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1. Introduction,

In this paper we are concerned with extending a certain type

of uniformity from a subspace of a topological space to the

entire space. This is a generalization of extending to the whole

space a particular class of continuous real valued functions

defined on the subspace. In the case of normal spaces our

results can be applied to give new characterizations of these

spaces.

In particular the uniformities that we wish to consider

are those generated by totally bounded continuous pseudometrics.

A pseudometric is totally bounded if for every positive real

number € there is a finite subset G such that X is the

union of spheres of radius e with centers in G. In [ 1 ],

the authors considered extensions to the topological space X

of totally bounded continuous pseudometrics defined on a sub-

space S of X. Subspaces S for which every such pseudometric

extends were said to be T-EMBEDDED in X. It was shown that

T-embedded subspaces are the same as those subspaces for which

every bounded continuous real valued function extends to the

whole space. Since pseudometrics are intrinsic to the structure

of uniform spaces corresponding notions must be considered.

Using Andre Weil's definition of a uniformity we can say that

every collection of pseudometrics on a space generates a uni-

- HUNT
« GARNE6IE-MELL0N



2

formity and conversely for every uniformity there is a collection

of pseudometrics that generate it. The case for the use of

pseudometrics is strong since they yield a rich supply of continu-

ous functions. Conversely every real valued function f

defined on X determines a pseudometric on X by

*f(x,y) = |f(x) - f(y)|.

We say that a uniformity is generated by a class of real valued

functions if it is GENERATED by pseudometrics ^ f for f in

the class.

Hence we can show that the subspaces S for which every

uniformity generated by a collection of totally bounded con-

tinuous pseudometrics extends to X (such subspaces are called

ji -EMBEDDED) are the same as those subspaces for which every

precompact uniformity extends (such subspaces are called u*-

EMBEDDED). A uniformity is PRECOMPACT if it is generated by a

collection of bounded continuous real valued functions.

2. Definitions and basic results.

Our notation and terminology coincides with that of J. L. Kelley

in [5 ]. In particular our definition of a uniformity is that

of Weil's as stated in Kelley.

A BASE M for a uniformity U on a non-empty set X is a

subcollection of U such that for each U in U there is a

B in I* and B <= U. A SUBBASE S for U is a subcollection

of U such that finite intersections of members of S form a

base for U#
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Given any collection P of pseudometrics on a non-empty

set X, a unique uniformity on X can be obtained. The subbase

for this uniformity is the subsets of X x X which are inverse

images under the maps d in P of the real interval [0,e)

where e ranges over all positive real numbers. Such a uni-

formity is called the UNIFORMITY GENERATED BY P . In particular

for each real valued function f on a non-empty set X there is

a natural pseudometric ^ f ASSOCIATED WITH f defined by

*f(x>y) = |f(x) -
 f(y)I f o r x and y in X. If G is a

collection of real valued functions on X then the UNIFORMITY

GENERATED BY G is the uniformity generated by the collection

of pseudometrics ^ f associated with f in G. A PRECOMPACT

UNIFORMITY is a uniformity U on X generated by a collection

of bounded continuous real valued functions defined on X.

Every uniformity U on a non-empty set X yields a unique

topology T(U). This topology is obtained by taking as a base

for the open sets the collection of sets U[x] for U in U and

x in X. If T(U) agrees with the original topology 3" of the

topological space (X,3) then U is said to be an ADMISSIBLE

uniformity.

If S is a subset of X and if Q is a collection of

subsets of X then Q|S is the collection of traces G (T S

for G in Q. If U is a uniformity on S and if U is a

uniformity on X then V is an EXTENSION OF U in case

S | s X s = U.

Let (F ) _ be a family of subsets of a topological space

(Xjtf). The family is DISCRETE if for each x in X there is a
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neighborhood of x that meets at most one F . Now if (X,U)

is a uniform space, the family is UNIFORMLY DISCRETE in X if

there is a U in U such that the family of subsets (ut^aDQ!Gl

is pairwise disjoint.

In considering extensions of uniformities, it is necessary

to consider extensions of continuous pseudometrics, that is

pseudometrics which are continuous in the product topology. To

analyze the situation the following definitions are required.

For y an infinite cardinal number, a pseudometric d is

y-SEPARABLE if there is a subset G of (X,2) of cardinality at

most y which is also dense in the topology 3^ generated by

d. (This is just the topology obtained by taking as a base for

the open sets the d-spheres of radius e). The pseudometric

is TOTALLY BOUNDED if for every positive real number e there

is a finite subset G of X such that X is the union of

d-spheres of radius e with centers from G. For a subset S

of X, and a pseudometric d on S, an EXTENSION of d is a

pseudometric r on X such that r|S X S = d. The subset S

is P -EMBEDDED in X if every y-separable continuous pseudo-

metric on S can be extended to a y-separable continuous

pseudometric on X. The subset is T-EMBEDDED in X if every

totally bounded continuous pseudometric on S extends to a

totally bounded continuous pseudometric on X. It is P-EMBEDDED

if every continuous pseudometric on S extends to a continuous

pseudometric on X.
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It is clear that a P-embedded subset is P'-embedded and

a P-embedded subset is P °-embedded. Every totally bounded

pseudometric is -separable, hence a P -embedded subset is

T-embedded. In [4 ], Gilman and Jerison define a subset S to

be C (respectively C*)-EMBEDDED in X if every continuous

(respectively bounded continuous) real valued function on S

extends to a continuous (respectively bounded continuous) real

valued function on X. In [6 ], it was shown that a C-embedded

subset is P °-embedded, while in [3 ], the converse was shown.

Hence the two notions are equivalent. In [ 1 ], the notions of

T-embedding and C*-embedding were shown to be equivalent.

Corresponding notions for uniformities can now be defined.

If y is an infinite cardinal number as before, then S is

U -EMBEDDED in X if every admissible uniformity on S generated

by a collection of y-separable continuous pseudometrics can

be extended to an admissible uniformity on X. The subset is

jU*-EMBEDDED (respectively ju-EMBEDDED) if every admissible

uniformity on S generated by a collection of bounded continuous

(respectively continuous) real valued functions can be extended

to an admissible uniformity on X. It is \i -EMBEDDED in X

if every admissible uniformity on S can be extended to an

admissible uniformity on X.

These notions were defined and discussed in [3 ]. Their

relationships with the various forms of pseudometric embeddings

were established also. In particular it was shown that: a

\i -embedded subset is necessarily P-embedded, a ju -embedded
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necessarily C-embedded, a jU*-embedded subset is necessarily

C*-embedded; also a \x -embedded subset is necessarily /Lt -embedded,

a jU-eiribedded subset is necessarily \x*-embedded and finally

that the subspaces which are \i^ -embedded are the same as those

which are jU-embedded. It was also shown that none of the

implications, except for the implication that a \i -embedded

subset is /i -embedded, could be reversed.

It is now possible to define a subspace S to be [i -EMBEDDED

in the topological space X if every admissible uniformity on

S generated by a collection of totally bounded continuous

pseudometrics on S has an admissible extension to X.

The following results will be needed. It will be assumed

throughout that S is a subspace of a topological space (X,3).

Theorem 2.1 (Gantner [3 ]). l£ an admissible precompact

uniformity on S has an admissible extension then it has an

admissible precompact extension.

Theorem 2 .2 (Shapiro [ 7 ]) . _If j* 7-separable continuous

pseudometric on S has ap extension to .a continuous pseudometric

jQn X thgq _i£ can l?e extenflefl tq JL 7-separable continuous

pseudometric jQXX X.

Theorem 2.3 (Alo and Shapiro [ 1 ]) . JTf ji totally bounded

continuous pseudometric on S can be extended to JJ continuous

pseudometric on X then it can be extended to ji totally bounded

continuous pseudometric on X.
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Lemma 2.4. IJL ^ i§. 5L totally bounded continuous pseudo-

metric on X and if S c X, then d| S x S JLJ3 at totally bounded

continuous pseudometric on S.

Proof: Clearly d|s x S is a continuous pseudometric. If

S is finite then it is immediate that d is totally bounded.

On the other hand if S has an infinite number of points and

if e > 0 then there is a finite set F <= X such that X is

the union of e/2 spheres centered at points of F. At least

one sphere D must contain an infinite number of the points of

F. Select any point x of F 0 D. Then the e sphere centered

at x covers D. Continuing this process for any e/2 sphere

D, it follows that d|s * S is totally bounded.

It should be remarked that the usual definition of a pre-

compact uniformity is not the one that we have given. In fact,

a precompact uniformity is usually defined as one whose completion

is compact. However, it can be shown that this is equivalent

to our definition (see Gillman and Jerison [4 ], 151.1 and

151.2).

3. Main results.

Throughout (X,3) or just X will mean a topological space

and S will be a subspace.

Proposition 3.1. IJE f i^ j* bounded continuous real valued

function on X, then ^ is a totally bounded continuous pseudo-

metric on X.

Proof: Using [ 4 , 15E.1] it is sufficient to prove that

for each positive real number e, X is a finite union of zero
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sets of diameter at most G. Thus for e > 0, choose an integer

k such that f(x) < (k + l)-e for all x in X. The finite

number of zero sets Z *= (xeX : ne < f (x) < (n + 1) . e) are of
n — —

ty--diameter at most e and X is their union. It follows that

$J- is totally bounded.

Theorem 3.2. Ij[ (X, U) jLs_ â  precompact Hausdorf f uniform

space f then U j ^ generated by the collection of all bounded

real valued functions on X that are uniformly continuous on X.

This theorem is due to Gaal and appears in [ 2 ].

Theorem 3.3. Ijf X JLS[ ;a completely regular, T, space then

the following are equivalent.
(1) S is Mm-erobedded in X.

• X — — — — — — — — — — -

(2) S i£ /i*-embedded iji X.

Proof. (1) implies (2). This implication is immediate

by 3.1. In fact if U is a uniformity generated by a collection

of bounded continuous real valued functions G then U is

generated by ($f) f Q which is a collection of totally bounded

continuous pseudometrics.

(2) implies (1) If U is an admissible uniformity on

S generated by totally bounded continuous pseudometrics on S,

then U is generated by the collection P of all totally bounded

uniformly continuous pseudometrics on (S,U) (see Kelley [5 ],

6.15). By Proposition 3.1 for every bounded real valued uni-

formly continuous function f on (S^U)^ ty is a member of P .

The uniformity U generated by such uniformly continuous

functions is precompact. Hence by assumption \s will extend
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to a precompact uniformity if it is admissible. Since U is

admissible, it is clear that the topology T (V) generated by \s

is contained in the original topology 3 on S which is generated

by U. On the other hand, for xeGe^ Weil (see [8]) has shown

that there is a bounded real valued uniformly continuous function

f on (S,U) for which f(x) = 0 and f(CG) c {1}. The set

W = {yeX : f(x) < 1} in T(V)5 contains x and is contained in

G. Hence G belongs to T(U) and V is admissible.

Let V* be an admissible precompact uniformity on X

which is an extension of \s. By Theorem 3.2, V* is generated

by the collection of all bounded real valued uniformly continuous

functions on (X,lr*) . Let U* be the uniformity on X generated

by the collection P * of all totally bounded continuous pseudo-

metrics on X which are extensions of members d of P . Recall

that S is u*-embedded in X implies that S is c*-embedded

in X. In [1 , Theorem 3.8 ] it was shown that S being c*-

embedded in X is equivalent to S being T-embedded in X.

This with 3.1 shows that P * is non empty. However U*|g X g

is generated by P = P*|s x s so . U*|s x s = U. it remains

to show that U* is an admissible uniformity on (X,^).

Since U* is generated by a collection of continuous

pseudometrics, the topology T(U*) generated by U* is contained

in 5. Yet if f is any bounded real valued continuous function

on (X,\s*) s then \t'f is a totally bounded continuous pseudometric.

Hence Ir* c U*, Z = T(V*) <= T(U*) and U^ is an admissible,

extension of U to X, that is S is U -embedded in X.

This completes the proof.
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Now using Theorem 3.4, it is possible to state some new

equivalent conditions for a completely regular space to be normal.

The definitions that are necessary are the following.

Definition 3.4. For X a completely regular T, space,

U (X) is the uniformity on X generated by the collection of all

totally bounded continuous pseudometrics on X. Similarly let

u
o(

x)i u
y (

x ) , C(X), and C*(x) denote the admissible uniformities

on X generated by the collections of all continuous pseudometrics

on X, all y-separable continuous pseudometrics on X (for y

an infinite cardinal number), all continuous real valued functions

on X, and all bounded continuous real valued functions on X

respectively.

Proposition 3.5. I_f̂  (X, 3) jj^ â  completely regular T,

space then the uniformity U (x) JLS[ admissible.

Proof. Since U (X) is generated by a collection of

continuous pseudometrics it follows that the topology T<U)

generated by U (X) is contained in 3. On the other hand for

there is a bounded uniformly continuous real valued

function f for which f(x) = 0 and f(CG) <= {1} (see [9 ]).

Hence by 3.1 and as in the proof of Theorem 3.4, JT <= T(U ) .

This completes the proof.

It is known that S _i_s P-embedded in X jLf and only if

U Q(X) |s• X S =
 U

O(S) ; S _i£ c-embedded iji X _if and only jj,

C(X) |s X s = C(s) ; and S is c*-embedded in X if and only

if C^ (x) |s X s = Ĉ -(s) . Moreover, if X is completely regular
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then clearly C(X) c U . (X). However, it is not known if the

converse implication is true. Similarly, if X is completely

regular then by 3.1, C* (x) <=• U T (X) . We do not even know if

UT(X) c C ( X ) .

It is now possible to state some preliminary results that

will help in characterizing normal spaces.

Theorem 3.6. ĵ f (X,?) is a completely regular T, space

and if S c x, then the following are equivalent.

(1) S Jjs T-embedded in X.

(2) UT(X)|S X S = U,r(S).

(3) ^m(S) has an admissible extension to X.

Proof. (1) implies (2). Since U(X)|S x S is an admissible

uniformity generated by a collection of totally bounded continuous

pseudometrics on S and since Hp(S) is generated by all totally

bounded continuous pseudometrics on S5 it follows that

UT(X)|S x S c U T(S). Conversely for d a totally bounded

continuous pseudometric on S there is a pseudometric extension

e of d to X. Hence for € > 0, the member of ^ (S) of the

form {(x,y)€S x s : d(x,y) < e) = {(x,y)eX x X : e(x,y) < e} fl s x s

belongs to UT(X)|S x s.

(2) implies (3). This implication is obvious.

(3) implies (1). Let V be an admissible uniformity on

X such that V|s X S = U T(S). If d is a totally bounded

continuous pseudometric on S, then d is uniformly continuous

on (S,U (s)). Since S is a uniform subspace of X in

[ 7 , Theorem 1 ] , it was shown that d has a continuous pseudo-
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metric extension to X. Using Theorem 2.3, it follows that S

is T-embedded in X. The proof is now complete.

Corollary 3.7. If (X,^) is a completely regular topblogical

space and if S is a JU -embedded subset of X then S is a

T-embedded subset of X.

Theorem 3.8. (See [3] Theorem 7.31 and [6] Theorem 3.9).

If, X is .a complete.l.y regular space, then the following

statements are ecruivalent.

(1) X ĵ s normal.

(2) Every closed subset of X jj^ M*-embedded in X.

(3) Every closed subset of X i£ T-embedded in X.

(4) Every finite family of pairwise disjoint closed subsets

of X is uniformly discrete in (X,C*(x)).

Theorem 3.9. JTf X JLJS ja completely regular topological

space then the following statements are equivalent.

(1) X JLS normal.

(2) Every closed subset of X JLj3 MT-embedded in X.

(3) For every closed subset F of, X, U (X)|F x F = U (F) .

(4) Fojr every closed subset F c>f X, U (F) has an admissi-

ble extension to X.

(5) Every finite discrete family of closed subsets of X

is uniformly discrete in (X,U (X)) .

Proof. By 3.3 and 3.8, (1) is equivalent to (2). By 3.7,

(1) implies that every closed subset is T-embedded in X. Thus

by (3.6), (1) implies (3). Obviously (3) implies (4). Using
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Theorems 3.6 and 3.8, it follows that (4) implies (1). Since

discrete families of subsets are pairwise disjoint, Theorem 3.8

also shows that (1) implies (5). It remains to show that (1)

follows from (5) . Suppose F.. and F- are disjoint closed

subsets of X. Then since {F,,F2} is discrete there is a

UeUfji(x) such that UfF-J fl U[F2] = 0. Moreover since UT (x)

is asmissible, U may be taken to be open. Hence X is normal

and the proof is complete.
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