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A NONLINEAR OSCILLATION PROBLEM

Zeev Nehari

1. Consider the differential equation

(1) yt i + yF(y2,x) = O,

where the function F(t,x) is defined for te[0,oo), xe(O,co)

and has there the following properties: (a) F(t,x) >_ Oj

(b) F(t,x) is continuous in x for fixed t; (c) in a neigh-

borhood of every x in (0,oo), F(t,x) satisfies a uniform

Lipschitz condition.

A solution of (1) is said to be nonoscillatory if, for a > 0,

the number of its zeros in (a,oo) is finite. The equation itself

is said to be nonoscillatory if all its solutions have this

property. We note here that the conditions imposed on F(t,x)

are not quite sufficient to guarantee that any local solution of

(1) can be extended to the entire interval (O,oo) [3,2], and it

may therefore seem to be advisable to use a different definition

of nonoscillation. However, this is not necessary. An elementary

argument [2] shows that, under our assumptions on F(t,x), a

solution of (1) which cannot be continued to the right of a point

b must necessarily have an infinite of zeros in a left neighbor-

hood of b. A nonoscillatory solution can thus ipso facto be

continued throughout the interval (0,oo).
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Simple examples show that some solutions of an equation of

type (1) may oscillate, while others do not [5,6]. Accordingly,

one is led to the consideration of two different types of non-

oscillation conditions: those which insure the existence of at

least one nonoscillatory solution, and those which guarantee that

the equation is non-oscillatory. While a number of conditions

of the first type are known [1,4,5,6], the only criterion of the

second type found in the literature seems to be the following

condition: If, for C*L > o,

oo
2

xF (<at x , x) dx < oo

and if, for fixed t, F(t,x) is a nonincreasing function of x,

then (1) is nonoscillatory [1,6]. However, this condition

guarantees, in addition, that all solutions of (1) are either

rv ex or r^> c (c constant) for large x, and it is clear that

much less is required in order to make the equation merely non-

oscillatory. The following statement describes a sufficient

condition for nonoscillation which, in a sense to be specified,

is the best of its kind.

Theorem I. Let F(t,x) be defined for te[O,oo), xe(0,oo) and

satisfy there the following conditions: (a) F(t,x) >_ 0;

(b) F(t,x) is continuous in x for fixed t; (c) in a neighbor-

hood of every x jjn (O,oo), F(t,x) satisfies a uniform Lipschitz

condition; (d) for fixed x, F(t,x) is a nonde.creasinq function

of t. Ij: G(t,x) is defined by



t

(2) G(t,x) = j* F(s,x)ds

o

and if. for some positive e and all positive 06 , xG(odx €,x)

is nonincreasing for X€(a,oo) (a > 0) , then ecruation (1) is

nonoscillatory. This condition is the best possible in the sense

that the conclusion does not hold for e = 0.

In the case of the special equation

(3) y! f + p(x)y n" = 0, p(x) > 0, n > 1,

we shall obtain the following stronger result.

Theorem II. If p(x) is continuous and p(x)(x log x ) n is

nonincreasing, ecruation (3) is nonoscillatory.

2. If a1 and a2 are two consecutive zeros of a solution

y of (1), an elementary manipulation shows that

(4)
9

y dx = J y F(y ,x)dx.

al al

Since, for xe(a^,a2),

x x a2

y2 (x) = ( J y» dx)2 < (x - a^ j y' 2dx < x \ y' 2dx,

al al al

it follows from (4) that

> 2(5) 1 < \ xF(y^,x)dx.

al

On the other hand, F(t,x) is (for fixed x) a nondecreasing function



4

of t. By (2), G(t,x) is thus convex in t, and we have

G(*tx,x) > G(y2,x) + (s*x - y2)F(y2,x).

Hence,

O*xF(y2,x) < o^xF(y2,x) + G(y2,x) < y2F(y2,x) +

where &C is an arbitrary positive number. Integrating this from

a. to a2, and using (5), are obtain

(6) ? ^2
y2F(y2,x)dx + j G(ocx,x)dx.

al al

We note that our assumptions imply that G(t,x) is nonincreasing

in x for fixed t and that, as a result, the partial derivative

G (t,x) exists for almost all x. Indeed, since xGfcdx €,x)
x

is nonincreasing, so is G (o£ x ,x) , and if O£ is chosen so

that OC x € = t and x, > x, we have

G(t,x1) < G(<Xxj;"
fe,x1) < G(06x

1+€,x) = G(t,x).

It is understood that the following identities and inequalities

involving G (t,x) are to be used only at points at which this

derivative exists.

We now introduce the function

(7) Q(t,x) = G(t,x) + tF(t,x) + xG (t,x)

and we use the two easily verified identities

^ { x [ y ' 2 + G(y2,x)] - yy'}

(8) 2 2
= (2xy» - y) [y" + yF(y ,x)J + Q(y ,x) ,



(9)

Since xG(o£x ,x) is assumed to be nonincreasing for x > a,

it follows from (9) that

for all positive o£ and almost all x > a. If y is a positive

2 -1-enumber, and we set Oc = y x ^ we obtain

(10) Q(y2,x) + ey2F(y2,x) < o.

We now apply the identity (8) to a solution y of (1).
2

Since the right-hand side of (8) reduces in this case to Q(y ,x) .

it follows from (8) and (10) that

r\ I 0 0 0 0

( i i ) dxt x £y + G * y * x ^ - yy ! } + ev F<y ^x) i ° -

Integrating this inequality between two consecutive zeros a-,a«

of y, and observing that, by (2), G(0,x) = 0, we have

1 2 T 2 ( 2 2
a 2 y ^a2^ " a l Y ^al^ + G J Y F*y ^K^6x ^ °-

al

Combining this with (6), we arrive at the inequality

,2 12 t2

(12) O*€ + a2y (a2) - a ^ (a^ < e J G(oCx,x)dx.
al

If a,a-,...,a are consecutive zeros of y, addition of the

corresponding inequalities (12) yields



a
12 ' 2 f*

< ay (a) - amy (am) + e \

a

and thus,
a

a

To obtain a bound for the integral, we observe that, because

of the convexity of G(t,x) (as a function of t) ,

(14) G

where fi may be any positive number. If we set /J = o4a~G, we

will have ^ x€ - oC >. 0. Since F(t,x) is a nondecreasing

function of t, it follows from (2) that G(t,x) < tF(t,x). Hence,

,x) = [ (x/a)e -

and (14) shows that

(15) a€G(OU~ex1+€,x) > x€G(oCx,x).

By assumption, xG(o£a~€x €,x) is nonincreasing for x > a.

Hence, xG(oCa~€x ^x) <_ aG(ota,a), and (15) leads to the inequality

G(O(x,x) < (J)

Thus,

f G(citx,x)dx < ( G(oCx,x)dx

a a

and inequality (13) yields, the bound

(16) m < ^ [ y f 2
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for the number of zeros which a solution of (1) , which vanishes

at x = a, can have in any interval (a,b). Hence, all solutions

are nonoscillatory, and the main assertion of Theorem I is proved.

It may be noted that, for any particular G(t,x), we may take

advantage of the arbitrariness of the positive constant 06 to

obtain the best possible bound (16).

It remains to be shown that the assumption e > 0 is

essential, i.e., that an equation of the form (1) may have

oscillatory solutions if it is only assumed that xG(^6x,x) is

nonincreasing for any positive constant Qv» . To obtain an

example of an equation (1) which exhibits this type of behavior,

consider the equation

2
yf! + -^ H* (̂ -) = o,

x

where H(0) = 0 and H(s) is an increasing, differentiable

convex function for se[O,oo), We have

F(t,x) = -^H»(j), G(t,x) = ^ H ( ^ ) ,

and xG(o6x,x) = H(<aC). The general solution of the equation is

y(x) = x1/2u(log x) ,

where u(t) is the general solution of

u - ̂  + uH» (u2) = 0 .

It is easy to see that, unless Hf (s) reduces to a constant, the

latter equation always has both oscillatory and nonoscillatory
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solutions. Any solution which vanishes at one point is

necessarily periodic, and thus oscillatory [6].

3. We now turn to the proof of Theorem II. If Y denotes the

quantity

(17) ^ = x[ny?2 + py2n] - nyy',

a computation shows that

= n(2xy. - y)(y.
X

If y is a solution of (3j, this reduces to

and i t is easily confirmed that

[ t ( l o g x)n+1]< = (n + 1) (log x ) n [ | - py2n]

. f(x log x ) n + 1 p 1 ! y 2 n

+ nx

Since (x log x ) n p(x) is nonincreasing the derivative of this

function exists for almost all x, and is either negative or

zero. Hence, for almost all x,

(log x)n

and thus, for any 1 < a < a. < co

< (n + 1)[ \ ^ dx - I py""dx]

a



An integration by parts transforms the left-hand side into

ana
x ] a

1 t1 t+ n \ — dx,

a

and (17) shows that the last inequality can be brought into

the form

CVlog x]*1 < n j V 2 - Py2n)dx - J 1 *£• dx.
a a

If y(a) = 0 and y(aj) = 0 or y1 (a^) = 0, it follows from

(3) that

j (y'2 - Py
2n)dx = o,

and the inequality simplifies to

al
(18) ( JZJ^dx < ^(ajlog a - ̂  (a,) log a,.

1 -*v 1 1

a

If a and a, are consecutive zeros of y, an integration

by parts shows that

a x

Since this is positive, it follows from (18) that ^(a.) log a-

<. ̂ (a) log a. Hence, if a,a,,a2,... are consecutive zeros of y,

the sequence {^(anjlog a,}} is nonincreasing. Since, by (17),

(a.. ) = n a
kY (a, ) , this shows that

(19) a k k k

where A is a positive constant which does not depend on k.



10

Let now a be a zero of y, and assume that y1(a) > 0

(replacing, if necessary, y by -y). If b is the smallest zero

of y1 in (a,oo), both y and y1 will then be positive in

(a,b) . Furthermore, since, by (3),

[(x - a)y« - y]» = (x - a)y" = - (x - a)py 2 n - 1< 0,

and since y(a) = 0, we have (x - a)y! <̂  y in this interval. Hence,

(20) J ' 2 JiBSUL •* J YYl
X J X

a a a a

and, similarly,

b n * b b

dx

a " a x

b b _

x
a

Combining this inequality with (20), we obtain

b b b ? 2

2(21) f y l 2 d x < 2 f ^ d x + '
x

a

To estimate the last term, we observe that y! ? = -py n~" < 0

and that, therefore, yf (x) <_ y! (a) in (a,b) • Hence

2 T y?2 ̂  ^ 2 »2, x
a ] -̂ -y dx < a y (a)

In view of (19), (21) thus leads to the inequality

b b

(22) ( yl2dx < 2 f ̂ -dx +J — J x( yl2dx < 2 f ^
log a #

a a
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Inequality (18) was shown to hold for solutions y of (3)

for which y(a) = yf (a,) = 0, and we may therefore set a.. = b

in (18) . By (17) , "V (b) > 0, and we may assume that b > 1.

Accordingly, (18) implies that

b

J ^ — dx <C ̂ (a)log a = nay (a) log a.

a

In view of (19) we may thus conclude from (22) that

> '2
(23) f y dx < 2nA + 1 < B

ak

(k = 1,2,...), where B is a positive constant which does not

depend on k, and b, is the zero of y1 between a, and a ,̂-i •

On the other hand, it follows from (3) that

b. b.

J y'2dx = J py2ndx.
ak ak

Since, for xe[a, ,b,],

x x b
2 f* ! 2 fi ! 2 r f 2

y (x) <̂  (x - a^) \ y d x < . x l y d x £ x J y d x ,

a k a k a k

this implies
b b

1 < ( J y dx) n~ f pxndx.

and thus, by (23),

(24) 1 < B11""1 f pxndx.
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Since (x log x ) n p(x) is nonincreasing in (a,oo), we have

xnp(x) <̂  nCx~ (log x ) ~ n " 3 where C is a positive constant.

Hence,

i xnp(x)dx<
(log ak)

and it follows from (24) that

1

log ak < (B11"^)11 = log D.

This shows that the zeros of y are confined to the interval

[a,D). The number of these zeros is necessarily finite. Indeed,

suppose y(aT,) = 0, a < a. < a_ <...< D, and set a = lim a,

for k-»oo. Since t>k < a^+1 < aQ, it follows from (24) that

1 < B"" 1 j pxndx,
ak

and this leads to a contradiction if k becomes sufficiently

large. This concludes the proof of Theorem II.
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