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1. Introduction,

In this paper we extend our results in the area of Wallman-

type (as first discussed by Orrin Frink in [4]) compactifications

to include realcompactifications (see [1] and [2]). The theory

of realcompact spaces is in many ways analogous to the theory of

compact spaces. To a very large extent the realcompact spaces

play the same role in the theory of C(X) (the ring of continuous

real valued functions on a Tichonov topological space X) that

the compact spaces do in the theory of C*(X) (that subring of

C(X) consisting of the bounded functions). Since compact spaces

have pleasant properties, their study has led to the study of

compactifications. Usually a compactification of a space can

give interesting and worthwhile information about the space itself,

For example, Frink (see, [4]) used a compactification to show

that every T.. space with a normal base is a completely regular

T.. space (a Tichonov space) . In doing this, he gave an elegant

internal characterization of Tichonov spaces.

Since realcompact spaces and compact spaces play similar

roles, a study of realcompactifications is also worthwhile. We

use a variation of Frink?s notion of normal base to construct

realcompactifications of Tichonov spaces. We call our bases

strong delta normal bases. It follows from our results that a

space is Tichonov if and only if it has a strong delta normal

base.
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2. Definitions and Basic Results,

A family Z of subsets of a non-empty set X is a RING of

sets if it is closed under finite unions and finite intersections.

It is said to be a DELTA RING if it is a ring that is also closed

under countable intersections. If X is a T.. -topological space,

then Z is said to be DISJUNCTIVE if for any closed set F and

for any point x not in F there is a 2 of Z that contains

x and is disjoint from F; Z is said to be NORMAL if any two

disjoint members A and B of Z are subsets respectively of

disjoint complements C1 and D! of members of Z. The family

Z is COMPLEMENT GENERATED if for every member Z of Z there

is a sequence of complements (C1) „ of members of Z such that
^ -̂  n neN

Z is their intersection.

The family Z is a NORMAL BASE for the T.. -topological

space X if it is a disjunctive normal ring of sets that also

Jbrms a base for the closed subsets of X. It is a STRONG NORMAL

BASE if it is complement generated. It is a STRONG DELTA NORMAL

BASE if it is a strong normal base that is also a delta ring of sets.

One of the most important examples of a strong delta normal

base is the collection of all zero-sets of a Tichonov space X.

A subset Z of X is a ZERO-SET if there is a continuous real

valued function f defined on X such that Z is the set of

all points x in X for which f(x) = 0 . The complement of a

zero-set is called a COZERO-SET. Gillman and Jerison in [5]

have shown that this collection is a delta ring, that it satisfies

the requirements for a normal base, and that each of its members
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is a countable intersection of cozero-sets (that is it is complement

generated). Thus every Tichonov space has a strong delta normal

base.

A topological space is called PERFECTLY NORMAL if it is

normal and if each closed subset is a G~• Thus in every perfectly

normal space the family of closed subsets is a strong delta normal

base.

A proper subset of a ring of sets Z is a Z-FILTER if it is

closed under finite intersections, contains every superset in Z

of each of its member, and does not contain the empty set. A

Z-ULTRAFILTER is a maximal Z-filter. (in [3], a theory of Z-

filters is given). A subfamily 3 of Z has the COUNTABLE

INTERSECTION PROPERTY (c.i.p.) if any countable subcollection of

Z has a non-empty intersection. If Z is the collection of all

zero sets of the topological space X then X is REALCOMPACT

if every Z-ultrafilter with the c.i.p. has a non-empty intersection.

Since a Z-filter is a collection of closed sets with the finite

intersection property every compact space is realcompact. A

REALCOMPACTIFICATION of a topological space X is a realcompact

space Y which contains X densely.

In studying realcompact spaces the following notion is very

useful. A subset A of X is Q-CLOSED in X if for every point

p not in A there is a G^ set G that contains p and is

disjoint from A. The Q-CLOSURE of a subset A of X (denoted

by C^QA) is t h e s e t of points p in X such that every G~ set

G containing p meets A. In general the Q-ciosure of a set
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need not be closed. Indeed, the Q-closure of any open interval

of the real line is the open interval. However, the Q-closure

of a set always contains the set and is contained in the ordinary

closure of the set. S. G. Mrowka in [6] has shown the following

two theorems which signals the importance of this notion and which

we will need for our main result.

Theorem 2.1. Every Q-closed subset of a realcompact space

is realcompact.

Theorem 2.2. A topological space X is realcompact if and only

if it is Q-closed in its Stone-Cech compactification, #X.

As a corollary to these theorems we observe that:

Corollary 2.3. A topological space X is realcompact if

and only if it is Q-closed in some compactification of X.

Proof. Necessity of the condition is obvious by the second

theorem above. On the other hand, since every compact space is

realcompact, the first theorem shows that the condition is also

sufficient*

In compactifying a Tichonov space X, Frink. (see [4])

utilized the set to(Z) of all Z-ultrafilters for some normal

base Z on X. A compact Hausdorff topology for co(Z) was

obtained by assigning to each Z in Z the set Z of all

Z-filters 3 in co(Z) that contain Z. The collection Z40 of

CO
all Z for Z in Z served as a base for the closed sets in

a>(Z) . Each x in X is represented in co(Z) 3 since the set

<p(x) of all Z in Z that contain x. is a member of co(Z) .

Through this map <p, X is homeomorphic to a dense subset of to(Z) .
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Equivalently a base for the open sets can be defined. For

each U contained in X such that the complement of U, U»,

is a member of Z, assign the set U of all 3 in co(Z) for

which there is some Z in 3 that is contained in U. This

collection of sets U is an open base for the same topology on X.

3. Wallman Realcompactifications.

Let Z be any strong delta normal base on a Tichonov space

X. For our realcompactification of X we consider the subspace

p(Z) of to(Z) which consists of all Z-ultrafilters with the c.ifp.

A base for the closed subsets of this subspace topology will be

the collection of subsets 2T of all 5 in p(Z) that contain

Z. The sets <p(x) defined above are also members of p(Z). Thus

X is homeomorphic to a dense subset of p(Z) via the map <p.

In [3] , Alo and Shapiro have given some basic properties of

this space. In particular the following lemma, which will be

•needed in the next theorem, is proved there.

Lemma 3.1. Let Z be a delta ring of sets which is a base

for the closed subsets of the topological space X and let 3

be a Z-ultrafilter with the c.i.p. If (A ) is a sequence

of sets in &, then the intersection A of the s6ts A is in 3.

Theorem 3.2. Let Z be a strong delta normal base of a

Tichonov space X. Then X is homeomorphic to a dense subspace

of a real-compact space p(Z).

Proof. The theorem will follow from the Corollary 2.3, if

we show that p(Z) is Q-closed in its Frink-type compactification
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co(Z) . Let 3» be any member of £d(Z) that does not have the c.i.p.

and let (Z.) . be a collection of subsets of 3 such that their

co(Z) # Let 5 be any member of oo(Z) that does not have the c.i.p.

and let (Z.) . be a collection of subsets of 3» such that their

intersection Z is empty. Since Z is a strong delta normal base,

each Z. is generated by a sequence of open subsets (A. )
I I y n n GJN

whose complements are in Z. Let G be the intersection of the

basic open sets (A. ). Nf. Since Z. is contained in A.

for each n, the G. set G contains 5# On the other hand by

the lemma no Z-ultrafilter with the c.i.p. can be contained in

G. Hence G does not meet p(Z) and therefore p(Z) is Q-closed

in co(Z) . This completes the proof.

Corollary 3.3. If Z is the strong delta normal base of all

zero sets of a Tichonov space X, then p(Z) is precisely the Hewitt

realcompactification uXm

Theorem 3.4. If Z is a strong delta normal base on a

Tichonov space X, then p(Z) is the Q-closure of <p(X) in co(Z) .

Proof. If 5 is any element of co(Z) without the c.i.p.,

then the proof of Theorem 3.2 exhibits a G* set G that

contains 3* and misses p(Z). Therefore G misses the subset

<p(X) of p(Z). Hence the Q-closure of <p(X) in co(Z) is contained

in p(Z). To show the other direction it is sufficient to

consider only G, sets G which are the intersection of basic

open sets A where the complement of A is in Z. If G is

such a set which contains a member 5 of p(Z) then for each n



there is a Z in Z such that Z c A.... Since 3ep(Z) , we can

choose an x in the intersection of the Z . Then <p(x) is in

the intersection of G and <p(X) and therefore p(Z) is contained

in the Q-closure of <p(X) in co(Z) . This completes the proof

of the theorem.

Since the Q-closure of a set is Q-closed, Theorem 3.2 can

be deduced from Theorem 3.4 using Theorem 2.1. However, our

approach above is justified by the importance of the construction.

In considering strong delta normal bases on realcompact

spaces the following example is interesting. Let X be a

discrete space of cardinality c (or any uncountable discrete

space with non-measurable'cardinal [see Gillman and Jerison,

p. 163]). Let Z be the collection of all subsets A of X

such that A or the complement of A, AT, is at most countable.

It is easy to verify that Z is a strong delta normal base.

Now p(Z ) is not equal to <p(X) for there is a member 5 of

p(Z1) that is not in <p(X) . In fact let 3 be the Z^filter

that is the collection of all subsets of X whose complement is

at most countable. It is a Z -ultrafilter since the complement

Z! of Z is in # for any member Z of a filter containing

# where Z is not in 3. if (z ) ̂ ^ is any sequence of sets

in 3^ then their common intersection Z is not empty since the

complement of Z is at most countable and hence not equal to X.

This shows that # has the countable intersection property.

Finally X - {x} is in 5 for each x in X and the common



8

intersection of these sets is empty. It follows that the inter-

section of all the sets Z in 3 is empty. Thus 5 is not

in <p (X) .

Another interesting example is to consider the same space

X with the strong delta normal base Z of all subsets of X.

It is clear that P( z
2^

 = vX = ^(x) by Corollary 3.3 and by the

fact that X is realcompact if and only if X = vX (see Gillman

and Jerison p. 116). Hence, in this case we have Z a subfamily

of Z and p(Z^) is, homeomorphically, a proper subset of p(Z ).

4. Conclusions.

Our examples above show that for subfamilies of the collection

of all zero sets of a realcompact space X,p(Z) need not be

homeomorphic to X. Also different strong delta normal bases

on a space X give different realcompactifications of the space.

The question immediately arises as to whether every realcompacti-

fication of a space can be obtained in this manner. That is if

Y is a real-compactification of a Tichonov space X, does there

exist a strong delta normal base Z on X such that Y is

homeomorphic to p(Z)?

In contrast, we consider the following condition on a delta

normal base Z.

(Q) If Z, => Z? => . . . 3 Z => ... is a nested sequence of

members of Z then there is a sequence (A ) of complements

of members of Z such that Z cz A <= Z , for each n.
n n n-1

If we replace the condition of complement generated in our

strong normal base by condition Q, similar results can be obtained.
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That is Theorem 3.2, Corollary 3.3, and Theorem 3.4 can be

obtained for delta normal bases satisfying condition Q.

In closing we note that most examples of Wallman real-

compactif ications that we know use subfamilies of the collection

£ of all zero sets of X as their strong delta normal base.

In this respect the following question is raised. If p(Z) is a

Wallman realcompactification of a space X with strong delta

normal base Z (which is not a subfamily of £) does there exist

a strong delta normal base £* cz £ such that p(£*) is homeo-

morphic to p(Z)?
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