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1. | nt roducti on,

In this paper we extend our results in the area of Wall man-
type (as first discussed by Orrin Frink in [4]) conﬁactifications
to include real conpactifications (see [1] and [2]). The theory
of real conpact spaces is in many ways anal ogous to the theory of
conpact spaces. To a very large extent the real conpact spaces
play the same role in the theory of C(X) (the ring of continuous
real val ued functions on a Tichonov topol ogi cal space X) that
t he conpact spaces do in the theory of C*(X) -(that subring of
C(X) consisting of the bounded functions). Since conpact spaces
have pl easant properties, their study has led to the study of
conpactifications. Usually a conpactifibation of a space can
give interesting and worthwhile information about the space itself,
For exanple, Frink (see, [4]) used a conpactification to show
t hat every ‘I'..l space with a normal base is a conpletely regul ar
Ti spéce (a Tichonov space) . 1In doing this, he gave an el egant

internal characterization of Tichonov spaces.

Si nce real conpact spaces and conpact spaces play simlar
roles, a study of real conpactifications is also worthwhile. W
use a variation of Frink’s notion of normal base to construct
real conpactifications of Tichonov spaces. W call our-bases
strong delta normal bases. It follows fromour results that a

space is Tichonov if and only if it has a strong delta norma
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2. Definitions and Basi ¢ Results,

A famly Z of subsets of a non-enpty set X is a R NG of
sets if it is closed under finite unions and finite interéections.
It is said to be a DELTARINGif it is aring that is also closed
under countable intersections. [If X .is a T.L-topological space,
then Z 1is said to be DISJUNCTIVE if for any closed set F and
for any point x not in F there is a 2 of Z that contains
x and is disjoint from F, Z is said to be NORVAL if any two
disjoint menmbers A and B of Z are subsets respectively of
di sjoint conplenents C' and D of nembers of Z.  The fanily
Z is COVPLEMENT GENERATED if for every nmenmber Z of Z there

is a seguence of conplenents (Cﬁ) of menbers of Z such that

neN

Z is their intersection. _
The family Z is a NORVAL BASE for the T.,-topol ogi cal
space X if it is a disjunctive normal ring of sets that also
~Jbrns a base for the closed subsets of X It is a STRONG NORVAL
BASE if it is conplenent generated. It is a STRONG DELTA NORMAL
BASE i f if Is a strong normal base that is also a delta ring of sets.
One of the nost inportant exanples of a strong delta nornma
base is the collection of all zero-sets of a Tichonov space X
A subset Z of X is a ZERO-SET if there is a continuous rea
val ued function f defined on X such that Z 'is the set of
all points x in X for which f(x) =0. The conpl enment of a
zero-set is called a COZERO-SET. G Il man and Jerison in [5]
have shown that this collection is a delta ring, that it satisfies

the requirenents for a normal base, and that each of its menbers
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is a countable intersection of cozero-sets (that is it is cohplenent
generated). Thus every Tichonov space has a strong delta nornal
base.

.A topol ogical space is called PERFECTLY NORMAL if it is
normal and if each closed subset is a 'GE- Thus in every perfectly
normal space the famly of closed subsets is a strong delta nornal
base.

A proper subset of a ring of sets Z is a Z-FLTER Iif it is
cl osed under finite intersections, contains every superset in Z
of each of its nenber, and does not contain the enpty set. A
Z- ULTRAFI LTER is a maximal Z-filter. (in [3], a theory of Z-
filters is given). A subfamly 3 of Z has the COUNTABLE
| NTERSECTI ON PROPERTY (c.i.p.) if any countable subcollection of
Z has a non-enpty intersection. |If Z is the collection of all
zero sets of the topological space X then X is REALCOVWACT
if every Z-ultrafilter with the c.i.p. has a non-enpty intersection.
Since a Z-filter is a collection of closed sets with the finite
i ntersection property every conpact space is real conpact. A
REALCOVPACTI FI CATI ON of a topol ogical space X is a real conpact
space Y which contains X densely.

In studying real conpact spaces the followi ng notion is very
useful. A subset A of X is QOCLCSED in X if for every point
p not in A thereis a G set G that contains p and is
disjoint from A The QCLOSURE of a subset A of X (denoted
by ‘“Q@ 's the set of points p in X such that every G- , Set

G containing p - neets A I.n general the Qvciosure of a set
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need not be closed. |ndeed, the Qclosure of any. open interval
of the real line is the open interval. However, the Qclosure
of a set always contains the set and is contained in the ordinary
closure of the set. S. G Mowka in [6] has shown the foll ow ng
two theorens which signals the irrportahce of this notion and which

we will need for our main result.

Theorem 2.1. Every Qclosed subset of a real conpact space

is real conpact.

Theorem 2.2. A topol ogical space X 1is realconpact if and only

if it is Qclosed in its Stone-Cech conpactification, #X
As a corollary to these theorens we observe that:

Corollary 2.3. A topol ogi cal space X is realconpact if

and only if it is chdsed in some conpactification of X

Proof . Nec'essity of the condition is obvious by the second
t heorem above. On the other hand, since every conpact space is
real c'onpact, the first theorem shows that the condition is also
sufficient*

In conmpactifying a Tichonov space X, Frink. (see [4])
utilized the set to(2 of all Z-ul_traf'ilters for some nornal
base Z on X A conpact Hausdorff topology for co(2 was
obt ai ned by assigning to each Z in Z the set Z% of all

Z-filters 3 in co(?2) that contain Z  The collection Zz*° of

al | ZOO for Z in Z served as a base for the closed sets in
a2 . Each x in X is represented in co(2 3 since the set
<Pp(x) of all Z in Z that contain x. is a menber of co(2 .

Through this map <p, X 1is honeonorphic to a dense subset of to(2 .
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Equi val ently a base for the open sets can be defined. For
each U contained in X such that the conplenent of U U»,
Is a nmenber of Z, assign the set U of all 3 in co(2 for
which there is some Z in 3 that is contained in U  This

collection of sets U? is an open base for the same topol ogy on X,

3. wWall man Realconpactifications.

Let Z be any strong delta normal base on a Tichonov space
X. For our real conpactification of X we consider the subspace
p(Z) of to(2 which consists of all Z-ultrafilters with the c.i¢p.
A base for the closed subsets of this subspace topology wll be
the collection of subsets 2f of all 5 in p(Z) that contain
Z. The sets <p(x) defined above are al so nenbers of p(Z). Thus
X 1s homeonorphic to a dense subset of -p(Z) via the'nap Q.

In [3] , Alo and Shapiro have gi ven sone basic properties of
this space. In particular the following | enma, which will be

eneeded in the next theorem is proved t here.

Lenma 3.1. Let Z be a delta ring of sets which is a base
for the closed subsets of the topological space X and let 3

be a Z-ultrafilter with the c.i.p. |If (An) is a sequence

neN
of sets in & then the intersection A of the s6ts’ An is in 3.

Theorem3.2. Let Z be a strong delta nornal base of a

Ti chonov space X. Then X is honeonorphic to a dense subspace

of a real -conpact space p(Z2).

Proof. The theoremwill followfromthe Corollary 2.3, if

we show t hat p(Z) is Qclosed in its Frink-type conpactification
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co(Z) . Let 3» be any menmber of £d(2 that does not have the c.i.p.
and let (Z,)) .. be a collection of subsets of 3 such that their
1’ 1eN
co(2 » Let 5 be any nember of o00(2 that does not have the c.i.p.
and | et (Z.l) 1eN be a collection of subsets of 3% such that their
intersection Z is enpty. Since Z is a strong delta normal base,

each Z. is generated by a sequence of open subsets (A ) ..
[ lyn nGN

whose compl ement s gre in Z. Let G -be the intersection of the
basi c open sets (Al’n).l’neﬁ'. "Since zZY is contained in AR

for each n, the & set G contains 5 On the other hand by
the lemma no Z-ultrafilter with the c.i.p. can be contained in

G Hence G does not neet p(Z) and therefore p(Z) is Qclosed

in co(Z) . This conpletes the proof.

Corollary 3.3. If Z 'is the strong delta normal base of all
zero sets of a Tichonov space X, then p(Z) is precisely the Hewitt

real corrpact ification uX

‘Theorem 3. 4. If Z 1is a strong delta normal base on a

Ti chanov space X, then p(Z) is the .Qclosure of <p(X) in co(2 .

Proof. If 5 1is any elenment of co(2 without the c.i.p.,
then the proof of Theorem 3.2 exhibits a G"O set * G- that
cont ai ns 3* and m sses p(Z). Therefore G msses the subset
<p(X) of p(Z). Hence the Q—cllosure of <p(X in- co(2) is contained
in p(Z).I To show the other direction it is sufficient to
consi der only G’o sets G which are the intersection of basic
open sets A: Wh_ere t he conpl enent of‘ An is in Z If G is

such a set which contains a member 5 of p(Z) then for ‘each n
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there is a Zn in Z such that ZnC/L.S Since 3ep(Z) , we can
choose an x in the intersection of the Zri Then <p(x) is in
the intersection of G and <p(X and therefore p(Z) is contained
in the Qclosure of <p(X in co(d . This conpletes the proof
of the theorem |
Since the Qoclosure of a set is Q-closed, Theorem 3.2 can
be deduced from Theorem 3.4 using Theorem 2.1. However, our
approach abové is justified by the inportance of the construction.
In considering strong delta normal bases on real conpact
spaces the following exanple is interesting. Let X be a
di screte space of cardinality ¢ (or any uncountable discrete
space with non- measur abl e’ car di nal [see G || man and Jerfson
p. 163]). Let %. be the collection of all subsets A of X
such that A or the cohplenent of A AT, is at npbst countable.
It is easy.to verify that Zl Is a strong delta nqrnal-base.
Now p(Zl) is not equal to <p(X for there is a nmenber 5 of
p(Z1) that is not in <p(X . In fact let 3 be the Z*rfilter
that is the collection of all subsets of X whose conplenent is
at nost countable. It is a Zl-ultrafilter since the conpl enent
Z of Z is in # for any menmber Z of a filter cont ai ni ng
# where Z is not in 3. if (é}) AN 1S any sequehce of seté
in 3" then their comon intersection Z is not enpty since the
complenent of Z s at nmost countable and hence not equal to X
This shows that # has the countable intersection property.

Finally X - {x} is in 5 for each x in X and the conmmon
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intersection of these sets is enpty. It follows that the inter-
section of all the sets Z in 3 1is enpty. Thus 5 1is not
in <p(X .

Anot her interesting exanple is to consider the_sane space
X with the strong delta normal base 22 of all subsets of X
It is clear that P(izA =VX='A(X) by Corollary 3.3 and by the
fact that X is realconpact if and only if X = vX (see G || man

and Jerison p. 116). Hence, in this case we have ZL a subfamly

of 22 and p(Z") is, honmeonorphically, a proper subset of p(Zl).

4. Concl usi ons.

OQur exanpl es above show that for subfamlies of the collection
of.aII zero sets of a real conpact space X, p(Z) need not be
homeonorphic to X. Also different strong delta nornmal bases
on a space X give different real conpactifications of the space.
The question immediately arises as to whether every real conpacti -
fication pf a space can be obt ai ned in this manner. That is if
Y is a real-conpactification of a Tichonov space X, does there
exist a strong delta normal base Z on X such that Y is
homeonorphic to p(2)? _

In contrast, we consider the follow ng cpndition on a delta

normal base Z.

(Q _If Z,L:> Z,» => ... 3 % => ... is anested sequence of
menbers of Z then there is a sequence (An)neN of conpl enents
of menbers of Z such that Z cz A <=2 , for each n.

n n n-1

If we replace the condition of conplenent generated in our

strong nornmal base by condition Q simlar results can be obtained




That is Theorem 3.2, Corollary 3.3, and Theorem 3.4 can be
obtai ned for delta normal bases satisfying condition Q

In closing we note that nost exanples of Wallman real -
conpactifications that we know use subfamlies of the collection
£ of all zero sets of X as their strong delta nornal base.
In this respect the followi ng question is raised. If p(2) is a
Wal | man real conpactification of a space X wth strong delta
normal base Z (which is not a subfanily of £) does there exist
a strong delta nornmal base £* cz £ such that p(£*) is homeo-
nmorphic to p(2)?
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