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CAUCHY SPACES II. REGULAR COMPLFTIONS AND COMPACTIFICATIONS

James F. Ramaley and Oswald Wyler

1. Introduction

Uniform limit spaces were introduced by Cook and Fischer r5] as a generali-
zation of the uniform spaces of Weil and Bourbaki f3]. Wyler [12] and Biester-
feldt fl] obtained completions of uniform limit spaces, but not a satisfactory
completion and compactification theory. The present paper attempts to present
such a theory, in a wider setting.

Kowalsky r9] seems to have been the first to discuss completions using only
Cauchy filters, and not a uniform structure furnishing them. The junior author
of the prgéent paper took up this lead in his thesis [10]; He gave an axiomatic
characterization of Cauchy spaces, i.e. spaces with Cauchy filters having reéason-—
able properties, he studied the relations between these spaces and uniform limit
spéces on one hand, and limit spaces (as defined in [9j and r7J) on the other hand,
and he obtained some regular completions and compactifications of Cauchy spaces,
with the appropriate universal mapping properties. The first part of this work
has been published in [11], the second part is presented here, with some general-
izations and simplifications due to the senior author.

We have become convinced that regularity is an essential part of a comple-

tion or compactification with sufficiently strong proverties. Repgularity for
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limit spaces was defined by Fleischer f8] and Cook and Fischer [6] by a partial
converse of the iterated limit theorem., Biesterfeldt f2] has shown that this is
equivalent to the obvious generalization of the topological axiom T3 to linmit
spaces. Thus regularity for limit spaces is fairly well understood.

For Cauchy spaces, there are several possible generalizations of T These

3
generalizations are not equivalent, and it seems that there is no single regular-
ity concept for Cauchy spaces which is appropriate for all occasions. This has
led us to present an axiomatic theory of regularity for Cauchy spaces. Using
this theory, we obtain a unified theory of various regular completions and com~
pactifications of Cauchy spaces.

There is at present no satisfactory regularity concept, and hence no satis-
factory completion theory, for uniform limit spaces.

One advantage of Cauchy spnaces over uniform limit spaces, already pointed
out by Kowalsky f9], is the possibility to distinguish between‘?1 spaces and com-
pletions, and T2 spaces and completions., Correspondingly, we obtain distinct T1
and T2 completions and compactifications with appropriate universal mavping pro-
perties., Modifying a compactification of limit spaces obtained by Cochran [4],
we also obtain a Stone—Eech compactification for 1limit spaces.

We use the notations and terminology of {11], but otherwise there is not
much overlap between this paper and [11]. We wish to point out the following
departures from frequently used terminology. S, <€ S, is used consistently for

1 2

structures such as filters, topologies, limit structures, to mean that S1 is

finer than S_ , regardless of whether this means 52 (- Sl or S1 C s

2 2

This simplifies the formalism a great deal, as pointed out e.g. in [9].» We have




replaced the term "convergence svace" of [5] and others by the original term
®1imit space" of [9] and [7], in order to preserve the term "convergence space"
for the more general spaces studied in f8] and elsewhere. To be consistent,

we replaced the term "uniform convergence structure" of [5] by "uniform limit
structure".

Several unsolved problems and open questions remain. One has already been
stated; some of the others follow. We do not know just how our completions and
compactifications are related to the corresponding constructs for topological
spaces, and when the universal mappings defining our completions and compacti-
fications are in fact embeddings. Except for some results in [4] concerning
abelian groups, no completion theory for groups or other algébraic systems with

compatible limit structures has been obtained.

2, Preliminaries

We denote by F E the set of all filters ona set E, by UE the set
of all ultrafilters on E, and by D E the set of all fixed ultrafilters X,
x€ E . As in [9] and [11], .‘Fég will mean that F is finer than 62 )
i.e. g c F , and filters ?vg and 3"/\? consist respectively of all
sets AV B and all sets ANB, with Aé'g:—, Beg, . If B is a filter
basis, then B denotes the filter generated by JS .

For a set C of filters on E , we denote by C+ and C  the sets of all
filters on E respectively coarser or finer than some filter in C . We call C

a Cauchy structure on E if C satisfies the following three conditions,




Cau,. DECCCFE.

1
+ -
Cau2. C nC = C .
Cau3. If 3'-9 , H are in C and .9-49, F<H, thengv}iéc.

We call (E,C) a .Cauchy spuce if C 1is a Cauchy structure on E .

Examples have been given in [11]. We recall that DE ard F E are Cauchy
structures on E , and that A+ is a Cauchy structure for any set A of filters
on E such that DEC A, but that C is in general not a Cauchy structure

sven if C is one. A Cauchy structure C is called uniformizable fll, Thm. 6.6]

if C is a Cauchy structure, and initial if C =C.
The following two statements follow easily from the axioms.
2.1. If (Ci)iéI is a family of Cauchy structures on the same set E ,

then ﬂ Ci is a Cauchy structure on E .

M

N

. If £ :E~—>E' is a mapping of sets and C' a Cauchy structure

!l

on E', then
r*(c') = {Fers:rFec]

defines a Cauchy structure f*(C') on E .
Thus the general theory of [11, sec. 3] is applicable to Cauchy spaces, and
we shall use this theory in the present paper.

If (E,C) is a Cauchy space, let
(2.3) 4@ = {(Fx): Fviecl.

This is a 1limit structure on E by fll, Prop. 6.1], and qc satisfies Axiom S of
v o
[11, sec. 5]. We shall attribute topological properties of qC to C . Thus we

shall say that (E,C) is a T, space (i=1, 2), and C a T

i

1 structure, if 9




satisfies ’1‘1 , and we call (E,C) compact if (E,qc) is compact. We call a
Cauchy space (E,C) separated if it satisfies Tl and is uniformizable, i.e. if
C~ is the set of Cauchy filters of a separated uniform limit structure on E .

A separated Cauchy space satisfies T, 3 the converse is not true in general.

2
If we define a term or concept for Cauchy spaces, we shall use it without

further ado for Cauchy structures, and vice versa.

3. Regular and biregular Cauchy spaces

Zéi' We define a regularity for Cauchy spaces as a correspondence r which
assigns to every Cauchy space (E,C) a set“r(E,C) of filters on E , with the
following two properties.

Reg)- DE C r(8,C)C EE .

Reg2. If f (E,C) ~—)-(E',C’) is a continuous map of Cauchy spaces, then
f maps r(E,C) into r(E',C‘) .

Thus a regularity is in fact a functor frqm Cauchy spaces to sets, a sub-
functor of the functor given by (C,E)*—* FE ., In the following, we shall use
lower case greek letters to denote elements of r(E,C) , and capital greek letters

to denote filters on r(E,C) o

3.2, Examples and remarks. The most useful regularities are given by

p(8c) = ¢, p(EC) = C
i(B,c) = DE , u(®,C) = UE .

ﬁ- is the appropriate regularity for limit spaces; p seems to be moré apnro-




priate for Cauchy spaces. d 1is needed for the construction of T1 snaces, and u
and related regularities aré useful for compactifications.

If r' and r" are regularities, then
r(E,Cc) = r'(8,c)N r(g,C)
defines a regularity r . If a set correspondence R satisfies
DECRECFE , RE C{tF:FerE],

for all sets E and mappings f : E—>E', then r(E,C) =RE defines a reg-
ularity r . 1In particular, r*(E,C) = r(E,I‘; E) defines a regularity r* if r
is a regularity.

If r is a regularity, then r(E,c) C r(E,C') for Cauchy structures C ,

C' onaset E such that C £C' . In particular, r(E,C)C r(E,FE) .

3.3. Definitions. Let r be a regularity for Cauchy spaces and (E,C)

a Cauchy space. We define the r-closure rr(A,C) of asect ACE by
T(a,c) = {xee: (3?)(?61‘(1‘.’,0) , Aeo, cpviéc)} .
The r-.closure r‘r('}',c) of a filter F on E is defined by
MMF.c) = {ri@ac) :2e¥F}* .
We say that (B,C) is r-regular if always
Fec = T (Foec ,
and that (E,C) is r-biregular if always
Fec & T(F,0)ec .

If r and r' are regularities, we say that r' is finer than r , and write




! r
r'£r, if always rr (a,c)c I (a,C) , for a Cauchy space (E,C) and a
set A C E . We call the regularities r and r' equivalent if r''<r and

~t r
r&r', i.e. if always [ (A,C) = [~ (4,C) .

3.4. Remarks. The following properties of r-closure are easily verified.

rr(ﬁyc) = ﬁ ’ ACFr(A,C) ’
AC B => mf(,c)c rie,e) .

It follows from these properties that rr(}_,C) is a filter on E ,’ for a

Cauchy space (E,C) and any filter F on E, and that
FLri(Fe , F€Q = MNF,0)<rig,e ,

for filters }_, g on E .
The four regularities of 3.2 satisfy 4 <p ép-é u ép- , and closure with

respect to p- is closure with respect to the limit structure of (2.3).

9%

"Proposition 3.5. Let r be a regularity for Cauchy spaces.

(1) 1t (Ci)iCI is a family of r—[ﬁ—lregular Cauchy structures on the

same set E , then ﬂci is r-f_‘gi_—]regglar.

(ii) If f:E—>E' is a mapping and C' an r-f_tli_-]regular Cauchy

structure on E', then f*(C') is r-[bi-]regular.
Proof. We need the following set inclusions. If C = nCi , then
AC a0 C Mae) © ririae),e,)
for ACFE andall i€I1 . If C=f*(C'), then

£(a) € £("7(a,0)) C ri(ea),c') c riErta,e),en) .




These inclusions are easily verified, and they carry over to filters on E .

Using the first group of inélusions, we have
Fec = r‘r(sr,ci)gci for all i€ I
—> rfF.,0)ec, forall i€1 => M (F,0&C
if éll Ci are Tr-regular and C = nCi y and
r(¥.,c)ec <> Fr(}-',ci) €cC, forall i€I
&> Fec, for ali il &> FEC

if all Ci are r-biregular. This proves (i). One obtains (ii) in the same way,

using the second group of inclusions.

Proposition 3.6. If r and r' are regularities such that rlr , then

eve r-[bi-]regular Cauchy space (E,C) is also r'-[bi-]regular.

r' r r, —r'
Proof. AC [ (A,Cc)C r (ac)c (I (ac),C) for AC E . From
these set inclusions, the proof proceeds in the same way as that of 3.5,

The following results will be needed later.

Proposition 3.7. Let (E,C) be an r-regular Cauchy space, and.let ¢V X

and qn/f be in C, for 9>er(E,c) , XEE, FEC. T™en Fviec.

Proof. If A & 7>v}', then Ae?, fviéc , hence x e/"r(A,C) .
L] r L]
Thus CPV.FéCPV.FVx g/"(P\/,F,C) , and q;vFv Xx&C by r-regularity

of C andCauZ. s x & Fvx £ c}>v}"'vfc, also Fvxé&C.,

Corollary 3.8. If (E,C) is an r—reguiar Cauchy ’I‘l space, and if <Pvi

and (P\/}'r are in C for q)er(E,C) and x, y in E, then x=y .




4. Some reflective classes of Cauchy spaces

4.1. A class ':P of Cauchy spaces is called reflective if the corresponding

full subcategory of Cauchy spaces is reflective, i.e. for evefy Cauchy space
(E,C) there is a map h : (E,C) —> (El,Cl) with codomain (?31,01) in ¥,
and with the universnal property that for every map f ¢ (5,c) —> (E',C') of
Cauchy spaces with (nr,c') € £ there is exactly one map f‘l’ : (El'cl) _—
(R',') such that f=f h.

We call a reflective class :P strictly reflective if the universal map h :

(8,C) ———>(E1,cl) can always be constructed so that E1 =E and h=1,.

Pronosition 4.2. A class ;P of Cauchy spaces is strictly reflective if and

only if :P-satisfies the following two conditions.

(i) If (Ci)'iél is a family of Cauchy structures on a set FE guch that

all spaces (E’Ci) ,i€1, arein ¥ , then the space (E,ﬂ Ci). is in P .

(ii) If f:E—>L' is a mapping snd C' & Csuchy stiucture on E' such

that (8',c')€ &, then (8,e%(c"))e P .

Proof. If £ is strictly reflective, and if (E,c,) € £ forall i€1,
let 1E : (E,ﬂCi) ——S(E,C') be the universal map for J. "It follows that
1 (E,C')——->(E:,Ci) is continu§us, and thus ﬂcié cr<e,, forall iE1 .,
But then €' =[\C, , and (E,ﬂéi)e § . (ii) is verified in the same way.

Conversely, let :? satisfy (i) and (ii). For a C'auchy snace (E,C) , 1let
C1 be the intersection of all Cauchy structures C* on E such that CL C*
and (E,C*) € £ . Then C écl , and (E,cl)ef by (i) . I1f f : (E,C) —>

(B',C') 1is a map with (E',C') € £ , then c £f*(c'), and (g,fxc')) €
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by (ii). But then cléf*(c') by the construction of C ard f 3 (E,Cl)

1 1
—> (E',C') is continuous. This shows that 1 ¢ (B,) —> (E,Cl) has the

desired universal pronerty.

4.3. Examples and remarks. If r is a regularity for Cauchy spaces, then

r-regular and r-biregular Cauchy spaces form strictly reflective classes by 3.5.
Uniformizable and initigal Cauchy spaées form strictly reflective classes..
If (f is the intersection of a family of strictly reflective classes of
Cauchy snaces, then :? is a strictly reflective class.
| Strictly reflective classes can be defined in any concrete category. 4.2 ..
and 4.4 clearly remain true, with virtually no changes, for any:category &6f the
type discussed'in {11, sec. 3].- 4.6 remains true for topological spaces.andilimit
spaces, except that the use of d-regularity has to be replaced by another device.
A strictly reflective class § is replete, i.e. if u : (E,c) —> (E',C')
is an isomorphism and (E,C) € :? , then (E',C') & ¥ . This is a special case

of the following result.

Proposition 4.4. Let -:? be a strictly reflective class. If f : E—>E'

i3 a surjective manpinez, and if (B,f*(C')) € :P for a Cauchy structure C°'

on E', then (E,c)ef .

Proof. f h =1y, fora mapping h :E'—> E, and then nx(r+(c')) =c' ,

Thus (E',c)€ S by 4.2, (ii).

Lemma 4.5. A Cauchy snace (E,C) is d-biregular (see 3.2) if and only if

) and a surjection q : E—> El .

= * £ Sne > N
C=q (Cl) for some T, Space (E}l,(‘l

d
Proof. [ (A,Cl) =A forany A C El if (El,Cl) is a Tl space, and
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thus any '1‘1 space is d-biregular. By (3.5), (ii), (EI,C) is d-=biregular if

= i : >tus B .
C = q*(Cl) for a mapping q ¢ B —-)El and a T1 structure C1 on 1

Conversely, x 5 y &> X V 51 & C defines an equivalence relation J on

E for any Cauchy space (E,C) « Let El = E/J be the quotient set and q @

d -1
E -—>El the quotient mapping. Then 7 (a,0) = q (q(A)) for ACE, and

q‘l(a) - {q-l(B) : Be%];- defines a filter q’l((a) on B if @ is a filter

on E, . let C e the set of all filters 9 on E _sugh that q'l(g)e c.

-1 ‘s .
The formal properties of gq show immediately that Cl satisfies axioms Cau2

and Cau3. Let now (E,C) be d-biregular. Then

AF)ec, &> M(Folec «=> Fec

for a filter J7 on E, since q-l q 1is d-closure. Thus C1 also satisfies
Caul in this case, and C = q*(Cl) . If u= q(x) and v = q(y) are points of
E, such that uvv=gq(xvy) isin Cy s then * vy £C, so that xdy
and q(x) = q(y) « Thus Cl i:f;'a"l‘1 stn’zcture.»

Theorem 4.6. If & is & strictly reflective class of Cauchy spaces, then

the Tl spaces and the separated spaces in :f form reflective classes.

Proof. Let ':Pi be the class of d-biregular spaces in ZP, or the class
of uniformizable d-biregular spaces in ﬂ’ « In either case, 301 is strictly
reflective., The Tl spaces in ’.ﬁ are the 'I‘1 spaces in :P or the separated
spaces in :f respectively. Let 9— denote this class,

For a Cauchy space (E,C) , 1let 1 (E,c) —> (B,C*) be the universal

map for (E,C) and j;_ . By 4.5, C* = q*(Cl) for a surjective mapping q ¢

E -—->E1 and a Tl structure C1 on El . By 4.4, (El'cl) & .
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Let now f : (E,C) —» (8',C') be continuous, with (B',¢') & 9. Then
(B',c") & ﬁ , and f : (B,c*) —>(E',C') is continvous, If q(x) = aly) ,
for x, y in E, them xVyEC*, and thus f(x)v f(y)& C' . Since ¢

satisfies Tl' this implies f(x) = f(y) . It follows that f = fl q for a unique

mapping f :El———->E' « As q 1is surjective, C =q*(C*) by rll, 3.14], and

1 1

thus £ : (El,Cl) —> (E',C') is continuous by [11, 3.17]. This shows that

q ¢ (8,c) —-—9(El,Cl) is the desired universal mapping for 7.

5. Quasicomnletions

5.1 Let r bLe a regularity for Cauchy spaces, and let ('F},C) be a fixed
(but arbitrary) Cauchy space. For A E, let

r

- .{(Pér(E,C) :Ae?} .

In »narticular, Er = r(E,C) and 951‘ = 0 . Ve noté that

r

xen’ &> xear ada (nB) = A'AB

for x €E and cubsets A, B of E .

For filters ¥ on F and d)on Er , we put
Fr- W aaery . @ - han e dl.
This defines filters }-r on Er and ¢r on E , and one sees casily that
(5.2) PLF" & P, < F .

It follows from (5.2) that F +—> ,Fr preserves meets, and Cb F%’(Dr joins,

of filters.
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For UC B, let v = \/{p : pE uY. This is a filter on B, and
AEU &> AEP for 11l QEU &> UC A", For a filter P on £,

it follows that @ €U forall UE(P. on the other hand, it a €,

then A -E' Ur for U= Ar in CD . Thus q)r = /\{Ur : UG (p}. We have oroved
5. = v @ -
(5.3) Cpr ’ {3-\4) ?\E/I'I q;

This connects Cpr with the compression operator )< of Kowalsky.[9]. In par-

ticular, (pr =K Q§ if r(E,C) =FE .

5.4. We define a natural injection j : E—-)Er by putting j(x) = x for

x€E . Tus 3j(A) =A"DE for A(C E. From this and from basic filter

prqperties, it follows immediately that
ACB &> A B &> jc i)
for subsets A, B of E . We also note that
FH, = GEFEN, =F . @, =9,
P<F &= ¢ <F
for filters F on E ' and 99& oal .‘ This follows easily from the definitions of

F' and @r , and from (5.2).

5.5. Definitions. We denote by c’ the finest Cauchy structure on o

r
which contains all filters j(F) and F for FEC, and all filters Snr

for Pé r(E,C) . We call the Cauchy space (Er,Cr) the r-quasicompletion of
the space (E,C) . We note that j : (E,C)—> (E',C7) is continuous.
We denote by Cr the finest Cauchy structure on E which contains all fil-

ters F&C and 7)6 r(E,C) .

)\,5}8.
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r -
Prongsition 5.6. If (péC , then d)reCr . If CI'C C , then

T . r r
c = {Fern:5'ec}.

1
Proof. For the first part, consider the set (¢ = {¢)€ F Er : Cbr e Cr} .
1 o1
By 5.4, the filters which gencrate Cr are in C , and C satisfies Caul.

1 1
Cl " clearly satisfies Cn,u?. Thus Cr cC c if ¢ satisfies ca‘u‘j . If (Dg YJ ,

¢ éﬂ, with ¢r , (.Pr , Qr in Cr » then (W,vﬂ)r = Wr V‘Qr‘ is in

for Cr . Thus C1 satisfies Cau,.

3 3
. r r
For the second part, consider the set C] = {}'GI_‘E :Fec }. The

b
Cr y Cau

filters which generate Cr are in C1 , and C1 satisfies Caul and Cau2..

Cl C Cr by 9.4 and the first paft. Thus Cl = Cr if Cl' satisfies Cau3.

If }'sg , FH, for filters F ,g ,H in C1 , then gVHécr
since clccr . If 9\/}{(3(. JKEC, then fr_{(gy}L)réj{r,

and hence (gv}L)ré Cr . Thus C. satisfies Cau_), if Cr cCC .

1

5.7. Definition. We say that (E,C) is r-complete if for every filter

?’6 r(E,C) there is a point x € B such that PV X éC . In other words,
we require that every filter 996 r(E,C) converges for the limit structure qc .
E#amples (see 3.2): p-completeness is completeness in the usual sense: every
Cauchy filter converges; p—-completeness is equivalent to p-completeness,
u-completeness is compactness: every ultrafilter converges.
We note that r(E,C) € ¢ if (B,C) is r-complete. If (E,C) is

r-complete and r-regular, then the condition Cr C C  of 5.6 is satisfied’

by 3.7 (see also [11], concluding remarks).
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r-remular and r-complete 'I‘l space, _'qgep'there is a unique continuous mapping

ff ¢ (85,¢7) —3 (E',C') such that £ =f .

Proof. For ?E_Er , we have ésd(?)v.c'psyr , so that j(@v ¢€Cr .
If fr exists and fr(cﬁ =y, then fr(j@)\lcf) = f((P) Vfr must be in C' .

Since f(r) €r(E',C') and C' is an r-complete T, Space, such a point y

1
exists, and there is only one such point y in E' by 3.8. This shows that
there is at most one mapping fr with the desired properties.

| We must show that the mapping fr just constructed has these properties.
If £(x) =y, then f(x)v y €C' by the construction of £° , and hence
f(x) =y byTl for C!' . Thus frj-f . I#t now ACE . If ?EAI‘ and
fr(go) =y, then r(a)€£lp), flp) €x(E',C'), and flp)vjEC' . The
yeT(g(a),c') . Since j(A)C AT, this shows that £(A) C £ (A7)

M (£(A),C') . For a filter F in €, it follows that
f(F) = £(3(F)) &« £(F) & rIEF).c) ,

so that fr(j(F)) and fr(Fr) are in C' . For 7)6Er , fr(f) =y, and

AEP, wehave y Ef (A7) and @) v y EC' . Thus
joe @) & Mitghe) £ Mite vy, ¢
~so that fr(rr) €c' . with [11, 3.16], we conclude that f° is continuous.

Proposition 5.9. Let (E,C) be a Cauchy space such that for ?er(E,C)

'there is at most -one point y€EE such that ?\/5’(6 C . Then a continuous

. r .
mapping g : (E ) —>(E,C) such that g j = 1; exists if and only if (8,c)

is r-regular and r-complete.
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Proof. The hypothesis implies that C is a T, structure. Thus” g exists,

by 5.8, if C is r-regular and r-complete.

Assume now that g exists. By the proof of 5.8 and the hypothesis of 5.9,
. [} ’
pv&éc E&ED y=g(?) for ?éﬁr and y&E . Thus C i r-complete,
r r
and g(a%) = °(A,C) for ACE. If FEC, then g(F") =["(F,c) is

in ¢, and thus C 'i8s r-regular,

6. Regular completions

We believe that a general construction of completions for Cauchy spaces
should furnish universal mappings h : (E,C)—> (El,Cl) , with (El’cl) e g,
for a reflective class E? of complete Cauchy spaces. The r-quasicompletior
J: (E,C)-—-£>(Er,cr) does not meet this requirement, despite Theorem 5.8,
since (Er,Cr) is in general neither r-regular nor a T1 space., We.shall cor-
rect this deficiency for the regularity p of 3.2 given by p(E,C) =C .,

We need a’general lemma and a specific result.

be Cauchy structures on a set E , and let

Lemma 6,1« Let C and C1

02 = (C+f”\cl)-f\ C1 . Then 02 is a Cauchy structure on E . If C. is

— 1 —

r;[pir]regular for a recularity r, 0Or uniformizable, or initial, then C2

is r—[gir]regular, or uniformizable, or initial respectively. If C EQCI and

C is p-complete, then C £C_, and C, is p-complete.

Proof. 02 obviously satisfies Cau1 and Cauz;

FLH, ror rilters in C, , let 9_4 9’, FHELH for filters ?/, FH’

; <
we verify Cau . If ¥F< g,
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in C'AY ¢, - Ten g vH < Q’V}L’; with both filters in C,  and g’v}l’

2 3
For }'5}:/ or /-'r(}',Cz)é F', and f’éC+r‘\ Cl , we have

also in C' . Thus yvﬂé 02 , and C,_ satisfies Cau..

FLriF,c)< riw.e) < riF'e) .
It follows that F € C2 => F'r(.? ,02)6' C2 if Cl is r-regular, and

I (F,c,)€c

It is easily seen that C

—=» FE c, if ¢

2

is r-biregular.

2 1

= (ctn ¢,))"NcT . Thus C, is uniformizable

2

if C‘l is uniformizable, and initial if Cl is initial.

Finally, C< C1 clearly implies C £ C2 . For FE& C, , choose g & Ci
and JH& C such that 3:49, }(49 If Hvx€C, then gv‘i
€c’nc , s F<€Fvi £Qvi, wotat FVXEC,. MTus C, is

p-complete if C is p-complete and C{'C1 .

Proposition 6.2. (Ep,Cp) is p-complete for every Cauchy snace (E,C) .

Proof. Let ¢p = for Qe p(EP,cP) = ¢P

»by 5.6, and ¢£d)v¢( ¢p by 5.2 and 5.4. Thus Cb\/?écp .

. Then @ is in Cp=C=Ep

62;__3_.4 In order to obtain a reasonably general and simple existence theorem
fof p-regular p-completions with a universal mapping property, we consider a
_class ' f of Cagchy spaces which meets the following two requirements,

(i) ;F is strictly refl'ective, and all spaces in f are p-regular,

(ii) If C and C. are Cauchy structures on a set E such that ¢ £

1
and (E,cl)e £, and if c, = ctn cl)"r\, C, , then (E,C2) c 7.

1

Condition (ii) is not as restrictive as it may seem. In fact, 6.1 shows

that all examples of 4.3 satisfy (ii), and if :P is an intersection of strictly
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reflective classes which satisfy (~ii), then :? satisfies (ii).

Theorefn 6.4. If a class vf of Cauchy spaces satisfies the two requirements

stated above, then the p-complete T

1 spaces in ;Y form a reflective class of

Cauchy spaces.

, Proof. Let :ﬁ be the class of d-biregular spaces in <f (see 4.5). This
does not affect the T1 spaces in :F , and :ﬁ satisfies requirements (i) and
(ii) by 6.1 and the remarks made above.

Now the following diagram illustrates our construction.
(8,6) —L— (2°,¢") —2—> (8°,c¥)
£ @ q
f
(8',0') €—2— (5,:C))
Let j : (B,c) —>(EP,cP) be the quasicompletion of sec. 5, and let C* be the
finest Cauchy structure on gP such that Cpé C* and (Ep,C*) € :P . By 4.4
and 4,5, C¥* = q*(Cl) for a surjection q : E —> El and a T1 Cauchy structure
C, on.B , and gq: (&P, cP) —}(El,cl) is universal for the class of T,
sraces in ¥, by the proof of 4.6. We wish to show that qd: (E,C) —> (El,cl,)
is universal for the class of p-~complete T1 spaces in f .
It c, = ((c?)*m c*)"C*, then cP & c,<C*, and (Ep,CZ)é, £ vy
requirement (ii), used for '-Pi . Thus C, =C* by the construction of C*,
and - C* is p-complete by 6.2 and 6.,1. If 96 C1 s, then q—l(g)é C* , and
if q'l(g)wﬁec* , with ?e EY , then q(q"l(a)\/?;) = 9\/3" is in C

for y=q(?9) . Thus C

1

1 is p-complete, and (El'cl) is in the right class
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of spaces.

Now let f : (E,C) —> (E',C') be continuous, with (E',C') a p-complete
Tl space in :F . Then f = £P j for a uniqug map fp s (Ep,‘Cp) —> (E',C')
by 5.8, and f' = £, a for a unique map f,  (E,C) —> (E',C') by the uni-

versal nature of q . Thus q j is indeed the desired universal mapping.

7. __Regular compactifications

7.1. A Cauchy structure C is compact if and only if‘it is u-complete
(see.5.7). Thus compactifications are special completions. In order to be able

to obtain regular T, compactifications which are not separated, we consider other

1

regularities besides u . We shall require, however, that
r(E,c) C UE

f‘or every Cauchy space (E,C) .

From now on, let r be such a regularity and (E,C) a Cauchy space,
We say that (E,C) 'is r-precompact if (£°,c7) is compact.

Lemma 7.2. (AuB)‘r = Ar-u B" for subsets A, B of E, and (3’-’v9)r
=,Fr\/?,r for filters F, y on E .

Proof. An -ultrafi].ter U on E is characterized as such by the féct that

AuBe U iff A€l or B€UY . As r(E,C) consists of ultrafilters, the

first part of 7.2 follows. The second part follows immediately from the first part.

r
Lemma 7.3. g‘_ﬂ is an ultrafilter on E , then “Qr is an ultrafilter

on E.
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Proof: Using 7.2, we see that AB &€f) &> (A uB) = a"u B’ is
r : . .
in SL &> A () or Bré SL & Aéﬂr or Béﬂr . This shows

that ﬂr is an ultrafilter.

Lemma 7.4. C
Somm——mmm T

===

{.FéEE : Fle ¢"}..

Proof. Let C.- {:Fer_am.:'Fre ¢"§. By the proof of 5.6, it is suf-

1

r
ficient to show that C1 satisfies Cau3. r F, 9r , 'H.r arc in ¢’ , and

F<g, F<H, then (vag)rs}"'vgr by 7.2, and F v q e o

Thus C1 does satisfy Cau_j.

Theorem 7.5. A Cauchy space (E,C) is r-precompact if and only if for

every ultrafilter % on E there is a filter PE r(2,C) such that Uvpec .

Proof.. If f) is an ultrafilter on oul , then ﬂr is an'ultrafilter on

E bty 7.3. If J2 V@QEC . with @€ E' , then (using 7.2)

p< vy v = (pvi)T .
With 7.4, it follows from this that o vILE ¢ .
Conversely, if u is an ultrafilter on E , let Qéur for an ultra-
filter $2 on E' . Then €U, andhence 2_=U. 1t Lvpec,

with ?)C—L ol , then (Slvy',)r = ZLV? is in Cr by 5.6.

Corollary 7.6. Every Cauchy space (E,C) is wu~precompact.

Proposition 7.7. If (B,c) is compact, then (E,C) is r-precompact and

r-complete. Conversely, if (E,C) is r-precompact and r-ccmplete, and if

c < C, then (E,C) is compact.

Proof. The first part is obvious, If C is r-precompact and r-complete,
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let 7L be an ultrafilter on E . Then Q.qupécr for some ?,Er(E,C) , and
PViEC for some xEE . It follows that Uviec . 1r c_Ccc,

. . . - + .
this implies that UVi isin CNC =C, and thus C is compact.

Theorem 7.8. Let f be a strictly reflective class of r-regular Cauchy

spaces., The compact '1‘1 spaces in :P form a reflective class for the category

of r-precompact Cauchy spaces.

Proof. Let (E,C) be r-precompact, let j : (E,C) —_ (Er,cr) be the
r-quasicompletion, and let q : (Er,Cr)-—9 (El,Cl) be the universal mapping for
(Er,Cr) and the class of all 'I‘1 Spaces in :P . Since (Er,Cr) is compact and
q surjective (by the proof of 4.6), (El’c'l) is compact. Now if f : (E,C)
—> (8',¢") for a compact T, space (E',C') in $, then £=£"3 fora
unique map fr : (Er,Cr)——Q(E',C') by 5.8, since (E',C') is r—-complete
by 7.7, AISO £ = f. q for a unioue map fl : (El'cl) —>(B',C') by the

1

universal nature of q . Thus q J 1is the desired universal mapping.

if every ultrafilter of E is a Cauchy filter. Carried over to uniformizable
Cauchy spaces, this condition becomes UE C c .

If we introduce a regularity v by putting v(B,C) = UE f\C- for every
Cauchy space (E,C) , then v is equivalent to the regularity p'- of 3.2,
c C Cv for every Cauchy space, énd C = Cv if C is uniformizable, One
sees easily that the following three statements are logically équivalent for a

uniformizable Cauchy space (E,C) . (i) UEC ¢ . (ii) c,6 = ¢ .

(iii) C is v-precompact.
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v
8. The Stone~Cech compactification for limit spaces

We regard a compactification of a limit space (E,q) as a universal mapping
for (E,q) and a class of compact limit spaces, and not as an embedding of (E,q)
into a compact limit space. From this viewpoint, the following result justifies

the title of this section.

Theorem 8.1. The class of regular compact T2 limit spaces is reflective in

the category of limit spaces.

Before proving this result in 8.6, as an application of 7.8, we must adapt

a construction of rll, sec. 4] to our present needs.

2_.__5. If (E,q) is a 1limit space, we denote by S q the finest initial
Cauchy structure -on E which contains the set {FV}'{ : F q x} of filters
on E, and we put S(E,q) = (E,S“q) . If f:(B,q)—>(E',q') is a map of
1limit spaces, we put S f = f (E,Sq) - (E',Sq') . If g:'q Xx and y = £(x) ,
then f(F)q'y, and f(Fvx)=f(F)vy. Thus S f is continuous Yy

[11,3.16], and we have defined a functor S from limit spaces to initial C.uchy

spaces, We shall need the following proper:ies of this funntor.

Proposition 8.3. q< qsq for a 1imit structure q , and S % £C for an

initial Cauchy structure C . Moreover, S g, = {3:\'1'( : .Fqc X} .

Proof. The first two statements follow immediately f'rom tre definitions,
For the third statement, it is sufficient to prove that C' = 'I,F v + F 9% X}-

defines a Cauchy structure. Axioms Caul and Cau2 for C' are obvious. Suppose

now ff?égl\/i and ,Féy‘[é}/‘/&, with 9,\/5{ and J'LIV}" in C .
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,. . L] L]
Then ]:Sjv}l. S?lvl/\/xvy, and y'v}l'vxv y&cC byCau.j for C .

Thus .F\/g & C', and C' does satisfy Cau3.

Proposition 8.4. If gq isaT2

limit structure, then S q is a separated

Cauchy structure, and q = qsq + If C 1is a compact initial Cauchy structure,

then C=ch.

Proof. For the first part, we note that axiom T, implies axioms So and Sl

2
of [11, sec. 5]. Thus S q = ('rl Q)" in the notation of {11], by [11, 6.11],

and then qq = U) ('r1 q) =U q=gq by [11, 6.3 and 4.3], if q satis-

T
11
fies T2. It follows that S q is separated.

For the second part, let F € C . Then ZA<L.F for an ultrafilter Uec ,
and uv ié C for some point x since C 1is compact. But then Fwv x&€C

by Cau and thus F € s q, - With 8.3, this shows that S q,=C .

3 9

Proposition 8.5. If C 1is a u=-regular initial Cauchy structure, then 9

is a regular limit structure. If q is a regular T2 limit structure, then S q

~is a u~-regular Cauchy structure.

Proof. From the definitions, r'u(A,C) is the closure of a set A for qC .
Thus qC is regular if C is wu-regular. If q 1is a ’]?2 limit structure, then
q = qq by 8.4, and thus closure for q is u-closure for S q. If F €S q,

q .
then ]:é? v x for a filter 9 V X such that 9 qx, and f'u{}:-, S q)

L] u- L]
sl‘u(9 vVx,Sq) . But [ (9’ vX,Sq)qx if q is regular, and it fol-

u
lows that [~ (F, S q) &S q. Thus S q is u-regular if q is regular.

j00]

6. We are ready now for the proof of 8.1. Our.proof is illustratéd by the

following two diagrams, with limit spaces at left, initial Cauchy spaces at right,
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(8,q) ——3(E,q)) (B,0) ——(2,,C))

f fl

(5'q") (8,¢")
Let f be the class of separated u-regular compact initial Cauchy spaces, and

f the class of regular compact T, limit spaces. Let (E,q) be a limit space,

2
let C=Sq, let h: (E,C) -——}(El,Cl) be the . universal mapping for (_E,C)

and £, and let q =q, + h exists by 7.6 and 7.8, (E,q))€ T by 8.4

i
and 8,5, and h : (E,q)‘—j (El’ql) is continuous since qéqC . If f (E,q)'

—> (E',q') is continuous, with (E',q")& J, let C' =S q' . Then
(B',0') € :)o, and f : (E,c) —> (E',C') is continuous. Thus f = fl h for
a unique map fl : (El’cl) —> (E',C') . Since also q' = A and C1 =3 q
by 8.4, a mapping f‘l : E1 —> E' is (qloq')—continuous iff fl is (Cl,C')—
cpptinuous. Thus f = fl h for a unique map fl : (El,ql)—>(E',q') , and
h : (E,q)-——>(El.ql) is the desired universal manping for (E,q) and I .
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