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1. Introduction .

In recent years COLEMAN [2], [3], COLEMAN and MIZEL [5],
GURTIN [9] and WANG and BOWEN [l4] have described rational
theories of thermodynamics for materials with memory. Each of
these theories adopts the Second Law, as expressed by the
Clausius-Duhem inequality, as a fundamental axiom. In this
paper I show that, for a broad class of materials, all the results
given by these theories concerning relationships between stress,
entropy and free energy can be obtained by a different approach.
This approach involves taking an axiom about work as fundamental
in place of the Clausius-Duhem inequality.

The materials considered here are qualitatively viscoelastic
in the sense that they behave elastically in suitable fast and
slow processes and also exhibit a mild kind of fading memory.

We assume that a collection of histories, whose values can, for
example, be thought of as strain and temperature pairs, is at
our disposal and we assume that an appropriate concept of work
can be introduced by way of a work functional defined for processes
whose histories are in the collection. The collection of histo-
ries and the work functional are required to satisfy axioms
giving precise meaning to the qualitative behaviour described
above. It turns out that the generalised stress, consisting of
a Piola-Kirchhoff stress and the negative of an entropy, can

be constructed from the work functional and that the work done
in a time interval can be represented, in the usual way, as the

integral of the (generalised) stress power. In section 3 we lay




down our fundamental thermodynamic axiom, which is an assertion
about work.T More explicitly, let £ be any history in the
collection and let us consider processes F- which are closed

connections of f in the sense that the history of F up to

some time s coincides with f and F assumes the value F(s)
at some later time t > s i.e. F(t) = F(s). If the work done
in the process F Dbetween the times s and t is negative we
say, following BREUER and ONAT [l1], that the material does
useful work. Our thermodynamic axiom is the assertion that no
matter which closed connection of a given history is chosen
there is a finite bound on the amount of useful work which can
be extracted from the history. Of course, the amount of useful
work which can be extracted depends on the given history. As

I have pointed out elsewhere [8], the thermodynamic axiom
adopted here is implicit in, for example, Coleman's theory
which is based on the Clausius-Duhem inequality.

After setting out our axioms we devote sections 4 and 5 to
constructing a function which can justifiably be called a free
energy function. That is to say, the existence of free energy
appears as a natural outcome of the present approach. In sections
6 and 7 we discuss various ramifications of the construction and -
then we show, in section 8, how our concepts can be fruitfully
applied to determining restrictions on the relaxation function
of a linear viscoelastic material necessary for compatibility

with thermbdynamics. Restrictions are also found on the

T Cf. The extensive literature relating work theorems and
hyperelasticity cited by TRUESDELL and NOLL [13] .




infinitesimal relaxation function which results when the stress
is approximately linear viscoelastic. In the final section we
give simple examples of one dimensional viscoelastic materials
compatible with thermodynamics and compute their free energy

functions explicitly.
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2. Preliminaries, Work, Generalised Stress.

With the aim of defining ygﬁ& and of formulating its
properties we begin this section by introducing certain classes
of functions called histories and processes.

Let H Dbe any real finite dimensional inner product space
of elements a,b,c, ...... with U any non-empty connected open
subset of H. Inner products in H are written as a-‘b and
norms as |a|. Once we have chosen H and U they are to be
fixed throughout our discussion. The reader should keep three
examples in mind. The first, and the most important for appli-
cations to general continuum mechanics, is obtained by taking
H to be the ten dimensional direct sum @ reals, where £ is
the space of all endomorphisms on the translation space of

euclidean space, and where the inner product in H is
(L,0) - (M,T) = trace (LM') + oT (2.1)
The appropriate subset is
U = {(L,0) € H:det L > 0, 0 > 0} (2.2)

An element (F,08) in U is interpreted as an ordered pair
formed from a deformation gradient F and an absolute temper-

ature 6 . For the second example we take both H and U to




be the six dimensional space of all symmetric endomorphisms on

the translation space of euclidean space with inner product
L-M = trace(LM) (2.3)

and interpret the elements of H as infinitesimal strain
tensors. This example enters in applications to isothermal
linear viscoelasticity. In the final section 9 one dimensional
situations are treated and H and U are taken to be the real
numbers, interpreted once again as strains.

Having introduced H and U 1let us agree to say that a
function £ on (0,») with values in U is admissible if
f ' is piecewise smooth on every finite subinterval of (0,x),
and if the limits f(0+),f(t—),f(t+) are in U for each
t > 0. The constant function e*¥ on (0,v) with value e in
U provides a simple example of an admissible function. The

concepts extension, connection and section play a crucial role

in our theory. They are defined as follows. The admissible
function g is an extension of the admissible function f 1if
there is a number T > O such that g(s+T) = f(s) for s > O
and g is continuous and piecewise smooth on (0,7 . If this
extension g of f 1is continuous at T we say that it is a
connection of f or, more precisely, that it connects f to
the value e = g(0+) in U. If in addition to being a con-
nection of f, g has g(0+) = £(0+) we say that g is a

closed connection of f£. Lastly, the admissible function g




is a gection of the admissible function £ if, for some 7T> O,
g(s) = f£(s+1) for s > 0O .

For our purposes certain classes of admissible functions
enter in a natural way. We call a class P of admissible
functions a collection of histories and call the.functions in P

histories if © has the following properties:

P (i) All constant admissible functions are in P 1i.e. for

each e in U the constant function e* is in P .

(ii) ® is closed under extension 1i.e.

Il—‘
Fh
Hh
-
n
o
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and g 1is an extension of f then g is in ¢ .

(iii) P is closed under section i.e. if f is in P

and g is a section of f then g is in P .

An example of a collection of histories is provided by the
minimal collection, defined as the class of all admissible
functions f with the property that £ is constant on an

interval (T,») for some T > O. Any collection of histories

contains the minimal collection. From now on we assume that some

fixed collection P of histories is available to us. It should
be noted that certain linear extensions of histories are in P :
let f Dbe any history, a any element of U and b any
element of B(a), the largest open ball with centre a con-
tained in U, and define, for some T > 0O, a function g on
(0,=) by g(s) = £(s-T) for s> T and g(s) = b+ Z(a-b)
for 0<s < T . Then g is necessarily an extension of £

linear on (0,7) and, by (ii), g is in P |




With any U-valued function F on (-»,») and any number t

we can associate a function Ft defined on (0,®) by
t
F (s) = F(t-s) , s > 0 . (2.4)

If for every number t the function Ft is a history in £ we

shall say that F is a process and call Ft the history of F
up to t. Examples of processes are provided by paths. A process

F 1is a path if there are elements a,b in U and numbers s,t
such that u < s implies F(u) = a and u > t implies F(u) = b.
If F 1is a path with F(-») = F(») we call it a closed path; if
it is continuous a continuous path.

With these preliminary definitions we can introduce work by
assuming that with each process F and each open interval (s,t)
on which F is smooth there is associated a number w(F,s,t)

called the work done in the process F on the interval (s,t).

The function w(+,-,+) will sometimes be referred to as the work
functional. The dependence of w(F,s,t) on F,s and t is
restricted by an axiom set out below.

The key ideas giving the work functional its structure are that,
for any process F Ww(F,+,*) 1is additive when regarded as a set
function on intervals and that, on a suitably small interval (s,t),
w(F,s,t) can be approximated by the work done in certain linear
extensions of the history F°. To make the latter precise let £
be any history, T any positive number, a any element of U and
b any element of the open ball B(a). Define a process #¥(f,a,b,T)
by the conditions F°(£f,a,b,7) = f, F(f,a,b,7) (1) = at+=(b-a) for

O0<u<rT, and F(f,a,b,7)(u) =b for u > T. Then F(f,a,b,T) (0)

a and so F(f,a,b,T) has a jump discontinuity at u=0 if a # £ (0+). Also




F(f,a,b,T) (1) = b . The number w(F(f,a,b,T),0,7) is defined
and is the work done in a process going from value a to value
b at a uniform rate (b-a)/T in the presence of the history

£f . As T 4is made small w(F(f,a,b,T),0,T) represents the

work done in going from a to b at a higher and higher uni-

form rate. If the limit

lim w(F(£,a,b,T),0,T) = L(f,a,b) (2.5)
T-0+

exists we can interpret Z(f,a,b) as the work done in jumping
instantaneously from the value a to the value b in the presence
of the history f. We assume that the work done in a process on a
suitably small interval can be approximated by Z in the sense

of the axiom:

Wl (i) Let f Dbe any history in ®, and a any element of U.

Then the limit in (2.5) exists and defines a function ZXZ(f,a,*) on

B(a) which is differentiable at a.

(ii) If F is any process smooth on (s,t) then the function

w(F,s,*) can be extended to a smooth function on [s,t] and can be

épproximated at s by Z according to the formula

w(F,s,u) = Z(F°,F(s+),F(u))+o(u-s) as u - s+

Furthermore w(F,-,+) is additive in the sense that if s < u< v < t

then
w(F,s,u)+w(F,u,v) = w(F,s,v) .
Part (i) of axiom WI enables us to define the generalised
stress to be the function S on # X U with values in H
given by

S(f,a) = gradbE(f,a,b)| . (2.6)
b = a




That is to say, the generalised stress enters through the

smoothness assumption WL1(i) on the work functional. Returning

for the moment to the examples cited at the beginning of this

section we note that when H is the ten dimensional space

£ reals the values of S are interpreted as ordered pairs (P,-7)

where P 1is a Piola-Kirchhoff stress tensor in £ and the

number 7 is an entropy. In the second example H is a space

of symmetric endomorphisms and the values of S are interpreted

as symmetric stress tensors whilst in the one aimensional case

covered by the third example the values of S are real numbers.
Axiom W1 implies that the work functional can be represented

in terms of the generalised stress according to the formula which

is usually taken as its definition.

Proposition 1. If the process F 1is smooth on (s,t) with

derivative F then

t .
w(F,s,t) = J’ S(Fu,F(u))'F(u)du . (2.7)
s

Proof. Letting u — s+ in the second equation in WI(ii) tells us

that w(F,s,s) = O and so it suffices to prove that the derivative

of w(F,s,*), which exists by hypothesis, has value S(Fu,F(u))'F(u)

at each u in (s,t) . If F 1is smooth on (s,t) then it is

a fortiori smooth on a subinterval (u,v) of (s,t) and so
w(F,u,v) = Z(Fu,F(u),F(v)) + o (v-u)

as v-u+. It follows that Z(Fu,F(u),F(u)) = 0 and consequently

the definition (2.5) of the generalised stress implies

Z(FEY,F(u),F(v)) = S(FY,F(u)) - (F(v)-F(u)) + o(|F(v)-F(u)])
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as wv-ut+, Thus

w(F,u,v) = S(Fu,F(u))-(F(v)—F(u)) + o(!F(v)-F(u) |) + o(v-u)
as v-u+ and the result follows on observing that w(F,s,v)-w(F,s,u) =
w(F,u,v). Q.E.D.

It is clear that determinism has already been built into

the theory via axiom W1l in the sense that the values of the
work and generalised stress depend on processes through the past
and not through the future. Also it is clear that the formula
(2.7) can be used as the definition of the work done in a process
F on an ioterval (s,t) on which F 1is continuous and piece-
wise smooth. Furthermore, if F 1is a continuous path, its
derivative f has compact support and we can define the work
done on the continuous path F to be
wW(F) = wW(F, -»,) ,
We close this section by stating some smoothness assumptions

on the generalised stress. Given any function  on P X U 1let

us define the eguilibrium response function O* for Q on U

by Q*(e) = Q(e*,e) and call £(f,:) on U the instantaneous
xesponse function for € and the history f . The assumptions

on S are

S (i) The equilibrium response function S*(-) is continuous.

(ii) For any history £ in  the instantaneous response

function S(£f,.) is continuous.

(iii) If F 1is any process and t any number then

lim s (FY,F(u)) = S(F5,F(t}))
u-»t"_‘
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3. Axioms For Work, The Thermodynamic Axiom.

We begin this section by imposing further restrictions on
the work stating that our materials have a mild type of fading
memory and behave elastically in certain slow and fast processes.
We then give an example of a collection of histories and a work
functional obeying axioms P,S,Wl,W2,W3 and W4. Finally we
close the section by motivating and enunciating the vital thermo-
dynamic axiom W5 and drawing some conclusions from it.

The fading memory axiom is;

W2 (Mild Fading Memory). Let f be any history in ¢ |

let F Dbe any continuous path and define a sequence of

S

processes Fn by requiring that Fn = £ and Fn(t) =
F(t-n) for t > s (seeFig. 1) . Then

w(Fn,s,m) - w(F) as n - o

Axioms W3 and W4 express results of a kind which are known
to hold in linear viscoelasticity (GURTIN and HERRERA [10]).
W3 states that the work done in suitably retarded paths may be
computed using the equilibrium response function S* whilst W4
states that the work done in suitably accelerated processes may
be computed using an instantaneous response function S(f,-°) .
Before stating the akioms we make the following definitions. If
F is anyicontinuous path and s,t are any numbers such that
u<s implies F(u) = F(-*) and u > t implies F(u) = F(»)

then we say that a sequence of processes Fn defined by
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Fn(u) = F(-») for u < s and Fn(u) = F(s+%(u-s)) for u > s

is a sequence of retardations of F. If f 1is any history in

? and F,s,t are as before, we say that the sequence of processes
Fn defined by requiring that FnS = £ and Fn(u) = F(s+n(u-s))
for u> s (see Fig. 2) is a sequence of accelerated processes.

The axioms are

W3 (Elastic Behaviour in Slow Processes). Let F be any con-

tinuous path and F_ the sequence of retardations of F defined

above. Then

t .
w(Fn) - J. S*(F(u)) *F(u)du as n - o ,
s

W4 (Elastic Behaviour in Fast Processes). Let f be any

history in ®, F any continuous path and F_~ the sequence

of accelerated processes defined above. Then

, t .
w(Fn,s,W) - J. S(£,F(u)) *F(u)du as n -~ ®
S
It is not hard to find examples of collections of histories
and work functionals fulfilling all the requirements we have

set down so far. For example let A Dbe any positive number

and let # Dbe the class of admissible functions f with
j~ e_xslf(s)lds < @ , The class P 1is a collection of histories.
o

It may be thought of as a vector space with the usual pointwise
definitions of addition and scalar multiplication and then the
set © X U can be regarded as a subset of the normed vector

space P @H with norm

(£, = _[ e | £(s) |as + |e]
o
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Let S: P XU - H be the restriction to ® X U of some
compact function on P@ H i.e. a function which is continuous
and maps bounded sets into pre-compact sets. Then if we adopt
the function S as the generalised stress and define work by the

formula (2.7) axioms P,S,W1,W2,W3 and W4 hold. For the sake of

illustrating the type of argument needed to establish that the

axioms do hold we prove W4,

If f,F,s,t,Fn are all as in the statement of W4 then

© u .’
w(Fn,s,w) = J; S(Fn ,Fn(u)) Fn(u)du .
On making the change of variable v = s + n(u-s) it follows
that
t 1 .
+=(v-
w(F_,s,e) = J s(r_ V%) [p(v)) -F(v)av
s

Let us show next that for each v in (s,t)

1
S(FnS+H(V—S)’F(V)) L S(£,F(v)) , as n - o,

by showing that, as n - » ,

1
s+?;(v-s)

o 1
| (r JF() - (Rl = | eF STalYE) -£(0) |ao
n o n (

(3.1)

and appealing to the continuity of S . We have

HUNT LIBRARY
GARNEGIE-MELLON UNIVERSITY

!
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© 1 @
.f e—XO'Fns+H(V-S%G) - £(0) |do = J. e’%0|Fn(s+%(v—s)—0)—f(G)[dO
o , o

l(v—s) -\O
= I.n e |F (v-no) -£(0) |do
o

+ I e M| £(0-E(v-5)) -£(0) |a0
(v-s)

'l'("'s)m l(‘"s))\c
< max |F(u) | I“ e " do + J“ e " |£(0) |do

u (o] o

+ e

_-Zl\_(v_s) J' ©

o

e_xclf(o+%{v—s) - f£(0) |ac

- O as n -» » for each v in (s,t) ,

which proves (3.1). Furthermore, we have the estimate

1 - 1
Iz Sta 9 r (o) | IF(v) | + j e MF SThV-Sko) |0

n
(e}

1

=(v-s)
= |F(v)| + j " e_xolF(v—no)ldc
o

+ j e_xclf(c—%(v-s))ldo

L (v-s)

-l-(V—S) 2\
max |F(u) ||l + J-n e "0

u o]

IN

+ e e " |£(0) |do
o
® o
< (l+—i—)max|F(u)| +J A | £ (o) |do ,
u o
holding for all v in (s,t) and all n = 1,2,3 ... and so,
by the compactness of S , the set
s+%(s—v)
{[S(Fn ,F(v))| ¢+ v oin (s,t), n =1,2,3 ...}

is bounded. Accordingly, the sequence of functions
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s+£(v—s)
v - S(Fn ,F(v)) converges pointwise to the function
v+ S(f,F(v)) on (s,t) and is uniformly bounded. The
dominated convergénce theorem now implies that W4 holds.
The motivation for the final axiom, which is our only
axiom of a thermodynamical character, arises from considerations
of the following sort. Suppose that £ in © is any history.
Let us examine processes F with the property that F° = f
for some s and that Ft is a closed connection of £ for
some t > s and let us compute the work w(F,s,t) for each
process of this type. For example we might define F by requiring
that F° = £ and F(u) = £(0O+) on (s,t) and in this case
w(F,s,t) = O no matter what f is. If it happens that
w(F,s,t) < O we say, following BREUER and ONAT [1], that the

material does useful work of amount -w(F,s,t) . The following

question then arises. Given the history f and given any

number N < O , no matter how large |[N| 1is, can we find a

process F of the above type such that w(F,s;t) <N i.e.

such that the useful work is as large as we please? It does

not seem reasonable to expect that this is possible and the

last axiom is just the assertion that it is indeed impossible.

More precisely, if we define the minimal work in closed connections

g£ Ehg hisEorz f to be the number

Mm(f) = inf{w(F,s,t) : F° = £, Ft is a closed connection of £}
(3.2)
our assumption is
W5 (Thermodynamic Axiom). For each history £ in P, N(f) > -».

A simple case in which W5 holds occurs when the generalised

stress is hyperelastic by which we mean that there is some
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smooth real-valued potential K on U with gradient grad K(e) =
S(f,e) for every history f and every e in U. 1In this

case the minimal work M(f) = 0 for every history f . An
example of a collection of histories and a work functional
obeying axioms P,S,Wl1l,W2,W3,W4,W5 is discussed in the final
section 9. We close this section by proving a number of mis-

cellaneous results following rapidly from W5.

Theorem 1.

(1) For each history £ in £, N(f) < 0.

(2) For each e i U, NMh(e*) = 0.

(3) If F,G are continuous paths with F(-o) = G(=) and

F(v) = G(-») then w(F) + w(G) > O.

(4) If F is any continuous closed path then w(F) > O.

Proof. (1) The process F defined by FO = f and F(u) = £(0+)
for u > O has the property that Ft is a closed connection of
f for any t > O and w(F,s,t) = O, which proves (1).

(2),(3),(4). Suppose that F,G are continuous paths with
F(-®) = G(®) = a, say, and F(v) = G(-») = b, say. Choose

a number s such that t > s implies F(t) = F(®) and define

a sequence of paths Fn by requiring that FnS = F°  and

Fn(t) = G(t-n) for t > s. For every large integer n, F_

is a continuous closed path with Fn(—m) = Fn(m) = a (see Fig. 3)
and consequently given any large n there is a number t > s,
which depends on n, such that Fz is a closed connection of

the constant history a¥* . Thus

w(F_) > M(a¥)
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But
w(F) = W(F_,-»,s) + w(F ,s,) = w(F) + w(F_,s,o)
and, by axiom W2,
W(Fn,S,m) 2+ w(G) as n - o -
Thus
w(F) + w(G) > M(ax) . (3.3)

In the special case G =F and F(-«) = F(®») = a we deduce that

2w(F) > M(ax) .
Taking the least upper bound over all continuous closed paths F
of this type gives

2 (a*) > M(a*) ,
which, by axiom W5, implies

M(a*) > O .
Combining this inequality with (1) gives (2) and then (3) follows
from (2) and (3.3). Finally (4) is a special case of (3) with
G =F. Q.E.D.
The result (4) of Theorem 1 was established by COLEMAN [2] .

In section 7 it will be extended to a result about paths which

are not necessarily continuous.
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4, Potentials For The Equilibrium And Instantaneous Response.

Throughout this section and the next we suppose that some
collection of histories § and some work functional w are
available to us. We speak always of the same P. and the same
w so that the adjective unique is to be taken as meaning
'uniquely determined by the choice of # and w.'!' Our primary
object is to construct a free energy function for w. The
construction is carried out in the next section and depends on
knowing two functions w(*) and @(f,-), the first being a
potential for the equilibrium response function S¥*(-:) and the
second a potential for the instantaneous response function
S(f,*) corresponding to a history f. This section is devoted
to the preliminary matter of showing that these potentials
exist.

The first Lemma suffices to establish the existence of

a potential in certain circumstances.

Lemma 1. Suppose that T : U - H is a continuous function and

that there is an element e in U with the property that the

set of numbers

{;fT(F(u))~é(u)du : F 1is a continuous path with F(~w)=F(m)=é}
(4.1)

is bounded below. Then there is a smooth real-valued function

T Qg U with grad T = T.

Proof. Since U is connected it suffices to show that if F

is any continuous path with F(-x) = F(®) = e then

fT(F(u)) ‘F(u)du = O
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If m 1is the greatest lower bound of the set (4.1) then
ST (F(u) *F(u)du > m

for any path F of the required kind. Choosing s and t so
that u < s implies F(u) = e and u > t implies F(u) = e
and writing F'(u) = F(t-u), -» < u < » , produces another path

F' of this type. For this path
m S_KT(Fv(u))-éu(u)du - iJE(F(u))-ﬁ(u)du
and so
0 < |\T(F()) -Fwdu| < -m

Also if Fn is a path which has value e everywhere except on
n(=1,2,3, ......) intervals of length t-s, on each of which
it coincides with a translate of the restriction of F to (s,t),

then F is of the required kind and
O < n||T(F(w)) ‘F(uwdu| = | T(Fn(u))~Fn(u)dul < -m

which implies the result. Q.E.D.

It 1is convenient to parallel definition (3.2) and define
the minimal work in connections of the history £ to e in U
to be

Mm(f,e) = inf{w(F,s,t) : F° = £, Ft connects f to e}. (4.2)

Of course, M(f) = M(£,£(0+)). We are now in a position to
prove that the equilibrium response function S* is derivable

from a potential T
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Lemma 2. There is a smooth real-valued function 7 on U,

—

unique up to an additive constant, such that, for any history

f and anx a,b in U,
(1) s* = grad T
(2) M(a*,b) = 7(b) -7 (a)

(3) Mm(f,a) = m(a)-m(£(0+)) + M(f)

Proof. (1),(2). Let a,b be any elements of U and let F
be any continuous path with F(-« = a, F(*) = b . Construct
from F a sequence of retardations F as in the statement of
axiom W3. Each F is a continuous path with Fn(-w) = a and
Fn(w) = Db and so
w(Fn) > M(a*,b) .
On letting n = «® and using axiom W3 we deduce that
js* (F(t)) -F(£)dt > M(a*,b) . (4.3)
In particular, if F is any closed continuous path with F(—m) =
F(®) = a we must have
Js* (F(t)) *F(t)at > M(a*,a)=M(a*)=0 .
and a direct application of Lemma 1 and the continuity of S*
shows that there is a smooth real-valued potential 7T on U
with grad m = S¥ ., Furthermore, the connectedness of U implies
that S* determines w to within an arbitrary constant.
Since the potential 7 exists we can perform the inte-
gration in (4 .3) explicitly and find the inequality
m(b) -m(a) > M(a¥,b) , (4.4)
holding for all elements a,b in U. Interchanging a and b
gives

m(a) -m(b) > M(b*,a) . (4.5)
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However, according to (3) of Theorem 1, if F 1is any continuous
path with F(-») = a, F(*) = b and G 1is any continuous path

with G(-») = b, G(») = a then
w(F)+w(G) > O
Taking greatest lower bounds over all F,G of this type gives
m(a*,b)+M(b*,a) > O (4.6)
and combining (4.4),(4.5) and (4.6) shows that
7 (b) -m(a) > M(a*,b) > -M(b*,a) > w(b)-mw(a) ,

which proves (2).

(3). To prove (3) we prove both
M(£,a) > 7(a)-m (£(0+)) +M(£) (4.7)
and
M(£,a) < 7(a) -7 (£(0+))+M(£) . (4.8)

Let F Dbe any process with F° = £, with Ft connecting £

to a and let G be any continuous path with G(-») = a and

G(») = £(0+) . Define a sequence of processes F by requiring

that Fnt = Ft and that Fn(u) = G(u-n) for u Z t (see Fig.4(a)).
Then for any large integer n there is a number t'(n) with

Fnt‘ a closed connection of £ . Thus

m(f) S_w(Fn,s,m) = w(F,s,t)+w(Fn,t,w) .
On letting n - « ‘"and using axiom W2 we deduce that

M(f) < w(F,s,t)+w(G) .




-22-

Taking the greatest lower bound over all such G and using (2)

of this Lemma gives
m(£) < w(F,s,t)+r (£(0+)) -7 (a)

and now taking the greatest lower bound over all such processes
F yields the inequality (4.7) .

To prove the converse inequality (4.8) let F be any process
with F° = f and Ft a closed connection of f£. If G is any
continuous path with G(-») = f(0O+) and G(®) = a we can
define a sequence of processes Fn by the conditions Fnt= Ft
and Fn(u) = G(u-n) for u >t (see Fig. 4(b)). This time it

follows that
m(£,a) S w(F, ,s,®) = w(F,s,t)+w(F_,t,)
Letting n - », using axiom W2 and taking the greatest lower

bound over all such paths G gives, in precisely the same

way as above, the inequality
m(f,a) < w(F,s,t)+r(a)-m(£(0+)) ,

from which (4.8) may be deduced. Q.E.D.

Incidentally we have shown more than is claimed in the
statement of Lemma 2. If F 1is any continuous path with
F(-«) = a and F(®) = b and if the sequence of retardations

Fn is defined as in the statement of axiom W3 then

w(F ) - Ié*(F(t))‘ﬁ(t)dt = m(b) -m(a) = M(a¥*,b) .

That is to say we have proved
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Corollary 1. Given any elements a,b in U and any € > 0O we

can construct a continuous path G with G(-») = a and G(») =Db

such that
w(G) < M(a*,b) + €

by taking G to be a suitable retardation of any continuous

path F with F(-») = a and F(») =D
The results (3) of Lemma 2 and (1) of Theorem 1 show that
M(f,e) = 7(e)-T(£(0+))+M(£)<r (e) -m (£(0+)) ,

and so M(f,e) <0 if w(e) < Tm(£(0+)). Accordingly we have

Corollary 2. If £ is any history and if e in U satisfies

m(e) < m(£(0+)) then there is a process F such that F° = f,

t .
F~ connects f to e and w(F,s,t) < O i.e. we can extract

useful work from a history f by choosing a suitable process

connecting f to any e with w(e) < m(£(0+)) .

The final Lemma of this section shows that if £ is
any history in ® the corresponding instantaneous response
function S(f,.) is derivable from a potential. We choose to
impose a normalising condition which ensures that the potential
is unique and we discuss its physical significance after proving

the Lemma.

Lemma 3. There is a unigue real valued function @ on ® X U

having both of the following properties:

(1) for each f in  ®, the function ®(f,:) on U is smooth

with gradient

grad ¢(f:') = S(f; .) ]

(2) for each f i P, ®(f,f(0+)) =0
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beof. Let f Dbe any history and F any closed continuous
path with F(-») = F(®) = £(0+). If the sequence of accelerated
processes F is the sequence considered in the statement of
axigm W4 then Fnt is a closed connection of £ and so, by

the definition of W(f) ,
w(F ,s,%) > M(£) .
Letting n - ® and using W4 implies that

_[s(f,F(u))-é(u)du > M(g)

for any continuous path F meeting the condition F(-») = F(®) =
£(0+). The assumed continuity of S(f,°*) and Lemma 1 now implies
that there is a function ¢ on ® X U with the property (1).

If we define
®(f,a) = g(f,a) -4 (£, £(0+))

then @ satisfies both (1) and (2). This @ must be unique
for if @ also satisfies (1) and (2), then by (1), &(f,a)-@(f,a)
is independent of a  and, by (2), has value O. The result
follows. Q.E.D.

In order to appreciate the physical significance of the
potential @ 1let us suppose that a history f and an element
e 1in U are given. Let us choose any continuous path F
with F(-») = £(0+) and F(~) = e and construct a sequence of
accelerated processes Fn from f and F as in the statement
of W4. The sequence Fn converges pointwise to a process F

with F° = £, E(s) = £(0+) and g(u) = e for u> s so that

F has a jump discontinuity of amount e-f(0+) at s . On
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using W4 and Lemma 3 we deduce that as n - «
w(F_,s,®) = Xs(f,F(u))‘F(u)du = ®(f,e) -®(£,£(04)) = &(£,e)

In other words: the number @&(f,e) can be interpreted as the

work done in traversing the jump discontinuity 9f amount e-f(0+)

~

in the process F
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5. The Free Energy.

This section contains our most important results. We
shall show that for any choice of a collection of histories and
a work functional satisfying axioms S,W1,W2,W3,W4,W5 one can
define a function with properties which justify célling it
free energy. Our definition is: the real-valued function V¥

defined on ¥ X U by the relation
Y(f,e) = m(£(0+)) - M(f) + &(f,e) (5.1)

is called the free energy. The definition can be written out
in words as
{the free energy corresponding to the history f and present
value e}
= {the equilibrium potential corresponding to the value f£(0+)}

{the minimal work in closed connections of £}

+ {the work done in traversing a jump discontinuity of
amount e-f(0+) in the presence of the history £}
Of course, if e = £(0O+) there is no discontinuity and the
third term in the definition disappears. Each of the functions
m(), ®(-,*), M(:) and M(-,*) can be expressed in terms of
the free energy V¥ and the equilibrium free energy Eﬁ according

to the formulae set down in

Proposition 2. For any history £ and any e in U the

following results hold:

(1) 7(e) = ¥ (e)

(2) @(f,e) = Y(£f,e) -TL(£, £(0+))
(3) M(£) = ¥ (£(0+)) -V(£,£(0+))
(4) M(£,e) = ¥ (e) -¥(£, £(0+))
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The proofs of these results are simple applications of (2) of
Theorem 1, (3) of Lemma 2 and (2) of Lemma 3.
The justification for the name free energy is the wealth

of properties displayed in Theorem 2.

Theorem 2. For the free energy V¥ the following statements

hold:

(1) for each history £ the instantaneous response function

¥(f,+) 1is smooth with gradient

grad Y(£,:) = S(£f,"*) ,

. _
(2) the equilibrium response function V¥ is smooth with

gradient
*
grad ¥ = s¥ ,
(3) for each history £ ,

Y(£,£(04)) > ¥ (£(04) ,

(4) if the process F is continuous and piecewise smooth on the

open interval (s,t) and continuous at s and t then

w(F,s,t) > U(FC,F(t)) -W(FS,F(s)) ,

(5) Aif the process F is continuous and piecewise smooth on

(s,t) and continuous at s and t then the function u -~ P(u) =

g ad . . .
Y(F",Ffu)) 4is differentiable almost everywhere on (s,t) and

at each u in (s,t) at which P(u) exists

S(FY,F(u)) *F(u) > pu) .
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Proof. (1) This property follows from the definition of 1
and the construction of &(f,*) as a potential for S(£f,*) .
(2) Property (2) is implied by (1) of Proposition 2 and the
construction of w(+) as a potential for S*(-) .

(3) The result (3) of Proposition 2 can be written

Y(E£,£(0+)) - Y(£(0+)) = -M(f) ,

from which (3) follows since (1) of Theorem 1 tells us that
m(£f) < 0.

(4) Let F,s,t be as in the statement of (4) and let G be
any process for which Gt = Ft, G 1is continuous and piecewise
smooth on [S,») and for which there is some u > t such that

u' > u implies G(u') = F(s) (see Fig. 5) . The history Y

is a closed connection of F° and consequently

M(F®) < w(G,s,®») = w(F,s,t) + w(G,t,=) .

On noting that ¢" also connects Ft to F(s) and taking the

greatest lower bound over all such G we deduce the inequality
s t
m(F”) < w(F,s,t)+N(F ,F(s)) ,
which, by (3) of Lemma 2, implies
t
w(F,s,t) > (7 (F(t))-M(F)) - (r(F(s)) -M(F)) .

Since F 1is continuous at s and t, @(FS,F(S)) = @(Ft,F(t)) =0
and the result follows on using the definition of ¥ .

(5) If F 1is continuous and piecewise smooth on (s,t) and con-
tinuous at s and t and s <u<u' <t then F is continuous
‘and piecewise smooth on (u,u') and continuous at u,u' so that

(4) holds and we can write

u' .
[ S(F',F(v))-F(v)dv > p(u') -p(u) .

u
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which implies

u! v . . u v .
ep<u')-f S(FY,F(v)) “F(v)dv < zb(u)—J' s(FV,F(v)) -F(v)dv .

S S

In other words the function

u .
u - Pu) - ‘f S(FV,F(V))'F(v)dv
S

is monotone decreasing on [s,t] . By Lebesgue's theorem it has
a non-positive derivative almost everywhere and this proves (5)
Q.E.D.

The properties (1), (2),(3),(4) and (5) of the free energy
are, of course, familiar results in theories of thermodynamicsT
which introduce free energy as a primitive concept and adopt the
Clausius-Duhem inequality as a starting point. In fact the

relation (1) is what COLEMAN [2] calls the generalised stress

relation and (2) is its counterpart in equilibrium. Property (3)

is the assertion that among all histories f ending with a given

value e = f(0+) the constant history e* gives the least free

energy, which is the form of the result given by COLEMAN.

Property (4) is the integrated dissipation inequality and the

local inequality (5) is the form assumed by the Clausius-Duhem

inequality in homothermal processes.

It now appears that there are certain notable features of
the present theory of thermodynamics which deserve to be empha-
sised. For the sake of concreteness let us think of the first

example introduced in Section 2 with H a certain ten dimensional

TSee, for example, COLEMAN [2], COLEMAN and MIZEL [5], GURTIN [9]
and WANG and BOWEN [14]
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space and where the pairs (F,6) in U consist of a deformation
gradient F and an absolute temperature 6. Our procedure
takes work as primitive and then stress and entropy are defined
in terms of the work functional. Furthermore on the basis of
the thermodynamical axiom W5 we construct a free energy function
related to the stress and entropy by familiar rules. It should
be noted too that we do not need balance laws for linear momentum,
moment of momentum and energy - they are quite irrelevant to our
purpose.

We conclude this section by proving two more theorems.
The first characterises hyperelastic materials within the class
of materials considered here. We know already that if the
generalised stress is hyperelastic, if f is any history and if
F is a process with F° = £ and Ft a closed connection of
f then w(F,s,t) > O0; in fact equality holds ﬁere. The con-

verse statement is also true and is given in

Theorem 3. Suppose that for every history f and every process

F, with F° = f and F' a closed connection of £, the
work w(F,s,t) > O . Then the generalised stress is hyper-
elastic.

Proof. The hypotheses imply that the minimal work M (f) = O

for any history £ and, consequently, if the process F is
continuous at u, @(Fu,F(u)) = @r(F(u)) . It suffices to

show that, for any.history f and any e in U, S(f,e) = S*(e)
for then, by Theorem 2, S(f,e) = grad @r(e), which proves the

result. Given any a in B(e), the largest open ball with
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centre e contained in U, define a process F Dby requiring
that F° = f, F(u) = etua for 0<u<1l and F(u) = eta
for u> 1. For s,t in 0<s < t <1 (4) of Theorem 2

implies
t u t s
f S(F ,F(u)) -a du > ¥Y(F ,F(t))-¥(F",F(s))
s
= @#(e+ta)—¢%(e+sa)

Dividing throughout by (t-s) and letting t - s+ gives
S(F°,F(s)) -a > S* (e+sa) *a

and now letting s -0+ and using the smoothness assumptions

S on the generalised stress gives
*
(s(f,e)-S (e))a >0

for every a in B(e) and this implies the result. Q.E.D.
Finally we prove a theorem relating the present theory
to the work of various authors who have studied the restrictions
which are imposed on constitutive relations by assumptions about
work. The assumption that non-negative work must be performed
to perturb a 'system' from an equilibrium state was used by
KBNIG and MEIXNER [11l] in their study of one dimensional
constitutive relations and they called constitutive relations

with this property dissipative. More recently, GURTIN and

HERRERA [10O] and SHU and ONAT [12] have investigated conditions
on the ‘relaxation function of a linear viscoelastic material
necessary for it to be dissipative. Let us agree to say that

an element e in U is locally stable if e lies in a stability
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neighbourhood N in U with ¥ (e) < V¥ (a) for every a 1in

N and turn to proving

Theorem 4.

(1) If F 1is any continuous path then

w(F) > ¥ (F(2)) - (F(-=))

(2) Let e in U be locally stable and let F be a continuous

process with F° = e*. Then there i a number € > O such

—

that t in (0,¢) implies
w(F,o,t) > O

Proof. (1) If F is a continuous path then, for all large
numbers t, Ft connects the constant history F(-«)* to F(«)

and so
wW(F) > M(F(-=)*,F(®)) .

The result follows on using (2) of Lemma 2.
(2) Let N Dbe a stability neighbourhood for e. The continuity
of F enables us to choose € > O so that t in (0,e¢) implies

that F(t) is in N. An application of (1) now shows that

w(F,0,t) > ¥ (F(t))-¥ (e) > O . Q.E.D.
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6. Optimal Processes.

For each history f and each e in U the numbers MN(f)
and M(f,e) are defined as the greatest lower bounds of certain
sets in (3.2) and (4.2). It may happen that there is a process
F which attains the greatest lower bound in the sense that
there are numbers s,t with s < t, F° = £, Ft connecting £

to e and
w(F,s,t) = IW(f,e) .

We shall call any process with these properties an gptimal process
for f and e. An optimal process extracts all the useful work
possible from the history £ in processes connecting it to e.
Whether optimal processes exist or not would seem to be a question
decided by the detailed structure of the collection of histories
©, the work functional w and the pair £ and e and we shall
not enter into this question here. Our purpose is to prove a
theorem describing certain features of optimal processes, assuming
that they exist. Of course, optimal processes do exist in

certain cases. For example, if the generalised stress is hyper-
elastic any process connecting f to e 1is optimal. Also, for
any work functional we know that if f is the constant history

e*¥ the constant process with value e 1is optimal because

M(e*) = 0. Even if no optimal process for f and e exists

the definition (4.2) of the minimal work M(f,e) does guarantee

that for any € > O there is a process F€ with

M(f,e) S_w(Fe,s,t) < M(f,e)+e ,
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and it would be of great interest if alternative characterisations
of F€ could be found. The Corollary 1 to Lemma 2 provides
such a characterisation in the simple case where f 1is a constant
history.

We turn to proving Theorem 5 which gives necéssary and

sufficient conditions for a process to be optimal.

Theorem 5. Let £f be any history, e an? element of U and

f a process with FS = £ and with F° connecting f to e.

Then F is optimal for f and e i.e. w(F,s,t) = M(f,e) 4if

and only if each of the following conditions holds:

(1) at t the free energy and generalised stress assume their

equilibrium values i.e.

YFE,F(t)) = ¥ (e) and S(FT,F(t)) = S*(e) ,

(2) on the interval (s,t) +the internal dissipation vanishes

i.e. for each u in (s,t)

S(F%,F(u)) "F(u) = d(u) ,

where Y(u) = Y(F',F(u)) .

Proof. Firstly we show that conditions (1) and (2) are necessary
for F to be optimal.

(1) If we choose any process G with ct' a closed connection
of Ft for some t' > t then Gt' also connects f to e

and consequently
w(G,s,t') > Ih(£f,e) .
But, if F is optimal,

w(G,s,t') = w(F,s,t)+w(G,t,t') = M(£f,e)+w(G,t,t"')
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and we deduce that w(G,t,t') > O for any such G, which implies
mFS) =0 . (6.1)

Using (6.1), the definition (5.1) of the free energy and noting

that Ft(O+) = F(t-) = e gives the first result in (1), namely
Y(ES,F(t)) = ¥ (e) (6.2)

one consequence of (6.1) and (6.2) is that for any element b

in U

mEE,b) = ¥ (b) - (FF (0+) ) +M(FE) = ¥ (b) -7 (e)

Now choose any a in the open ball B(e) and define a process
G by requiring that Et = Ft, E(u) = et+(u-t)a for t < u S t+1
and E(u) = e+ta for u > t+l. Then for any u in (t,t+l) we

have, by (4) of Theorem 2,

a
[ S(GV,8(v)) +a dv = w(@,t,u) > M@E5,8) = V¥ (e+(u-t)a)-¥ (e)
t

Dividing throughout by (u-t) and letting u - t+ gives
~t ~ t
S*¥(e).-a < S(G,G(t))-a = S(F ,F(t))-a

and this inequality can hold for all a in B(e) only if the

second result of (1) holds.
(2) By hypothesis, w(F,s,t) = M(f,e) and, by (3) of Lemma 2,
m(£,e) = ¥ (e) -¥ (£(0+))+M(£)

However, we have already provéd that P (t) = @f(é) and it

follows from the definition of free energy that Y(s) = @f(f(0+))_m(f) .

Consequently

w(F,s,t) = P(t) - (s) . (6.3)
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If we now choose any numbers u,u' in s < u < u! < t then
the integrated dissipation inequality (4) of Theorem 2 applied

to each of the intervals (s,u), (u,u'), (u',t) states that
w(F,s,u) 2_¢(u)—¢(5); w(F,u,u') > $(u') -P(u) ;3 w(F,ur,t) > P (t)-P(u')

and these inequalities are compatible with equation (6.3) only if
equality holds in each of them. 1In particular
u' .
fu S(FV,F(V))-F(V)dv = P (u') - (u)

and so ¥ 1is differentiable on (s,t) and the result (2) holds.

To prove the sufficiency of conditions (1) and (2) we observe
that integration of the equation in (2) produces equation (6.3)
Condition (1) tells us that ¥(t) = @#(e) and also, by the

definition of free energy, ¥(s) = @#(f(0+))_m(f). Thus
w(F,s,t) = ¥ (e) -¥ (£(0+))+M(£) = M(£,e)

and F 1is optimal for f£ and e. Q.E.D.
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7. Extending The Definition of Work.

Let us agree to say that a process F has a gmall dis-
continuity at t if F(t+) is in the open ball B(F(t-)). If
F does have a small discontinuity at t then the line segment
joining F(t-) and F(t+) lies entirely in U. Of course
if U = H every discontinuity of a process is small. Thus far
we have defined the work w(F,s,t) for a process F and an
open interval (s,t) on which F is continuous and piecewise
smooth. In this section we show that provided we make a further
smoothness assumption on the work the structure of our theory
suggests a natural definition of work for a process and a finite
open interval on which the process is piecewise smooth and has
small discontinuities. 1In short, we can handle processes with
a finite number of small discontinuities provided that for the
purposes of computing work these processes can be approximated
by processes which are linear near the discontinuities. It turns
out that the results (3) and (4) of Theorem 2 and the result
(1) of Theorem 4 can be extended to discontinuous processes. The
extended form of (1) of Theorem 4 is used in Section 8 to obtain
restrictions on the relaxation function of a>linear viscoelastic
material necessary for compatibility with thermodynamics. |

The extra assumption we need concerns a process with a
single small discontinuity and may be motivated in the following
way. Let F Dbe a process which is smooth on the intervals
(s,u) and (u,t) and has a small discontinuity at wu. For

each integer n > 1/(t-u) define a process F (see Fig. 6)
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by requiring that F coincide with F on (-»,u) and (u+%’m)

and that on [u,u+%]
F_(v) = F(u—)+n(v-u)F(u+—3‘T) _F(u-)) .

Then Fn is continuous and piecewise smooth on (s,t) and

linear on [u,u+%ﬂ and

w(Fn,s,t) w(Fn,s,u)+w(Fn,u,u+E)+w(Fn,u+H’t)

1

u+— .
n v 1
= w(F,s,u) + J; S(Fn ,Fn(v))‘Fn(v)dv + w(Fn,u+H,t)

w(F,s,u)
1 u+l% 1 1
+ J S(Fy n, F (u-) A (F (whD) -F (u-))) * (F (u+p) -F (u-) ) dA
(0]

1
+ w(Fn,u+H3t) (7.1)
It is reasonable to expect, with mild assumptions on the generalised
stress S, that on letting n - o in the equation (7.1l) we aobtain

1
"1lim w(Fn,s,t) = w(F,s,u) + J‘ S(Fu,F(u-)+%(F(u+)—F(u-))-(F(u+)-F(u-))d%
o

n—i o)
+ w(F,u,t). (7.2)

By the definition of the potential @ the right hand side of
(7.2) can be rewritten as

w(F,s,u) + ®(Fu,F(u+)) + w(F,u,t) .
The limit 1lim w(Fn,s,t) certainly exists and has the value
(7.2) in thzﬁzxample cited in section 3 where the collection of
histories P is a certain normed vector space of admissible

functions and the generalised stress § is a compact H-valued

function on # X U. We proceed by assuming the result explicitly:
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W6. Let F be a process which is smooth on (s,u) and (u,t)

and has a small discontinuity at u. If F is the sequence

of processes defined above then

lim W(F_,s,t) = w(F,s,u)+®(F",F (ut+) ) +w(F,u,t) . (7.3)

N—-o

With this axiom we can extend the definition of work. Suppose
that the process F is piecewise smooth on the interval (s,t)
with small discontinuities at Uy, ===,y in (s,t) and is
continuous at every other point of (s,t). For notational con-

venience write s = ug and t = Uppe Corresponding to each

choice of a k-tuple (nl,———,nk) of large integers define the

k processes

F ® o o ’F e o o ’ I..OI’F F
L TR A TR -1k Pk
according to the following prescription: Define F ....nk to
1

be that process which is continuous and piecewise smooth on

(uo’uk+l) which coincides with F on the open intervals (-m,ul),

1 . . .
(ui+ﬁi’ui+l)’ 1<ic<k-1, (uk+%£,w) and is linear on the
closed intervals [u,,u;+5], 1 < i < k. Define the (k-1)

remaining processes inductively by demanding that Fn “os

m Tk

coincide with F on (—m,um) and with Fn oo on [um,m)

m-1 nk

for 2 <m< k (see Fig. 7). Then repeated application of axiom

W6 shows that, for 1 < m < k,

u
. _ . m
ilm w(Fn .ee ’um—l’uk+l) = w(F,um_l,um)+¢(F ,F(um+))
m—-rm m k
+ w(F e u ) .
Nl nk’ m? Yk+1
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Adding these k equations together tells us that the multiple

limit

niiz ...nlig W(Fnl...nk,uo,uk+l) (7.4)
1 .
exists and has value
k k ui
.E w(F,ui,ui+l) +.D ®(F ,F(ui+)) . (7.5)
i=o i=1

In the case k =1 the expression (7.5) reduces to the right

side of (7.3) and furthermore Fnl...nk - F pointwise every-
where, with the possible exception of the points of discontinuity
Upseeesly, @S Mpyeee,ly = o . Accordingly we take the expression
(7.5) as the definition of w(F,s,t), the work done in the process
F on (s,t). If F is any path we shall write, as before,

w(F) = w(F,s,t) where s 1is negative and large and t is
positive and large. The utility of the definition is illustrated

by

Theorem 6.

(1) If £ 4is any history in ¥ and e is any element of

B(f(0+)) then
Y(f,e) > ¥ (e) .

(2) Let F be any process continuous at s and t, piecewise

smooth on (s,t) and with all its discontinuitieé in (s,t)

small. Then

w(F,s,t) > W(FS,F(t))-¥(FS,F(s)) .

(3) If F is any path whose discontinuities are small then

w(F) > U (F(=))-F (F(-=)) .
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Proof.(l) Let f£f_ in P Dbe the extension of f defined by
fe(u) = e, for 0<u<1l, and fe(u) = f(u-1) for u>1
and let F be any process connecting fe to £(0+), with
F° = fe and F(t) = f(0+) (see Fig. 8). 1If

e # £(0+), F(u) has a discontinuity at u = s-1. Let F
be the sequence of processes approximating F constructed in

extending the definition of work. Then each history Fnt is

a closed connection of f with Fns_1 = f and so

w(Fn,s—l,t) > M(f) .
On letting n - » we deduce, since F 1is constant on (s-1,s),
that
®(f,e)+w(F,s,t) > M(£) .
Now F° = fe and Ft connects fe to f(0+) and so on taking

the greatest lower bound over all such processes F we deduce,

on using (3) of Lemma 2, that
¢(f,e)+w(f(0+))-W(e)+m(fe) > I (£f)

But M(£)) < O and so
T (£(0+)) -M(£) +2(£,e) > 7 (e) ,

which implies the required result.
(2) Choose any process G coinciding with F on (-»,t) and
with G" a closed connection of Ft for some u > t. Construct

an approximating multiple sequence G_ ... for G on (s,u)

Ny Mg
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in the manner described in extending the definition of work.

Then each GE e connects F° to F(t) and so
1

u

w(G
nj

e ss,u) > M(FS,F (L))
Ny

On taking the multiple limit 1im ... lim it follows that
n.k_.m nl-—'oo
m(F°,F(t)) < w(G,s,u) = w(F,s,t) + w(G,t,u) .

Taking the greatest lower bound over all such processes G

yields
m(FS,F(t)) < w(F,s,t)+N(F%)

and the result follows on using the continuity of F at s and
t and the definition of the free energy.
(3) Let F Dbe any path whose discontinuities are small and con-

struct the multiple sequence Fn ...nk as in extending the
1
definition of work. Each Fn .o is a continuous path with
' 1

F ..._ () = F(-») and F_ ..._. (®) = F(») and so, by (1) of

S N 0 B R
Theorem 4, .

*
w(F_ ... > ¥ (F(»))-¥ (F(-»)) .
ny n,
Since w(F) = lim ... lim w(F_ ... ) the result follows. Q.E.D.

The result (1) of Theorem 6 extends (3) of Theorem 2 and

the result (2) is an extension of the integrated dissipation
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inequality (4) of Theorem 2. When written out in full it reads

t .
J s (FY,F(w) -Fwau + 2.8 (FLF(u) > UFL,F() - UF°,F(s)) .
S ue (S,t)

The result (3) of this Theorem extends (1) of Theorem 4. We
close the section by proving a Corollary which is used in the

next section.

Corollary.

(1)

then w(F) > 0 .

IH
Hh

F 1is any closed path whose discontinuities are small

(2) If F 4is any piecewise constant closed path whose dis-

continuities are small then

T ®(FS,F(t+)) >0 . (7.6)
—o<t<w

Proof. (1) is a special case of (3) of the theorem, whilst (2)

is a direct consequence of (1) and the definition of w(F) . Q.E.D.
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8. Restrictions On Linear Viscoelasticity.

Throughout this section we will assume U = H so that
every discontinuity of a process is small. The theory of linear
viscoelasticity corresponds to taking U and H to be the six
dimensional space of symmetric endomorphisms of a three dimensional
inner product space.

For the purpose of obtaining restrictions on the relaxation
function of a linear viscoelastic material it suffices to work
with the minimal collection of histories §, defined previously
as the class of admissible functions. £ on (0,®) with £
constant on some subinterval (t,m); We choose to think of P
as a vector space with the usual pointwise definitions of addition
and scalar multiplication. By a relaxation function we mean any
smooth function J on [0,®) whose values are endomorphisms

oo

of H and J |3 (s) |ds < ». For any relaxation function 3 (=) =
o
lim 3 (s) necessarily exists.

S—o

Any relaxation function 3 induces a linear function S
on the direct sum ®© P H with values in H defined by the

constitutive relation for a linear viscoelastic material, namely

oo

S(f,e) = 3(0)e +f J(s)£(s)ds . (8.1)
o
It can be verified that if we adopt S as the stress and define
work by formula (2.7) then axioms S,Wl1,W2,W3,W4 and W6 hold. If
it happens too thét-the thermodynamic axiom W5 holds we say that
J is compatible with thermodynamics. Examples of one dimensional

relaxation functions compatible with thermodynamics are discussed
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in the final section 9. The results of sections 4 and 7 provide
certain interesting conditions necessary for compatibility with

thermodynamics. They are given in

Theorem 7. If the relaxation function J is compatible with

thermodynamics then

(1) J3(0) and 3J(») are symmetric

(2) (0)-3(=) > + G (s)-3(=))] for 0<s <o .

(3) 3(0) <0 .
Proof. (1) The definition (8.1l) shows that, for any e in H,
S(0*,e) =3(0)e , s*¥(e) =3 (°)e .

By hypothesis, the results of Lemmas 2 and 3 apply and the

symmetry of J(0) and J(») is immediate.

(2) To prove (2) we use the Corollary to Theorem 6. The potential
®(f,:) for the instantaneous response S(f,*) is given by the

formula

@(f,e) = %(3(0)e-é—3(0)f(0+)-f(0+))+(e—f(0+))-J. j(s)f(s)ds .
o

(8.2)
For any integer N > 1, any N+1 numbers 'to < t1 < ... < tN
and any N elements el,...,eN of H we can construct a piece-
wise constant closed path F with F(s) = 0 for s < tO and

s >ty and F(s) = e, for te_ 1 <s f_tk, 1 <k < N. Direct
computation shows that for this F the inequality (7.6) becomes

N
L (3(0)-3(t -t .
el Bteo1)) ety
N k-1 |
A mfl @ (-t ) =T (b -ty )-8 (5 -t )43 (8 -t 1))e ey
> 0 (8.3)

TWe use the notation L E.M to mean that L-M is POS;E%VS semi -
definite. - neg v
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In the inequality (8.3) set N =2, t,-t =s and e, = e

e. This produces the inequality
(5(0)-3(s))e-e > O,

holding for all e in H, and proves that J(0) > 3J(s) or,

as we prefer to write it,

3(0)-3(=) = + (3(s)-3(=)) (8.4)
for all s in 0 < s <« , To prove

3(0) -3(=) = - (I(s)-3(=)) (8.5)
we take the following special choices of N, the tk and the
e :
(i) N =2N' + 1 > 3 1is odd,
(ii) for given s,t > O define tO < tl < ... < t2N'+l by
requiring that tk = tO + %k(s+t) if k 1is even and that
£, =t + S(k-1) (s+t) + t if k is odd,
(iii) for given e in H define e_ =0 if %k is even and

k

e = (-1 V2o ie x is oaa.
If we now employ the symbol 2Z' to denote that the indicated

summation is over odd integers only the inequality (8.3) becomes

2N§+l
' (F3(0)-3(t))e, -
N} k "k
2N'+1 1 1
- = (3(§%k—m)(s+t)+t)—23(§%k—m)(s+t))
k=3 m<k

+ 3 (F0cm) (s+t) -the e, > O .

k

On letting t - ®», wusing (iii) and dividing throughout by N

the latter inequality becomes
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2N +1 N +1
3 (s) - -TII'(“’) + -—ﬁ—,-—g(o))e-e >0,

holding for all integers N' > 1 and all e in H. On letting
N' - o we deduce (8.5) and so (2) is proved.
(3) This result is an immediate consequence of (2) and the
assumed differentiability of 3. Q.E.D.

Aside from an arbitrary additive constant, the equilibrium
free energy for the linear viscoelastic material defined by (8.1)

must have the form
*
¥ (e) =-§-J(°°)e'e .

If we assume that O in H 1is locally stable, in the sense of
section 5, then J(») is positive semi-definite and it follows
from (2) of Theorem 7 that J(0) is positive semi-definite. The
positive semi-definiteness of J(0) and the negative semi-
definiteness of &(O) are significant results for the theory

of plane acceleration waves in linear viscoelastic materials since
they guarantee that these waves are damped in time.T Results
similar in nature to those in Theorem 7 have been given by

GURTIN and HERRERA [10] on the assumption that the work done,
starting from equilibrium, is always non-negative i.e. that the
material is dissipative. They establish the symmetry and positive
semi-definiteness of 3(0)TT and J(«) and obtain, in place of

(2) of Theorem 7,

3(0) 2 £ 3(s)

TCf. COLEMAN and GURTIN ([4].

TTThe symmetry of 3J(0) was also established by SHU and ONAT [12]
using the same assumption about work as GURTIN and HERRERA [10C].
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It should be noted that (2) of Theorem 7 implies the latter
inequalities whenever J (®») 1is positive semi-definite.

Finally we consider cases in which the stress S has a
more general form than (8.1) but nevertheless can be approximated
by a linear viscoelastic law in certain circumsténces. It turns
out that the restrictions given in Theorem 7 must also apply to
the resulting infinitesimal relaxation function if S itself is
to be compatible with thermodynamics. As before we take U = H
and work with the minimal collection of histories throughout.

We assume then that we have a work functional for the min-
imal collection of histories satisfying axioms S,W1l,W2,W3,W4,W5
and W6, that the stress S is defined by (2.6) and the free
energy by (5.1). Let e, be some element of H. We add one
assumption:

*
(A)T For histories close to e, and present values close to

e S can be approximated in the form

O.’

S(f,e) = S*(eo) + Sg(f,e) + T(f,e)

where

[eo]

Sg(f,e) = J(O)(e—eo) + J; ﬁ(s)(f(s)—eo)ds ,

for some relaxation function J, and where

T(f,e) = o(suplf(S)-eO|+|e-eO])
s

as sup]f(s)—eol+|e—eol -0
s

TVid. COLEMAN and NOLL ([6],[7] and COLEMAN [3] for a discussion
of the circumstances in which an approximation of this type is
valid.
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It is easy to see that if J in (A) exists then it is
unique; we call J the infinitesimal relaxation function at

e - We can now state and prove Theorem 8.

Theorem 8. If (A) holds then the infinitesimal relaxation function

satisfies the conditions (1), (2) and (3) gg Theorem 7.

Proof. (1) If the gradient of the instantaneous free energy
@(eg,-) is denoted by grad @Keé,'), in the usual way, then,

by (1) of Theorem 2 and assumption (A),

grad E%eg,e) S(eg,e)

S*(eo)+3(0)(e—eo)+T(eé,e)

1l

s* (e )+3 (0) (e-e )+o([e-e )

for all e in some neighbourhood of ey- It follows that
W(eg,-) is twice differentiable at e, with second gradient

3.(0), which must be symmetric. In a similar way,
*
grad ¥ (e) = S*(e) = S*(eo)+3(w)(e—eo)+o(|e-e0])

¥
in some neighbourhood of e, SO that V¥ (.) is twice differentiable
at e with symmetric second gradient 3 (=) .
(2),(3). Firstly we show that if F 1is any continuous closed

path with F(-») = F(») = e, then

SSS (F*,F () -F(w)du > O . (8.6)

To prove this, define, for each A > O, the continuous path

F by

A

F%(u) = eO+K(F(u)-eo) .
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Then, by assumption (A), we have that

S(Fy,Fy (@)= S*(e )4\ S (F',F(u))+T (Fy,F, (u))

and so
w(F7\) = fs (F;\I,Fx () 'F.‘)\ (u) du
= A XS* (eo) 'I;‘(u) du + kzj‘sj(Fu,F(u)) -E“(u) du
+ A }'T (F3,F, () “F(w)du .
But

JS* (eo) °F.‘(u) du =0

and, since F 1is bounded, T(F;'},F%(u)) = o(A) as AN - O and

SO
2 u : 2
w(F)\) = A J‘SS (F ,F(u)) *F(u)dut+o (A7)

By our assumptions on S, (4) of Theorem 1 applies and we have
>
w(F7\) > 0

It follows that
JSS (Fu,F(u)) *F(u)du + o(1) > O as N\ - O ,

which implies the required result (8.6).
Next we observe that, since 3 (0) 1is symmetric, the function

® defined on P x H by

(£,e) =13 (0) (e-e) * (e-e ) -5 35(0) (£(0+) ~e ) - (£(0+) -e_)

©

+ (e-£(0+)) - I 3(s) (£(s) -e_) ds

o
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is a potential for S in the sense that grad ®(f,-) = S(f,"*)

5
and ®(f,f(0+)) = 0. It is now not difficult to show, on the
basis of (8.6), that if F 1is any piecewise constant closed path
with F(-0) = F(») = e, then the inequality (7.6) holds. (The
proof of (7.6) depends on approximating F by continuous closed
paths which are linear near the discontinuities of F). From
the inequality (7.6) we now deduce that the infinitesimal relaxa-
tion function satisfies the inequality (8.3) and the proof of
properties (2) and (3) proceeds precisely as in Theorem 7. Q.E.D.
The restrictions placed on infinitesimal relaxation functions
by thermodynamics have been considered previously by COLEMAN [3]
who showed that J (0)-3(®) 1is symmetric and positive semi-
definite. If we impose the additional assumption that e, is
locally stable then, since, as we have seen, the second gradient
of @f at e, is JF () it follows that J (x) is positive

semi-definite and hence, by Theorem 8, that 3 (0) is positive

semi-definite and
3(0) > +3(s) for s> o0 .

In other words, we recover results obtained by GURTIN and HERRERA
[10] for the purely linear viscoelastic case if we make the

assumption that e, is locally stable.
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9. One Dimensional Linear Viscoelasticity.

In this section we discuss one dimensional linear visco-
elasticity, which corresponds to taking both U and H to be
the real numbers, and confine our attention to relaxation

functions of the form

N -Kkt
J(t) = = Yy (9.1)
k=0
where the N\'s are ordered so that O < AO < ... < XN and
Yorerosy > 0. We take the vector space of all admissible real-

valued functions f on (0,®) with
J' e—%os]f(s)[ds < o
o

to be the collection of histories ¥ and endow the direct sum

D reals with the norm

o]

g, e = 1e|+j e Mo | £(s) |as
O

The stress is taken to be the linear form S defined on P@) reals

by

S(f,e) = 3(0)e+J T(s) £(s)ds . (9.2)
o
In fact S 1is a continuous form and, in particular, is a compact
map. It follows, as we have seen previously, that if we define
work by the formula (2.7) the axioms P,S,W1,W2,W3,W4 hold. Our
object is to establish that the thermodynamic axiom W5 also holds
and, moreover, to produce explicit expressions for the free energy.
Relaxation functions of type (9.1) have been considered

previously by BREUER and ONAT [l1l] in their work on maximum
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recoverable work in linear viscoelasticity. They obtained an
integral equation of Wiener-Hopf type as a necessary condition

on a process giving the maximum work recoverable from a given
history and showed how, for relaxation functions of type (9.1),
one can obtain a formal solution of the equation. Their solu-
tion is formal in the sense that the derivative of the process
maximizing the recoverable work has a Dirac §-function singularity
and so corresponds to no actual connection in our sense.

Before entering into the details of proving compatibility
with thermodynamics and evaluating the free energy let us out-
line the approach to the problem presented here. Let £ be any
history in  and e any number and let C(f,e) be the class
of processes with F° = £ and with the property that for some
T > 0, FT connects f to e and t > T implies F(t) = F(T) =

e. Then, by definition, the minimal work
M(f,e) = inf(w(F,0,»): F in C(f,e))
and
Mm(£f) = M(£,£(0+))

Firstly we establish M(f) >-», that is to say W5 holds, and
in the course of proving that result we obtain a particular lower

bound, 4 (f) say, for the set
{w(F,0,©): F in C(£,£(0+))}

and we wish to show that this lower bound is actually the greatest
lower bound M (f). To do this we notice that for the particular

relaxation function 3 of (9.1) J (¢) = 0O and so we can take
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the equilibrium potential 7 of Lemma .2 to be identically zero.

The result (3) of Lemma 2 then tells us that
m(f,e) = M(f) ,

for every number e. As the next step we choose a convenient
number e, and construct a sequence of processes F in C(f,eo)
for which w(Fn,O,w) - L(f). It must follow that 2(f) = M(f)
and in this way we get an explicit formula for M(f) from which
one can easily write down the free energy by using the definition
(5.1) . We turn to the details.

If the process F 1is in some class C(f,e) the stress at
t >0 is

3 (0O) F(t) +J L.V(s)Ft(s)ds
o

S (F,F(t))

t .
af(t) + J J(t-s)F(s)ds , (9.3)
o

where af(-) is defined on [0,®) Dby

o]

af(t) = J(t) £(0+) + J §(t+s)f(s)ds
o

and is determined by f and J. In this case
N ® s At
o.(t) = L vy {f(O+) -\ e kT f(s)dsfte "k , (9.4)
£ k=0 k k o

It follows from (9.3) that

w(F,0,=) =J‘ o () F(t)at +%I J 3(|t-s|) F(s) F(t) dsdt
°© ' °© -o (9.5)

In order to proceed further we need the following Lemma

which is due to BREUER and ONAT [1] .
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Lemma 4. There are numbers Bo’Bl""”N’pl""’“N’ depending

on f and 3, with O SHy < ... <py such that the integral
eguatioﬁ
J. 3(|t-s|)Bf(s)ds + BO IJ(t) = af(t) , t >0 (9.6)
o

is solved by the function

B_(s) gﬁ'“s
s) = e "k . (9.7)
£ ko1 K

To prove this result BREUER and ONAT choose Bis+e--sMy as the
N positive distinct roots of the equation
Q(u) = P -§72 = (9.8)
k=0 M H
and ﬁo,....,BN to satisfy the linear equations

N ﬁk Iw -\ s
Bo -k=l %i'uk = Yi{f(0+)—Ai _ e f(s)d;} , 1i=0,1,...,N,

(9.9)
and it is a simple matter to verify that with these choices the
integral equation is satisfied.

Now let F Dbe any process in some class C(f,e). Noting
the following facts (i) é has compact support on [0,®),
(ii) Jﬁ [Bf(s)|ds <o , (iii) 0 < 3(|t-s|) < 3(0), (iv) I is
o

of positive type, we have that for any positive integer n
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1
-3 _nSQ

l [ee] [oo] .
5 L L I(|t-s]) (F(S)+2/30(1-’%) e +B.(s))

INn

. 5 _nt?2
X (F (t) +2BO(%}) e +B,(t))dsdt

L j j I(|t-s|) F(s)F(t)dsat
O o

ns?

=] f o© ;i -
[T oaeanas,@®
fo) P

. ds-ﬁoﬁ(t) +or (t)]' F"(t) dt

1 ([ (° nk ‘nseds-ﬁ T (t) +a (t)]
5 T(t-s]) 2B, (D% o £
o /

O
(@]

0 I _nt?2
X [ZBO(F) e +3f(t% dt

wx © L —n52 .
wg0,9) + | U (3(|t-s]) -3 (8) )28, (@) % ds]F(t)dt
(@) (@)
1 ® @ T T n ;ﬁ -nS2
+ E-J; J; { (]t-sl)— (t)}ZBO(F) e ds+af(t)

5 _nt2

X [230 (79;) e +Bf(t)] at

1 I
w(F,0,x) +~§ﬂoaf(0) + 5 J; af(t)ﬁf(t)dt

1 -nt?

@ 1
+ EJ (g (£) -a(0) ) 2B, g%)ze dt
(@]

ns?

ds] ].;‘(t) dt

2

[o]

1 ® T T n;i -n52 (‘1"_].);i
—2-L S (Tlle-sN-T () }2B (D "e  as| | 28 (D 7e

+Bf (t)] at .

(9.10)
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The mean value theorem applied to any smooth function £(-) with

bounded derivative £(°*) tells us that

® 1 -ns?®
|2J (&(t-8) -£(£)) (D) e as|
o
. = % -ns? . -k
< max| € (u) | j. 2(;) e sds = max|£(u) | (7n) ,
u o u

and employing this inequality in (9.10) enables us to deduce the

following estimate: there is a positive number A(f,J) such

that if F is any process in some class C(f,e) and n is any

positive integer then

ns?

1 ® @ . nk ~
0o < -2-L L T(lt-s) (F(s)+2B_(D"e  +B.(s))

. n;, -nt2
X (F(t)+230(7-r-)2e +}3f(t))dsdt

1 1 (7
w(F,0,®) + —Z-Boaf(O) + = L af(t)ﬁf(t)dt + Q(F,f,3,n) (9.11)
where
| Q(F, £,3,n) | S_A(f,g)(l + J‘ |1;"(t) |dt —}/2- . (9.12)
(@] n

One consequence of this estimate, which follows on letting

n - «, 1is that for each F in C (£, £(0+))
w(F,0,2) > 28 a_(0) += | o (8)B_(t)dt > -w
CRags ] - 20 F 2 o £ £ 1]
i.e. the thermodynamic axiom W5 holds and the minimal work

in closed connections of f satisfies

m(£f) > —%—Boaf(O) - %— L . (t) Bf(t)dt . (9.13)
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In fact we can show that equality holds in (9.12). As remarked
above, if suffices to exhibit a sequence of processes Fn in

C(f,eo), for some e, with

o]

1 1 .
w(F ,0,°) = 5B a.(0) -5 L ag(b)B (t)dt , as n -~
We choose e, to be the number
e, = f(O+)-BO— j; Bf(u)du

and define the sequence of processes F in C(f,eo) by

L n
Zﬁo n‘s _u2 s
f(O+) - = e du - J. B(wydu , 0<s <n,
T o o
F S = ..(i__n.)_ _ < <
n( ) Fn(n) + = (eO Fn(n)) , n s < 2n ,
e » s > 2n

o

It is clear from the definitions of e, and Fn that Fn(n) - e,

as n - o, and it is straightforward to verify that

L(°(° ) Nk -ns®
0<% { j 3(|t—s|)(Fn(s)+230(%)ze +Bf(s))
o “o

. o % -nt?
X (F (£)+2B_(0) e  +B_(t))dsdt

ns?

© [ . . -
- LT sk 28,5 4 B
n n

. % -nt2
x (F,(t) +2/30(;?) e +B£(t))dsdt

IN

23 © -]
% 3(0)[Ieo—Fn(n)| + ;%2 e"u2du + J; |Bf(u)|d%]2

n?’/a.

= o0(l) as n - « .,




Thus equation (9.11) tells us that

oo

w(Fn,o,m)%ﬁoaf(O)%— L af(t)Bf(t) dt+Q(Fn,f,3,n) =o(l), as n - o
(9.14)

But

il

o 2n .
L 5 (6 |at f £ (0) |at

o
n 0k -nt?. 2ny
< I (2B, (D) e +[B(t) |Jat +j =le -F (n) |at
O n
.<_ Bo + Io IBf(t) 'dt + Ieo—Fn(nH = O(l) s, @S N 2 o,

and so the estimate (9.12) tells us that
Q(Fn,f,g,n) =0(l) , as n - o (9.15)
On combining (9.15) and (9.14) we deduce that, as n - = ,
w(F_,0,®) - —']‘B o (0) . j‘”a (t) B (t)at ,
n 270 f 2 o £ £

which proves that equality holds in (9.13) and completes the

proof.

The results of this section are summarised in Theorem 9.

< <
Theorem 9. If O < ko N %N and 70, ﬁ'. , 7N > 0, the
one dimensional relaxation function 3d(t) = Z }/ke_}\kt is com-
k=0

patible with thermodynamics. Given any history £ with

© _\ s . . .
J e © |£(s)|ds < » and any number e define « () by
o

equation (9.4) and ,Bf(") by eguationsb (9.7),(9.8), and (9.9).
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Then the free energy is

U(£,e) = %—Boaf(o) + —%— f o () B (t) at
@]

+ %3(0) (e-£(04+)3) + (e-f(0+)) f é(s)f(s)ds .
O

The sequence of processes F which ultimately extracts.
the maximum recoverable work from the history £ has the point-

wise limit F(s) = lim Fn(s) with F° = f, F(O) = £(0+) and

n
s
F(s) = f(O+)—BO:L Bf(u)du for s > 0. That is to say, F jumps

instantaneously from the value £(0+) to the value f(O+)—13O

at O and thereafter decays exponentially to the wvalue
F (o) = f(O+)-Bo- J. Bf(u)du = e . This behaviour agrees with
o

that found by BREUER and ONAT [1].
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Fig. 8




