (Y (x) ,x) | rdx) ( \ Y (x) F (y^(x),
Jn Jn Jo

where^ as before, r = g/(2-q) . Combining (28) and (29) we get,

since the term on the left in (28) is positive,

(30) 1 < M( J |F(y2(x),x)

The first assertion of the lemma is now proved as follows. Suppose

the assertion is false and that {}

ible functions satisfying (20) and

the assertion is false and that [y (x)) is a sequence of admiss-



J y2(x)F(y2(x),x)dx 0 , as n oo .

We can then conclude, using (1), that a subsequence of {y (x)),

which can be assumed to be the full sequence, converges almost

everywhere to zero. Since Cl has finite measure we can assume

that y = (p-2)/2 , and then a1^2 y € L
p . Let En denote the

subset of Q where |y (x) | >. ff1'2 y, by (8) and (9) we then

have, on E ,

|F(y2(x),x) |r = |F(y2(x),x)||F(y2(x),x)|r-1

y2(x)F(y2(x),x),

where c, = (c+1) Thus

J IF (y_ (x) ,x) | rdx >0, as n—>co .
En

If E^ = fl\En , then \F (yfa) ,x) |r < |p ((a (x)) 1/y,x) |r for

XGE . Thus since y (x)—>0 a.e. in Q, , it follows from the

dominated convergence theorem that

|F(y (x)5x)|
rdx *0, as n—>oo .

X
Thus our supposition has led to a contradiction of (30) and (26)

is proved.

For an arbitrary yeLp we have, for almost all

|F(y2(x),x) |r < clY
2(x)F(y2(x)5x) + F((a(x))

l7T x) .

Upon integrating this inequality over Q we obtain

| |F(y2(x),x) |rdx < c, F y2(x)F(y2(x) ,x)dx + f F ((a (x) ) X/Tx) dx.
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Using this inequality in (29) and using the continuity of A from

Lq to Lp we obtain (27).

We now show that the problem

(31) H(y) = min., N (y) * 0,

has a solution within the class of admissible functions. First

we observe that (25) and (26) imply

(32) /x = inf{H(y) : y is admissible and N(y)' = 0) > 0 .

Let y,v and a be as in (**) . The function F(Tj,x) is increas-

ing in rj for almost all x , therefore

0 < f (v2(x) - y2(x)) (F(v2(x),x) - F (y2 (x) ,x)) dx,

and this implies, in view of (24) and (25) ,

J v2(x)F(y2(x),x)dx < J (v2(x)F(v2(x),x) + y2 (x) F (y2 (x) ,x) ) dx
S2 S2

< 2€

Using (25) this gives ,

a2 J y2(x)F(y2(x) ,x)dx < 2e~1 (1+e) H(y) .

From (26) follows

(33) a2 < CH(y) , C = 2(me)"1 (1+e) ,

and finally from (21) , (27) , (33) and (25) we have

(34) llvll < C
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For B c L^\{0] we denote by 0(B) the set of all (admissible)

functions of the form (21), where a > 0 is chosen so that (22)

holds ,

0(B) = {v : v = OAfy, yeB; «€R+, N(v) = 0} .

We choose |X_ > #4 and take

B = {y : y admissible, N(y) = 0, H(y) < j^} .

Then by (34) ,

(35) 0(B) c

and since f maps bounded sets in Ir into bounded sets in

it follows from (35) that

(36) 02(B) = 0(0(B)) c A{ueLq : ||u|| < const.}.

The ball {ueL^ : ||u|| < const.} is weakly compact and A is

completely continuous so the set on the right in (35) is compact

(in L^). Thus B^ , the closure of 0 (B) in L^ , is compact in

L^ and any non-zero function in B-. is admissible. By Lemma 1,

(37) inf{H(y) : yeBj} = inf(H(y) : ye02 (B) } ,

2
and since 0 (B) consists entirely of admissible functions

(38) /i< inf{H(y) : ye02 (B) } < inf{H(y) : yeB} = /x ;

the second inequality in (38) follows from (**) and the definition

of 0 . From the first inequality of (38) and from (37) it follows,

using (32), that O^B^ 3 therefore all functions in B, are
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admissible. Since B.. is compact it follows from (37) , (38) , and

Lemma 1 that there is a y eB-. with H(y ) = /i . By Lemma 1,

N vanishes identically on B, , thus the admissible function y

is a solution of the variational problem (31). As we have already

observed, an admissible solution of (31) satisfies (2). Thus we

have proved Theorem 1.

Remark.* Let C denote the cone of almost everywhere non-

negative functions in Lp and assume that K is noh-negative,

or let C denote some other closed convex cone in L and assume

that K and F are such that | K(x, t) y (t) F (y2 (t) , t) dt is in

C whenever y is. Then one can add to the definition of admissi-

bility the condition that yeC ; with this definition of admissibility

the argument given above implies that (2) has a non-trivial solution

in C . In particular, if we add non-negativity to the definition

of admissibility, then the condition that A be positive definite

in Lg can be replaced by the condition that K be positive a.e.

in Qi X Q 9 and that AJL be non-negative definite.

5. Proof of Theorem 2. The only place in the proof of

Theorem 1 where the argument can break down when F is replaced

by F, = P + F is in the demonstration (for which the reader

was referred to [5]) that the normalization (19) is possible for

any admissible function y . However if F is replaced by F,

in (15) and (17) then the normalization (19) is still possible

provided the least eigenvalue of (11) exceeds 1. The proof is the

same as in [5]. All of the rest of the arguments above remain
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valid as they stand when F is replaced by F, . It should be

noted that H(y) remains unchanged when F is replaced by F, .

6. Boundedness. Proof of Theorem 3. The following lemmas

constitute the proof cf Theorem 3.

Lemma 3. Suppose that (13) holds for some p > 2 , and that

F satisfies (8) where

(39) 0 < y < (p-2)/2 , tfeLS, s > p/27 .

p l P2
Then Af maps L into L for

(40) p < P± < 2ys , p^ 1 > p" 1 > l

p l
Proof. For yeL , Pi >. P > we have by (8) and (39) ,

ql
(41) fyeL x,

for q1 < p1 min ( (2y+l) "" , s/(s+px)) . If p1 < 2ys then

s/fs+p^^) >_ (2y+l) - 1 and thus (41) holds for q1 < p1/(2y+l) . Now
ql P 2by Theorem 9.5.6^ [2], A maps L into L for

p~ > q£ - (a-lj/a, 1 < p2 < oo ,

Pl P 2
and we conclude that the composite Af maps L into L for

p l * P2 satisfying (40).

Lemma 4. Assume the hypothesis of Lemma 3. Then any Lp-solution
P 2

of (2) belongs to L for every p^ satisfying

P21 > (2y+l)/2ys - (a- l ) /a , 1 < p < oo .

HUNT LIBRARY
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Proof. It is clear from Lemma 3 that there is a positive

k p Plinteger k such that (Af) maps L^ into L where p1 = 2ys.

It then follows, again by Lemma 3, that (Af) (iP) <^ L for any

p~ satisfying (42).

It follows from Lemma 4 that any LP solution of (2) will

belong to L°° if s> (2y+1)a/(2y(a-1)), we shall prove the follow-

ing stronger result which, however, is not needed for the proof

of Theorem 3.

Lemma 5. Assume again the hypothesis of Lemma 3. ij[

(43) s> (4y+l)a/4y(a-l) ,

then any L solution of (2) belongs to L

Proof. By (8) , (39) and Lemma 4, if y is an iP solution of
q2(2) then fyeL for every q9 satisfying

(44) q2
1 > 2s"1 + (2ys) X - (a-l)/a+2y max[O,s 1-(a

q2Using Holder1 s inequality,, it follows from (13) that A maps L

into L if

(45) q"1 < (a-l)/a .

In order that (44) and (45) be satisfied simultaneously by some

q^ it suffices that

0 > 2s"*1 + (27s)"1 - 2(a-l)/a + 2y maxfO.s"1 - (a-l)/a] ,

and this holds if and only if (43) holds. Clearly if there is a

q2 satisfying both (44) and (45) then the conclusion of the Lemma

follows.
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We can conclude from Lemma 4 that, under the hypothesis of

Theorem 3, any L solution of (2) actually belongs to L . The

condition (1) is not used in this section so the assertion of

Theorem 3 concerning solutions of (12) follows by applying Lemma 4

with F replaced by F, = P + F .

The argument used above to prove boundedness is an integral

equations version of the 'bootstrap procedure* for proving regularity

of a generalized solution of a boundary value problem,

7. Application to a non-linear elliptic boundary value problem.

We consider the boundary value problem

(46) Ay + yF(y2,x) = 0, in 0, y|^0 = 0 ,

where Q is a bounded region in n-space for which the Diriclet

problem is solvable and A is the Laplace operator. If G(x,t) is

the Green1s function for the Diriclet problem in Q then

ess sup |G(X, t) I adt < oo, for a < n/(n-2) ,
xeft JQ

thus if we put K = G the hypothesis H is satisfied for any pair

p,q with

(47) 2 < p < 2n/(n-2) .

Let such a p be chosen and let A be the operator from L^ to

LP defined by (3), with K = G . Then, as is well known, A|L is

positive definite and the range of A contains all C functions

with compact support in f2 . Thus, in view of the remarks following

the statement of Theorem 2, A is positive definite on Lq. If we
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assume that F satisfies (1) and (8), where

(48) y < 2/n-2), a = const. ,

then, since p can be chosen anywhere on the range (47) it follows

from Theorems 1 and 3 that the integral equation

(49) y(x) = J G(x,t)y(t)F(y2(t),t)dt ,

has a non-trivial solution in L . From (8), (48) and the properties

of the Green1s function it follows that an L solution y of

(49) is continuously differentiable in ft , and continuous in ft

and that yKrj = 0 . If we assume in addition that F is locally

Httlder continuous on R+x ft , then y will be twice continuously

differentiable in ft . Thus we have proved the following.

Theorem 4. Let F b£ Ideally Holder continuous on R x 0 ,

and satisfy (8) where (48) holds. Assume also that for some e > 0,

(1) holds for all xeft . Then the boundary value problem (46) has

IL non-trivial solution y which is continuous in ft and of class

C 2 in ft .

Similarly we can prove the following.

Theorem 5. Assume the hypothesis of Theorem 4, and assume

that P jjs[ j* bounded non-negative function which is locally Ho'lder

continuous on ft . I_f the least eigenvalue of

Au + AP(x)u = 0 , in ft , u

exceeds 1 9 then the boundary value problem

Ay + y(P(x) + F(y2,x)) = 0 , in ft , • y k n = 0 ,
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has a. non-trivial solution y which is continuous in ft and of
2

class C jLjn ft •

Remarks. 1. From Remark 1 at the end of section 4 it follows

that the solutions whose existence is obtained in Theorems 4 and 5

can also be asserted to be positive in £i .

2. In [6] it is shown that if

0= (xeRn||x| < 1}, n > 2 , and if F(r?,x) = r\y where

y >_ 2/(n-2) then (46) does not have a solution which is positive
2

and of class C in Q and continuous in Cl.
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