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On an Inequality for Operators on Hilbert Space

T. I. Seidman

£L Recently3 Z. Nehari mentioned to the author the inequality

(A, any bounded linear operator on a Hilbert space H)

(1) sup{||Ax||2- |<x,Ax>|2: x € H, ||x||= 1} < inf{||A-zl||2: z e C)

and raised the question: Under conditions on A dpes equality

hold? It is not difficult to obtain a necessary and sufficient

condition on A for equality to hold in (1) but the condition

obtained below (Theorem 6) is, unfortunately, unlikely to be use-

ful. An independent proof is given of a sufficient condition from

which it follows that equality holds in (1) if A is normal. A

number of preliminary results will be obtained along the way (§2,

§3); in the hope that these may be of interest in themselves, they

are obtained in somewhat greater generality than would be required

for their application in §4. Thanks are due to V. J. Mizel for

the original proof of equality when A is an hermitian matrix and

for several stimulating discussions.

For completeness we include a proof of a more general form of

the inequality (1) applying to nonlinear mappings. Let A be a

Lipschitzian function whose domain and codomain are the Hilbert

space H. For x,y e X with x ̂  y, let

y(A;x,y) = [||A(x)-A(y)||2 - |<x-y,A (x) -A (y)> | 2] /||x-y||4 .

Defining A by A (x) = A(x) + zx for z e C, we havez z
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||x-y|| y(A :x,y)= ||A(x)-A(y)+ z (x-y) |) ||x-y|| - |<x-y,A(x) -A(y)+z (x-y)> |
Z .

= [||A(X)-A(y) || + |z | ||x-y|| + Re z<x-y,A(x)-A(y)> ] ||x-y||

-[|z|2||x-y||4+|<x-y,A(x)-A(y)>|2+ 2Re z||x-y||2<x-y,A(x) -

Clearly,

y(A;x,y)= y(Az;x,y)< sup{||Az(x)-A2(y)||
2/||x-y||2 : x

whence

(1«) sup{y(A;x,y):x,y€H,x^y]

< inf{sup{||A(x)-A(y)-z(x-y) ||2/||x-y||2:x,yeH,x^y}

This, when A is linear, reduces to (1) .

§2. In this section A will denote a bounded operator on a

Hilbert space H. Define the mioiimaj. Xg^tliS °f A (denoted by

R(A)) by

R(A) - inf{ ||A-zl||: z € C) .

As the function z -» ||A-zl|| is continuous and as we may restrict

our attention, in taking the infimum, to the compact set

{z 6 C: |z| < 2||A||}, the infimum is taken on; a complex number z

such that ||A-zl|| = R(A) will be called a minimal center for A

(we show below that this is unique).

THEOREM 1: The function <p, defined by <p(z) = ||A-zl|| , is a
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strictly convex function from C to R.

Proof; Set <p(z;x)=j| [A-zI]x|| = <Ax-zx,Ax-zx> so that <p(z)=supx<p(z;x)

Let t , s >. 0 , t+s = 1, xeH, ||x||= 1, u,veC; s e t x y = Ax-ux, xv=Ax-vx.

Then

(0(tu+sv;x) = | | txu+sx v | | 2

- t 2 | | x u | | 2 +s 2 | | x v | | 2 +2ts Re<xu,xv>

= ( t | | x u | | 2
+ S | | x v | | 2 ) - t s ( | | x u | | 2

+ | | x v | | 2 -2Re<x u , x v » .

Since (| |xul |2+||xv | |2-2Re<xu ,xv>) = ll*u-xv l |2 = | u - v | 2 , t h i s g ives

<p(tu+sv;x) = t<p(u;x)+scp(v;x)-ts |u~v| .

Since t h i s holds for each x€H with ||x||= 1, we have

(p (tu+SV) < tip (u) +S<p (V) -tS I U -V I

so that cp is strictly convex.

COROLLARY: There is a unique minimal center (denoted by z(A)).

Proof: It has already been shown that a minimal center exists.

By definition a minimal center gives a minimum for <p and, by the

strict convexity of tp , this is unique.

The disk B(A)={zeC: |z-z(A) | < R(A)} will be called the mill-

imal disk of A. Denoting by w(A) the numerical jrancje

(w(A)={<Ax,x>: x€H, ||x||= D},it is clear that a (A) c w (A) c B (A) .

We next see that for points of the spectrum which are boundary

points of w(A) the yspectral theory1 is as in the case of a nor-

mal operator.
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THEOREM 2: Let A ecr(A) with AQ a boundary point of w(A) .

Then, (i) there is an !approximate eigenvectorf (for short: aev)

associated with A (i.e., a sequence {x :n=l,2,...} with

xneH, ||xu||= 1 and || [A-T^IJxJI - 0) , (ii) if [xn) is an aev

of A associated with A , it is also an aev of A* associated

with A*, (iii) if {x ) is an aev associated with A and

{y ) is an aev associated with A€a(A) (AJ^A ) , then they are

Ultimately orthogonal1 (i.e., <x sy>-* 0), (iv) if ||x ||= 1

for n=l,2,... and ||[A-Ao]
mx || -» 0 for some m>l then {x )

is an aev associated with A (in particular, if x^O and

[A-A I]mx « 0 then x is an eigenvector so the index of A

is 1) .

Proof: As a(A)c w(A), A must be a boundary point of cr(A) and

so is in the approximate point spectrum of A ; this is just

property (i). As w(A) is a convex set in C and as every

real-linear functional on C is of the form z -» I (z)= Re az
a

with \\t ||= | a |, there is a complex number a with |a|= 1 such

that Re az >, Re aA for z€w(A) . Replacing the operator A by

a [A-A I], there is clearly no loss of generality in assuming for

the remainder of this proof that a=l and A =0 so that Oeo(A)

and

(*) Re <Ax,x> > 0 .

If, now, ||x||= 1, ||Ax||< e, we have (setting O=1/2||A||, y=x-aA*x

so ||y||< 3/2)
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O < Re<Ay,y>=Re<Ax,y>-aRe<AA*x,x>+orRe<AA*x,A*x>

< !iAx||||y||-a||A*x||2+a2||A||||A*x||

< 3c/2 - a(l-a||A|i)|JA*x||2 = (3e-a||A*x||2)/2 .

Thus,

(2) ||A*x|| < (6||A||e)1 /2 i f

Property (ii) follows immediately from this implication. If

||x|H|y||= 1 and ||Ax|| < e, ||Ay-Ay|| < e , then

|*<y,x>| = |<Ay,x> - <[A-M]y,x>|

< ||y!|||A*x||+||Ay-Ay||||x|| - (ellAUe)1'2 + €

so that property ( i i i ) follows. Finally, i f ||x||= 1, ||Amx||< e

with m > 2 set B = A111"1 and y = Bx/||Bx||. Then

||By|H|Am-2(Amx)||/||Bx||< ||A||m-2
G/||Bx|| so that, by (2)

||B*y||2 < 6||B||||A||m-2
e/||Bx||. Thus,

||Bx|| = <Bx,Bx>2 = <x,B*y>2||Bx||2

< ||x||||B-y||2||Bx||2 < 6||B||2||A|r-2
e . •

Hence, ||xn|| = 1, ||Amxn|| - 0 (m>2) implies ||Am~1xn|| - 0 as

n -* °° and (iv) follows by induction on m .

§3 In this section S will denote a non-empty bounded subset of

a real Banach space X . For xQeX , define r(S,x ) by

r(S,xQ) = supf ||x-xo||: xeS}

= inf{r: S £ Br (xQ) }

where B (x ) is the closed ball with radius r centered at xr o o

( i . e . , B (x ) = [xeX: ||x-x || <_ r}), . The minimal radius of S

(denoted by r(S)) i s given by
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r(S) = inf{r(S,x) : XGX] .

A point xeX such that r(S,x) = r(S) is called a mijjjjnal center;

of S and the corresponding ball B /c* (x) is called a minimal

°f S ; if the minimal center exists uniquely it is denoted

by x(S) and the corresponding minimal ball by B(S). We denote

by S and S* the closure and closed convex hull, respectively,

of S c x ; as the balls B (x) are closed and convex, any one

which contains S also contains £3 and S* so r(S*)= r(s")= r(S)

and, if it is defined, x(S*) = x(S") = x(S) .

THEOREM 3: Let S c X as above with X uniformly convex. Then

x(S) (and so, too, B(S)) is well-defined.

REMARK: Under the weaker condition that X is reflexive it can

be shown that the map x -» r(S,x) is weakly lower semi -continuous.

As, in taking the infimum, attention can be restricted to the

weakly sequentially compact set {XGX: ||X||< 2 sup{||y||: yeS}}, the

infimum must be attained and a minimal center must exist. In

this case the set of minimal centers is a non-empty bounded con-

vex set - but need not be a singleton.

Proof (of Theorem 3) ; Let r = r(S) be the minimal radius. Then

there must exist a sequence {x } of points x eX such that

r = r(S,xn) -• r. The condition of uniform convexity asserts that:

for every e > 0 there is a 6 = 6(e) with 0 < 6 < 1/2 such

that, for U,XGX with ||u||, ||v|| < 1 and ||(u+v)/2|| > 1-6 , one

has ||u-v|| < e. Given e > 0, let n,m be large enough that
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< r ,r < rf < v/{\-&) . By the minimality of r there exists

xeS such that ||H-a|fel * w h e r e a = C^+x^)^; take u = (x -x^ / r '

v = (x-xm)/i:« so ||u|| = ||x-xn||/r» < rn/r< < 1 and, similarly,

||v|| < 1. Then ||(n+v)/2|| = ||x-a||/rt > r/r< > 1-6 so | |xn-xj |

= r ! ||u-v|j < r !e <^ 2re . Thus {x } is a Cauchy sequence and

x = lim x is defined. By the continuity of the map
o n n

x -• r(S,x), r(S,xQ) = limnrn = r so xQ is a minimal center of

S. That every sequence {x } for which r(S,x ) -• r must be a

Cauehy sequence proves that this limit x is uniquely determined

so x = x{S) .

THEOREM 4: Let S,X be such that B(S) is well-defined and such

that, for every subspace Y c: X with codim Y » 1, there is a pro-

jection P onto Y with ||P|| = 1. Then x(S)eS*.

REMARK: If X is 3-space with a regular octohedron as unit ball,

then taking S to be a face of this octahedron gives an example

such that x(S) is well-defined but 0 = x(S)/S*. Perturbing

this slightly, !puffing out' the octahedron a very little, pro-

vides an example such that X is uniformly convex but

Proof (of Theorem 4): There is no loss of generality in assum-

ing that x(S) = 0 , r(S) = 1 so B(S) is the unit ball of X.

If 0 = x(S)/S*, then>as S* is closed and convex, there exists

•$<eX* t with . ||£|| = 1 such that <x,£> >_ d > 0 for all xeS*. Let

Y toe the nullspace of £, so codim Y = 1, and let P be a pro-

jection $>ftfc© Y with ||p|| = 1; let a be in the nujlspace of P
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with <a,£> = OL. Now, for X€S we have ||x|j < 1 so j|Px|| < 1;

as x-Px = ta with t = <x,£>/a >_ 1 we have x-a on the seg-

ment joining x and x-Px. Thus, for xeS we have . ||x-a|| < 1

so that r(S,a) < 1, contradicting the assumption that B(S) is

the unit ball of X.

COROLLARY: If X is a Hilbert space or dim X = 2 then, if

x(S) is defined, x(S)eS*.

Proof: If X is a Hilbert space then, for any subspace Y, the

orthogonal projection onto Y has norm one. If dim X = 2 then

codim Y = 1 implies dim Y = 1 so that, by a theorem of Kaku-

tani, there is a projection of norm one onto Y. (Indeed, if Y

is a 1-dimensional subspace of any Banach space we have Y = sp{y)

with ||Y|| = 1; by the Hahn-Banach Theorem there exists £eX* such

that <y,£> = ||£|| = 1, in which case x -• <x,£>y is the desired

projection.)

If B(S) is well-defined, let S° = [xeS: ||x-x (S) || = r(S)).

We wish to show that B(S) is determined by the ̂extreme points1,

in this sense, of S. For general S this need not be true even

if X is quite 'nice1. For example, if X = l~ and

S = {£(l-l/n)e :n = 1,2,...} where [e :n=l,2,...} is an ortho-

normal sequence, then S = S, B(S) is the unit ball, but S° is

empty. We have, however, the following.

THEOREM 5: Let S be compact and x uniformly convex. Then B(S)=B(S°),
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Proof: There is no loss of generality in assuming x(S) = 0,

r(S) = 1 so B(S) is the unit ball of X. By the compactness

of if, S° is non-empty; by its definition, r(S°,0) = i. Thus,

if B(S°) £ B(S) we must have r(S°) < 1 and x (S°) = a ̂  0;

hence, ||x-a|| < 1 for xeS .

For xeS le t t (x) = sup{ t : ||x-ta|| < 1) . For X€S*\S°,

||x|| < 1 and t(x) > (l-||x||)/||a|| while, for xeS°, t(x) > 1 by

the assumption above; thus, t(x) > 0 for a l l x€S. Let xQeS,

t = t(x ) so ||x -ta|| = 1. For 0 < e < t , set x = xQ-(t-€)a;

then, by the uniform convexity of X, ||x || < 1 and we set

6{e) = l-||x€H > 0. Now, for xeS* with ||x-xo|| < 6(e), x-(t-e)a

= (x-x ) + x so ||x.-(t-€)a|| < 1 and t (x) >_ t-€. Thus, the

map x -» t(x) is lower semi-continuous on the compact set S

and so attains its minimum t on S; as t(x) > 0 for xeS,

tQ > 0. It follows that ||x-toa|| < 1 for XGS" SO r(S,tQa) < 1

which contradicts the uniqueness of B(S).

§4 In this section A is a bounded operator on a Hilbert space

H. Let AQ = A - z(A)I; then z (AQ) = 0 and R(AQ) = R(A) = ||A |

We may write A in polar form: A = UP with P non-negative

and U unitary. For xeH set

y(A;x) = ||Ax||2 - |<x,Ax>|2

and le t y(A) = sup{ y(A;x) : ||x|| = 1) (clearly y(A) < ||A||2) . As

in 1, we have
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y(A+zI;x) = <Ax+zx,Ax+zx> - |<x,Ax+zx>|

» [||Ax||2+ | Z | 2 | | X | | 2 + 2Re z<x,Ax>]

- [|<x,Ax>|2+|z|2 | |x||2+ 2Re z<x,Ax>]

= y(A;x)

so that y(A+zI) = y(A). The inequality (1) now takes the form

(3) y(A) < R(A) 2

which follows from

= y(A-z(A)I) < ||A-z(A)l||2 = R(A) 2.

THEOREM 6: Equality holds in (3) ( i . e . , y(A) = R(A)2) if and

only if there is an approximate eigenvector {x } of P assoc-

iated with a (as P is non-negative with ||p|| = ||A || = a,

a i s in the approximate point spectrum of P) such that

Proof: Suppose, f i r s t , that there is such an aev of P. Then

= ||Pxn||2-|<xn,UPxn>|2

< a2||xn||2+2a||Pxn-oOcn|!-a
2|<xn,Uxn>|2+||xn||2||Pxn-axn|i2,

Since ||xJ| = 1 and HPX^-OX^H - 0, y(A;xJ - a2; thus y(A)> R(A)2
n n n n — .

which, with (3) gives the desired equality.

Conversely, suppose equality holds in (3). Then there exists,

for any e > 0 , x^eH with ||x ||= 1 such that y(A;x ) >. a2- e2;

i.e..

-I<X .TTPV > [ 2 * > , v 2 _ r.2= ||PxG||2-|<xe,UPx€>|2 > «2 . €2 9
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lt follows that

a-j («2-2 - • •"» «-» I «~i <•* <>

o
a

-x- II2 - Ibv P x II2

where {E^} is the spectral resolution of P; thus |Px -ax ||< €

Now,

so that |<x ,Ux >| < 2e/|a| (if a=0y then A is the 0 oper-

ator and the result is trivial). The sequence (xi/ :n=l,2,...)

is thus the desired aev of P.

This condition for equality is not very helpful. We give

an independent proof of a sufficient condition which seems handier.

Considering the spectrum a(A) as a subset of C (considered as

real 2-space) we may apply the results of 3; it seems more natural

to refer to the mijiimal dijscj rather than to the minimal ball, of

cr(A) . It is clear that a (A) £ B (A) s that r(a(A)) < r (a (A) , z (A))

which is the spectral radius of A , and that r (a (A) ) < R(A)= |JA ||.

THEOREM 7: If r (a (A)) = R(A) (so the minimal disk of A is just

the minimal disk of a (A) ) 9 then equality holds in (3) .

Proof: Without loss of generality we may assume z(A) = 0 and

r(cr(A)) = R(A) = 1; since a (A) <= B (A) = B 1 (0) , this implies that

B(cr(A)) = B (A) . As a (A) is compact, we may ^pply Theorem 5 to
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show that B(aQ) = Bx (0) where CTQ = {z€a(A) : |z|=l) . By Theorem

4, then, 0 is in the convex hull of a (which is already

closed) so that

0 =

where {ZT,} is a finite subset of a and the 1^) a r e non-

negative reals. Clearly, each z, is not only a boundary point

of a (A) but, as w(A) c B (A) = B 1 (0) , each z^ is a boundary

point of w(A) . It now follows from Theorem 2 that, for any

e > 0, there are elements X]£H such that

|| , | | k k k | | , \ ^ ^ > \ < € for j / k .

Now" set

x = V k V Y =

Then

l|Ax-y|| < L

c . c k > 1 -K(K-l)e

where K is the cardinality of {z, ) (as we are working, here, in

2-space, i t can be shown that we may take K < 3); thus, as

ll^ll ^L Hyll-llAx-ylL w e have ||Ax|| a rb i t ra r i ly close to 1 as

e gets small. At the same time,

<x.,xk>|

i + z.jfr c j c k
= 0 + Ej?4k c jck |<x j ,xk>| < K(K-l)e
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so that |<x,Ax>| < |<y,x>| + |<x,Ax-y>| < (K -K+l)e which goes

to 0 as e does. Combining these shows that y(A;x) may be

made arbitrarily close to 1 by taking € small so that

y (A) = 1 = R(A)2.

COROLLARY: If A i s normal, then

sup{||Ax||2 - |<x,Ax>|2:||x|| = 1} = inf z{| |A-zl | |2}.

Proof: If A is normal then

||A-zl|| = sup{ IA-z| :Aecr(A) }

( i . e . , r(ff(A),z) = |JA-zl||) so r(a(A)) = R(A) and Theorem 7

applies.


