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ABSTRACT

This paper considers a machine as a pair (G5M) where G

is a group or a semi group and where M is a state space. The

first part of the paper called reversible-state machines considers

the case where G is a locally compact group and M is any

locally compact group and M is any locally compact space. The

essential requirement is that (x,p)~>x(p) be continuous where

XGG, peM and x(p)eM; i.e., we require that the next state

function be continuous. The notion of projective limit is dis-

cussed and a criterion is given as to when G is the projective

limit of some of its quotient groups. Next an infinitesimal

element is defined. An identification is then made near the

respective identities of G and the set of infinitesimal operations

The second part of the paper treats the case when G is a

so called amenable semi group, having a representation of bounded

operators on a Hilbert space. In the case in which the repre-

sentation is an isometry, weakly continuous9 a decomposition

theorem is given. On a particular subspace the representation

turns out to be a direct sum of finite dimensional operations.

Diverse characterizations of that space are given. Next the

notion of coordinates of a representation is defined and two

orthogonality theorems are stated.

The whole paper might be considered as an attempt at giving

approximation theorems on essentially infinite automata.
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I. INTRODUCTION.

A classical way to view a machine is as follows: let M

be any set which represents the status of the machine and let G

be a group or semi-group of transformations on M. The pair

(G,M) constitutes a machine [1], [3], [8], [10]. It is then

meaningful to study purely algebraic properties of G [2], [5],

[6] , [11] • In this paper a machine is considered as a pair

(G,M) where G is a topological group or semi-group and M is

a topological space. It is then meaningful to talk about

topological properties of groups and semi-groups. This paper

brings into focus such relevant properties. The techniques are

well known to people working in topological groups [4], [7], [9] .

-li-



II. "REVERSIBLE-STATE" MACHINES.

1. Definitions,

a. The state-space.

Let M be a set with a topology t defined on it. Assume

M is locally compact in this topology. M will be called a

state-space.

Examples: 1) Let M be finite, and let t be the discrete

topology.

2) Let M be a set of n-tuples with the usual topology.

3) Let M be a set of nxn matrices with the usual

norm topology.

b. The tape-group.

Let G be a group of transformations on the space M.

Suppose G is topologized so as to be locally compact. (I.e.

G consists of continuous maps of the space M into itself;

G has an algebraic group structure; the group operations are

continuous on G; moreover, G is locally compact in that

topology). G will then be called a tape group on M.

c. "Reversible-State" Machines.

A reversible state machine will be a pair (G,M) where M

is a state-space and G is a tape-group on M. We, in addition

shall require that the map (x,p)~^x(p), where xeG and peM,

be continuous.
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d. Physical Interpretation.

A reversible state machine is determined if one knows its

set of states and how a series of inputs acts on a particular

state. G can be thought of as a set whose elements are a series

of inputs with the obvious composition law. Because elements of

G are continuous maps on M, this means that "if a series of

inputs is slightly modified, then the resulting state is also

slightly modified." The topologies on M and G of course

give meaning to the concept of "slight" in G and M. A machine

of the above type will be called transitive if9 given p and q

in M, there exists x in G such that x(p) = q.

2• Quotient State Spaces.

a. Let H be a closed subgroup of G (not necessarily normal).

Consider the map ir which maps any element x of G into the

set xH (all elements of form x multiplied by an element of H)

Pick the open sets in G/H to be the ones whose inverse by IT

are open in G. Then v is a continuous map of G into G/H.

Moreover, ir maps open sets of G into open sets of G/H. G/H

is a locally compact Hausdorff space. All these statements

follow by definition.

b. We can state the following:

Theorem;

Let H be a closed subgroup of G, then (G,G/H) is a

transitive, reversible-state machine.

Before proving this theorem, let us give a physical inter-

pretation. Starting with a machine which has a given state space



3

it is possible to construct in general a new state space on

which G is a tape group. Moreover, the new state space is

related to the first state space as follows: If two tape elements

x- and x~ are such that x. can be obtained by composition of

x2 with an element of H then TT (x^ and TT(X2) are identical

states in the new state space.

proof:

Define p (xH) = yxH.

Then, given x-H and xJ&,

1 (x H)pXpX-" 1 = x2H so the machine is transitive.

Now (x,y)^xy is continuous and (xy) ~*> (xy) H is continuous. The

map (x,y)-%(x,yH) preserves open sets hence (x,yH):^(xy)H is

continuous. Q.E.D,

c. Consider the machine (G,M). Let P be an element of M.

Let G be the set of tape elements of G which leave the state

p invariant. Clearly G is a closed group. We can then form

the state space G/G . Now we can define a natural map

0 G/G~>M by 0 (xG ) = x(p): Now let us assume that (G,M) is

a transitive machine. What can we say about 0?

Let us verify first of all that 0 is a well defined map.

If xG = yG then y~ xG so y" x(p) = p so x(p) = y(p).

This also shows that 0 is 1:1. 0 is onto M because we have

a transitive machine. Let <p(x) = x(p) (xeG) . By definition, <p

is continuous, ir : G~tyG/G is an open map, hence 0 is a

continuous map. If we know that <p is open, then 0 is a

homeomorphism (i.e. the spaces M and G/ are topologically
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equivalent). It is natural then to ask the following question:

under what conditions on G and M is G/ homeomorphic to M?

P

Theorem;

Suppose (GjM) is a transitive machine. Assume G can be

covered by countably many translates of each neighborhood of the

identity. (This is the case if G is separable). Then 0

is a homeomorphism.

Note that this theorem essentially gives a criterion as

to when G/G is the same state space as M. The state space

G/G is obtained from G and M as follows. Each xeG is

mapped in such a fashion that tape elements which ?cancel1 each

other out on the state p are mapped into the same element.

Then the natural quotient topology is introduced on that new set.

Now we proceed to the proof of the theorem:

Proof:

We remark that a locally compact space is not a countable

union of nowhere dense sets.

Now we shall prove that x->(p(x) = x(p) is an open map.

Let xQeV <_ G where V is open. We will show that <p(V)

contains an open neighborhood about ^(XQ) • Pick a compact

1 2

neighborhood U of G such that U = U~ and x U <. V. By

hypothesis there exists a sequence {x } such that G = V x U

whose image by <p is V <p(x U) = M. By the above remark one of

the <p(x U) is not nowhere dense, so contains an open set. Thus

<p(U) has an interior point U p (u eU) .

£b <p(\ft has xo (p) as an interior point. Q.E.D.



3. Decomposition Theorem,

a. Consider the tape-group G let p^ be a continuous, open

homomorphism of G onto G which is also a tape group. Let

k 0 = the kernel of p . The problem we shall consider is the
e r a OL ^

following: What is G topologically equivalent to the pro-

jective limit of the G ? A criterion of this problem will give

us a way to look at the tape group G as a projective limit of

homomorphic tape groups, the projective limit being topologically

equivalent to the group tape G.

b. Now let A be a directed set (i.e. for a,(3 in A< there

exists AeA such that A > a, A > j3) . To each a associate a

tape group G (in this paragraph we are not interested in the

state-spaces) . To each pair a,j3 of A such that j3 > a we

associate an open homomorphism ITQ of Gn on G satisfying:

if a < j3 < A then ir = TT^QTTQ (the convention here is to

read from left to right) . Form G ^TT. G (i.e. G is the

product group with the natural topology on it). Now let

G = [xeG/X = Knixo) whenever j8 > a) G is a subgroup of G.

Let us topologize G by the relative topology respectively to G,

It is easy to check the following:

1) An open basis at eeG is defined by the sets of the form

(x = {x«}/x € open neighborhood of e in G } (a fixed)

2) G is closed in G.

Now let x be the projection of G in G .

If x is onto G , then G is the projective limit of the

tape groups G . (Note that x is an open map) .
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Theorem:

Let G be a tape-group. N where aeh is a collection

of normal subgroups of G satisfying the following conditions:

1) If a,0eA then there exists yeA such that N y < Nft A N^.

2) If U is any neighborhood of e^ there exists yeA such

that N < U.

3) At least one of the N is compact.

Then we can form G! the tape group which is the projective

limit of the G^ =

Further let $ map G into G! by $(g) = (TT (g) } then

<$> is an isomorphism onto Gf.

#Let us comment on this theorem before giving the proof. We

have here a criterion as to !how thin1 we must choose a set

of tape subgroups such that the tape group G may be reconstituted

as a projective limit of its quotient tape groups. G will be

topologically equivalent to this projective limit. The physical

interpretation of the projective limit is tentatively the following:

For each a. form the tape group G/N . Then consider the

state space which is the cartesian product of the state spaces

of G/NQ,- Then a state in that product is given as a sequence of

states. The a element of the sequence represents a state of

the state space of G/N . Then topologically the tape group can

be considered as acting on that new state space. The transformation

of such a sequence is done fcomponent wise1, i.e. g is identified

with {g^} and



How we prove the theorem:

Proof:

First of all $ is 1:1 and continuous. The verification is

trivial. Now we have to show that <f> is open. Let geC and

geV which is open in G.

2
Pick a neighborhood U of e such that gU <. V.

Select aeA such that N^ <. U.

Consider {xeGf/x £^(9^) } •

This is an open set in the relative topology for the range of $.

Indeed, if this set contains $(h) we will show that heV.

We have ira(h) eira(gV) , so hegUN^ < gU2 < V.

Now if we show that Range <S> = G1 we will have proven the theorem.

Let x - {xa)€GS X a

Consi<tex «.,..•,«. Piak fi

Then !Nfl < N

so mltpfi <
 s

a™ai (because Tpa l*fi) = x ).

Because N is compact for some a, there exists ge^s N

therefore ^a(g)
 = x

a* Q.E.D.

4. Infinitesimal tape elements.

a. In this paragraph V will denote a finite dimensional vector

space/R. M(V) = all linear transformations which map V into V.

GL(V) = all non singular linear transformations of M(V). Hence

GL(V) is a group for multiplications. Define

exp(T) = E ^ r T
K

K

where

TeM(V) .
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Then it is easily seen that exp. maps topologically a neighborhood

of 0 in M(V) onto a neighborhood of I in GL(V). Physically

we will keep in mind that V is the state space, and GL(V)

is a group-tape on V. Now let G be a closed subgroup of

GL(V). xcM(V) is called an infinitesimal operation on V if

there exists a sequence

\ A
A (G e^ 0 and -2~--i X.

Convergence here is defined in the norm sense of M(V) . L(G)

is the set of all infinitesimal operations (respectively to G).

(Note that L(G) is nothing else but the Lie algebra of G).

Now if G is a closed subgroup of GL(V) and xrL(G), then

exp(x)eG. This is a trivial conclusion using the fact that G

is closed and that A [—]^» exp(x) where [1/r ] is the smallest
n

integer above 1/c .

Now in L(G) introduce a new operation [A,B] = AB - BA.

Where A and BeL(G) it can be shown then that L(G) is a linear

subspace of M(V) closed under [ , ] operation.

b. Theorem,

exp maps topologically some neighborhood of 0 in L(G) onto

some neighborhood of I in G.

Let us comment now on this theorem. Here we are interested

in tape elements which are not necessarily part of a tape group,

i.e., the infinitesimal elements. The action of two infinitesimal

elements on the state space results in the usual vector addition.

On the other hand, we are interested in the action of a tape group.
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The theorem says that if the tape elements and infinitesimal

operations are close enough to the respective identities^ then

the infinitesimal operations are topologically equivalent'to the

tape elements, (This is really a local identification near the

identities).

We prove this theorem in the following manner:

Proof:

All we have to show is that exp is an open map. So assume

that exp[L(G)] does not contain a neighborhood of I in G.

Let N be the complementary subspace to L(G) in M(V).

M(V) = L(G) + N

N AMG) = (0)

So there exists [A } such that:

A eG for all n
n

A ~*In ^

Log A /L(G) for all n

Log An = x n + yn

xneL(G)

then

y ^ 0 for all n, for if y could equal zero

Log A eL(G), a contradiction.

Log An ̂  0

so
X -> o and y -% 0.

Consider y /||y ||. The unit sphere is compact, so some subsequence

converges to y. Therefore ||y|| = 1#
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, so exp Ay ^ I for small A, because for small values

of \, exp is 1:1; and since Ay / 0, exp \y jt I. If now we

show that y€L(G) we will have demonstrated the contradiction.

- exp xn - yn) | | = j ^ IUxp(Kn + yn) - exp xn - yn

00 i v \
E v7 ((x

n
 + yn) - x n

GO

^ j n - exp||xn|

expllx
nl

A - exp x
n n

(exp(-x )A
= lim exp x n(— |jp-|j

exp(-x )A - I

^ 5 e L ( G )

so yeN/^ L(G) SO y = 0; contradiction. Q.E.D.

c. Theorem,

Let G^ and G2 be closed subgroups of GL(V1) and GL(V2)

Let <p be a continuous homomorphism of G into Q. Then there

exists a homomorphism d<p of L(G) into L(Q) such that

d<p
L(G) > L(Q).

•Jr Iexp 4' ,̂  exp
G -*> Q
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III. REPRESENTATION THEOREMS FOR »NON-REVERSIBLE MACHINES'

1, Definitions.

a. Non-reversible machine.

A !non-reversible machine1 will be defined as a pair (G,M)

where G is an 'amenable1 semi-group; i.e., G has the algebraic

structure of monoid (it is closed under composition and the

identity is present). Let C(G) be the set of all bounded and

continuous functions. G is said to be left amenable if there

exists a linear functional defined on C(G) which is positive,

left invariant, and normalized; the same definition applies for

right- nable. G is amenable if it has a left and a right mean.

(Note that the left mean is not necessarily equal to the right

mean.) Formally, a non-reversible machine will then be the pair

(G,M) where G is a semi-group with identity and where A,, A2

are linear functionals such that

Ai(l) = 1 (i = 1,2) (I = the identity element of C(G)

T^ftx) = ><]Lf(ax) for all aeG (f eC (G)) (xeG)

A2f(x) = \2± (xb) for all beG

A.f > 0 if f > 0 (i = 1,2)

Examples: Any abelian semi group is amenable.

Any compact group is amenable.

b. Almost convergence.

We will define now a so-called Almost convergence1. Let

feC(G) and let a be a number then we say f converges almost

to OL if Af = a for all A where A is a mean (left or right)
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We denote this fact as f — -» a. It can be shown that if
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G = {1,2,3, ... }, in order that feC(G) satisfies f J^> ot it

is necessary and sufficient that

1 n

L f(k + m) «*3» a uniformly in m. (Ergodic theorem).n k=l

Now we assume that we have a Hilbert space h, and that the

tape semi-group G has a representation in L(h) as a set of

bounded linear operators on h; i.e., if xeG then x«^T 6L(h).
x

and Txy = T x V

Roughly speaking we assume now that each tape element (which

is an element of a semi-group G) can be represented as a linear

operator over the Hilbert space h. (h in general is infinite

dimensional.) We make the hypothesis that the semi-group G

is amenable. We want to study the properties of such a repre-

sentation, and hence, hopefully, have a different way to look

at elements of G. A representation T is called bounded if
||T II < k for all xeG. A representation T is called weakly
x x

continuous if x -^ (T C>*0 is a continuous function on G for
x

all C,*eh.

2. Bounded, Isometric Representations,

a. Theorem.

Let u be a bounded, weakly continuous representation of

G on h. Then there exists QeL(h) such that

(a)
C ( C * ) for all C,x€h.

Moreover if u is an isometry, Q = projection on {£/u C = Cx x

for all xeG}. We proceed to prove the theorem as follows:
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Fix A a left or right mean. Then there exists Q such

that X(u C,*) = (QXC,*) for all C,*£h. This is merely the
X A

Riez theorem.

Observe that Q.Ce closed convex hull of {u C/xeG} (use
\ x

the separation property for convex sets).

Let now A, be a right mean. Claim (X u = Q . Indeed,
1 A i X X

If A is a left mean it is equally trivial to check that

u Q = Q •x x x

Now to show that Q = Q . By the same token we will

have shown that QA is independent of X.
A

Consider

x.9 ...x eG

a.,...a such that L a.. = 1
if n . i

Since Q.Ce closed convex hull of {u C/xeG], then Q. C or
A X A

QAL
QA = V
Now (QAQAC,x) = ^ ( u A ^ )

QA,QA > O
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Now to show the second part of the theorem. Let E be the

projection described in the theorem.

(QC,EX) = Mux€,Ex)

= A[Eu £,x]

= A(u EC,X)

= (EC,X)

so EQ = E.

Now let us check that EQ = Q. This will show E = Q.

For all xeG we have u QC = QC. QC fixed under u
x x

implies Q£e range of E. So EQC = QC therefore EQ = Q.

Q.E.D.

b. Theorem,

There exists a positive self-adjoint linear map 4? of

G, into G, such thath, s n,s

(a)
1) (Au C,u *) _ ^ (*(A)C,x)(for all AeG, )

2) x x

3) <E> >_ 0 and se l f ad jo in t .

I . e . , A* = A $(A) = $(A*) .

Let us explain some of the terminology and conditions involved.

First of all u is assumed to be a weakly continuous

isometric representation of G.

G, represents the so-called Hilbert-Schmidt class ofh.s

operators, i.e. AeG, means A : h ̂ ^j^h and if e is a complete
h, s ^^ a.

orthonormal basis for h, then

I llAe ||2 < oo.
a
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Here E means sup over all finite sums. It can be shown

that G^ is closed under * (adjoint) and is an ideal in
h,s

L(h). G, is also a Hilbert space in its own right under the
n, s

inner product

[A,B] = E (Ae ,Be )1 9 J v a' a.

(here E makes sense since only a countable number of terms

are ĵ  0) . Consider G, as a Hil
n, s

an inner product). Consider the map

are ĵ  0) . Consider G, as a Hilbert space (with [ , ] as
n, s

(A) II2 = [U*AU ,U*AU.]

= L ||u*AU e ||2
11 x x a"

ISAe !

- [A,A] .

So T is an operator on G, of norm less than or equal to 1,
x n j s

T (A) = [(U )*AU ]xyv ' L v xy7 xyJ

= (U*(U*AU )U

= T T (A)
y x

Hence T is a bounded anti-rep of G on G

Claim: This anti-rep is weakly continuous. It suffices to

show that x ^>[T A,B] is continuous for A, and that Be dense
x

subspace of G, ; i.e., for finite rank.
n 9 s

So l e t
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AC = (C,o)a

BC = (Cr)r'

a, a*, r, T'eh

[TxA,B] = E

= L x V £ a

Claim: This series converges uniformly in x. Let r > O

There exists a finite set, call it f such that

E (W C T )

L |(U xe,a)|
2 L j ( r e ) | 2

* a ,

T r e J | 2 can be rendered < €/||CT||2||CT' ||2||r ' | |2

Given any e > O, such an f can be chosen. This proves the

claim. [T A,B] is hence weakly continuous as a uniform limit,
X

By the previous theorem, there exists a bounded operator $

such that

[ T A B ]

Choose B of the form

Bp = (p,O*

Hell = i.

Imbed £ is an orthonormal basis with £ = e
o

,B] = L



18

Likewise

[T A,B] = (U*AU C,*)

We have (U*AU C,x) JH. (*(A)C,X) for all C, T?.
XX f

This proves 1) .

Now let A be a right mean:

so

U*<!>(A)U =

This shows 2) .

Now let A >_ 0.

Then (AU C,UvC) >. 0 for all
x x

A (U*AUxC 0 > 0

so
(*()C,C) > 0.

So $ is a positive map, and 3) is proven.

3.. Peter-Weyl Theory on Amenable Semi-Groups.

a. In this paragraph u will be assumed to be an isometric,
x.

weakly continuous representation of G in L(h). We will state

the essential results. The representation u will be said to
x

be reducable over h, if there exists a subspace m of h

(non-trivial) such that u (m) <̂  m and u (m ) <_ m for all xeG,
x x
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Theorem,

Let x = {£eh/$(A)C = O for all AeGh g] (* as

defined above). Then the following statements hold:

1) x reduces the representation.

2) u | (restricted to x) has no finite dimensional subrepresen-

x x
tation.

3) u I is the direct sum of finite dimensional subrepresentations(

x x

This theorem may be regarded as a sort of localization

theorem. It states how u behaves on a certain subspace of h,

and namely u is a direct sum of finite dimensional subre-

presentations on x . The theorem ties x and the Hilbert-

Schmidt class of operators.

In the proof we shall make use of the following elementary

fact: let m be a proper closed subspace of the Hilbert space

h; then the rep reduces m if and only if U for each x
x

commutes with P which is the associated projection on m. By

Zorn, let P be the maximal collection of non zero, finite

dimensional, orthogonal projections each commuting with all U .

(This family could be empty.)

Let P = E P^.

Then P commutes with all U .

Let m be the space on which I - P projects.
Claim: U restricted to M has no finite dimensionalx

subrep. In fact, let Q ^ 0 be a finite dimensional projection

which commutes with all U .
x
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Claim: Q < P. If not Q(l - P) ^ 0 so (I - P)Q(I - P) ^ 0

and GG, since the latter is a two-sided ideal and any opera-nds

tion of finite rank cG, . This operation is self adjoint and
n, s

compact, so by the spectral representation:

(1 - P)A(1 - P) = L A P,

where P. are finite dimensional, orthogonal projections. It
A

follows that each P. conmutes with U and at least on
A X

P ^ 0; also P. <. I - P. This contradicts the maximality of (P }
A A OL

Now the claim is that Range (I - P) = x. The theorem then

will be established. Suppose £<E Range (I - P) and ^(A) C jt 0
for some AeG, . Without loss of generality we may assume that

n j s

A is self adjoint. We have seen that *(A) commutes with all

U and is a non-zero, self-adjoint, compact operator (compact

because it is the uniform limit of operators of finite rank).

H e n C e *(A) = 2>vP.
A

where for some A ̂  0, P,C / 0.
A

As before P̂  commutes with all U so PAU is a finite
A X A X

dimensional subrepresentation of U .
*>.

Now Range P < Range P (by maximality)
A

PC / 0 since P̂  < P

(1 - P)C ± C

so C/ Range (I - P) which is a contradiction.

Conversely let C/ Range (I - P) then there exist a such

that P £ / O, since P is finite dimensional then P eG,

and P convnutes with all U so:
Ot • X
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(*(Pa)C,t?) =

= X(PaC,T?)

= (pac,n)

so *(Pa) = Pa

therefore ^ ^ = p ^ ^ Q

and C/m-

In the process we have proven the following:

Theorem,

77 R Range of 1 - P where P is the sup of all projections

(finite dimensional) which commute with all U as xcG.

Theorem.

If m = {Ceh/A| (U C,t)| = 0 for all teh] then r\ = m

Say Cetj, then ($(A)£;t) = O = A (Au C,u t) for all AeG,
xx n. y s

Take A £ = (C^P)cr

O = A t (ux£, p) (iTTTa) ]

put t = C, p =• a

then A(u £,p) = 0 for all p.

so C

Now

A

A

A|(uxC,

to show

P) ) | i

7

<

A|(U C,t)| = 0 for all t

|A(uxC,t) (uxt,a) | < \\ (uxC,t)||(uxt,a) |

< I l t | | | | a | | x | ( u C , t ) I = O

i f AC = (C,cr)a t h e n (<f>(A)£,t) = 0 so *(A) £ = O.
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Hence $(A)£ = O for any operator of finite rank; hence,

because the latter set is dense in G, , $(A)C = 0 for all
n, s

A€Gh,s«

In case G is a compact group TJ = (0) and we have the

statement of the Peter-Weyl theorem for compact groups. A

representation is called unitary if u is unitary for all

xeG. (i.e., u*u = I.)

Now let us consider the situation where the tape semi-group

has different representations in different Hilbert spaces.

The following theorems will tell us how this affects the repre-

sentations.

Theorem (Schur).

Let u and v be continuous, finite dimensional,

irreducable, unitary representation of a amenable semi-group

on Hilbert spaces L(h ) and L(h ). If T is any Hilbert-

Schmidt operator from h to h , then there exists $ which

is a linear operator on the space of Hilbert-Schmidt operators

from h to h such that

$(T)ux = Vx*(T)

(a)
(TuvC,Vij) _^>> (*(T)C,T?) for a l l Ceh and a l l Tfeh .

Moreover if u is a representation non-equivalent to

v , then *(T) = 0.

If u = v then $(T) = — (trace T) I where n = dim hx x n
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b. Let us define now the term coordinate. A coordinate

(respective to a given representation) is a function belonging

to C(G) of the form (u h»f,hf) where h?' and hf are fixed

vectors of h.

Theorem,

Coordinates of non-equivalent representations are orthogonal

respectively to any mean, i.e.

(a)
(uxh,h") (vxk,k') ^,k 0.

Mow consider h a finite dimensional vector space. Then let

e-,...e be an orthogonal basis for h . Then

Theorem,

(u e.,e.) are orthogonal respectively to any mean. (1 <L i,j <_ n)
x j 1

Conclusion.

We have now decomposition and orthogonality theorems for

certain types of automata, essentially for these where the

underlying semi-group of inputs is a amenable group. The theorems

are algebraic as well as topological in their nature. A possible

way to look further into the matter is to take specific examples

of groups with a known mean and see what are then the results of

applying these theorems. The idea is to break down these types

of machines into easier parts. Another direction open for

investigation is to explore topological groups, not necessarily

amenable, but having some other special conditions and consider

their decompositions.
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The theorems on bounded isometric representations essen-

tially say that an infinite machine acts like a finite one when

restricted to certain subsets of the set of states. The theorems

give a characterization of the zone in which the machines seem

to act as finite ones. The orthogonality theorems essentially

give averaging processes on automata where a mean can be con-

structed on the semi-groups of inputs.
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