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CAUCHY SPACES II. REGULAR COMPLETIONS AND COMPACTIFICATIONS

James P. Ramaley and Oswald Wylei1

1. Introduction

Uhiform limit spaces were introduced by Cook and Fischer (5j an a generali-

zation of the uniform spaces of Weil and Bourbaki fa]. Wyler fl2J and Biester-

feldt fl] obtained completions of uniform limit spaces, but not a satisfactory

completion and compactification theory. The present paper attempts to present

such a theory, in a wider setting,

Kowalsky fg] seems to have been the first to discuss completions using only

Cauchy filters, and not a uniform structure furnishing them. The junior author

of the present paper took up this lead in his thesis f10J. He gave an axiomatic

characterization of Cauchy spaces, i.e. spaces with Cauchy filters having reason-

able properties, he studied the relations between these spaces and uniform limit

spaces on one hand, and limit spaces (as defined in |9j and |7j) on the other hand,

and he obtained some regular completions and compactifications of Cauchy spaces,

with the appropriate universal mapping properties. The first part of this work

has been published in (llJt the second part is presented here, with some general-

izations and simplifications due to the senior author.

We have become convinced that regularity is an essential part of a comple-

tion or compactification with sufficiently strong properties. Regularity for

s
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limit spaces was defined by Fleischer fs] and Cook and Fischer [6] by a partial

converse of the iterated limit theorem. Biesterfeldt f?.] han shown that this is

equivalent to the obvious generalization of the topological axiom TL to limit

spaces. Thus regularity for limit spaces is fairly well understood.

For Cauchy spaces, there are several possible generalizations of T_. These

generalizations are not equivalent, and it seems that there is no single regular-

ity concept for Cauchy spaces which is appropriate for all occasions. This has

led us1 to present an axiomatic theory of regularity for Cauchy spaces. Using

this theory, we obtain a unified theory of various regular completions and com-

pactifications of Cauchy spaces*

There is at present no satisfactory regularity concept, and hence no satin-

factory completion theory, for uniform limit spaces.

One advantage of Cauchy spaces over uniform limit spaces, already pointed

out by Kowalsky f9]t is the possibility to distinguish between T spaces and com-

pletions, and T spaces and completions. Correspondingly, we obtain distinct T

and Tp completions and compactifications with appropriate universal manping pro-

perties. Modifying a compactification of limit spaces obtained by Cochran [4],

v

we also obtain a Stone-Cech compactification for limit spaces.

We use the notations and terminology of fll], but otherwise there is not

much overlap between this paper and (11J• We wish to point out the following

departures from frequently used terminology. S ^ S in used consistently for

structures such as filters, topologies, limit structures, to mean that S is
finer than S^ , regardless of whether this means S^ C S or S^ C S .

— 2 2 1 1 2

This simplifies the formalism a great deal, as pointed out e.g. in |9]* We have



replaced the term "convergence snace" of |5J and others by the original term

Mlimit space" of [9] and f7J, in order to preserve the term "convergence space**

for the more general spaces studied in (8J and elsewhere. To be consistent,

we replaced the term "uniform convergence structure" of 15] by "uniform limit

structure".

Several unsolved problems and open questions remain. One has already been

stated; some of the others follow. We do not know just how our completions and

compactifications are related to the corresponding constructs for topological

spaces, and when the universal mappings defining our completions and compacti-

fications are in fact embeddings. Except for some results in |4] concerning

abelian groups, no completion theory for groups or other algebraic systems with

compatible limit structures has been obtained.

2. Preliminaries

We denote by £ E the set of all filters on a set E , by tJ E the set

of all ultrafilters on E , and by D B the set of all fixed ultrafilters x ,

x£ B . As in f9] and fll]f 5~ < £ will mean that JF is finer than Q ,

i.e. Q d T f and filters T\/Q and J/\Ci consist respectively of all

sets A U B and all sets A O B f with A g 5F , B(zGL . If JB is a filter

basis, then JB denotes the filter generated by jB •

For a set C of filters on E , we denote by C and C the sets of all

filters on E respectively coarser or finer than some filter in C . We call C

a Cauchy structure on E if C satisfies the following three conditions.



Cau . H C C C F B .

Cau . C n C~ a C .

Cau . If F . ^ , K are in C and T4 G , 3r^'H , then tf
t

We call (E,C) a CaucKv r*pace if C is a Cauchy structure on E •

Examples have been given in fll]* We recall that jD E and F_ E are Cauchy

structures on E , and that A is a Cauchy structure for any set A of filters

on E such that D E C A , but that C is in general not a Cauchy structure

sven if C is one. A Cauchy structure C is called uniforrnizable (11, Thm. 6.6J

if c"" is a Cauchy structure, and initial if C s C .

The following two statements follow easily from the axioms.

2.1. If (C ). ̂ _ is a family of Cauchy structures on the same set E ,

then ( I C. is a Cauchy structure on E .

2.2» If f : E •—>E f is a mapping of sets and Cf a Cauchy structure

on Ef , then

f*(Cf) m |ST6 F E : f9Te C'J

defines a Cauchy structure f*(Cf) on E .

Thus the general theory of (11, sec. 3J is applicable to Cauchy spaces, and

we shall use this theory in the present paper.

If (E,C) is a Cauchy space, let

(2.3) qQ «

This is a limit structure on E by fll, Prop. 6.l], and q satisfies Axiom S of
C o

fll, sec. 5]. We shall attribute topological properties of q to C . Thus we

shall say that (E,C) is a T. space (i = 1 , 2), and C a T. structure, if q



satisfies T. , and we call (E,C) compact if (E,q ) is compact. We call a

Cauchy space (E,c) separated if it satisfies T-, and is uniformizable, i.e. if

C*" is the set of Cauchy filters of a separated uniform limit structure on E .

A separated Cauchy space satisfies T ; the converse is not true in general.

If we define a term or concept for Cauchy spaces, we shall use it without

further ado for Cauchy structures, and vice versa.

Cauchy spaces

3*1. We define a re/?ularity for Cauchy spaces as a correspondence r which

assigns to every Cauchy space (E,c) a set r(E,C) of filters on E , with the

following two properties.

Reg1. D E C r(Bfc) C P E .

Reg . If f : (E,C) — ^ ( E ^ C 1 ) is a continuous map of Cauchy spaces, then

f maps r(BfC) into r(Ef,Cf) .

Thus a regularity is in fact a functor from Cauchy spaces to sets, a sub-

functor of the functor given by (C,E) V—> ]? E . In the following, we shall use

lower case greek letters to denote elements of r(E,C) , and capital greek letters

to denote filters on r(E,c) •

5*2. Examples and remarks. The most useful regularities are given by

p(E,C) - C , p~(E,C) « (f ,

d(E,c) = jDE , u(E,C) « U B .

p is the appropriate regularity for limit spaces; p seems to be more api)ro-



priate for Cauchy spaces, d is needed for the construction of T spaces, and u

and related regularities are useful for compactifications*

If r1 and rw are regularities, then

r(E,C) = r'(E,c)n r»(E,C)

defines a regularity r • If a set correspondence R satisfies

£ E C RE C F E , R Ef C {f F : JF £ R Ê j f

for all sets B and mappings f : E — > E f , then r(E,C) « R E defines a reg-

ularity r . In particular, r*(E,C) * r(E,T E) defines a regularity r* if r

is a regularity.

If r is a regularity, then r(E,c) C r(E,Cf) for Cauchy structures C ,

C1 on a set E such that C 4 c 1 . In particular, r(E,C) C r(E,]F E) .

3>3* Def"±n.±j:±on3» Let r be a regularity for Cauchy spaces and (E,C)

a Cauchy space• We define the r-closure f* (A,C) of a set A C E by

Fr(A,C) . « { x £ E : (3<p)(tf>£r(E,c) , A €=(f> , (pV

The r-closure p (f'tC) of a filter f on B is defined by

HJ,C) - (rr(A,C) : A6F}+ .

We say that (E,C) is r-regular if always

Fee =» rr(F,c)ec ,

and that (E,C) is r-bire^rular if always

Pec 4 -4 r r ( jp , c ) e c o

If r and rf are regularities, we say that rf is finer than r , and write



r1 ̂  r , if always P r (A,C) C PT{k,C) , for a Cauchy space (B,C) and a

set A C E . We call the regularities r and r1 equivalent if r'1^ r and

r < r ' , i.e. if always r ^U.C) « P^A.C) .

3.4. Remarks. The following properties of r-closure are easily verified.

rr(0,c) = l , Adrr(A,c) ,

rr(A,c) <c rr(B,c) .

It follows from these properties that T~ (JF~,c) i3 a filter on E , for

Cauchy space (E,C) and any filter »F on E , and that

for filters IF f Q on B .

The four regularities of 3.2 satisfy d ̂ Tp ̂ p ^ u ^ p f and closure with

respect to p is closure with respect to the limit structure q of (2.^),

\J

Proposition ;$,§• Let r be a regularity for Cauchy spaces,

(i) J[f (C.)..-^ is a family of r-Fbi-Jreiffular Cauchy structures on the

set B f then (]C. i^ r-fbi-]regular.

same

(ii) 1^ f : B — > Ef is a mapping and Cf ayn r-fbi-]refflilar Cauchy

structure on Ef , then f*(Cf) is. r-fbi-1 regular.

Proof, We need the following set inclusions. If C = (JC. , then

A C rr(A,c)c r
r(A,Ci) c r

r(rr(A,c),c.) ,

f o r A C E and a l l i £ l . I f C » f * ( C ) , then

f(A) c f(rr(A,c)) c pr(f(A),cv) c. rr(f(rr(A,c)),o .
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These inclusions are easily verified, and they carry over to filters on E

Using the first group of inclusions, we have

f r)<£C± for nil 1 6 1

ec± for an i6i

if all C. are r-regular and C * f|C. , and

r rr(*F,C.)<f Cr. for all i€

H P £ C for all i 6 I <£=>

if all C are r-biregular. This proves (i). One obtains (ii) in the same way,

using the second group of inclusions.

Proposition 5.6 • If r and r1 are regularities such that r! ̂  r , then

every p-Fbi-]regular Cauchy space (E,C) is also r'-Fbi-jregular.

Proofs A C r r (A,C) CZ rT{A9C) d ^(H* (A,C),C) for A C E . From

these set inclusions, the proof proceeds in the same way as that of 3,5«

The following results will be needed later.

Proposition j5.»7« Let (E,C) be an r-regular Cauchy space, and, let (p V x

and CpVjF be in C , for 0>er(E,C) , x 6 E , pC C . Then J ^ V x ^ C •
7 /

Proof. If A S O J V J , then A e O> , £ > V x £ C , hence x e/"r(A,C) .

Thus (f>v F ^ (f> v J V i ̂  fr( ̂  vJF ,C) , and <p v ̂ V xfiC by r-regularity

of C and Cau . As x ̂  J~V x ̂  cpvFv x , also jf*V x ̂  C .

Corollary 3.8. If (E,C) is an r-regular Cauchy T space, and if (pVx

and (DVy are in C for a>£r(E,C) and x, y in B , then x = y .



4. Some reflectiveclasses of Cauchy pgaces

4.1• A class xP of Cauchy spaces is called reflective if the corresponding

full subcategory o*f Cauchy spaces is reflective, i.e. for every Cauchy space

(EfC) there is a map h : (E,C) -—> (E^C ) with codomain (E.tC ) in !f ,

and with the universal property that for every map f : (E,C)—>(Ef,Cf) of

Cauchy spaces with (E!,Cf)£ ^ there is exactly one map f^ : (E-]>O ^

(Kf,Cf) such that f = f1 h .

We call a reflective class 3 strictly reflective if the universal map h :

(E,C) > (S ,n) can always be constructed so that E = E and h = 1 .
1 1 1 ^

Proposition 4^2. k class $ of Cauchy spaces is strictly reflective if and

only if 3 satisfies the following two conditions.

(i) Lf (C.).^ : T is a family of Cauchy structures on a set E ouch that

all spaces (E,C.) , i £ I , are in 'j , then the space (E,f | C.) • is in z •

(ii) ^ f : E -—>Kf is a mapping and C1 a Cauchy s.tinicture on E1 such

that (E f,C f)€lP f then (Eff*(C
f)) d £ .

Proof. If £ is strictly reflective, and if (E,C.) 6 o for all i(£l f

let 1 : (Ef(°]c.) -—>(E,C') be the universal map for <c? . It follows that

1- : (E,Cf) >(E,C.) is continuous, and thus f\c. < C 1 ^ C. , for all i ^ I
E x i i

But then Cf « f\c. , and (E,f ( C . ) ^ O # (ii) is verified in the same way.

Conversely, let O satisfy (i) and (ii). For a Cauchy space (E,C) , let

C be the intersection of all Cauchy structures C* on E such that C ^ C *
and (B,C*)€ £ . Then C 4 C 1 , and (E,C1)<£-^

> by (i) . If f : (E,C)

(Ef,Cf) is a map with (E\C')6 £ , then C^f*(C !) , and (Etf*(C
f)) €.
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by (ii). But then C 4*f"*(Cf) by the construction of C^ , nr.d f : (E,^)

—>(E f,C f) is continuous. This shown that 1^ : (EfC) —J> (E.C^) has the

desired universal property.

"^ r ^s a regularity for Cauchy spaces, then

r-regular and r-biregular Cauchy spaces form strictly reflective classes by T.5.

Uniformizable and initial Cauchy spaces form strictly reflective classes.

If tf is the intersection of a family of strictly reflective classes of

Cauchy spaces, thon 3 is a strictly reflective class.

Strictly reflective classes can be defined in any concrete category. 4.2 „.

dnd 4.4 clearly remain true, with virtually no changes, for,any category 6f the

type discussed1in jll, sec. 3J. 4.6 remains true for topological spaces,and limit

spaces, except that the use of d-regularity has to be replaced by another device.

A strictly reflective class 3 is replete, i.e. if u : (B,C)—>(Ef,Cf)

is an isomorphism and (E,C) 6, "3 , then (E'jC 1)^ ^ • This is a special case

of the following result.

Proposition 4.4* Let ® be a strictly reflective class. JTf f : E — > E f

is a sur.iective mapping# and if (n,f^(cf))€: 3 for a Cauchy structure Cf

on E1 , then ( E 1 ^ 1 ) ^ ^ .

Proof, f h « 1 for a mapping h : Ef — > E , and then h^Cf^C'1)) = C1 •

Thus (E\C')£:? by 4.2, (ii).

Lemma 4.3. A Cauchy space (E,c) i^ d-blregular (see 3.2) if and only if

C s q*(Cn) for some T. space (E^,Cn) and a surjection q : E — > S .•̂  ^ — ^ ^ — ' n 1

.d
Proof. P (A,C ) = A for any A C E if (E ,C ) is a T space, and



n.

thus any T space is d-biregular. By ("5.5), (ii)f (E,C) is d-biregular if

C * q*(C ) for a mapping q : E — > E and a T structure C on E' .

Conversely, xSy ^ = > x V y £ C defines an equivalence relation & on

E for any Cauchy space (EfC) • Let E » E/cT be the quotient set and q :

E — ^ R the quotient mapping. Then P (A,C) = q (q(A)) for A C B , and

q""1(n) s Jq^CB) : B £ < O ^
 + defines a filter q""1^) on E if J. is a filter

on E . Let C be the set of all filters Q on E such that q" (Q)fi C .

The formal properties of q show immediately that C satisfies axioms Cau

and Cau . Let now (E,c) be d-biregular. Then

for a filter JF on E f since q q is d-closure. Thus C also satisfies

Cau in this case, and C = q*(C ) . If u = q(x) and v = q(y) are points of

E such that u V v = q(x V y) is in C , then x V y £ C , so that x cTy

and q(x) = q(y) . Thus C id'a'T stricture.

Theorem 4«6. If a is a strictly reflective class of Cauchy spaces, then

the T. spaces and the separated spaces in 3 form reflective classes.

Proof. Let xP± be the class of d-biregular spaces in J 9 or the class

of uniformizable d-biregular spaces in 0 • In either case, o^ is strictly

reflective. The T spaces in -J£ are the T spaces in 3 or the separated

spaces in t; respectively. Let j denote this class.

For a Cauchy space (E,c) , let 1 : (E,C)«—> (E,C*) be the universal
B

map for (E,C) and u^ . By 4.5, C* = q*(C ) for a surjective mapping q :

E '—>E and a T structure C on E . By 4.4, (E ,C ) ̂  J.



Let now f : (BfC) —?>(E\C
f) be continuous, with (E.ffC

f) e ST. Then

(Ef,Cf)<S f± f «nd f : (E,C*)—^(E',0
1) is continuous. If q(x) * q(y) ,

for xf y in E , then x V y 6 C* , and thus f(x)vf(y)£C f . Since Cf

satisfies T , this implies f(x) » f(y) • If follows that f « f q for a unique

mapping f. : E — > E f . As q is surjoctive, C. « q.(C*) by fll, 3.14], and
1 1 1 *

thus f : (E ,C ) — > (E 1 ^ 1 ) - is continuous by fll, I.ll]. This shows that

q : (Efc) — ^ (E ,C ) is the desired universal mapping for 3/ •

5, Quasicomioletions

5.1. Let r be a regularity for Cauchy spaces, and let (H,C) be a fixed
sssss

(but arbitrary) Cauchy space. For A C E , let

r(BfC) : A

In particular, E * r(EfC) and 0 «s 0 . We note that

and

for x.€E and subsets A, B of E .

For filters jF on • F, and Cj? on E , we put

: A G?Y , 0r » {A
0~ r r >JL

This defines filters J- on E and (J) on E f and one sees easily that

(5.2)

It follows from (5.2) that T I—^ ̂  preserves meets, and dp V—> (p joins,

of filters.



For U C B r , l e t U = v-{© • Q>& U J • This i s a f i l t e r on E , and

A ^ U <£=^ k€:Q> for ill CP6rU ^ = ^ U Cl A • For a f i l t e r CD On E ,
r ^ T 7 ~

i t follows that (t) ^ U for a l l U £ ( J ) . On the other hand, if A g ( ^ t

then A 6 U for U * A* in Cf) . Thus <T) « A i U : U6( |^3« We have proved

(5..) 4) r = v/\ v f .
This connects (I) with the compression operator /< of Kowalsky.fg]. In par-

ticular, (pT « K 0 if r(EyC) » F E .

5*4* We define a natural injection j : E — ^ E by putting j(x) = x for

x £.E • Thus j(A) « A r O D E for A d E . From this and from basic filter

properties, it follows immediately that

A C B 4==> A r ^ l B r <f=̂ > j(A)C

for subsets A, B of E . V/e also note that

. (f)r - f

for filters F on B and Cp&E • This follows easily from the definitions of

and (J) , and from (5.2).

r r
r5» Definitions• We denote by C the finest Cauchy structure on E

which contains all filters j(?r) and J^ for ^fi C , and all filters Cp

for ^>fc r(E,C) • We call the Cauchy space (R ,C ) the r-quasicompletion of

the space (E,c) . We note that j : (ET,C)—^> (E ,C ) is continuous.

We denote by C the finest Cauchy structure on E which contains all fil-

ters pGC and <p€ r(E,C) .

imm



P£22^iii2I}^5^- 1£ <P & ° r 9 then (f) £ C •. Lf C.r C C~ , then

Proof. For the first part, consider the net C = {tp^lL^ ** <$) 6: C \ *

r 1 * 1
By 5.4, the filters which generate C are in C f and C satisfies Cau .
1 r 1 1
C clearly satisfies Cau . Thus C C C if C satisfies Cau . If 0 <

Cp <fl, with (pv , (/̂  , J7 r in Cr , then ( YAv Jl)r - M^. v/i2r is in

C by Cau_ for C . Thus C* satisfies Cau.,.
r 3 r • -3

For the second part, consider the set C = -f $r€ £ E : J g c } , The

filters which generate C are in C , and C satisfies Cau and Cau •.
r 1 1 1 2

C. C C by 5.4 and the f i r s t patft. Thus C * C if C sat isf ies Cau •
I T 1 r 1 3

If F ^ Q , F ^ ^ , for filters F , (̂  fX in Cj , then Qv>i£ C

since C1 C Cr . If (̂  v X. < 0< f d< € C , then ?
T * (g vJ-Lf 43<V ,

and hence (QvJ~L) & C . Thus C. satisfies Cau_ if C C c"" .
^ 1 ^ r

5.7. Definition. We say that (E,C) is r-complete if for every filter

CpS r(E,C) there is a point x £ E such that Cp V x £ C • In other words,

we require that every filter ^>£r(E,C) converges for the limit structure q •

Examples (see 3.2): p-completeness is completeness in the usual sense: every

Cauchy filter converges, p -completeness is equivalent to p-completeness.

u-completeness is compactness: every ultrafilter converges.

We note that r(E,C1) C c" if (E,C) is r-complete. If (E,C) is

r-complete and r-regular, then the condition C CZ C of 5.6 is satisfied
r

by 3.7 (see also (11], concluding remarks).

^ioremj>^8. Let f : (E,C) •—>(Ef,Cf) be continuous. If (Ef,Cf) is an
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and ivcgmplete T space, then there i s a unique contiguous mapping

fr : (Br
fC

r) —*(E\C f) such that f «.fr d .

firoof> For ^pfeE , we have A> ^ j t y K / . i £ <|> > so that j(<p) V £>€C

If fr exists and fr(<t$ * y , then fr(j(j£b) V*p) • f(oa) V y must be in Cf •

Since f(tf>) ̂ rCBSC1) and Cf is an r-coraplete T space, such a point y

exists, and there is only one such point y in B1 by 3.8. This shows that

there is at most one mapping f with the desired properties*

We must show that the mapping f just constructed has these properties.

If fr(x) « y , then f (x) \/ y 6C 1 by the construction of f # and hence

f(x) * y by Tx for C
1 • Thus tT j » f . ttt nov A C E . If (f£ Ar and

f r(^ * y , then f(A) 6 f(f) , f(f) 6 r(B'fC
f) f and f(y) v y 6 C . Thus

y 6 rr(f(A)fC
f) . Since j(A) C Ar , this shows that f(A) C fr(Ar) CZ

rT(f(A)9C) . For a filter f in C , it follows that

T(fT)so that fr(j(^)) and fT(fT) are in Cf . For ̂ >£Er , fr(fl>) * y , and

r(Ar)A & f> f we have y ^ f r ( A r ) and f(^) V y £ C f . Thus

y ^ fr(fr) ^ rr(f(^),C) ^ rT{f{f) Vy, CO ,

so that f (• )fiC' • With fll, 3.1$L we conclude that f is continuous.

Proposition 5.9. liet (B,C) be a Cauchy space such that for

there js t̂t most-one point y£B such that ^ V y £ C . Then a continuous

mapping g : (B ,C ) •—>(EtC) such that g j = 1 exists if and only if (E,c)

is r-re/rular and r-complete.
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Proof* The hypothesis implies that C is a T. structure. Thus* g exists,

by 5.8, if C is r-regular and r-complete.

Assume now that g exists. By the proof of 5.8 and the hypothesis of 5.9*

* r

tf)Vy£C ^ = ^ y = g(<b) for (PgE and yg-B . Thus C is* ^-complete,

and g(Ar) - Pr(A,C) for A C E . If JTfi C , then g(FT) « f^CFtC) is

in C , and thus C is r-regular,

6. Regular completions

We believe that a general construction of completions for Cauchy spaces

should furnish universal mappings h : (E,C)-—p (E ,C ) ' with ^ElfCl^ ̂  ^ f

for a reflective class Is of complete Cauchy spaces. The r~quasicompletion

j : (E,C) ^ (E ,C ) does not meet this requirement, despite Theorem 5.8,

since (Er,C ) is in general neither r-regular nor a T space. We .shall cor-

rect this deficiency for the regularity p of 3.2 given by p(E,C) = C .

We need a general lemma and a specific result.

Lemma 6.1* Let C and C be Cauchy structures on a set E 9 and let

C = (C r\ C )~CS C . Then C i3 a Cauchy structure on E . If C is

r-rbi-]rejĉ ilar for a re/rularity r , or uniformizable, or initial> then C

is r-fbi--]reffular> or uniformizablet or initial respectively. If C ̂ C and

^ i£ P-complete, then C ̂  Co and C J^ p-complete.

Proof. C^ obviously satisfies Cau. and Cauo; we verify Cau_ . If ̂ ^ Q-- f— ^ id 1 CJ

for filters in C , let Q^ O , J~i ̂ D~L, for filters C} ,
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in cVl C . Then CL v J i ^ Q1 s/J-iL \ with both filters in C and

also in C+ . Thus QvJ£& C , and C satisfies Cau,.

For T£Ff or r * ^ ^ ^ £ £f , and Tf& cV* Cj , we have

It follows that F £ C2 =3> r r C F , C 2 ) e C 2 if C is r-regular, and

rT(f9C2)6 C2 = ^ f e C2 if C± is r-bire^ular.

I t is easily seen that C ~ = (c A C1"")"^ C."" • Thus C is uniformizable

if C is uniformizable, and init ial if C is in i t ia l .

Finally, C £ C clearly implies C £ C . For ̂ ^ C ? , choose

and ^ 6 C such that F ^ ^ , Jl< <£ . If J ^ V x £ C , then

£ cV* C t and ^ ^ Fvi £QV* > so that ^ v x£ C2 • Thus C2 is

p-complete if C is p~complete and C ^ C .

Proposition 6,2* (E ,C ) is p-complete for every Gauchy space (B,C) .

Proof, Let (h ~ n> for (p £ p(BP,CP) = C P • Then d> is in C « C = E P

by 5.6, and (fi^0 V O> 4 O? by 5.2 and 5.4. Thus 0 v/p € CP .

6,5. In order to obtain a reasonably general and simple existence theorem

for p-regular p-completions with a universal mapping property, we consider a

class jT of Cauchy spaces which meets the following two requirements.

(i) j is strictly reflective, and all spaces in £ are p-regular,

(ii) If C and C are Cauchy structures on a set B such that C ̂ C

and (E,^) £ tf , and if C?2 « (C*n C^'n C± , then (EfC2) £ £ .

Condition (ii) is not as restrictive as it may seem. In fact, 6,1 shows

that all examples of 4.3 satisfy (ii), and if o is an intersection of strictly
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reflective classes which satisfy (ii), then a satisfies (ii)*

Theorem 6.4* If a clas3 ^f of Cauchy spaces satisfies the two requirements

stated above, then the p-complete T1 spaces in 3 form a reflective clas3 of

Cauchy spaces.

Proof. Let ^ be the class of d-biregular spaces in -0 (see 4*5). This

P 0 t \

does not affect the T- spaces in *i , and dj satisfies requirements \i) and

(ii) by 6.-1 and the remarks made above.

Now the following diagram illustrates our construction.

(E,C) - L^ (B
p,cP) L _ > (B

p
f c*)

Let j : (EfC) «--^(B P,C P) be the quasicompletion of sec. 5, and let C* be the

finest Cauchy structure on E such that C ^ C* and (EP,C*) £ tfy . By 4.4

and 4.5, C* « q*(C ) for a surjection q : B — > E and a T Cauchy structure

C. on . B , and q : (E ,C ) — ^ ( B ,C ) is universal for the class of T

spaces in *& , by the proof of 4.6. We wish to show that q j : (E,C) *—> (E ,C )

is universal for the class of p-complete T spaces in 3 •

If C ss ((CP) ^ C * ) ~ O C * , then CP ̂  C ^ C* , and (EPfC?)^L ^ by

requirement (ii), used for -Ĵ  . Thus Q » C* by the construction of C* ,

and C* is p-complete by 6.2 and 6.1. If Q £ C , then q (Q) £ C* , and

if q~ (<3)v<p€C* , with <p £ E P , then q(q""1(Q) \/ j>) = O v y is in C

for y = q(<p) . Thus C is p-complete, and (E ,C ) is in the ri^ht class
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of spaces.

Now let f : (E,C) —>(E',C f) be continuous, with (E^C1) a p-complete

T. space in 0 . Then f = fP j for a unique map f : (E ,CP) — > (Ef,Cf)

by 5.8, and f » f. q for a unique map f : (E ,C ) —5* (Ef,C) by the uni-

versal nature of q • Thus q j is indeed the desired universal mapping.

7» Regular^compactifications

7«1« A Cauchy structure C is compact if and only"if:it is u-complete

(aee.5»7)« Thus compactifications are special completions. In order to be able

to obtain regular T compactifications which are not separated, we consider other

regularities besides u • We shall require, however, that

r(E,C) C U E

for every Cauchy space (B,C) .

From now on, let r be such a regularity and (E,C) a Cauchy space.

We say that (E,C) is r-precompact if (E ,C ) is compact.

/ \r r r / \T
Lemma 7*2. V A L J B ; = A \J B for subsets A, B JOJ[ E , and ( f v O )

a j 1 VO^ for filters jF, O on E .

Proof. An ultrafilter XL on E is characterized as such by the fact that

A U B 6 U iff A €.11 or B £ tl . As r(E,C) consists of ultrafilters, the

first part of 7.2 follows. The second part follows immediately from the first part.

LemmaJT^?* If S2. is an ultrafilter on E , then Sli is an ultrafi] ter

on E •



Proofs

in 5 1 <£=

that SI r

Lemma

Using 7 . 2 , we see

r r
>̂ A cTL °r B

is an ultrafilter.

7.4. e = 4;F<£

that

€Sl

FE :

20

T* T* T*

<r===?> U u B ) » A U B i s

A £ J2p or B^J7 r • This shows

Proof. Let C - -|3F€-Z-E : J= r £ : C1*}. By the proof of 5.6, i t i s suf-

ficient to show that C sat is f ies Cau . If ^ , Q , 7 i arc in C , and

Qthen ( fvQ )T= f r v 0 r by 7.2, and

Thus C does satisfy Cau .

Theorem 7*5. A Cauchy space (E,C) j ^ r-precompact if and only if for

every ultrafilter tl on B there ia a filter <p£r(Efc) such that Zist &£C

Proof, • If /2. is an ultrafilter on B , then J\ is an ultrafilter on

E by 7.3. If J 2 r V O > € C r , with ^ B , then (usine; 7.2)

With 7.4, it follows from this that &>

Conversely, if JjL ̂ s an ultrafilter on E , let J2_£Zl for an ultra-

filter 52 on Er . Then SI < U , and hence J2 p = tt . If SZ V<p £ C* ,

with <2)£ E r , then (Slv<h) = ZlvQ> is in C by 5.6.
T f r / r

jL§# Every Cauchy space (E,C) j ^ u-precompact>

Proposition 7.7. If (E,C) is compact, then (E,c) i^ r-precompact and

r-complete^ Conversely, if (E,c) i^ r-precompact and r-ccmpletet and if

C O C , then (E,C) is compact.r

Proof, The first part is obvious. If C is r-precompact and r-cornplete,
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let 2X be an ultrafilter on E . Then ^ V ^ P ^ C for some dP,£r(E,C) > and

for some x £ B . It follown that (XV x ^ C . If C C C #

this implies that 1L\/x is in C C\ C « C , and thus C is compact.

Theorem 7«8. Let J be a strictly reflective class of r-regular Cauchy

spaces. The compact T spaces in j form a reflective class for the category

of r-precompact Cauchy spaces.

Proof. Let (E,c) be r-precompact, let j : (E,C) -—£> (E ,C ) be the

r-quasicompletion, and let q : (E ,C ) — ^ (E ,C ) be the universal mapping for

(E ,C ) and the class of all T spaces in j • Since (E ,C ) is compact and

q surjective (by the proof of 4.6), (E ,C ) is compact. Now if f : (E,C)

—^(E',C) for a compact T space (Ef,C') in $% then f i.̂ '-j fora

unique map fT : (Er,Cr)—^(E',Cf) by 5.8, since (Ef,Cf) is incomplete

by 7.7, Also fr = f q for a unioue map f : (E ,C ) —>(Ef,Cf) by the

universal nature of q . Thus q j is the desired universal mapping.

A uniform limit space E has been called precompact in |5]

if every ultrafilter of E is a Cauchy filter. Carried over to uniformizable

Cauchy spaces, this condition becomes ]J E C C •

If we introduce a regularity v by putting v(E,C) = tJ E {} C for every

Cauchy space (E,C) , then v is equivalent to the regularity p of 3.2,

C C C for every Cauchy space, and C = C if C is uniformizable. One

sees easily that the following three statements are logically equivalent fora

uniformizable Cauchy space (EfC) . (i) U E C ! c " , (ii) C *s <T %

(iii) C is v-precorapact.
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8. The Stone~Cech compactification for limit spaces

We regard a compactification of a limit space (E,q) as a universal mapping

for (E,q) and a class of compact limit spaces, and not .as an embedding of (E,q)

into a compact limit space. From this viewpoint, the following result justifies

the title of this section.

Theorem 8.1. The class of refcular compact Tp limit spaces is reflective in

the category of limit spaces.

Before proving this result in 8.6, as an application of 7.8, we must adapt

a construction of fll, sec. 4] to our present needs.

8^2. If (E,q) is a limit space, we denote by S q the finest initial

Cauchy structure oh E which contains the set IJr v x : F q x j of filters

on E f and we put S(E,q) = (E,Sq) . If f : (E,q) — > (E\qf) is a map of

limit spaces, we put S f = f : (E,Sq) — > (SSSq1) . If F q x and y ~ f(x) ,

then fiF) q1 y , and fC^Fv x) * f(j=") V y . Thus S f is continuous ry

fll,3.l6Jf and we have defined a functor S from limit spaces to initial Cauchy

spaces• We shall need the following properties of this functor.

Proposition 8.3* q ̂ Qg for a limit structure q f .and S n ^ C for an

initial Cauchy structure C . Moreover. S q « \ J-V x i F n xl .

Proof. The first two statements follow immediately from the definitions.

For the third statement, it is sufficient to prove that Ck a <i!rVx : 7 cu xl

defines a Cauchy structure. Axioms Cau and Cau for Cf are obvious. Suppose

now Jr < Q ̂ Q1 d £ ^ytJr < Q ^Q1^* and £ ^yt^Ji^y f with Q fsj x and Ji'v y in C.



Then jF ^ Q V > £ ^ O ' V ^ x v y , and tf \ / J 4 ' v x V y ^ C by Cau? for C

Thus J^\/Q g C1 , and C1 does satisfy Cau •

Proposition 8.4. If q is a T limit structure, then S q is a separated

Cauchy structure, and q = q« . If C is a compact initial Cauchy structure,
^Sq

then C = S q .

Proof. For the first part, we note that axiom T implies axioms S and S_
2 o 1

of fll, sec. 5]. Thus S q « (T q)~ in the notation of fll], by fll, 6.1l],

and then qQ « U (T q)~ = U T q = q by fll, 6.7 and 4.3], if q satis-
oq 1 JL 1 1

fies T • It follows that S q is separated.

For the second part, l e t 3~ G C . Then U ^ ^ for an u l t r a f i l t e r tt 6 C ,

and I J V X ^ C for some point x since C is compact. But then jPV x £ C

by Cau , and thus i F £ S a . With 8.7, this shows that S OL = C .

Proposition 8.5* If C is a u-re^ular i n i t i a l Cauchy structure, then a

i s a regular limit structure. If q i s a re^rular T limit structure, then S q

is a u-refgilar Cauchy structure.

Proof. From the definitions, P (A,C) is the closure of a set A for q .
aC

Thus n is regular if C is u-regular. If q is a T limit structure, then

q as q̂^ by 8.4, and thus closure for q is u-closure for S q . If F C S q ,
3̂q

then jF ̂ Q V x for a filter O V x such that Q q x , and P (^ S q)

U ( O Vx, S q) . But P U(G V x, S q) q x if q is regular, and it fol-

lows that r (jT, S q)6S q • Thus S q is u-regular if q is regular.

8.6. We are ready now for the proof of 8.1. Our.proof is illustrated by the

following two diagrams, with limit spaces at left, initial Cauchy spaces at right.
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(E,C)

f

Let 3 be the class of separated u-regular compact initial Cauchy spaces, and

$T the class of regular compact T limit spaces. Let (B,q) be a limit space,

let C as S q , let h : (E,C) —:>(E ,C ) be the universal mapping for (E,c)

and *£ f and let q_ « a . h exists by 7.6 and 7.8, (E ,q ) £ 5~ by 8.4
1 oi 1 1

and 8.5, and h : (E,q) — ^ (E ,q ) is continuous since q ̂ q ^ . If f : (E,q)

-—2>(Ef
fq

f) is continuous, with (E'.q 1)^ &~\ let C = S q1 • Then

( E ^ C 1 ) ^ ^t and f : (E,c)—> (ESC1) is continuous. Thus f = f h for

a unique map f : (E ,C ) —^(E'jC 1) . Since also qf = q f and C = S q ,
1 1 1 U J. X

by 8.4, a mapping f : E — ^ Ef is (q ,q/ )-continuous iff f is (C ,C f)-

continuous. Thus f = f h for a unique map f : (E ,q )—^>(Ef,qf) , and

h : (E,q ) - — ^ (E ,q ) is the desired universal manping for (E,q) and C/ \
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