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we present the definitions of the various structures to be discussed here
(l'imt structures, uniformlimt structures, and Cauchy structures) along
with a general theory of such structures. The various functors connecting
these structures are given in section 4, and there we also present the ad-
jointness relations holding between these functors. Section 5 contains
a list of axions describing separation, uniformty, and regularity prop-
erties in a limt structure. The various connections anong these axions
are also given there. After the uniformzation theorems of section 6 we
tie together these results with those of Kowal sky [9], who first studied
Cauchy filters axiomatically.

This paper is based on results obtained in the author's thesis [12],
prepared under the direction of Professor Gswald Wler. The author also
grateful Iy acknow edges Pr of essor Wl er's suggestions in the reorgani-

zation of this material.

2. Prelininaries

In a category C we use the notation C[AB] for the set of all
maps fromthe object A to the object B If C.l and G are tw
categories with functors T : C*«* G and S: G +C* we say that T
is an adjoint! for S, denoted T-f S iff there is a natural equival ence
between C,[TA,B] and GCJ[A SB] for each Ae C and each B e GC,.

Note that we omt parenthesis wherever possible so that T(A) becomes TA

1. The terminology "adjoint' is not standard and we have defined an
adjoint in the sense of Freyd [8], but a coadjoint in the sense of Mtchell
[10]. Qur definition is the standard definition of "left adjoint.*



As a special case of the preceding definition, suppose C, is a
subcat egory of C.1 and S is the inbedding functore If T is an adjoint

for S, then T is called a reflection and C, is a reflective sub-

category of C,1 (cf. [11, section 4]). Exanples of reflective subcategories

are the conmpact Hausdorff topological spaces in the category of topologica

spaces (by the Stone-Cech conpactification functor) and the conplete, regular

TL Cauchy spaces in the category of Cauchy spaces (see [11, section 6]).
Turning now to filters, let (S '$) be a pre-ordered set; < is a

reflexive and transitive relation on S If B is a subset of S we

shall consider B to be pre-ordered, its order being inherited from S

and we shall suppress specific mention of the order on B. Gven a subset

B of S we define the

initial closure of B « B~ - {seS: 3b(beB&s”"h)}

and termnal closure of B « B" - {seS: 3b(beB&b" s)}.

The set B is called initial iff B« B~ and B is termnal iff B+ B
B is called a filter base in S iff every finite subset of B has a
| ower bound in B Afilter is a filter base B such that B « B*. W my
obtain the notions dual to these by replacing £ by its dual order in the
definitions. Thus, for exanple, a dual filter is a subset D of S such
that finite subsets of D are bounded above in D, and D« D~. W note
that if B is a filter base (resp. dual filter base), then B* (resp. B~)
is the filter (resp. dual filter) generated by B.

The set of all filters in S may be partially ordered by saying
that £ is finer than £  denoted £$ £ for two filters JF and £
iff £0£ as sets. Dually, we may partially order the dual filters in

S by saying that D' is finer than D,. again denoted D " Dp, .iff




D1CD_>_ as sets. VW& prefer to consistently use <¢ as the "finer than“
synbol since it leads to a quite nmanageabl e formalism (cf. Kowal sky [9]
and al so the formulas for neet and join bel ow).

V& now suppose S to be a conplete lattice with |east elenent O.

The filter {0}" is called the null filter and all other filters in S

will be called proper filters. The unnodified word "filter™ will then
always refer to a proper filter. The set c;f all filters of S, including
the null filter, is a conplete lattice with the join and neet of the
filters JF and £ given by

j7vE - (FVG: FeF and GtQ)

and ENE" (FAG:F E E and Gef}.

V¢ pote that FL AG nay well be the null filter even if jE and <S
are proper filters.

More specifically, we shall often be dealing with filters on a fixed
set E Inthis case, S is the power set of E ordered by inclusion,
and filters Jji S are said to befilters_o_r_l_ E.  The set of all (proper)
filters on E wll be denoted FE. Gven a point x e E we shall denote
the filter Ux}}+ by x; andwe let DE- {i : x e E), Qven tw filters
£ and (J on E we let J[*£ denote the filter on E* E generated by
{FxG: Fef and Ge G. If $ and Y are filters on Ex E we
let t"*- {M"': Me ¢} and $of - {M»N: Me 4 and Ne ¥}*
where M''» {(y,x) : (x,y) e M and

MON - {(x,z) e EXE: 3y(yeE&(X,y) e M& (y,z) e N}.
If f is anapping fromthe set E to sone other set E', we |et
fEe {f(F) : Fe g"" for afilter £ on E The proofs of the follow ng

| emmas are omtted.




Lemma 2.1 If £ and G arefilterson E and f : E+E", then

f(1VG «fEVFE, and for any xe E if y « f(x), _then §/«f>°<.

lemma 2.2 X[ $ ', and *" are filters on E* Es then

Gven a filter E on E we shall frequently be referring to the

filter *p- (£%* F) V*M*y wWhe Alsthe giggonal of E * E. W

have the following result involving filters of this sort.

Lenma 2,3 For filters F and G_on_E 4>_.VS3_.$4> o & $ "
- — r- G 1= £ £
Moreovers if EAG is the null filter then ¢ + "g+ *, v Oge

o H#
8

3. _Limi spaces” uniortnJljiniljipaces, and Cauchy spaces

Definition 3.1 Let E be a set and g a subset of EE x E

sati sfying:
Li ny : (§<,x) z q for each x e E
Lim: (Ex) eq and Gi E > (£x) eq

Limg : (£x) eq and (Gx) eq > (EvG.x) Eq,

Then q is called a Linit? structure on E and (Eq) is a limt? space.
V¢ shall frequently use the usual notation for such a binary relation,
witing £q9 x instead of (£x) e g, and saying "£ g-converges to x,"

or sinply, "J converges to x" if there is no confusion.

2. Limt spaces are called Linesr'dune in [7,9] and convergence
spaces in [1,3,A]. The term "convergence space"” in [12] and el sewhere
is preserved for structures ¢ which need not satisfy condition Li ny.




Definition 3,2 Let E be aset and J a dual filter of filters

on E x E satisfying:
Un|1: {A}" e J
Uni, : *eJ » S'ltel

Unis : $,¥eJ and *°f not the null filter > $o0Y e J

Then J is called a uniformlimt® structure on E and (EJ) is a

uniformlimt?® space.

Peflnition 3.3 Let E be a set and C a collection of filters on
E satisfying:
Cau, _DE CC
Cau, : C AC - C
Caug : £, £ He C and JFM"E£ and _FEH « _GVHe C

Then C is called a Cauchy structure on E and (E C is a Cauchy space.

Wi l'e any topol ogi cal space defines a limt space, convergence of
M kusi fiski operators, and convergence a.e. in the space of measurable
real valued functions on [0,1] give rise to [imt spaces which are not
topol ogical (see [13] and [9]). Those uniformlimt structures which are
principal (i.e., for which there exists a filter ~ in J such that
«eJ iff $ £ ¥ have been characterized by Cook and Fischer [A Theorem 6]
as being equivalent to the uniformstructures of Bourbaki [2]. Exanples of
uniformlimt s.tructures whi ch are not uniformstructures will be plentiful
after the uniformzation theorem (6.12). The Cauchy filters of any uniform
limt space forma Cauchy structure, and again exanples w |l become apparent

in section 6.

3. The termnology is chosen to agree with that used in Definition
3.1 and it differs fromthat of [4].




In order to provide a unified theory for the three types of struc-
tures defined above we note that in each case we have the follow ng

situation:

3.4 There is a functor E fromsets to sets.

3.5 To each set E we associate a collection oE of sub-
sets of EE (called "structures" on E), with 00 « {EO}

3.6 aE is closed under set intersection. Therefore oE is a
conplete lattice when ordered by inclusion, and EE e aE.

3.7 If f : El - E is a mpping and S, e oE"y then

f*(S,) £f {s e EEx : (Ef)(s) e S,> e oE..
In the special three structures defined above we have:

For limt spaces,
EE - FE x E
(EN)(Ex) - (fEfx)
OE is the set of limt structures on E

For uniformlimt spaces,
EE - F(E x E)
(EfF)($) - {fM: Me *} " where fM* {(fx,fy) : (x,y) e M
aE is the set of uniformlimt structures on E

For Cauchy spaces,
EE - FE
(EH)(B) - fE
aE is the set of Cauchy structures on E

The proofs of 3.6 and 3.7 are routine for each of the three types
of structures we are considering, and are onitted.

Gven f : E; ->FE« we see that we may define of =f* : aE, -« aE,




by "3#7. It is easily verified that a d_efines a contravariant functor

fromthe category of sets to the categbry of conplete ordered sets (not

to conplete lattices, however, since f* neéd not preserve joins).

‘W may define a dual to f* by letting _
*SI>"DtSeaF, : Vs(seS. -> (Ef)(s) ¢ 9)}.

The followi ng properties are al nost inmmediate:

3.8 f*7r) « S, <> ghM$ i*(S,).

3.9 (gf)* - g* f* if of is defined, and (1lg)* » | 4.
3.10 f* preserves intersections, and f”~ preserves unions.
3.11 f*(f*(Sy)) * S; and S, * f AMS") .

3.12 fX(fA(f*(Sy))) - £*(Sp) and fx(f*(f*(§») « fA(SN,

Property 3.8 may be proven directly fromthe definitions. 3.9 follows from
3.8 and the contravariant character of f*. The renumining properties again
foll ow directly from 3. 8.
Two ot her properties to be'used i n Cauchy Spaces Il are:
3.13 f surjective -> f~ s.urjective and f* injective
f injective > f* surjective and f” injective.
3.14 f*(f*(S)) - S, if f is surjective, and f~AMS”™) - §

if f is injective.

To show the first half of 3.13, we recall that if f s surjective, then

fge Iy for some mapping g. But then g* f* » f» g « 1 ,  Which
h2 aE2

gives the desired conclusion, and the second inplication is proven dually,

except in the case E* » 0, and there we use the convention noted in 3.5.

Property 3.14 then follows from 3.13 and 3.12.

DofinltJlonl 315 Gven a function f : E* «>E between tw sets and

.




gi ven Sle oEL, Sz e oEZ, we say that f is & SP continuous (just
"continuous®™ if there is no confusion) iff S £ f*(S;) and we usually
wite f : (EpS-) -+ (Ez, Sz). In the case E* « E, - E the identity

mp 1l : (E S) -* (E'Sy) is continuous iff S*CS,, .and in this case

we say that S is finer than S, (equivalently, S, is_coarser than S*,

1
denot ed S—l « S,.

From the properties above we see that we may consider the category
of "spaces'! where the objects are ordered pairs (E,S), with E a set and
S e oE, and the mappings are continuous functions. W can define a
subspace of (ES) to be a pair (E\S') with E'CE and S * j*(9)
where j is the inclusion mapping from E' into E Dually, a quotient
space of (ES) is an ordered pair (E',S') with E' a quotient set of
E and S' ¢ g*(S) where q : Ee<+ E' is the quotient map.

Gven a subset A of E we let [A denote the structure generated

by A i.e., [A] * (\{S: SeoE and ACS}. Since we frequently deal

with the generator of a structure we will need the follow ng | emma.

Lenma 3716 If_ f @ E - El is a mapping and A CEE, then fAAD) -

[(Zf)(A)]. Thus, f : (E[A) + (E',S") is continuous iff (If)(A)CS'

Proof. [(Ef)(A)] ~ S <»> (Ef)(s) e & for all s e A <»>

ACf*(S")y <= [A » f*(S").

Proposition 3,17 For mappings f : E-« E' and g : E' ->E', Se oE

and S’ e oF, the follow ng are equivalent:

(a) of : (ES -+ (E',S") is continuous;

(by f : (S + (E',g*(S")) is continuous;

(c) g: (E'f~(S) -v (E',S") is continuous;

(d) fx(9 ~ g*(s).

Proof. Use Definition 3.15 and properties 3.8 and 3.9.
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A«_The Functors, U aid T

Limt spaces, uniformlimt spaces, and Cauchy spaces formthe ob-
jeéts of three categories as we saw in section 3. W denote these cate-
gories by .LL 1, and K' respectively. The maps of these categories

are in each case the continuous fuﬁctions where continuity is given in

Definition 3.15.

Definition 4._.1m'Let (E,q) be alimt space, (EJ) be a uniform

limt space, and (E C be a Cauchy space. W make the follow ng

definitions:

UJ - {FeFE: F* Fe J}

2 ~ o~

UC « {(F,x) eFE*E:EVxeC}
1 N

T2C * the uniformlimt structure on E generated by {*{: £t G

T;q « the Cauchy structure on E generated by (F. VWx": (F.x) e q},

BN

It is easily verified *that with these definitions we may define
functors Ih, U, T|, and T2 between categories in accordance with

the follow ng diagram

T To Ty - Tar
L A ” u
S < Us = Uju;
UI U2
Ve have "(E.S) - (EU'S) and "(E.S) - (E.Tj_S) for i - 1,2 and

Us(F) - To(f) - F for f © &, SY) -* (B S>.

Theorem A2, As defined above. T, -\ U for i - 1,23

—m

Proof. For 1 =1, suppose f : Ti(E q) ** (F,Q 1is a function. Then




1

f is continuous iff whenever F q x and y - f(x) we have f (£ VX) «
f Fvye C and this happens-iff f : (Eq) -* Ul(F,C) is continuous.

For i « 2, suppose f : T,(EC) -« (F,J) is a function. Then f is con--
tinuous iff for each £e C we have fE£x fE- f(£x£) . J and this
happens iff f : (E Q ¢* Uy(F,J) is continuous. The case i * 3 is

imedi ate from the preceding tw cases.

Cprpllary _4*3 For structures A and B on the set E and for

pllar
_i * 1,2,3 we have:

() T.A$ B <> AS$ UB
(b) Twe$ B avd A U.T.A
(¢c) A« UB if and only if A« V,T.k.

Proof, (a) follows from-the definition of adjoint, and (b) and (c)

followimediately from (a).

5  Axions for Separation. Uniformtv, and Reqularity

It is useful to digress sonmewhat and to provide a list of axions that
may hold inalimt space (E q). Solet £ and <G be two filters on E

and let x,y, and z Dbe points of E

TQ © Xqy and ygx *»> xey
TN 0 Xqy > X«y

™ © £qgx and Fqy > x *y
5 ° £qy am Xqy » £ X

Si : quand quand qu => Z.AX

RQ .zqy and z gx » xqy
R : £qx and £qy «© xqVy




Rz: £gx « ITqx
where, in axiom R, IT - {rF F e £}+ and
IT « {ze E: 3£Ge£fE and £9g z and Fe G}.

The first three axions are readily recognized as beinp the usual
separation axi ons from general topology expressed in convergence form
Axi ons So_ and Sl express uniformty conditions and will be used in
section 6. The R axions are those of Davis [6]. W note that R, is
the usual separation axi om T;, rel abel ed by Davis in view of its connection
with R’:. and RQ to be given below Biesterfeldt [1] has shown that axi om
R, is equivalent to the regularity condition of Cook and Fischer [5]. W

remark that axi om RE implies that the relation R defined on E by

X Ry <> Xx qy 1is an equivalence relation.

Proposition 5.1

Ty - T - Tp RO and T 0-> T,
S I -> S o Rl and TO -> Ts
14 ¥

n 2 "o RI o> RO Rl and S 0 - Sl

Proof. The only inplications not inmediate fromthe definitions are
given here. First, SQ»> RQ, for suppose SQ to be satisfied and that
qu andiqx. Since;<qx and);quvehaveiqz and y q z
by SQ. Another application of SQ gives X qy so that- R, hol ds.
Secondly, R, =» Rl for if q satisfies R,, then whenever £ g x we
also have X $ IT (since for each IT e IT we know x e ‘IT because
IT g x)+ Now suppose that £q x and F qy (to show Xqy). By R
we know 1T gy and since X $ IT we have X g y. W onmt constructions

of counterexanples to absent inplications, noting however that in a topo-

| ogi cal space we do have R, => S,.

12
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6w Uniformzation Theorens

=: I TR TR 3 : = o

Proposition"f. JL Let (EC be a Cauchy space. Then WC (s a limt

structure on E satisfying axiom SQ.

Proof. Suppose £ vy and X Vy are in C By condition Cau
of the definition of a Cauchy structure, since ¥y $£vy and y $ X Vy,
we see that £ VX Vy e C. But since x (_F VK < F VX Vy, we have

£VxeC by cau,.

Prpppsltign® 62 1£ q is alimt structure on E satisfying axiom

A0» then ™y « {EVX : £q x}, rather than just being generated by this

set.

——

Proof. W showthat {£VX: Fqx} is a Cauch.y structure.  Cauy

and Cau2 are obviously satisfied and so we proceed to verify Cau®.
Suppose £q x, Gqy, and H qz wth_FVx~GW and F VX $ HVzZ.
Then X ~ G W' and hence x'q 'y. Sinmlarly X g z and thus by axiom

S%\PG_q x and Hq x. Nowalsowe knowthat y qy and z g z so, by

axiom SQ, .y g x and z g X. Hence G \2H Vy Vi) gx and thus
GVHVY Vz Vx ‘is inthe set {FNVx : £q x} and by condition Cau,

we easily obtain G VHVy Vz is in this set also.

Theorem 6"3. Let (Eq) be alimt space. There exists a Cauchy

——

structure C on E such that UiCe» q iff q satisfies axiom S,.
Proof. Proposition 6.1 shows the condition to be necessary.

Sufficiency is a result of Proposition 6.2 and Corollary 4.3.

Propoesition 6"t “*' (EJ) be a uniformlinit space. Then UJ * (UJ) ~.

Proof. Suppose GE£ FE for EFe UJ. Then F x FeJ and since J

HUNT LIBRARY
CARNEGIE-MELLON  UNIVERSITY
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is a dual filter we see that £ x £e J so that £ e U)J.

Definition 6,5 A Cauchy structure C on a set E is said to be

uni form zable iff there exists a uniformlimt structure J on E such

t hat C~ - UJ.

Theorem 6,6 For a Cauchy space (E C the followng conditions are

equi val ent!

(a) C is unifornizable;

(b) C~ is a Cauchy structure;

(c) VE VG (FL,Ge C and _FAG 4 W <» FEV£fe Q.
Proof* (a) »> (b) follows fromProposition 6.4 and the renarks which
follow Definition 4.1 For (b) »> (c), suppose £,£e C and that £AE
is not the null filter. Theﬁ ENGe G and _FAE"N Z»£» Snce C is
a Cauchy structure we know that JF V£ e G- and then an appl i cation of con-
dition Cau, gives us JEVijfre C To showthat (c) «> (a), we note that

the set {$ V...V$_; n finiteand F. e QG forns a dual filter basis

of the uniformlimt structure T,C under the hypothesis of (c) by Lemma
2.3. VW wll showthat the Cauchy filters of T,C are those of C'

(i.e., that WTAC" O By Corollary 4.3 we know that C ~ Y272C sothat

if jFe C* then F, is finer than a filter of UT,C, and hence £ e UT,C
since this structure is initial. So suppose £ is a Cauchy filter of

T,C, i.e., HYES$ *¢ V...V$F for a finite nunber of filters |\-j""En

in C Snce $. V4= $ % F by Lema 2.3, we nay replace $, v 4>
L+ 1] NV AL -4

by L2 - if F.AF is a proper filter and maintain the same form
-

-

(for in this case, v F._e C by (c)). So now suppose that F. AZA 'S
—J -1 J
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null filter for all i i j. Then there exist n sets A" e J ...,nz J
which are pairwse disjoint and there exists a set F e £ such that

FxFd LI (A *A) OA But if Fx FcA then F« {x} for sone

Xxe E and then £« X e C sothat £e C. If Fx F*A then F* F ¢

U( x A) and hence FCA, for some particular i. It is now easy
l<j¢n - -

to show that £$ £~ so that £z C' in this case as well.

Qorollary 6.7 If E is afinite set and C is a Cauchy structure

on -E, then C is uniformzable.

Proof. Ve show that condition (c) of the previous theoremis satisfied.
Solet £j5e C and let H« £/\ G W suppose H is a proper filter
and we let H o f)(H: He H}. By the filter property (since there are
only finitely many sets in the power set of E), H £0, and solet xzH.
Then we have xX’$ H'$ £ and x'$ THE iG so that by the condition Caus
we have £ VEe C

V¥ now wi sh to investigate conditions on a limt space (Eq)» under

whith there is a uniformlimt structure J on E with UJ s g In

such a case we say that q is uniform zable.

ition 6 If J is_auniformlimt structure on E then
“Dox UE ) :Fxiel(,

Proof. It suffices to prove £x Xxe J iff (Evx) x (EyX) e J.

Since £x £< (EvXx) x (EvX) and J is adual filter we have the "if"
part. Conversely, (E£VX) x (E+X) « (Ex£) y(X*F y(£xX) V(X x g
and if £x X e J we easily have the four filters on the right in J by
appllyi ng conditions Uni”, Uni, and Unii‘ of Definition 3.2.

W remark that this proposition shows the functor Ue to be the sane
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as that (inplicitly) defined by Cook and Fischer [A Theorem'l].

Proposition 6.9 If (EJ) is_a uniformlimt space, then the limt

structure U] satisfies axiom SM-

Proof. Suppose £xy., (_:x’y, and _gxi are in J. By con-
dition Uni, we have y x £, J and then £ Xy - (£xy).*(y'x Qa1 x x),

which is in J by condition Uni;.

Lemma 6"10" Suppose C is a Cauchy structure on E and that C' is

“al so a Cauchy structure (cf. Theorem6.6), Then ILC- U(C) .
J— j_ 1

Broof. WC » {(I.,x) : £EVxe G - {(Ex) : £vx SF, for sone

Feqg - uk«en.

logoga, _..6211 _If Q _is a |limt structure on E _satisfying_axiom Sl

t hen (qu)~ is a Cauchy structure on E

Proof, Since q satisfies axiom S,, and hence S, T a * {F VX
i 0 i —

£ qg x} and this set is a Cauchy structure by 6,2. W note that (T—lq)~

is then the set of all filters which g-converge to sone point of E
Conditions Caul and Cau? obvi ously hold for (T.ﬁ)"" and so for Cau3
suppose £$ (5 and F. ~ H for convergent filters Fqgx, Gqy, and
Hqz Then Fqy and FE qz sothat @ qz by axiom $ . Hence "G VH
converges to z by Lim® and GV H e (T#q)-~.

Theorem 6,1 A linmt structure q on a set E is unifornizable iff

—»— ]

Proof. Necessity follows fromProposition 6.9. For sufficiency, if’
1 1 '
g satisfies S, then T,q is uniformzable by Lemma 6.11 and Theorem 6. 6.
L -
So (T,q)~ » WJ for some uniformlimt structure J. Applying the

1 a —
f unct or U- we have Ul((-l—lq) ~) -4y u2J and by Lemma 6_10y Ui TiA ™n

U((Tq)") - UxUpJd « Ud. By Theorem 6.3, q = ~A{Ajin @andsowe have g4 w U




W remark that Corollary 4.3 allows us to assert that q « UgT’\q.

Corollary 6JJ13 If the |limt structure q on a set E satisfies the

2 8°Pration axiom then q is unifornizable.

Proof. By proposition 5.1, Ty *= S;.

"Thus, for exanple, the real nunbers with their usual (metric) topology
may be uniform zed as a uniformlimt space. Letting q denote the con-
vergence given by this topology, we may describe Ty as follows. For each
point p€A let S, be the set of all squares in the plane with center p.

P
Letting $p« {MUA : Me Sp}+, we see that the dual filter generated by

* i - i e n*5 * "
{ peA is qu, since -p " %V@l by Lemma 2. 3.

p :
Corollary 6.13 was first proven by Cochran [3] as a corollary to a

sufficient condition for the uniformzability of a limt space.

W conclude with some remarks concerning Kowal sky\s work [9]. Kowal sky

introduced an initial set C' of filters on E with DECC . Afilter

JFe G is called a fundanmental filter iff for each £ and H in C*K, if

F_$ GAli» '"®" £VHe C. He then required that for each Fe G

there nust exist a fundanental filter JF e C' such that £ $ H, and that
all X be fundanental, for x e E. Wth these definitions it follows that
the fundamental filters of Ck forma Cauchy structure G in our sense
and that C* » (CM)"". In fact, CIZ is the coarsest Cauchy structure finer

than G.. Furthernore, if C is a Cauchy structure and we let G « C",

then every filter I[ e C is a fundanental filter of C, so that C3$ (C"')f.

W might also remark that if f : (E;,C) -> (E;, C) is a continuous function,

then fCCr) CC,", but it is not necessarily true that f((C")¢) C(C2~) .
f

‘Insofar as Cauchy filters are concerned, the theory of uniformlinit struc-
tures gives rise to Cauchy structures C in which C- C', and thus one
cannot distinguish between Cauchy filters and fundanental filters. That such

is not always the case has been remarked by Kowal sky [9, p. 322].
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