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we present the definitions of the various structures to be discussed here

(limit structures, uniform limit structures, and Cauchy structures) along

with a general theory of such structures. The various functors connecting

these structures are given in section 4, and there we also present the ad-

jointness relations holding between these functors. Section 5 contains

a list of axioms describing separation, uniformity, and regularity prop-

erties in a limit structure. The various connections among these axioms

are also given there. After the uniformization theorems of section 6 we

tie together these results with those of Kowalsky [9], who first studied

Cauchy filters axiomatically.

This paper is based on results obtained in the author's thesis [12],

prepared under the direction of Professor Oswald Wyler. The author also

gratefully acknowledges Professor Wylerfs suggestions in the reorgani-

zation of this material.

2. Preliminaries

In a category C we use the notation C[A,B] for the set of all

maps from the object A to the object B. If C. and C2 are two

categories with functors T : C^ •* C2 and S : C2 + C^ we say that T

is an adjoint1 for S, denoted T -f S, iff there is a natural equivalence

between C2[TA,B] and C1[A,SB] for each A e Cx and each B e C2.

Note that we omit parenthesis wherever possible so that T(A) becomes TA.

1. The terminology "adjoint11 is not standard and we have defined an
adjoint in the sense of Freyd [8], but a coadjoint in the sense of Mitchell
[10]. Our definition is the standard definition of "left adjoint.11
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As a special case of the preceding definition, suppose C2 is a

subcategory of C. and S is the imbedding functor• If T is an adjoint

for S, then T is called a reflection and C2 is a reflective sub-

category of C, (cf. [11, section 4]). Examples of reflective subcategories

are the compact Hausdorff topological spaces in the category of topological

spaces (by the Stone-Cech compactification functor) and the complete, regular

T1 Cauchy spaces in the category of Cauchy spaces (see [11, section 6]).

Turning now to filters, let (S,$) be a pre-ordered set; < is a

reflexive and transitive relation on S. If B is a subset of S, we

shall consider B to be pre-ordered, its order being inherited from S,

and we shall suppress specific mention of the order on B. Given a subset

B of S we define the

initial closure of B « B~ - {s e S : 3b(b e B & s ^ b)}

and terminal closure of B « B+ - { s e S : 3b(b e B & b ^ s)}.

The set B is called initial iff B « B~, and B is terminal iff B • B+.

B is called a filter base in S iff every finite subset of B has a

lower bound in B. A filter is a filter base B such that B « B+. We may

obtain the notions dual to these by replacing £ by its dual order in the

definitions. Thus, for example, a dual filter is a subset D of S such

that finite subsets of D are bounded above in D, and D « D~. We note

that if B is a filter base (resp. dual filter base), then B* (resp. B~ )

is the filter (resp. dual filter) generated by B.

The set of all filters in S may be partially ordered by saying

that £ is finer than £, denoted £ $ £, for two filters JF and £

iff £ O £ as sets. Dually, we may partially order the dual filters in

S by saying that D^ is finer than D 2 > again denoted D1 ^ D2, iff



D C D? as sets. We prefer to consistently use <c as the "finer than11

symbol since it leads to a quite manageable formalism (cf. Kowalsky [9]

and also the formulas for meet and join below).

We now suppose S to be a complete lattice with least element 0.

The filter {0}+ is called the null filter and all other filters in S

will be called proper filters. The unmodified word "filter11 will then

always refer to a proper filter. The set of all filters of S, including

the null filter, is a complete lattice with the join and meet of the

filters JF and £ given by

j? v £ - ( F V G : F e F a n d G t G)

a n d £ ^ £ " ( F A G : F E F a n d G e £ } .

We pote that F, A G, may well be the null filter even if jF and <S

are proper filters.

More specifically, we shall often be dealing with filters on a fixed

set E. In this case, S is the power set of E, ordered by inclusion,

and filters Jji S are said to be filters on E. The set of all (proper)

filters on E will be denoted FE. Given a point x e E we shall denote

the filter Ux}} by x, and we let DE • {i : x e E), Given two filters

£ and (J on E we let ][ x £ denote the filter on E * E generated by

{F x G : F e £ and G e G). If $ and Y are filters on E x E, we

let t""1 - {M""1 : M e •} and $of - {M»N : M e 4> and N e ¥} +

where M"1 » {(y,x) : (x,y) e M} and

M©N - {(x,z) e E x E : 3y(y e E & (x,y) e M & (y,z) e N}.

If f is a mapping from the set E to some other set Ef, we let

fF • {f (F) : F e £}"*" for a filter £ on E. The proofs of the following

lemmas are omitted.



2.1 If £ and, G are filters on E and f : E + E f, then

f (1 V G) « fJF V f£, and for any x e E, if y «• f(x), then y « fx.

Lemma 2.2 Xj[ $, •', and *" are filters on E * E$ then

Given a filter F on E, we shall frequently be referring to the

filter *F - (£ * F) V *
A*+» w h e « A ls t h e diagonal of E * E. We

have the following result involving filters of this sort.

Lemma 2,3 For filters F and G on E, 4> V <J> $ 4> o $ $ * #
——-—•———— — ——— r_ G F_ £ £ y G

Moreover % if F A G is the null filter, then <l> • ^G • *p v 0Q •

Limit spaces^ uni^ortnJLjjnitj

Definition 3.1 Let E be a set and q a subset of FE x E

satisfying:

Linu : (x,x) z q for each x e E

Lim2 : (F,x) e q and G i F •> (£,x) e q

Lim3 : (£,x) e q and (G,x) e q •> (F vG,x) E q,

Then q is called a limit2 structure on E and (E,q) is a limit2 space.

We shall frequently use the usual notation for such a binary relation,

writing £ q x instead of (£,x) e q, and saying "£ q-converges to x,fl

or simply, "JP converges to xfl if there is no confusion.

2. Limit spaces are called Limesr'dume in [7,9] and convergence
spaces in [1,3,A]. The term "convergence space" in [12] and elsewhere
is preserved for structures q which need not satisfy condition Linu.



Definition 3,2 Let E be a set and J a dual filter of filters

on E x E satisfying:

Uni : {A}+ e J

Uni2 : * e J »> S"1 e J

Uni3 : $,¥ e J and *°f not the null filter =•> $ o Y e J.

Then J is called a uniform limit3 structure on E and (E,J) is a

uniform limit3 space.

Peflnition 3,3 Let E be a set and C a collection of filters on

E satisfying:

: DE C C

C a u 2 : C+ A C" - C

C a u 3 : £, £, H e C and JF ^ £ and .F £ H «> G V H e C,

Then C is called a Cauchy structure on E and (E,C) is a Cauchy space.

While any topological space defines a limit space, convergence of

Mikusifiski operators, and convergence a.e. in the space of measurable

real valued functions on [0,1] give rise to limit spaces which are not

topological (see [13] and [9]). Those uniform limit structures which are

principal (i.e., for which there exists a filter ^ in J such that

• e J iff $ £ ¥) have been characterized by Cook and Fischer [A, Theorem 6]

as being equivalent to the uniform structures of Bourbaki [2]. Examples of

uniform limit structures which are not uniform structures will be plentiful

after the uniformization theorem (6.12). The Cauchy filters of any uniform

limit space form a Cauchy structure, and again examples will become apparent

in section 6.

3. The terminology is chosen to agree with that used in Definition
3.1 and it differs from that of [4].



In order to provide a unified theory for the three types of struc-

tures defined above we note that in each case we have the following

situation:

3.4 There is a functor E from sets to sets.

3.5 To each set E we associate a collection oE of sub-

sets of EE (called "structures" on E), with 00 • {E0} .

3.6 aE is closed under set intersection. Therefore oE is a

complete lattice when ordered by inclusion, and EE e aE.

3.7 If f : E. -• E is a mapping and S2 e oE^9 then

f*(S2) £f {s e EEX : (Ef)(s) e S2> e oE±.

In the special three structures defined above we have:

For limit spaces,

EE - FE x E

(Ef)(F,x) - (fF,fx)

oE is the set of limit structures on E.

For uniform limit spaces,

EE - F(E x E )

(Ef)($) - {fM : M e * } + where fM * {(fx,fy) : (x,y) e M}

aE is the set of uniform limit structures on E.

For Cauchy spaces,

EE - FE

(Ef)(F) - fF

aE is the set of Cauchy structures on E.

The proofs of 3.6 and 3.7 are routine for each of the three types

of structures we are considering, and are omitted.

Given f : E-. -> E« we see that we may define of = f* : aE? -• aE..



by 3#7. It is easily verified that a defines a contravariant functor

from the category of sets to the category of complete ordered sets (not

to complete lattices, however, since f* need not preserve joins).

We may define a dual to f* by letting

f*<sl> m D t S e aE2 : Vs(s e S± -> (Ef)(s) c S)}.

The following properties are almost immediate:

3.8 f * ^ ) « S2 <-> Sĵ  $ f*(S2).

3.9 (gf)* •- g* f* if gf is defined, and (1E)* » l o E.

3.10 f* preserves intersections, and f^ preserves unions.

3.11 f*(f*(S2)) * S2 and S± * f ^ M S ^ ) .

3.12 f*(f^(f*(S2))) - f*(S2) and f*(f*(f *(Sj»)« f^(S^ .

Property 3.8 may be proven directly from the definitions. 3.9 follows from

3.8 and the contravariant character of f*. The remaining properties again

follow directly from 3.8.

Two other properties to be used in Cauchy Spaces II are:

3.13 f surjective -> f^ surjective and f* injective

f injective •> f* surjective and f^ injective.

3.14 f*(f*(S2)) - S2 if f is surjective, and f ^ M S ^ ) - Sj

if f is injective.

To show the first half of 3.13, we recall that if f is surjective, then

fg • lp for some mapping g. But then g* f* » f^ g^ « 1 , which
h2 a E2

gives the desired conclusion, and the second implication is proven dually,

except in the case E^ » 0, and there we use the convention noted in 3.5.

Property 3.14 then follows from 3.13 and 3.12.

DgfinjLtJLonL_3̂  15 Given a function f : E^ •> E9 between two sets and



given S e oE-, S e oE-, we say that f is S^Sp-continuous (just

"continuous11 if there is no confusion) iff S^ £ f*(S2) and we usually

write f : (EpS-) -• (E2,S2). In the case E^ « E2 - E, the identity

map 1£ : (E,Sj) -* (E,S2) is continuous iff S^ C S2, and in this case

we say that S, is finer than S2 (equivalently, S2 is coarser than S^

denoted S- « S2.

From the properties above we see that we may consider the category

of "spaces11 where the objects are ordered pairs (E,S), with E a set and

S e oE, and the mappings are continuous functions. We can define a

subspace of (E,S) to be a pair (E\Sf) with E1 C E and Sf * j*(S)

where j is the inclusion mapping from E1 into E. Dually, a quotient

space of (E,S) is an ordered pair (E",Slf) with E" a quotient set of

E and S" • q*(S) where q : E •+ Efl is the quotient map.

Given a subset A of E we let [A] denote the structure generated

by A, i.e., [A] * (\{S : S e oE and AC S}. Since we frequently deal

with the generator of a structure we will need the following lemma.

Lemma_3^16 If_ f : E -• Ef is a mapping and A C EE, then f^[A]) •

[(Zf)(A)]. Thus, f : (E,[A]) + (Ef,Sf) is continuous iff (If)(A)CSf .

Proof. [(Ef)(A)] ^ Sf <»> (Ef)(s) e Sf for all s e A <»>

A Cf*(S f) <=> [A] ^ f*(Sf).

Proposition 3.17 For mappings f : E -• Eff and g : E" -> E f, Se oE

and S f e oEf, the following are equivalent:

(a) gf : (E,S) -• (Ef,Sf) is continuous;

(b) f : (E,S) + (E",g*(Sr)) is continuous;

(c) g : (Eft,f^(S)) -v (Ef,Sf) is continuous;

(d) f*(S) ^ g*(Sf).

Proof. Use Definition 3.15 and properties 3.8 and 3.9.
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A «_The Functors, U arid. T

Limit spaces, uniform limit spaces, and Cauchy spaces form the ob-

jects of three categories as we saw in section 3. We denote these cate-

gories by .L, 1J, and K^ respectively. The maps of these categories

are in each case the continuous functions where continuity is given in

Definition 3.15.

Definition 4.1 Let (E,q) be a limit space, (E,J) be a uniform

limit space, and (E,C) be a Cauchy space. We make the following

definitions:

U J - {F e FE : F * F e J}
2 ~~ ~~

U.C « { ( F , x ) e F E * E : F V x e C }
1 — —

T2C * the uniform limit structure on E generated by {*_ : £ t C}

« the Cauchy structure on E generated by (F Vx : (F,x) e q},

It is easily verified *that with these definitions we may define

functors lh, Uj, T|, and T2 between categories in accordance with

the following diagram:

T l

u l

V

T2

U2

u

T3 - T 2 T l

u3 = u l U z

We have ^(E.S) - (E.U^S) and ^(E.S) - (E.TjS) for i - 1,2 and

U±(f) - T±(f) - f for f : &X,S^) -* (E2,S2>.

Theorem A«2 As defined above. T -\ U. for i - 1,2,3.

Proof. For 1 = 1, suppose f : T1(E,q) •*• (F,C) is a function. Then
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f is continuous iff whenever F q x and y - f(x) we have f (£ V x) «

f F v y e C and this happens iff f : (E,q) -* U (F,C) is continuous.

For i « 2, suppose f : T2(E,C) -• (F,J) is a function. Then f is con-

tinuous iff for each £ e C we have f£ x f£ - f (£ x £) e J and this

happens iff f : (E,C) •* U2(F,J) is continuous. The case i * 3 is

immediate from the preceding two cases.

Cprpllary 4*3 For structures A and B on the set E, and for

i * 1,2,3 we have:

(a) T±A $ B <»> A $ U±B

(b) TJUJB $ B atvd A ̂ < U±T±A

(c) A « U±B if and only if A « V±T±k.

Proof, (a) follows from the definition of adjoint, and (b) and (c)

follow immediately from (a).

5. Axioms for Separation. Uniformity, and Regularity

It is useful to digress somewhat and to provide a list of axioms that

may hold in a limit space (E,q). So let £ and <G be two filters on E

and let x,y, and z be points of E.

T Q
 : x q y and y q x *> x • y

T^ : x q y •> x « y

T^ : £ q x and F q y •> x * y

5 Q
 : £ q y ami x q y »> £ q x

si : Z q y and £ q y and £ q x => Z. ^ x

• • •

RQ : z q y and z q x »> x q y

R, : £ q x and £ q y «> x q y
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R : £ q x «> IT q x

where, in axiom R2, IT - {rF: F e £}+ and

IT • {z e E : 3 £(G e £E and £ q z and F e G)}.

The first three axioms are readily recognized as beinp the usual

separation axioms from general topology expressed in convergence form.

Axioms So and S express uniformity conditions and will be used in

section 6. The R axioms are those of Davis [6]. We note that R2 is

the usual separation axiom T~, relabeled by Davis in view of its connection

with R, and RQ to be given below. Biesterfeldt [1] has shown that axiom

R2 is equivalent to the regularity condition of Cook and Fischer [5]. We

remark that axiom R~ implies that the relation R defined on E by

x R y <«> x q y is an equivalence relation.

Proposition 5.1

T2 Tl T0

si -> so

"2 "* Rl O > R0

Proof. The only implications not immediate from the definitions are

given here. First, SQ »> RQ, for suppose SQ to be satisfied and that

z q y and z q x. Since x q x and y q y we have x q z and y q z

by SQ. Another application of SQ gives x q y so that Rn holds.

Secondly, R2 =»> R,, for if q satisfies R2, then whenever £ q x we

also have x $ IT (since for each IT e IT we know x e IT because

IT q x)• Now suppose that £ q x and F q y (to show: x q y). By R?

we know IT q y and since x $ IT we have x q y. We omit constructions

of counterexamples to absent implications, noting however that in a topo-

logical space we do have R2 => Sn.

Ro

Rl

Rl

and

and

and

To -

To -

so -

> Tx

> T2

> S,
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6iVl Uniformization Theorems

Proposition^£.JL Let (E,C) be a Cauchy space. Then U^C is a limit

structure on E satisfying axiom SQ.

Proof. Suppose £ v y and x V y are in C. By condition Cau_

of the definition of a Cauchy structure, since y $ £ v y and y $ x V y,

we see that £ V x V y e C. But since x ( F Vx < F Vx Vy, we have

£ V x e C, by

Prpppsltlqn^ 6̂ 2_ I£ q is a limit structure on E satisfying axiom

^0» then T^q « {£ V x : £ q x}, rather than just being generated by this

set.

Proof. We show that {£ V x : F q x} is a Cauchy structure. Cau-

and Cau2 are obviously satisfied and so we proceed to verify Cau^.

Suppose £ q x, G q y, and H. q z with F V x ^ G Vy and F Vx $ H V z .

Then x ^ G Vy and hence x q y. Similarly x q z and thus by axiom

SA G q x and H q x. Now also we know that y qy and z q z so, by\j> — —

• . • •

axiom SQ, y q x and z q x. Hence (G \^H Vy Vz) qx and thus

G V H V y Vz Vx is in the set {_F V x : £ q x} and by condition Cau2

we easily obtain G VH Vy Vz is in this set also.

Theorem 6̂ 3. Let (E,q) be a limit space. There exists a Cauchy

structure C on E such that U-iC •» q iff q satisfies axiom Sn.

Proof. Proposition 6.1 shows the condition to be necessary.

Sufficiency is a result of Proposition 6.2 and Corollary 4.3.

^t Let (E,J) be a uniform limit space. Then U?J * (U?J)

Proof. Suppose G £ F for F e U.J. Then F x F e J and since J

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSITY
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is a dual filter we see that £ x £ e J so that £ e U2J.

Definition 6,5 A Cauchy structure C on a set E is said to be

uniformizable iff there exists a uniform limit structure J on E such

that C~ - U2J.

Theorem 6.6 For a Cauchy space (E,C) the following conditions are

equivalent!

(a) C is uniformizable;

(b) C~ is a Cauchy structure;

(c) V F V G (F,G e C and F A G 4 W* •» F V £ e C) .

Proof* (a) »> (b) follows from Proposition 6.4 and the remarks which

follow Definition 4.1 For (b) »> (c), suppose £,£ e C and that £ A £

is not the null filter. Then F /\.G e C~ and _F A £ ̂  Z»£» Since C~ is

a Cauchy structure we know that JF V £ e C~ and then an application of con-

dition Cau2 gives us J£ V jjre C. To show that (c) «> (a), we note that

the set {$_ V...V$_ ; n finite and F. e C} forms a dual filter basis

of the uniform limit structure T2C under the hypothesis of (c) by Lemma

2.3. We will show that the Cauchy filters of T2C are those of C"

(i.e., that U2T^C " O. By Corollary 4.3 we know that C ^ U?T2C so t h a t

if jF e C"* then F, is finer than a filter of U2T2C, and hence £ e U2T2C

since this structure is initial. So suppose £ is a Cauchy filter of

T2C, i.e., H x £ $ *F V...V $ for a finite number of filters |\,...,F

in C. Since $_ V 4> $ * F by Lemma 2.3, we may replace $v v 4>
L± Ij ^ V ij ^L 4

by if F.A F. is a proper filter and maintain the same form

(for in this case, ^v F. e C by (c)). So now suppose that F. A ZA is



15

null filter for all i i j. Then there exist n sets A.̂  e J^,...,^ z J

which are pairwise disjoint and there exists a set F e £ such that

F x F d LJ (A, * A.) O A. But if F x F c A then F « {x} for some

x e E and then £ « x e C, so that £ e C~. If F x F ^ A then F * F c

(AJ x A.) and hence F C A. for some particular i. It is now easy

to show that £ $ £. so that £ z C" in this case as well.

Corollary 6.7 If E is a finite set and C is a Cauchy structure

on E, then C is uniformizable.

Proof. We show that condition (c) of the previous theorem is satisfied.

So let £,j5 e C, and let H « £ /\ G. We suppose H is a proper filter

and we let Hf • f)(H : H e H}. By the filter property (since there are

only finitely many sets in the power set of E), Hf £ 0, and so let x z Hf

Then we have x $ H^ $ £ and x $ TH £ iG, so that by the condition Cau~

we have £ V £ e C.

We now wish to investigate conditions on a limit space (E,q)» under

which there is a uniform limit structure J on E with U^J • q. In

such a case we say that q is uniformizable.

Proposition 6.8 If J is a uniform limit structure on E then

U
3
J * U£,x) : F x i e J ( ,

Proof. It suffices to prove £ x x e J iff (£ v x) x (£ y x) e J.

Since £ x £ < (£ v x) x (£ v x) and J is a dual filter we have the "if"

part. Conversely, (£ V x) x (£ • x) « (£ x £) y (x * F) y (£ x x) V (x x

and if £ x x e J we easily have the four filters on the right in J by

applying conditions Uni^, Uni2, and Uni^ of Definition 3.2.

We remark that this proposition shows the functor U« to be the same



16

as that (implicitly) defined by Cook and Fischer [A, Theorem 1].

Proposition 6.9 If (E,J) is a uniform limit space, then the limit

structure U^J satisfies axiom S^-

Proof. Suppose £ x y, (* x y, and G. x x are in J. By con-

dition Uni2 we have y x £ e J and then £ x x - (£ x y)*(y x G)*<!1 x

which is in J by condition Uni~.

a 6̂ 10̂  Suppose C is a Cauchy structure on E and that C" is

also a Cauchy structure (cf. Theorem 6.6), Then ILC - U-(C~) .
— j_ JL

Proof. VyC » {(l,x) : £ V x e C} - {(F,x) : £ v x S Ff, for some

Ff € C} - U (<T) .

Lgggga. ,.6.̂11. If Q is a limit structure on E satisfying axiom S-,

then (T,q)~ is a Cauchy structure on E.

Proof, Since q satisfies axiom S,, and hence S^, T a • {F V x :
i 0 i —

£ q x} and this set is a Cauchy structure by 6,2. We note that (T-q)~

is then the set of all filters which q-converge to some point of E.

Conditions Cau and Cau obviously hold for (T.q)"" and so for Cau

suppose £ $ (5 and F. ̂  H for convergent filters F q x, G q y, and

H q z, Then F q y and F. q z so that G^ q z by axiom S . Hence G VH

converges to z by Lim« and G V H^ e (T-q)~.

^ A limit structure q on a set E is uniformizable iff

q satisfies axiom S .

———————»—— JL

Proof. Necessity follows from Proposition 6.9. For sufficiency, if

q satisfies S,, then T,q is uniformizable by Lemma 6.11 and Theorem 6.6.

So (T,q)~ » U^J for some uniform limit structure J. Applying the

functor U- we have U1((T1q)~) -
 u i u

2
J a n d by L e m m a 6-10> UiTi^ "

U1((T1q)") - UXU2J « U3J. By Theorem 6.3, q = ^{^i^ a n d so we h a v e q " U
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We remark that Corollary 4.3 allows us to assert that q « UJT^q.

6JJL3 If the limit structure q on a set E satisfies the

•"•2 8eP^ration axiom, then q is uniformizable.

Proof. By proposition 5.1, T9 *=> S-.

Thus, for example, the real numbers with their usual (metric) topology

may be uniformized as a uniform limit space. Letting q denote the con-

vergence given by this topology, we may describe T^q as follows. For each

point p € A let S be the set of all squares in the plane with center p.

Letting $ « {M U A : M e S } , we see that the dual filter generated by

{* : p e A} is T~q, since •p*5'*^ " <*> V $ by Lemma 2.3.

Corollary 6.13 was first proven by Cochran [3] as a corollary to a

sufficient condition for the uniformizability of a limit space.

We conclude with some remarks concerning Kowalsky \s work [9]. Kowalsky

introduced an initial set C^ of filters on E with DE C C. . A filter

JF e Ck is called a fundamental filter iff for each £ and H in C*, if

F_ $ G A !i» t h e n £ VH e Ck. He then required that for each Fe Ck

there must exist a fundamental filter JF1 e C^ such that £ $ H*, and that

all x be fundamental, for x e E. With these definitions it follows that

the fundamental filters of C, form a Cauchy structure Cf in our sense

and that C^ » (C^)"". In fact, C- is the coarsest Cauchy structure finer

than Cfc. Furthermore, if C is a Cauchy structure and we let Ck • C"",

then every filter I[ e C is a fundamental filter of Ck, so that C $ (C")f.

We might also remark that if f : (E1,C1) -> (E2,C2) is a continuous function,

then fCC^) C C 2 " , but it is not necessarily true that f((C1")f) C(C ~) .

Insofar as Cauchy filters are concerned, the theory of uniform limit struc-

tures gives rise to Cauchy structures C in which C - C", and thus one

cannot distinguish between Cauchy filters and fundamental filters. That such

is not always the case has been remarked by Kowalsky [9, p. 322].
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