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Part I: The General Theory

Two papers by COLEMAN ([1],[2]), published in 1964, have

created a great deal of interest in the study of thermodynamics of

materials with memory* Subsequent papers by WANG and BOWEN [3],

COLEMAN and MIZEL ([4] ,[5] ), GREEN and LAWS [6] , and GURTIN[7] , have

examined the basic structure of Coleman's theory and have led to

generalizations of Coleman's results.

Coleman's results are of two types* Results of the first type

rest on a knowledge of material response to suitably short (in time

duration) continuations of any history of deformation* The gener-

alized stress relation and generalized dissipation inequality

(Theorem l#[l] ) are examples of results of this type. Results

of the second type rest on a knowledge of material response to

suitably long continuations and suitably slow time reparameteriza-r

tions of any history. Coleman's results of the second type estab-

lish both the extremum properties of the free energy functional

at constant deformation histories as well as the relation between

the slow limit approximation to the general therraodynamic theory

and the usual equations of equilibrium thermodynamics (Theorems 3#

4,5, [1] ) . In this paper I discuss only results of the first

type.



In the papers [3]# [5] and [7], results of the first type are

consequences of two important properties of the response function-

als: (1) The domain of the response functionals is closed under

local linear continuations, and (2) on sufficiently smooth his-

tories, the free energy functional possesses a chain-rule property.

A continuation of a given history of deformation is a history

obtained by adding a new segment to the given deformation path.

(The new segment may represent a constant deformation, in which

case the continuation is called a static continuation)• A local

linear continuation is a continuation of short duration performed

at constant strain-rate and temperature-rate* The chain-rule

property for isothermal deformations is a relation of the form

0 B D0. p + 60 (*)

where 0 and F represent the current rates of change of free

energy and deformation gradient respectively, and where the coeffic-

ients D0 and 60 are history dependent. In particular, each of

the papers [1], [3], [5], [6] and [7] uses a form of (*) in which

the coefficients D0 and 60 are independent of P and, further-

more, are continuous on local linear continuations of continuous

histories.

In addition to a restriction on the entropy functional, the

generalized stress relation implies that



T «

where T, F and p are the current values of Cauchy stress,

deformation gradient and density, respectively. The generalized

dissipation inequality takes the form

60 +• (q*g/pe) < 0

where q»g is the inner product of the heat flux vector q and

the temperature gradient vector g. This inequality implies that

60 <. 0. (In Coleman*s theory, 60 corresponds to the negative

of the internal dissipation, i.e. -p60/e represents the current

entropy production. It should be noted that, for Coleman's theory,

the heat conduction inequality q*g < 0 is not valid, in general

but is replaced by the generalized dissipation inequality).

In this paper I establish counterparts of the generalized

stress relation and generalized dissipation inequality for a class

of materials which includes elastic-plastic materials. For such

materials, the entropy production is not necessarily continuous on

linear continuations. In fact, a plastic-elastic transition may

involve a jump discontinuity in the entropy production. Thus, it

is necessary to obtain a form of the chain rule property in which

60, may have jump discontinuities during linear continuations. In

the theory which follows, a relation similar to (*) is derived,



and the counterpart of the quantity 50 has the property that

it vanishes during certain continuations of any history. This prop-

erty along with an approximation property for the counterpart of

D0 allows Coleman's main results to be proved for the class of

materials discussed here*

More specifically, I discuss here a class of simple materials

characterized by the existence of a collection of strain-temperature

points called the elastic range. The elastic range depends upon a

given strain-temperature history for a material point and is intro-

duced here through the concept of the elastic set for the given his-

tory. The elastic set consists of all histories which are continu-

ations of the given history and which give a special type of mater-

ial response: the free energy functional is locally path-indepen-

dent on the elastic set. (Histories in the elastic set are called

elastic continuations.) Roughly speaking, this condition specifies

that if an elastic continuation is itself continued in any direction

for a short time# the free energy response functional behaves like

that of a hyperelastic material. As indicated above, the entropy

production - 60 vanishes during an elastic continuation of any

history. In fact, I show in Section 8 that the quantity 60

reduces to negative the "plastic power production11 in the case of

an infinitesimal theory of elastic-plastic materials.

The proof of the generalized stress relation and the general-



ized dissipation inequality has three main parts. First, the

analogue of (*) is derived. Next# the results are proved for

elastic continuations of a fixed but arbitrary history. Lastly,

the results are extended to the given history. The proof for

elastic continuations relies on the fact that a form of the chain

rule, with <50 identically zero and D0 continuous, holds dur-

ing elastic continuations. The method of extension to an arbitrary

history relies on the continuity of the stress and entropy function-

als during certain continuations of any history.

The present theory is general enough to include rate effects

during intervals of time when a given history is not an elastic

continuation of any history (i.e., during the so-called loading

periods). However, during elastic continuations, rate effects

necessarily are absent. This last restriction can be removed with-

out difficulty. In fact, the present theory can be extended to

include rate effects at any time during a deformation. (To obtain

the more general theory, one can introduce a viscoelastic range

in place of the elastic range. Coleman's results would apply dir-

ectly for "viscoelastic continuations" and the method used in the

present theory would allow these results to be extended to arbi-

trary histories.)

In this paper, no assumptions of fading memory are made. Thus,

the effect of events in the distant past on the present material



response need not be small* One assumption is made which restricts

the short-range memory of the materials in question: recently

encountered states of strain and temperature are elasticallv access-

ible from the present state. In other words, elastic continuations

to certain past states of deformation always are possible*

The present theory is a generalization of the theory of PIPKIN

and RIVLIN [8] and of the theories of GREEN and NAGHDI ( [9], [10 ],

[11]). The assumption of the existence of an elastic range under-

lies each of these theories, including the present one* However,

the present theory gives an analysis which is not limited to rate-

independent materials and which does not depend upon the concepts

of elastic and plastic strain* It is worth noting that the con-

cepts of elastic and plastic strain arise naturally in the general

theory presented here. In addition the generalized stress relation

can be used to derive constitutive relations for the plastic strain

rate. These remarks will be discussed in a future paper. The

notions of elastic and plastic strain which are used in Section 8

of the present paper are the classical ones appropriate for the

theory of elastic-plastic materials.



Let A be the set of all pairs a = (E,t/) where E is any

second-order tensor in R and v is any real number* (Through-

out this paper, Rn denotes an n-dimensional vector space.) The

set A is given the structure of ten-dimensional Euclidean space

with addition and scalar multiplication defined in the obvious

way and with inner product and norm defined by the relations

a1-a2 - tr(E;LE2
T) + v^

|a| = [tr(EET) 2 h

respectively. A gogitivg, E&i£ is defined to be a pair of the form

(F,6) where F has positive determinant and 9 is positive. (In

this presentation, F will represent the deformation gradient and

© the temperature at a material point.) The symbol A denotes

the set of all positive pairs, and it is clear that A is an

open subset of A.

A mapping f: [0,oo) - A is called a §ir̂ ijî Ĵ jijESJea&lta feigr

tor£ or, simply, a history. The set of all histories is denoted

by G+. The difference between two histories in general is not a

history. However, the difference is a mapping from [0,oo) into

A. The symbol Q represents the collection of all mappings with

domain [0,oo) and with range a subset of A.

Following COLEMAN and MIZEL [4], it is convenient to define
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for each a€[0,oo) the o-section of a history f by the relation

f / x (s) » f (s + a) ,
(cr)

S€[0#oo)* The history f , * is one obtained from f by removing

a recent piece of the strain-temperature path associated with f•

Let f and g be histories. If there exists a€[0,oo) such

is a continuation of f and a is a positive pair such that

g(0) = a# then g is called & £££feyj»a£A^ &£ f £& a. If

cr€[0,oo) and beA, the [cr,b] local i^lg^£SS^iiiS£i£S o f ^ i s

defined by the relation

ft(s-cr), s >. a
f [a#b] (s) = t

vf (O) + (s-a)b, 0 < s < a#

Note that for a sufficiently small, f[a,b]eG+
#

The derivative of a history evaluated at s€[0#oo) is denoted

by f(s) and the corresponding mapping of [0,oo) into A by

f• In Section 3 a discussion of smoothness requirements for his-

tories is presented*

The following notation will be used for present values of

thermodynamic quantities at a fixed material point:

p • • • density

0 • . • temperature



€' • . • internal energy per unit mass

T) . . . entropy per unit mass

0 • • • free energy per unit mass

r . . . heat supply

b . . . body force per unit mass

g • • • spatial temperature gradient

q . . . heat flux vector

F . . . deformation gradient

T • . . Cauchy stress

L . . . velocity-gradient tensor.

The present values of the time rates of change of 0 and 77 are

denoted by 0 and TJ # respectively. (The dot is used both to

denote differentiation with respect to time and also with respect

to the variable s. The particular use of the dot will be clear

from the symbol above which it appears.) The pair LeA is defined

by the relation

If f denotes the history of strain and temperature, the first

and second laws of thermodynamics can be combined to give the inequal-

ity

i + E-f (0) + q*g/pe < 0.
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This inequality will be referred to as the Clausius-Duhem inequal-

ity. The symbol "•" denotes the inner product in n-dimensional

Euclidean space. (The value of n should be clear from the con-

text.) The sign appearing in front of the term in £ is positive

because £(0) represents a derivative with respect to the vari-

able s. One can interpret the variable s as a backward measure

of time with s=0 denoting the present instant.

In Section 7 Coleman and Noll's method [12] is used to deter-

mine the implications of the Clausius-Duhem inequality for a class

of materials with memory. For the purpose of the thermodynamic

analysis this technique regards the body force and heat supply as

quantities determined through the laws of balance of momentum and

balance of energy. Of course, for a problem in which the motion

of a particular body is to be determined, the body force and heat

supply must be treated as fixed quantities.
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3.

Consider first the class of all functions h€G such that h

is continuous, bounded, and piecewise smooth with bounded deriva-^

tive in [0,oo). This class is denoted by PS. If h(s) does

not exist in the usual sense, define h(s) = h(s+). The fact that

h is piecewise smooth guarantees (by definition) that the limit

h(s+) exists. For each h€<PS the number ||h|| = sup |h(s)|

se[0,oo)
is finite.

The histories discussed in the sequel are restricted to belong

to the class PS + =JP§> n G +. The assumption of boundedness for

the histories and their derivatives rules out histories such as

those arising in steady viscometric flows. However, since the

materials on which the present theory is based are not capable of

undergoing such flows, the boundedness condition in the definition

of PS+ i s n ot unduly restrictive.

Since P s + c p g ^ tk e n o rm ||«|| induces a topology on PS + #

The next two lemmas give some properties of this topology.

,&§S©£j.. L e t f be any history. Then || f - f, J| -•> 0 as a -> 0,

£roof. Let cr,se[0,oo) and assume that f is continuous in the

interval (s,s-hj). Applying the mean value theorem to each com-

ponent of f, one obtains the inequality

f(a)(s) - f(s)| < VlO Mfa
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where M e(0,oo) is chosen so that J f(s)J < M for every

se[0,oo). Since f only has isolated jumps, the same estimate

for the difference |f (s) - f(s)| applies for any interval

(s,s+a). Hence ||f, - f|| < YlO M a and the result follows

lor) ^

immediately.

Lemma 2. Let f€^S+
# beA and a€[0,oo) be such that the local

linear continuation f [<r,b] €<PS+. Then f [a ' ,b]ePS+ for 0< a1 < a

and ||f - f [a f
#b] || - 0 as a - 0.

JProof. Clearly, i f f[a,b]eP$+ then f[a',b]e<PS+ for every

o^elOfOi. The last statement in the lemma can be proved from the

estimate

lifter',b] - f|| < sup | f [ c r \ b ] ( s ) - f (s) ]
cr'< s

+ sup |f[or',b] (s) - f(s)

sup { | f [ o r ' # b ] (s) - f (0) |
or1

+ | f ( 0 ) - f ( s ) | } .

Lemma 1, the definition of f[af
#b]# and the continuity of f imply

the desired result.

It is convenient to introduce some additional notation at this

point. The set of all continuations of f is denoted by C(f).
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If a€ A+, then the set of all continuations of f to the positive

pair a is denoted by C(f,a). In defining the elastic set, the

histories which are continuations of a given history g and which

are close to g play an important role. If 0 < 6 < oo, the set

C~ (g) is defined to be the collection of all continuations of g

such that j|h - g|| < 6 whenever heC (g) . Each element of

Cg (g) is called a 6-oontxmxatl^ of g. The concept of a 6-gontiiv-

uation of g to a, where a is any positive pair/ is defined in

the obvious way. The set of all such 6 continuations of g to

a is denoted by Cc(g#a). It is worth noting that the number
o

||g - h|| compares the histories g and h as functions on [0,oo).

Consequently, for a fixed 5, a local linear continuation of g[cr,b]

in general will not be a 6-continuation of g if a is too large•

The same remark applies to static continuations of a fixed history.

HUNT LI&MflY
CARNEGIE-MELLON UNIVERSITY
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4. Th£ General Form fo£ the, ConstiJbj^ive^ Relations.

The terms ti^£modynamic^ ££25^55, anc^ ̂ SSiSSifei^ ^S£5!25XS5SiS,

process are used in the sense of COLEMAN and NOLL [12]. In the

present context the constitutive relations take the form

A
L = £(f)

where *|) maps PS + into the reals, L maps PS+ into the set

of pairs A , and q maps PS x R into R .

Henceforth it is required that every admissible thermody-

A
namic process satisfy the Clausius-Duhem inequality. If H>

A

and S are allowed to depend upon g , then, with suitable smooth-

ness assumptions, the Clausius-Duhem inequality rules out such

dependence (see [1] for an analogous case) . For convenience the

dependence upon g is omitted from the outset.

The following smoothness assumptions on $, I) and q are

now set forth:

£51 • L and q are continuous on PS and PS x R , respectively.

S2. The limit

lim
crAO or

exists for each fePS .

These assumptions require that the generalized stress, the heat

flux vector, and the free energy functionals retain certain smooth-

ness features of the histories on which they are evaluated.
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5. The El^astic £3et ̂ and /the plastic Rarvje.

This section contains a detailed description of the materials

of interest here.

£efini^tion 3.. Le

of histories. Then y is. said to be path-independent on Q if.

y (g ) = y (g9) whenever g.. (0) = g (0) and g-i#g^€Q»

The notion of path-independence arises in the study of hyperelastic

materials. In fact, a hyperelastic material is one for which the

free energy functional is path-independent on the set of all his-

tories, i.e. on all of

The notion of path independence is the central idea in

£,• Let f be. a, history and let g be a continuation

of f with g, v = f and a > 0. Then g is. said to be an eJLas-

ic ̂ continuation oj!̂  f ijf the following conditions hold;

1. For each a *€[ 0,a) there exists 6 = 6(a',g) > 0 such

that the free energy functional 0 is; path independent

on the set of all 6-continuations of g, ,N.

2. lim 6 (a9 ,g) > 0.
c/40

If condition 1 holds with a ' = a, then f ij5 said to be an

^elastic continuation ^ ^itself. Before a discussion of this
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definition can be given, some additional terminology must be intro-

duced. If g is an elastic continuation of f and g(0) « a,

then g is said to be an elas£i£ S^y&ja&iSft a£ f £o a. The

set of all elastic continuations of f will be denoted by £(f)

and called the elastic set for f• Note that f is included in

£(f) in the event that f is an elastic continuation of itself.

The set of all elastic continuations of f to a positive pair a,

i.e. £(f) n 6(f,a), will be denoted by e(f,a).

The definition of elastic continuation presented here is

related to the familiar description of hyperelastic materials:

the constitutive functionals (in particular, the free energy) of

a hyperelastic material are path-independent on PS^# The essen-

tial idea in developing a theory which includes elastic-plastic

phenomena is that of requiring that the free energy functional

be path-independent on certain proper subsets of PS^ rather than

on the entire set. For each elastic continuation g of a history f,

with 9(CT) - ff ancl for each a1 e[0,o), there corresponds one such

proper subset of P§^"# namely, the set of all 6-continuation of

9(a\# where 6 = 6(a*,g). In other words, sufficiently short con-

tinuations of 9/ai\ * n all directions produce a path-independent

response from the functional $ . It should be noted that one can-

not expect, in general, that f will be an elastic continuation

of itself. (Take the case of an elastic-plastic material when the
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current stress is on the yield surface.) For this reason cr'e[O,cr)#

rather than ote[0,a)t is written in part 1 of Definition 2. Con-

dition 2 of Definition 2 guarantees that the sets ^^^in%\^ o n

which ty is path-independent not shrink in diameter to zero as

a1 -• 0. If one were to assume that 6(#,g) is a continuous func-

tion, then this condition automatically would be satisfied*

In the next formal assumption, it is required that, even if

f is not an elastic continuation of itself, f must be a limit

of elastic continuations of f to points f(cr) as o — 0# Hence,

a sequence of recently encountered strain-temperature points can

be reached via elastic continuations which, themselves, differ

only slightly from the history f*

Al. For each fePS+ the closure of the set U £(f,f(cr))
cre(0,oo)

contains the history f•

In particular, this assumption implies that the elastic set for

each history is non-empty•

In general, if aeA and g(0) = a for some elastic contin-

uation of f, the pair a is said to be elastically accessible

f. The set of all pairs aeA"1" which are elastically access-
ible from f is denoted by E(f) and called the

f. Thus, for each history, the elastic set is itself a collection

of histories, while the elastic range is a set of strain-temperature

points, i*e. a set of positive pairs.
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The next lemma describes properties of the sets S(f)

E(f).

Leniina 3. Let f be any history• Then

1. If. g is an elastic continuation of f then £(g) <=

and hence E(g) c E ( f ) .

2. The elastic range E(f) is an open subset of A+*

# The proof of 1 requires an examination of Definition 2.

Suppose that g€&(f) with g/rT%= f# If heS(g) with h, . = g,

t h e n h(a+<x*) = f- L e t

(6(af,h), a'efO.a*)
6* (a*#h) = J

[6(a•-a*,g), o* e[o*,o*+o).

Writing 6* = 6*(af
#h)# it follows that i/) is path - independent

on CL*(h, ,,) for every af€[0#a*+a)# Furthermore, lim 6* (<?' #h) > 0.
6 ^a ; a'*0

Hence,

The idea of the proof of 2 is to show that certain local

linear continuations of each ge6(f) are elastic continuations

of f• The following estimate is needed: let g€PS+
# e > 0 and

beA with |b| = 1; then

lig - gU # b] II < €[2i£o M
g

where M = sup |g(s)|. Now# let g€&(f)# with 6 = 6(0#g) and
_ se[0#oo)
e s 6/[4Vio M + 2 ] * By the above estimate, if € < ~e, then
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g - g[€,b]||< 6/2, and (• (g[€#b]) c C (g) for every b such

°/4 °
that |b| = 1# Hence ij) is path-independent on the set C*/4 (g[€,b]) ,

so that g[€#b]€6(g) for each e < "e and b such that |b| = 1.

Since g€6(f) it follows from the first part of this lemma that

g[6#b]e6(f). Hence all positive pairs of the form g(0) + eb#

with € < T and |b| = 1 are elastically accessible from f# It

follows that E(f) is open.
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6. Progerties of $ .

Condition 1 in Definition 2 guarantees that \j) is path-

independent on the set C§ (g) , where 5 = 6(0,g) and ge£(f).

Another way of stating this condition is to say that ty is con-

stant on the set C^g#a) for each fixed aeA+. (If this set is

empty, i/) trivially is constant.) For each ge6(f) it is natural

to define a function which is derived from the restriction of

to c
s ( g ) . Accordingly, if ge£(f) and aeA+ are such that

C~ (g#a) is non-empty, define "̂ (a;g) by the relation

where g* is any element of C (g,a). If TT : <PS+ -•A is the

projection operator, i.e.

7T (g) - g(0)
o

for each gePS , then the domain of *M*;g) is the open set

The next assumption gives important smoothness properties of

£>3. 1. Îf g is an elastic continuation of f, then */)(#;g) jLs

A c function on E (g).
o

2. Let v</)(*;g) denote the gradient of ^(#;g)# Assume

def
= (0)7g)

n -• oo n
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exists for every sequence (gn)
 c ®(f) for which g "* f

an n-oo and that Di/>(f) is independent of the partic-

ular sequence (g«) chosen from &(f) # Then Dti)(f)
_ _ _ . .1. *̂ n • — — — — — i

satisfies the following approximation property: there

exists e > 0 such that

- f(0))

+ o(|h(0) - f(0) |)

whenever h is both an elastic continuation and an

e-continuation of f.

The smoothness assumptions guarantee that 0 (locally) resembles

the free energy response functional far a hyperelastic material•

Two remarks are relevant to the assumption in part 2. First of

all# in Section 7 it will be shown that D^(f) exists for every

history f• Secondly, the approximation property in Part 2 of

S3 has the following significance* The functions W#;f) and

V(/) (#;f)#maynot be defined in the event that f is not an elastic

continuation of itself* It is essential in order to obtain a

chain rule property to assume that D^f) satisfies an approxi-

mation property analagous to that satisfied by a C 1 function.

The assumption that such an approximation property holds is reas-

onable in view of Lemma 5 (to be proved in this section), which

shows that D</)(f) and Vj/)(f(O);f) are equal if f is an elastic
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continuation of some history. It is convenient to give a name to

the pair D*/)(f). Accordingly, Di/>(f) will be referred to as the

elastic^ 2£S5iS2J^ 9JI J&t £US£Si25lSi ^ ~fc ^# It is clear that

is an element of the set A. (Recall that A is the set

of all pairs, positive or not.) Furthermore, Di/)(f) may depend

upon all of the values f(s) where s€[0,oo).

The assumption that the elastic gradient satisfies the above

approximation property implies that another type of gradient of

*/) exists whenever the elastic gradient itself exists. This

gradient is computed from difference quotients

where f* ' is an elastic continuation of f to the pair f(a)

and where ||f - f || - 0 as <x-* 0. Note that Al, Section 5,

(a)
guarantees that there always exists a sequence of histories f

having such properties. If lim A i/)(f) exists, the limit is

denoted by 6(|)(f) and is called the histg££ 2£&diejijk g£ ty %& f.

The history gradient will play the role of the corresponding quan-

tity 5ij) discussed in the introduction.

Lemma 4. Let f be a history for which the elastic gradient at

f exists. Then the history gradient at f exists and jLs given by

= $(£) + D*(f)-f(0).
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Note that the last relation is the verstion of the chain rule

property appropriate to the present theory.

JProof. The idea of the proof is to wx̂ ite £ &(f) as the sum of

two difference quotients and to show that each quotient has a

limit. Thus

a

By S2 (Section 4), the first term on the right hand side above

tends to $(f) as o - 0. From S3,

..,_. (f(g) - f(0))

since f (0) = f(a) and jf(0)| is finite. As a - 0, this

relation becomes

lim

The existence of the history gradient and the validity of the

chain rule property follow at once.

Lemma 5. Let g be an elastic continuation of f. Then the

elastic gradient and, therefore, the history gradient at g exist,

Furthermore.

= 0 .
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Proof* To show that D*/)(g) exists let (g } c £(g) with

llg - sll "* 0 as n - oo# By Lemma 3, {gnJ <z 6(f) and, for n

sufficiently large/

4>(gn(0);gn) -

Thus# it follows by similar reasoning that

Consequently, D^(g) exists and has the value

lim V4>(g
n"* 00

In order to show that 6$(g) - °# observe that if ge6(f),

then the histories 9ia\ a n d 9 (for ^ sufficiently small)

can be chosen from a set on which y is constant• (The validity

of this observation rests on Condition 2 in the definition of

elastic continuations; the proof is not included here since it

is elementary but rather detailed*) Thus,

for a sufficiently small. Clearly, this relation implies 6̂> (g)
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The derivative W1 in the theory of PIPKIN and RIVLIN [8]

provided the motivation for the introduction of the history grad-

ient in the present theory. Although the two types of "derivatives11

are conceptually related, W1 and 6$ have quite different proper-

ties. In fact, the precise analogue of the history gradient in

[8] is W1 evaluated at the present strain. This quantity is

identically zero while, as is shown in the next section, 5$ is

not.
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If D0(f) exists, then the expression for $ = i/>(f) obtained

in Lemma 4 can be substituted into the Clausius-Duhem inequality

to give

Now, suppose g is an elastic continuation of f. Then, from

Lemma 5, D*/)(g) exists and equals v#(g(O) ;g) ; furthermore,

SiMg) = 0# In this case, the Clausius-Duhem inequality takes the

form

+ q(g;g) *g/pe < 0.

The proof of Lemma 3 shows that 6(f) is closed under local lin-

ear continuations* From a standard argument (c.f. [3], [5], [7], [12] ),

one obtains

Lemma 6* Let g be. an, elastic continuation of f. Then the

generalized stress relation and the heat conduction inequality

hold, i•e.

XXg) = D</>(g) ( = v<Mg(o);g))
A,
q.(g?g) #g <. °

for every geR .

These results correspond to the classical thermodynamic results

for hyperelastic materials.
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Stronger results can be obtained using the continuity of

A A

L and q (Si, Section 4)• These results are included in

Theorem 3̂ . Let Sl# S2# S3 and Al hold* Then necessary and

sufficient conditions for the Clausius-Duhem inequality to hold

for every admissible thermodynamic process are the existence of

the elastic gradient at each his tory and the relations

E(f) =

q(f;g)#g < o

which hold for every hi story f and for every geR3,

Proof,. Let f€<PS+# From Al# there exists {g ) c e(f) such

that || g -f||-*0 as n-*oo. According to Lemma 6,
nn

£(gn) = v«/>(gn(O);gn)

for n = 1#2#««« and for every geR3. The assumption SI then

implies that D$(f) exists# that

cind that

qff;g)-g
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for every g€R3. The first relation can be substituted into the

Clausius-Duhem inequality to yield

3
This inequality must hold for every g€R . Setting q = 0#

60(f) <̂  0 is immediate. Clearly, the existence of D0(f)# the

generalized stress relation, and the two inequalities in the state-

ment of Theorem 1 imply that the Clausius-Duhem inequality is

satisfied.

The following corollaries are immediate consequences of

Theorem 1.

Corolla^ 1. if g is. an elastic continuation of f and g*

is ja continuation of g, with g* sufficiently close to g, then

This result shows that the stress and entropy are locally path-

independent within the elastic set.

Corollary 2. Let f€PS+. Then

p6J/)(f) = -[peri - (pr - div q)]

where ©,TJ cind q are computed from the history f.

Corollary 2 follows from Theorem 1 and the energy balance equation

j) = -£.f(0) - [6T7 - (r - div q/p)J .
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The expression for 60 given in this corollary shows that 60

is analogous to the internal dissipation defined by COLEMAN [1].

(It should be noted that the internal dissipation in Coleman's

theory is related to a Frechet derivative whereas 60 is not.)

In Section 8 a special theory is given ii> which -p60 reduces to

the rate of performing "plastic work11 . This special theory along

with Corollary 2 indicate that the quantity 60 is a reasonable

generalization of the notion of dissipation in elastic-plastic

materials.

The fact that 60(f) < 0 implies

3. Let fePS+. Then

p60(f) < -£

COLEMAN [1] proved a corresponding result for materials with fad-

ing memory. It is interesting to note that equality will hold in

Corollary 3 if f is an elastic continuation of some history f*.

Hence, roughly speaking, the rate of performing work is accounted

for completely by changes in free energy whenever the current

history lies within an elastic set. From these thermodynamic con-

siderations, the term "elastic set" is justified in the present

context.



30

of Ela^tic^Pla^^ Materials.

In order to illustrate the results in Theorem 1, a special

theory is discussed. This theory uses the definitions of elastic

and plastic strain-rate given by HILL [13]; in addition the deform-

ations are assumed to be infinitesimal, i.e. the components of

F-I are small in comparision to unity. The assumption of small

strains is not essential and is made only for convenience.

We restrict our attention to the class of histories

PS+ = C fePS+|f(oo) = (i,e)# e> o}.

Here, I denotes the unit tensor.

(This restriction also is made for convenience and is not essen-

tial to the theory discussed here.) For each f€<PS+ the Green-
o

St. Venant strain tensor is given by

E(f) = %(FTF - I)

where f(0) = (21,©) • Of course, E(f) depends upon f only

through the pair f(0). The strain-rate E(f) is defined by

the relation

E(f) - E(f t .)
E(f) = lim— tei_ #

Clearly, E(f) exists for each f€pSQ. The symmetric part L

of the velocity gradient tensor satisfies the relation
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L (f) = (FA)"-H
S

for each fePS • For infinitesimal deformations the last relation
o

takes the form

L s(f) = E(f) ,

and i t i s clear that the relation E= (T(F ) V p, -17) becomes

A A
where p is the density when s = +00 and T and 17 are the

stress and entropy response functionals.

The elastic strain-rate for f, Le(f), is defined through

the relation

Le(f) = £e(T(f),e(f))

where 6(f) is the second component of the pair f(0) and where

£ e is a bilinear, symmetric tensor-value function. It is assumed

that the stress-rate at f,

A

e x i s t s at each fePS^ . The giasJfeAfi 5JfeCAiS^fi£ f, E e ( f ) , i s

defined by

Ee(f) = - / Le(f )dcr .
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The plastic ̂ strain^rate for f, LP(f), and the plastic ̂ strain

for f, E p(f) # are defined by the relations

LP(f) = Ls(f) -L
e(f)

and

EP(f) - - | Lp(ft )da ,

respectively. The definitions of Le(f) and L (f) follow

those given by HILL [13]; the definitions of E and E p are

natural ones to make for the infinitesimal theory. The relation

Ls(f) = E(f)

and the fact that f(oo) has the form (I#©) implies that

E(f) = Ee(f) + EP(f)

for each f€<P£*". It is important to note that E (f) and

E (f) may depend non-trivially upon the entire history f whereas

E(f) only depends upon f(0).

Next,two constitutive assumptions are made which embody the

basic features of elastic-plastic materials.

.̂ Let A = { ( E # 6 ) € A | E i s symmetric and 6 > 0} . Then there

exists SL C function */>* on A e such that, for every

, e).
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C2. The mapping f - Ep(f) is continuous on PS and

exists for each fe<PS+. Furthermore, for each fep &*, there

exists a non-empty connected open set E*(f) c A + such that

1, If g, N = f and g(af)eE*(f) for o < a1 < a, then

Ep(g(a)> - EP(f).

2- There exists a (f)e(0#oo) such that f(crl)GE*(f)

for o < a1 < a •
o

The gradient of $* is denoted by d*/)*(E#e) and the first

component of the gradient by ^ E^*(E #9) #

The next lemma shows that the existence of E*(f) implies

that £(f) is non-empty*

Lemma £• IJ. SI, Cl and C2 are satisfied, then

1. S2 holds, i.e.# 0(f) exists at each fdPSo.

2. 6(f) is non-empty and E*(f) cE(f).

3. Al is. satisfied,

Proo£. Since */)* is smooth and Ep(f) exists, i/)(f) exists

for each fePS . To show that 6(f) is non-empty, note that

any history g satisfying the hypothesis of condition 1 in C2

is an elastic continuation of f • In fact, the special form for

given in Cl and condition 1 of C2 imply that $ has the

appropriate property of path-independence for short extensions
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of g. The connectedness of E*(f) and condition 2 of C2 imply

that E*(f) is a subset of E(f). Condition 2 of C2 implies

that Al is satisfied.

Thus, Lemma 7 shows that SI, Cl and C2 define a class of

materials to which the theory of Sections 1 through 5 applies.

Denote by e*(f) the set of all histories g € p SQ such that

g = f and g(a')eE*(f) for 0 < a* <CT; clearly, from Lemma 7,

e*(f) c e(f). The next lemma shows that the restriction of $

to 6*(f) determines the quantities D</)(f) and 60 (f).

Lemjna 8. Let fePS*. Then Djf)(f) and 6i/)(f) exist and are

given by

and

= - tr[VT?«l)*(E
e(f)/e)E

p(f)],
J

where the first relation is valid to lowest order in the quantity

F-I and the second relation is exact.

Proof. Let fePS+ with f(0) = (F,6), let a1 = (F1,6') eE* (f),

and let g,g'€e*(f) with g'eG(g) and g'(0) = a'. Recall

that ^(a';g) is defined by the relation
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whenever g1 is sufficiently close to g. It follows that

= 4>*(E(g') -

= i|)*(E' - EP(f),6«)

where E' = ^(F^F 1 - I ) . Thus, «f>(a';g) only depends upon f

and a*. Consequently, V^(a';g) is given by

V^(a';g) = VJ/)*(E'- Ep(f) ,6'),

to lowest order in F1- I. Since */>* is C 1 it follows that

D0(f) exists and is given by the relation

Di|)(f) = v«/>*(E
e(f),e).

The proof that 60(f) exists is accomplished by means of a direct

calculation. In fact, if fa is any element of 6*(f) such that

fCT(0) = f(a),

6«/)(f) = lira
o-4-O °

^*(E(f<r) - EP(f ),e(c)) - j/j*(E(f((y)) -EP(f

aio a

0*(E(f((j)) - EP(f),e(a))- «/)*(E(f(0)) - EP(f((y)),e(a))
= lim "

aio o

= - tr[Vpj/)*(E
e(f),e)EP(f)].
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Now, define a function W p by the relation

Wp(f) =

Let us apply Theorem 1 in the special context outlined above

The most interesting results obtained are

T(f) = PoV>*(E
e(f)#e)

and

-6^ (f) = wP(f) > 0.

Using the first result in the definition of W P(f), it fbllows

that

PQW
P(f) = tr{T(f)EP(f)};

hence we can refer to W p as the "ElastiSL 2SKS£ B£S£[J!££i

Theorem 2. In, the infinitesimal theory 60(£) equals -

the negative of the plastic power production? hence wP(f) >_ 0.

The fact that the result Wp(f) >_ 0 follows as a special

case of Theorem 1 indicates that the theory of Sections 2-7 is

a proper generalization of the classical theories. It should be

noted that the condition Wp(f) < 0 does not violate any thermo-

dynamic restrictions if one takes, for example, a more general

constitutive relation of the form
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= ?(E(f)#EP(f),e)

for the free energy• Hence, if in a particular deformation the

condition Wp(f) >_ 0 is violated, a form for 0 more complicated

than the expression in terms of $* must be chosen* Thus# the

Clausius-Duhem inequality can be used to indicate when constitu-

tive relations are too restrictive in form.
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Part II: Rate-Independent Materials

The important role that rate-independent materials play in

theories of materials with elastic range is seen in the theories

of plasticity. Having established in Part I thermodynamic results

for materials with elastic range, I devote Part II of this paper

to a systematic investigation of the consequences of the assump-

tion that 0 is. a. rate-independent functional.

The definition of rate-independence used here is based on

that given by TRUESDELL and NOLL [14]; the specific form used here

was introduced by OWEN and WILLIAMS [15] . This definition

requires that • $ be invariant under time rescalings of each fixed

history in its domain and has an advantage over the equivalent [15]

definition of PIPKIN and RIVLIN [8]. The advantage lies in the

fact that the former definition does not distinguish between dif-

ferent rescalings of a given history, while the latter definition

singles out a particular rescaling function, the arc-length rescal-

ing function, and replaces each history by its arc-length repre-

sentation. The use of the arc-length representation complicates

the analysis because there appears to be no simple way of compar-

ing different histories in terms of their arc-length representa-

tions.

The rate-independence of 0 is the central hypothesis in each

of the results in Sections 3 and 4. In particular, I show in
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Section 3 that this hypothesis implies that the elastic range

is invariant under rescalings of a given history; furthermore,

the elastic set changes only in a trivial way under time rescal-

ings. In Section 4# similar results specify the restrictions

which the rate-independence of $ imposes on the stress and on

the history gradient of the free energy. Specifically, the stress

functional is a rate-independent functional and the history grad-

ient depends upon the history of the magnitude of strain and tem-

perature rates only through the present value. An important

corollary of the last result is the fact that there can be no

internal dissipation during static continuations for a rate-inde-

pendent material. Thus, certain internal processes must cease

when a material point is subject to conditions of constant strain

and temperature. In the final section, a result is presented

which shows that the rate-independence of £ and the special

property of dtf) deduced in Section 4 suffice to establish the

rate-independence of a functional closely related to 0. This final

result, when considered in the context of the theory presented in

Section 8 of Part I, gives testable sufficient conditions for the

rate-independence of 0. In fact, if during isothermal processes

the stress is a rate-independent functional of strain-history and
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if the rate of plastic work is linear in the magnitude of the

current strain rate, then | is a rate-independent functional

of the strain-history.

The method of proof for the results in Part II relies on

many concepts and techniques used in Part I* The main new concept

introduced in Part II and used throughout is that of a or-rescaling

£jjji£jŷ £jk« This function, denoted by 0 , rescales only the seg-

ment of a history f which was traversed in the time interval

(-00, -<r]. The importance of such rescalings is demonstrated in

Lemma 2 where I show that every elastic continuation of a rescaling

of a history f is characterized by the property of being a

a-rescaling of an elastic continuation of f•
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2. Rate-Independence and Related Concepts.

A functional y: PS + - Rn is said to be rate-independent

if# for each history f,

y(f • 0) = y(f)

for every monotone non-decreasing continuous function 0 mapping

[0#oo) onto a set containing the support of f. To insure that

the composition f*0 is an element of P§ +, it suffices to

assume that 0 also is piecewise smooth and has a bounded deriv-

ative. The symbol 0 is used exclusively to denote a function

with these smoothness properties. If the range of 0 contains

the support of f, then 0 is called a repealing f̂igyQS&iaB ;&9& f <

and the set of all rescaiing functions for f is denoted by $ .

The condition on the range of 0 guarantees that f«p attains

the saone values as does f. Further technical points related to

the definition of rate-independence are discussed in detail by

OV7EN and WILLIAMS [15] • In particular, these authors show that

the definition of rate-independence given here, which is a refine-

ment of that given by TRUESDELL and NOLL [14] , is equivalent to

the definition given by PIPKIN and RIVLIN [8].

Henceforth, the free energy functional 0, introduced in

Part I, jLs assumed to be a. r ate -independent functional. The remain-

der of Part II is devoted to obtaining the consequences of this
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assumption•

Before proceeding, it is convenient to introduce the concept

of a a-rescaling function. Let 0e*f and cr€[0,oo). Then the

£UB£feiSG 0°" i s defined by the relation

0 < s < a

a + 0(s - a), a < s.

Note that the composition f©0r agrees with f on the interval

[0#oo)# while on the semi-infinite interval [cr#oo)#

= f(cr + 0(s-a))

= (f

It follows that

Clearly, if 0e$f, then 0 c*f and 0 is a rescaling function

for f(a)-

The functions 0CT are important in determining the restric-

tions imposed on the elastic range by the rate-independence of $ •

The relevant properties of these functions are given in

feSSOJaS X* Let g be. ji history, (J+,0* and 6 non-negative numbers

with a* < a •, and 0 ei rescaling function for 9/aM • The following
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conditions hold:

1. If. h is. a. 6-continuation of g with h/ ** = g, then

h<>^ a is. a. fi*-continuation of go0 a , where

6* = {3 + M0}6

and Mw = sup 0(s) .

S€[0#OO)

2. If. h*0cr + a is. .a 5-continuation of g°p , then h is.

a. 6*-continuation of g.

Proof. The proof of 1 is given here; the proof of 2 is similar.

Thus, let g,h#0, 6#cr*# and a
1 be given as in 1. The proof rests

on the following observation. Let g* be any history and

cr*€[0,oo). Then for each 0Qe$ ̂

sup |g*(s) | = sup |g* (0o(s-or*) + a*) |
s ̂  a* s >g*

= sup |(g*°0^ ) (s)| ,
s>_ a*

Thus, i f ||g*||r === sup | g* ( s ) | , the last relation becomes

Consider now the quantity

- g°0 II +
[aVa* #oo)
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On the right hand side of this inequality, the first term equals

||h - gli which, by hypothesis, is less than <5. The
[(f+cr*,co)

second terra can be estimated as follows:

= sup |g (0(s-a'-a*)) - g. ,

sup

< M sup { |0(s - a1 - a*) - 0{s - a1) + a*l}
"" ^

< Mg <

where M g = Vlo sup |g(s) |. In this estimate, the mean-value

theorem has been applied to 0 and to each component function of

g. (Note that the mean-value theorem applies here since both 0

and g have only isolated jumps, c.f. Lemma 1, Part I*) Further-

more , the inequality

||h - g|| < §

and the mean-value theorem imply that

It follows that \\g^'+a* - g.f^l { ff.+0*/OO ) < (3 + M 0 ) 6

Consider next the estimate
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"+O*

Using the method given above, one can show that the f irs t term

i s dominated by 6{1 + M }̂; the second term i s less than 6, since

Thus,

^ ' + O * °f | | [ f f l f f f l + 0 - k ] < (3

Finally, i t i s clear that

< 6 < (3 +

since h*0 and gopf equal h and g, respectively, on

[0,0*]. Combining the estimates obtained separately for the inter-

vals [0,o9 ], [a1 jOr'+a*] and [or|+a*#oo)# i t follows that

l | | < 6* = (3 + M0)6.
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j3# Restrictions Imposed on 6(f) and E(f).

The results of this section will show that the rate-independ-

ence of 0 implies that both the elastic set and the elastic range

are rate-independent each in a sense to be specified below.

The substance of these results is contained in

X̂ onuna. 2. Let f be any history and 0 a, rescaling function for

f• Then the following conditions hold:

1. IjE g is. an elastic continuation of f with 9(a\ ~ f*

then g©0a ij3 an elastic continuation of f ©0.

2* If g is an elastic continuation of f«?0 and g,^^

then the history g given by

0 < s < a

a < s

is an elastic continuation of f.

This lemma makes precise the sense in which the elastic set is

rate-independent. In fact# the results of the lemma are equiva-

lent to the assertion that there is a one-to-one mapping of the

set of elastic continuations of f onto the set of elastic con-

tinuations of fo0.

Proo£. The proof of 2 is given here; the proof of 1 is similar.

Let g€&(f<>0) with g ~ = f»0. Let 0 < a1 £ a and consider
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the history g M # where cf is defined in the statement of part

~ —. ^ a-cr1
2 of this lemma. Note that 9 (a») ~ 9 m M ° ^ • N o w' take

6e (0,oo) such that

6* = 6(3 + M^) < 6(crf,g),

where 6(<j',g) is the positive number which determines which con-

tinuations of g/ i\ give a path-independent response. With 6

so chosen, let h€Cg(g/ ,%) with
 h/a*\ = 9( a«)

# Then, by Lemma

1, h«0> is a 6*, and hence, a 6(orl,g) continuation of

Consequently, if hn ,hoeCc. (g, ) with
J- A O ((T )

and (IT,) ,_ x = (Ho) . N = g , then it follows

t h a t £ M h o / < > + t f l and h ^ h • ^ + ^ 2 a r e 6 ( a ' , g ) -
1 1 2 <&

continuous of 9 / a n • Furthermore, h (0) = h (0) . Therefore,

s ince if) i s path-independent on the 6(or',g) c6nt inuat ions of

'+cr-i

Thus, 0 is path-independent on cc(g )• This argument shows

that part 1 of the definition of elastic continuation is satisfied

by g( c.f. Part I, Section 5). The results in Lemma 1 readily
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show that part 2 of the definition also is satisfied.

An immediate consequence of Lemma 2 is the main result of

this section:

Theorgm ^. Let f be. any history and let 0 be. a. rescaling

function for f. Then the elastic ranges for f and for f*0

are identical.

Thus, Lemma 2 and Theorem 1 show that the rate-independence of

ij) places strong restrictions on the dependence of the elastic

set and elastic range upon rescalings of a given history. In

the next section, the thermodynamic results obtained in Part I

will be reexamined in light of the rate-independence of 0.
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A
4* Restrictions Imposed on £ and 5ib

In this section, the assumptions S1-S3 and Al (Part I)

and the assumption that (/) is rate-independent are taken as a

starting point. (The assumptions from Part I were those used in

establishing Theorem 1# Section 7.) With these assumptions taken

as hypotheses, the main results of this section are given in

Theorem 2. Let f be any history. Then

A
1. £ is rate-independent.

2. 6$(f©0) = 60(f)0(O) for each rescaling function 0.

The proof of Theorem 2 requires two lemmas.

Lemma 3. Under the hypotheses of Theorem 2, D0 is. a. rate-

independent functional.

Proof. Let ge£(f) with g# % = f • Let [a ) be a monotone

increasing sequence of positive numbers with limit a. For each

0e$f and for n = 1,2,..., g/a \*9>~
 n is an elastic continu-

ation of f°0 (Lemma 2, Part II). An argument similar to the

proof of Lemma 1, Part I implies that ||9(a ) ""
 f|| "* ° a s n - °°

and that \\gir9 \*w
 n - 'fo0\\ - 0 as n - oo. It follows from

the rate-independence of th that, for each n.

n' * n'

for every aeA+ sufficiently close to 9(Qn)• This relation

implies that
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^ n ) ; g((y

Consequently, one can write

cr-cr
lim vj/j(g(o^); g((y . 0

 n)
n-oo n'

• l i m v 0 ( g ( a n ) ; g, v) - ©
n-oo VCTn'

which is the desired result.

Lemma 4. Let f be anv history. 0 a. rescalina function for f,

and <T€lO,oo), Then

where uf 0,a) i s the rescaling function of f/w/ , , given by
J-I (0((y))

p{0,o) (s) = 0(S-HT) - 0 ( a ) , S€[0,oo).

P r̂oof. For each se[0,oo),

(f «0) ( ( J ) (s) » (f «0) (s+a)

= f(0(s+a))

= f(0(s+cx) - 0(a) + 0(a))
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A
Proof ̂ og Tfeeorgnj 2« The fact that £ is rate-independent is an

immediate consequence of Lemma 3 and the generalized stress rela-

tion.

In order to prove 2, let fePS+ and 0s*f. Using S3, two

A A
approximations for the difference 0(f) - $(f(0(a))) will be

obtained. First, the fact that # is rate-independent gives

- D0(fe0)-[(f»0)(a) - f(0)]

+ O(|f(0) - f(0(CT))|),

v/here (f^)** is any elastic continuation of fo0 to f(0(a))

Hence

- f(0)]

o(|f(0) -

On the other hand, for a sufficiently small, let r be an

elastic continuation of f to f(0(cr)) and write
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0) (a) - f(0)]

o(|f(0(a)) - f(O) |)

(In this argument, it is assumed that 0(af) > 0 for all a1

near 0. The case where 0(<J*) = 0 for one and hence for all

a1 near 0 can be treated easily by looking at the first esti-

mate for $(f) - ^(f,^, xx)») Equating the two expressions for

$(f) ^ ( f ) ' dividing by cr, letting a tend to zero# and

using Lemma 3# it follows that

Part 2 of Theorem 2 can be restated as follows: 5ij)(f)

depends upon |f|, the history of the magnitude of the strain-

temperature rates, only through the present value |f(0)|; further-

more, the dependence is linear. In particular, this observation

implies that the his torv gradient of ^ (for a. rate-independent

material ) vanishes during static continuations• Hence, for rate-

independent materials, static continuations produce no internal

dissipation.
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^ th& Safee^adsfi^n^ence of 0 •

This section contains a theorem which is a partial converse

to Theorem 2 of Section 4 # This theorem provides sufficient con-

A A

ditions for the rate-independence of 0 when "y is restricted

to a special class of histories*

Theorem 3. Suppose that D$ jls a. rate-independent functional and

that

for every his torv f and every rescaling function 0 for f•

Then the relation

J A

{-E(f(a)-f(O) + 6«(f(a))} da

defines a rate-independent functional $ whose domain includes

those histories for which the integral exists*

Proof. Assume that $(f) exists and write

> A
(-S(f(a))-f(O) +

oo

o

•L
0 0 A

))da
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Thus, $ is defined on fo0 and has the value

In Section 8, Part I# I showed that# in a special theory,

d\j) (f) represents negative the rate of performing "plastic work*11

Thus, for the theory of Section 8, the condition

•
6lj){fo0) = 60(f)0(O)

can be verified, in principle. Moreover, for isothernal deforma-

A
tions, tf is independent of the entropy functional 7). Hence,

the verification that £ is rate-independent reduces, in the

isothermal case, to the verification that T is rate-independent,

Since 0 and - $ agree on a class of histories for which the

free energy at s = +oo is zero, Theorem 3 gives a testable set

of sufficient conditions for the rate-independence of ^ over a

large class of histories.
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