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1. Introduction .

In recent years COLEMAN [2], [3] , COLEMAN and MIZEL [5],

GURTIN [9] and WANG and BOWEN [14] have described rational

theories of thermodynamics for materials with memory. Each of

these theories adopts the Second Law, as expressed by the

Clausius-Duhem inequality, as a fundamental axiom. In this

paper I show that, for a broad class of materials, all the results

given by these theories concerning relationships between stress,

entropy and free energy can be obtained by a different approach.

This approach involves taking an axiom about work as fundamental

in place of the Clausius-Duhem inequality.

The materials considered here are qualitatively viscoelastic

in the sense that they behave elastically in suitable fast and

slow processes and also exhibit a mild kind of fading memory.

We assume that a collection of histories, whose values can, for

example, be thought of as strain and temperature pairs, is at

our disposal and we assume that an appropriate concept of work

can be introduced by way of a work functional defined for processes

whose histories are in the collection. The collection of histo-

ries and the work functional are required to satisfy axioms

giving precise meaning to the qualitative behaviour described

above. It turns out that the generalised stress, consisting of

a Piola-Kirchhoff stress and the negative of an entropy, can

be constructed from the work functional and that the work done

in a time interval can be represented, in the usual way, as the

integral of the (generalised) stress power. In section 3 we lay
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down our fundamental thermodynamic axiom, which is an assertion

about work.' More explicitly, let f be any history in the

collection and let us consider processes F which are closed

connections of f in the sense that the history of F up to

some time s coincides with f and F assumes the value F(s)

at some later time t > s i.e. F(t) = F(s). If the work done

in the process F between the times s and t is negative we

say, following BREUER and ONAT [1], that the material does

useful work. Our thermodynamic axiom is the assertion that no

matter which closed connection of a given history is chosen

there is a finite bound on the amount of useful work which can

be extracted from the history. Of course, the amount of useful

work which can be extracted depends on the given history. As

I have pointed out elsewhere [8], the thermodynamic axiom

adopted here is implicit in, for example, Coleman's theory

which is based on the Clausius-Duhem inequality.

After setting out our axioms we devote sections 4 and 5 to

constructing a function which can justifiably be called a free

energy function. That is to say, the existence of free energy

appears as a natural outcome of the present approach. In sections

6 and 7 we discuss various ramifications of the construction and

then we show, in section 8, how our concepts can be fruitfully

applied to determining restrictions on the relaxation function

of a linear viscoelastic material necessary for compatibility

with thermodynamics. Restrictions are also found on the

' Cf. The extensive literature relating work theorems and
hyperelasticity cited by TRUESDELL and NOLL [13] .
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infinitesimal relaxation function which results when the stress

is approximately linear viscoelastic. In the final section we

give simple examples of one dimensional viscoelastic materials

compatible with thermodynamics and compute their free energy

functions explicitly.
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2. Preliminaries, Work, Generalised Stress .

With the aim of defining work and of formulating its

properties we begin this section by introducing certain classes

of functions called histories and processes.

Let H be any real finite dimensional inner product space

of elements a,b,c, with U any non-empty connected open

subset of H. Inner products in H are written as a*b and

norms as ja|. Once we have chosen H and U they are to be

fixed throughout our discussion. The reader should keep three

examples in mind. The first, and the most important for appli-

cations to general continuum mechanics, is obtained by taking

H to be the ten dimensional direct sum £® reals, where <£ is

the space of all endomorphisms on the translation space of

euclidean space, and where the inner product in H is

(L,a)-(M,T) = trace (LMT) + or (2.1)

The appropriate subset is

U = { (L,a) e H:det L > 0, a > 0} (2.2)

An element (F,9) in U is interpreted as an ordered pair

formed from a deformation gradient F and an absolute temper-

ature 8 . For the second example we take both H and U to
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be the six dimensional space of all symmetric endomorphisms on

the translation space of euclidean space with inner product

L-M = trace(LM) (2.3)

and interpret the elements of H as infinitesimal strain

tensors. This example enters in applications to isothermal

linear viscoelasticity. In the final section 9 one dimensional

situations are treated and H and U are taken to be the real

numbers, interpreted once again as strains.

Having introduced H and U let us agree to say that a

function f on (0,°°) with values in U is adinî gŝ ibl̂ e if

f is piecewise smooth on every finite subinterval of (0,00) ,

and if the limits f (0+) , f (t-) , f (t+) are in U for each

t > 0. The constant function e* on (0,00) with value e in

U provides a simple example of an admissible function. The

concepts extension, connection and section play a crucial role

in our theory. They are defined as follows. The admissible

function g is an extension, of the admissible function f if

there is a number r > 0 such that g(s+r) = f (s) for s > 0

and g is continuous and piecewise smooth on (0,T] . if this

extension g of f is continuous at r we say that it is a

connecĵ iori of f or, more precisely, that it connects f to

the vaTue e = g (0+) in U. If in addition to being a con-

nection of f, g has g (0+) = f (0+) we say that g is a

o f f • Lastly, the admissible function g
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is a section of the admissible function f if, for some r > 0,

g(s) = f (s+r) for s > 0 .

For our purposes certain classes of admissible functions

enter in a natural way. We call a class P of admissible

functions a collection of hlsjtories, and call the functions in P

histories, if P has the following properties:

P (i) All constant admissible functions are in P i.e. for

each e iri U the constant function e* is± iri P .

(ii) P iŝ  closed under extension i.e. if: f i£ iri P

and g iŝ  ari extension of f then g iŝ  rn P .

(iii) P iŝ  closed under section i.e. ijf f iŝ  iji P

and g ijs <a section of f then g jj3 iri P .

An example of a collection of histories is provided by the

minimal collection, defined as the class of all admissible

functions f with the property that f is constant on an

interval (T,°°) for some T >̂  0. Any collection of histories

contains the minimal collection. From now on we assume that some

fixed collection P of histories is available to us. It should

be noted that certain linear extensions of histories are in P :

let f be any history, a any element of U and b any

element of B(a), the largest open ball with centre a con-

tained in U, and define, for some T > 0, a function g on

(0,«) by g(s) = f(s-f) for s > r and g(s) = b + f-(a-b)

for 0 <̂  s <_ T . Then g is necessarily an extension of f

linear on (0, r) and, by (ii) , g is in P .
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With any U-valued function F on (-00,co) and any number t

we can associate a function F defined on (0,00) by

Ft(s) = F(t-s) , s > 0 . (2.4)

If for every number t the function F is a history in P we

shall say that F is a grggg&s, and call F the hi§t&££ o£ F

t£ t. Examples of processes are provided by paths. A process

F is a path if there are elements a,b in U and numbers s,t

such that u < s implies F(u) = a and u > t implies F(u) = b.

If F is a path with F(-°°) = F (») we call it a £losed gath; if

it is continuous a continiaaas^ gath..

With these preliminary definitions we can introduce work by

assuming that with each process F and each open interval (s,t)

on which F is smooth there is associated a number w(F,s,t)

called the work done in. the ££ocesj3 F 2JJ £Jl£ k££jz£X&L (s*t) .

The function w(-,-,*) will sometimes be referred to as the work

fjJB£tional. The dependence of w(F,s,t) on F,s and t is

restricted by an axiom set out below.

The key ideas giving the work functional its structure are that,

for any process F, w(F,#,-) is additive when regarded as a set

function on intervals and that, on a suitably small interval (s,t),

w(FjS,t) can be approximated by the work done in certain linear

extensions of the history F . To make the latter precise let f

be any history, r any positive number, a any element of U and

b any element of the open ball B(a). Define a process F(f,a,b,T)

by the conditions FO(f,a,b,r) = f, F(f,a,b,T) (u) = a+~(b-a) for

0 < u < r, and F(f,a,b,T) (u) = b for u > T. Then F(f,a,b,T) (o) =

a and so FCf^a^b^T) has a jump discontinuity at u=0 if a / f (0+) . Also
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F(£,a3h,T) (r) = b . The number w(P (f ,a,b, T) ,0, T) is defined

and is the work done in a process going from value a to value

b at a uniform rate (b-a)/T in the presence of the history

f . As T is made small w(F(f,a,b,T),0,T) represents the

work done in going from a to b at a higher and higher uni-

form rate. If the limit

lim w(F(f,a,b,T),0,r) =S(f,a,b) (2.5)
T-0+

exists we can interpret E(f,a,b) as the work done in jumping

instantaneously from the value a to the value b in the presence

of the history f. We assume that the work done in a process on a

suitably small interval can be approximated by L in the sense

of the axiom:

Wl (i) Let f be any history in P, and a, any element of U.

Then the limit in (2.5) exists and defines a function £(f,a,,-) on

B(a) which is differentiable at a.

(ii) If, F iŝ  any process smooth on (s,t) then the function

w(F,s, •) can be extended to <a smooth function on [s^t] and can be

approximated at s b£ £ according to the formula

w(F,s,u) = S(FS,F(s+) ,.F(u) )+o (u-s) as u - s+ .

Furthermore w(F, •, •) is. additive in the sense that if s < u < v < t

then

w(F^sJ,u)+w(FJ,uj,v) = w(FJ,s^v) .

Part (i) of axiom WI enables us to define the generalised

sĵ resjB to be the function S on P X U with values in H

given by

S(f,a) = gradbS(f,a,b) | . (2.6)
b = a
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That is to say, the generalised stress enters through the

smoothness assumption Wl(i) on the work functional. Returning

for the moment to the examples cited at the beginning of this

section we note that when H is the ten dimensional space

<£© reals the values of S are interpreted as ordered pairs (P,-

where P is a Piol^a^Ki^rchhoff stiress, tensor in £ and the

number 77 is an entrog^;. In the second example H is a space

of symmetric endomorphisms and the values of S are interpreted

as symmetric stress tensors whilst in the one dimensional case

covered by the third example the values of S are real numbers•

Axiom Wl implies that the work functional can be represented

in terms of the generalised stress according to the formula which

is usually taken as its definition.

Proposition 1. Îf the process F i^ smooth on (s,t) with

derivative F then

>,s,t) = S(FU,:
-Acs

w(P,s,t) = S(FU,F(u)) -F(u)du . (2.7)

Proof. Letting u - s+ in the second equation in WI (ii) tells us

that w(F,s,s) = 0 and so it suffices to prove that the derivative

of w(F,s,-), which exists by hypothesis,, has value S (FU,F (u) ) -F (u)

at each u in (s,t) . If F is smooth on (s,t) then it is

ja fortiori smooth on a subinterval (u,v) of (s,t) and so

w(F,u,v) = £(FU,F(u) ,F(v)) + o(v-u) .

as v-u+. It follows that £(FU,F (u),F (u)) = 0 and consequently

the definition (2.5) of the generalised stress implies

E(FU,F(u) ,P(v)) = S(FU,F(u)) • (P(v) -F(u)) + o (| F (v) -F (u) |)
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as v-u+ . Thus

w(P,u,v) = S(FU,F(u)) • (F(v) -F(u)) + o ([ P (v)-F (u) |) + o (v-u)

as v->u+ and the result follows on observing that w(F,, s, v) -w(F,, s,u)

w(F,u,v) . Q.E.D.

It is clear that determinism has already been built into

the theory via axiom Wl in the sense that the values of the

work and generalised stress depend on processes through the past

and not through the future. Also it is clear that the formula

(2,7) can be used as the definition of the work done in a process

F £ 0 * 3 Afifc&GXal (s,t) on whicji F is continuous and giece^

~i.S£ fiSSSfeil- Furthermore, if F is a continuous path, its

derivative F has compact support and we can define the work

done on the continuous path F to be

W(F) = W(F, -oô oo) .

We close this section by stating some smoothness assumptions

on the generalised stress. Given any function Q on P X u let

us define the equilibrium response function ft* for Q on U

by Q*(e) = Q(e*^e) and call ft(f 9 •) on U the instantaneous^

tesfionse function for Q and the history f . The assumptions

on S are

S (i) The equilibrium response function S*(-) i^ continuous.

(ii) For any history f iri P the instantaneous response

function S{f,*) is continuous.

(iii) 1^ F ijÊ  any process and t any number then

lim S(FU,F(u)) = S(Ft,F(t1:))
t+
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3. Axioms For Work, The Thermodynamic Axiom.

We begin this section by imposing further restrictions on

the work stating that our materials have a mild type of fading

memory and behave elastically in certain slow and fast processes,

We then give an example of a collection of histories and a work

functional obeying axioms P̂ SJ,W1J,W2_,W3 and W4. Finally we

close the section by motivating and enunciating the vital thermo-

dynamic axiom W5 and drawing some conclusions from it.

The fading memory axiom is;

W2 (Mild Fading Memory) . Let f he_ any history in P ,

let F be^ any continuous path and define â  sequence of

processes F by requiring that F S = f and F (t) =

F(t-n) for t ^ s ( see Fig. 1) . Then

w(F ,Sj°°) - w(F) as n -* co .

Axioms W3 and W4 express results of a kind which are known

to hold in linear viscoelasticity (GURTIN and HERRERA [10]).

W3 states that the work done in suitably retarded paths may be

computed using the equilibrium response function S* whilst W4

states that the work done in suitably accelerated processes may

be computed using an instantaneous response function S(f,•) .

Before stating the axioms we make the following definitions. If

F is any continuous path and s,t are any numbers such that

u < s implies F(u) = F(-°°) and u > t implies F(u) = F (°°)

then we say that a sequence of processes Fn defined by
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Fn(u) = F(-oo) for u < s and Fn (u) = F(s+-(u-s)) for u >_ s

is a seguence of retardations of F. If f is any history in

P and FjS^t are as before^ we say that the sequence of processes

F defined by requiring that F S = f and F (u) = F(s+n(u-s))

for u > s (see Fig. 2) is a seguence of accelerated processes.

The axioms are

W3 (Elastic Behaviour in Slow Processes). Let F be any con-

tinuous path and F the sequence of retardations of F defined

above. Then

f 1
S*(F(u)) •F(u)du as nw(Fn) - J £

(Elastic Behaviour in Fast Processes) . Let f bê  any

history in P, F any continuous path and F the sequence

of accelerated processes defined above. Then

ft
w(F ,s,™) -* S(f,F(u)) -F(u)du a^ n - °° .

's

It is not hard to find examples of collections of histories

and work functionals fulfilling all the requirements we have

set down so far. For example let A be any positive number

and let P be the class of admissible functions f with

oo

e"~ |f (s) |ds < °° . The class P is a collection of histories,
o

It may be thought of as a vector space with the usual pointwise

definitions of addition and scalar multiplication and then the

set P x U can be regarded as a subset of the normed vector

space P Q) H with norm

VAs|f(s)|ds
o
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Let S: p x U -* H be the restriction to P x u of some

compact function on P Q H i.e. a function which is continuous

and maps bounded sets into pre-compact sets. Then if we adopt

the function S as the generalised stress and define work by the

formula (2.7) axioms P,S,W1,W2,W3 and W4 hold.. For the sake of

illustrating the type of argument needed to establish that the

axioms do hold we prove W4.

If f.F.s.t.F are all as in the statement of W4 then
' n

w(F ,s,«) = S(Fn
U,Fn(u)) -Fn(u)du .

s

On making the change of variable v = s + n(u-s) it follows

that

w(Fn,s,oo) = J s(F n
s +Jr ( v~ s ),,F(v) ) -F(v)dv .

Let us show next that for each v in (s,t)

S(Fn
S+n(v~s),F(v)) - S(f,F(v)) , as n - *>

by showing that ̂  as n -• oo 9

U (p s4(v-s) (v)) _ (f,F(v))|l =
n
 JQ

(3.1)

and appealing to the continuity of S . We have

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSITY
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f V A < T|F n
S +n ( V- S )(CT) -f(CT)|dCT = f C°e-X(T|Fn(s+i(v-s)-CT)-f(CT) |dCT

^ O 1 O

r -(v-s) -ACT
= I n e |F(v-nCT) -f (CT) |da

Jo

I -ACT i _ -—(v-s) ) -f (CT) dor
n '

n(v's)-ACT
max IFiun \ e atr + | e |f(a)|da

u
(u)| [n ^e'^da +

+ e
--(v-s) f °

o
- f(a) |da

-• 0 as n - °° for each v in (s,t) ,

which proves (3.1) . Furthermore, we have the estimate

(F^ n , r (V) ) I) — I \ ) I j
^ o

n

|F(v) I + I n e ACT|F(v-ncr) j da
J Q

A(v-s)) |da

< max |F (u) | I
"" u L

— (v-s)n+ e f °°e-ACI|f(CT)|dCT

i) I + j" VA C r | f(cr) |da ,
u

hold ing for a l l v in ( s , t ) and a l l n = 1,2,3 . . . and so ,

by the compactness of S , the s e t

r s+^-(s-v) -|
{ s (F ,F(v)) : v i n ( s , t ) , n = 1,2,3 • • • (
V n J

i s bounded. Accordingly , t he sequence of func t ions
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s+-(v-s)
v -+ S (F , F(v)) converges pointwise to the function

v ~> s (f,F (v)) on (s,t) and is uniformly bounded. The

dominated convergence theorem now implies that W4 holds•

The motivation for the final axiom, which is our only

axiom of a thermodynamical character, arises from considerations

of the following sort. Suppose that f in P is any history.

Let us examine processes F with the property that Fs = f

for some s and that F is a closed connection of f for

some t > s and let us compute the work w(F,s,t) for each

process of this type. For example we might define F by requiring

that FS = f and F(u) = f(0+) on (s,t) and in this case

w(F,sJ,t) = 0 no matter what f is. If it happens that

w(F,s,t) < 0 we say, following BREUER and ONAT [1], that the

material does useful work of amount -w(F,s,t) . The following

question then arises. Given the history f and given any

number N < 0 , no matter how large |N| is, can we find a

process F of the above type such that w(F,s,t) < N i.e.

such that the useful work is as large as we please? It does

not seem reasonable to expect that this is possible and the

last axiom is just the assertion that it is indeed impossible.

More precisely, if we define the minimal work in closed connections

of the history f to be the number

tn(f) = inf{w(F,s,t) : FS = f, F is a closed connection of f)

(3.2)

our assumption is

W5 (Thermodynamic Axiom) . For each history f in. P, fo(f) > -».

A simple case in which W5 holds occurs when the generalised

stress is hyperelastic by which we mean that there is some
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smooth real-valued potential K on U with gradient grad K(e) =

S(f,e) for every history f and every e in U. In this

case the minimal work ^(f) = 0 for every history f . An

example of a collection of histories and a work functional

obeying axioms P,S,W1,W2,W3,W4,W5 is discussed in the final

section 9. We close this section by proving a number of mis-

cellaneous results following rapidly from W5.

Theorem 1.

(1) For each history f in P, frt(f) < 0 .

(2) For each e in U, fo(e*) = 0 .

(3) I_f F^G are continuous paths with F(-co) = G(°°) and

p(oo) = G(-oo) then w(F) + w(G) >_ 0.

(4) Î f F ijŜ  any continuous closed path then w(F) >̂  0.

Proof, (1) The process F defined by F = f and F(u) = f(0+)

for u >̂  0 has the property that F is a closed connection of

f for any t > 0 and w(F,,s,t) = 0, which proves (1) •

(2), (3), (4) . Suppose that F^G are continuous paths with

F(-co) = Q(oo) = a^ Say^ and F (») = G(-«) = b., say. Choose

a number s such that t > s implies F(t) = F (°°) and define

a sequence of paths F by requiring that F = F S and

F n ft) = G(t-n) for t >_ s. For every large integer n, F

is a continuous closed path with F (-co) = F (°°) = a (see Fig. 3)

and consequently given any large n there is a number t > s,

which depends on n, such that F is a closed connection of

the constant history a* . Thus

w(F ) >_ to (a*) .
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But

w(Fn) = w(Fn,-co,s) + w(Fn,s,°°) = w(F) + w(Fn,s,oo)

and, by axiom W2,

w(FnJ,s,°°) - W ( G ) as n ~> «> •

Thus

w(F) + w(G) > tn(â ) . (3.3)

In the special case G = F and F(-oo) = F(°°) = a we deduce that

2w(F) >_ tn(â ) .

Taking the least upper bound over all continuous closed paths F

of this type gives

2tU(a*) > to(a*) ,

which^, by axiom W5^ implies

tn(a*) >_ O .

Combining this inequality with (1) gives (2) and then (3) follows

from (2) and (3.3) . Finally (4) is a special case of (3) with

G = F. Q.E.D.

The result (4) of Theorem 1 was established by COLEMAN [2] .

In section 7 it will be extended to a result about paths which

are not necessarily continuous.
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4. Potentials For The Equilibrium And Instantaneous Response.

Throughout this section and the next we suppose that some

collection of histories P and some work functional w are

available to us. We speak always of the same P and the same

w so that the adjective unique is to be taken as meaning

'uniquely determined by the choice of P and w.» Our primary

object is to construct a free energy function for w. The

construction is carried out in the next section and depends on

knowing two functions TT(#) and <&(f, •) , the first being a

potential for the equilibrium response function S*(0 and the

second a potential for the instantaneous response function

S(f,*) corresponding to a history f. This section is devoted

to the preliminary matter of showing that these potentials

exist.

The first Lemma suffices to establish the existence of

a potential in certain circumstances.

Lemma 1. Suppose that T : U -• H is_ <a continuous function and

that there is an element e iri U with the property that the

set of numbers

{ J T (F(u)) •Ffajdu : F is a continuous path with F {-<*) =F (°°) =e >
^ J

is bounded below. Then there is <a smooth real-valued function

F on U with grad T = T.

Proof. Since U is connected it suffices to show that if F

is any continuous path with F(~oo) = F(°°) = e then

T(F(u)) -F(u)du = 0 .
/ •
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If m is the greatest lower bound of the set (4.1) then

JT(F(u) -F(u) du > m

for any path F of the required kind. Choosing s and t so

that u < s implies F(u) = e and u > t implies F(u) = e

and writing F! (u) = F(t-u) ,, -» < u < oo , produces another path

F! of this type. For this path

m < \T(F' (U)) -F' (u)du = - T(F(u)) -F(u)du

and so

0 < | IT (F (u) ) • F (u) du | < -m .

Also if F is a path which has value e everywhere except on

n(=1^2_,3^ ) intervals of length t-s, on each of which

it coincides with a translate of the restriction of F to (s^t),

then F is of the required kind and
n A

0 < n|jT(F(u)) -F(u)du| = | JT (F R (U) ) •Fn (u) du | < -m ,

which implies the result. Q.E.D.

It is convenient to parallel definition (3.2) and define

the minimal work in connections of the history f to e in U

to be

lMf^e) = inffwtF^Sjt) : FS = f, Ft connects f to e) . (4.2)

Of course^ tn(f) = to (f, f (0+)) . We are now in a position to

prove that the equilibrium response function S* is derivable

from a potential ir .
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Lemma 2 • There is â  smooth real-valued function ir gr^ U,

unique up to an additive constant, such that, for any history

f and any a,b ir^ U,

(1) S* = grad v

(2) tn(a*,b) = 7r(b) -7r(a)

(3) lU(f,a) = TT(a)-Tr(f(O+)) + fo(f)

Proof, (1) , (2) . Let a^b be any elements of U and let F

be any continuous path with F(-oo) = a^ F(°°) = b . Construct

from F a sequence of retardations F as in the statement of

axiom W3. Each F is a continuous path with F (-<») = a and

F (°°) = b and so

w(Fn) >

J
On letting n ~* °° and using axiom W3 we deduce that

S*(F(t)) -F(t)dt > n\(a*,b) . (4.3)

In particular^ if F is any closed continuous path with F(-oo) =

F (°°) = a we must have

S*(F(t)) -F(t)dt >_ fo(a*,a)=lMa*)=0 .

and a direct application of Lemma 1 and the continuity of S*

shows that there is a smooth real-valued potential ir on U

with grad ir = S* . Furthermore^ the connectedness of U implies

that S* determines IT to within an arbitrary constant.

Since the potential ir exists we can perform the inte-

gration in (4 .3) explicitly and find the inequality

7r(b)-7r(a) > fo(a*,b) , (4.4)

holding for all elements a^b in U. Interchanging a and b

gives

Tr(a)-7r(b) >. fo(b*,a) . (4.5)
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However, according to (3) of Theorem 1, if F is any continuous

path with F(-oo) = a, F(°°) = b and G is any continuous path

with G(-°°) = £>, G (<*>) = a then

w(F)+w(G) >. 0 .

Taking greatest lower bounds over all F,G of this type gives

a) > 0 (4-6)

and combining (4.4)^(4.5) and (4.6) shows that

7r(b)-7r(a) >. tMa^b) > -tn(b*,a) ^7r(b)-7r(a) ,

which proves (2).

(3)• To prove (3) we prove both

IMf.a) > 7T(a)-7r(f(O+))+tn(f) (4.7)

and

m(f,a) < 7T(a)-7r(f (O+))+tn(f) . (4.8)

s t

Let F be any process with F = f, with F connecting f

to a and let G be any continuous path with G(-<») = a and

G(°°) = f (0+) . Define a sequence of processes F by requiring

that F ^ = Ft and that Fn (u) = G(u-n) for u > t (see Fig.4(a))

Then for any large integer n there is a number t1(n) with
F a closed connection of f . Thusn

On letting n -* °° and using axiom W2 we deduce that

tn(f) < w(F,s,t)+w(G) .
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Taking the greatest lower bound over all such G and using (2)

of this Lemma gives

tn(f) < w(F,s,t)-Hr(f (0+))-7r(a)

and now taking the greatest lower bound over all such processes

F yields the inequality (4.7) .

To prove the converse inequality (4.8) let F be any process

s t

with F = f and F a closed connection of f. If G is any

continuous path with G(-a>) = f (0+) and G(°°) = a we can

define a sequence of processes F by the conditions F = F

and F (u) = G(u-n) for u >. t (see Fig. 4(b)) . This time it

follows that

Letting n -• », using axiom W2 and taking the greatest lower

bound over all such paths G gives, in precisely the same

way as above3 the inequality

fo(f,a) £ w(F,s,t)+7T(a)-7r(f(O+)) ,

from which (4.8) may be deduced. Q.E.D.

Incidentally we have shown more than is claimed in the

statement of Lemma 2. If F is any continuous path with

F(-oo) = a and F(°°) = b and if the sequence of retardations

F is defined as in the statement of axiom W3 then
n

w(Pn) - JS*(F(t))'-F(t)dt = 7r(b)-7r(a) = tn(a*,b) .

That is to say we have proved
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Corollary 1. Given any elements a,b ill U and any e > 0 we

can construct â  continuous path G with G(-oo) = a and G (°°) = b

such that

w(G) < tU(a*,b) + €

by taking G t<o bja a_ suitable retardation of any continuous

path F with F(-oo) = a and F («>) = b .

The results (3) of Lemma 2 and (1) of Theorem 1 show that

tn(f,e) = 7r(e)-7r(f(O+))+tn(f)<7r(e)-7r(f(O+)) ,

and so fo(f,e) < 0 i f V (e) < ir (f(0+)) . Accordingly we have

Corollary 2. Î f f JLS. any history and if e ill U satisfies

IT (e) < 7T (f (0+)) then there is <a process F such that F S = f,

F connects f to e and w(F,s,t) < 0 i.e. we can extract

useful work from a. history f b^. choosing a. suitable process

connecting f to^ any e with ir (e) < ir (f (0+) ) .

The final Lemma of this section shows that if f is

any history in P the corresponding instantaneous response

function 'S(f,•) is derivable from a potential. We choose to

impose a normalising condition which ensures that the potential

is unique and we discuss its physical significance after proving

the Lemma.

Lemma 3. There is <a unique real valued function * ori P X u

having both of the following properties:

(1) for each f iri ' P, the function $(f3 •) on U i^ smooth

with gradient

grad *(f, •) = S(f, •) ,

(2) for each f in P , *(f,f(O+)) = 0 .
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Proof. Let f be any history and F any closed continuous

path with F(-oo) = F(°°) = f (0+) . If the sequence of accelerated

processes F is the sequence considered in the statement of

axiom W4 then F is a closed connection of f and so, by

the definition of tn(f) ,

w(F ,s,co) > tU(f) .
n "••"

Letting n -• °° and using W4 implies that

(f,F(u)) -F(u)du > to(f)

for any continuous path F meeting the condition F(-oo) = F(°°) =

f(0+) . The assumed continuity of S(f^-) and Lemma 1 now implies

that there is a function f6 on P X u with the property (1) .

If we define

$(f,,a) = {6(f ,,a) -?S(f 3 f (0+))

then $ satisfies both (1) and (2) . This 3> must be unique

for if $ also satisfies (1) and (2), then by (1), 4?(f , a) -$(f, a)

is independent of a and^ by (2) _, has value 0. The result

follows. Q.EoD.

In order to appreciate the physical significance of the

potential $ let us suppose that a history f and an element

e in U are given. Let us choose any continuous path F

with F(-oo) = f(0+) and F(°°) = e and construct a sequence of

accelerated processes F from f and F as in the statement

of W4. The sequence F converges pointwise to a process F

with F S = f, F(s) = f (0+) and F(u) = e for u > s so that

F has a jump discontinuity of amount e-f (0+) at s . On
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using W4 and Lemma 3 we deduce that as n -• °°

|S(f,P(u)) -P(u)du = *(f,e)-*(f,f(O+)) = *(f,e) .

In other words: the number 3>(f,e) can be interpreted as the

work done in traversing the jump discontinuity of. amount e-f (0+)

in the process F .

JS
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^ # The Free Energy.

This section contains our most important results. We

shall show that for any choice of a collection of histories and

a work functional satisfying axioms S<,W1^W2^W3J,W4J,W5 one can

define a function with properties which justify calling it

free energy* Our definition is: the real-valued function #

defined on P x u by the relation

e) = 7r(f(O+)) - fo(f) + #(£,e) (5.1)

is called the free energy. The definition can be written out

in words as

[the free energy corresponding to the history f and present

value ej

= [the equilibrium potential corresponding to the value f(O+)j

[the minimal work in closed connections of fj

+ [the work done in traversing a jump discontinuity of

amount e-f(0+) in the presence of the history fj

Of course, if e = f(0+) there is no discontinuity and the

third term in the definition disappears. Each of the functions

ir(*)j $(***)> IM#) and to(*,-) can be expressed in terms of

the free energy # and the equilibrium free energy # according

to the formulae set down in

Proposition 2. For any history f and any e Jin U the

following results hold:

(1) 7r(e) = tf*(e)

(2) #(£,e) =

(3) Di(f) = tt

(4)
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The proofs of these results are simple applications of (2) of

Theorem 1^ (3) of Lemma 2 and (2) of Lemma 3.

The justification for the name free energy is the wealth

of properties displayed in Theorem 2.

Theorem 2. For the free energy ^ the following statements

hold:

(1) for each history f the instantaneous response function

^ ( f > #) i§. smooth with gradient

grad *(f, •) = S(f, •) ,

(2) the equilibrium response function v JLS_ smooth with

gradient

grad #* = S* ,

(3) for each history f ,

tt(f,f(O+)) > **(f(0+)) ,

(4) i_f the process F is_ continuous and piecewise smooth on the

open interval (s,t) and continuous at s and t then

w(P,s,t) > ^(Ft,F(t))-^(FS,F(s)) ,

(5) if. the process F ±s_ continuous and piecewise smooth on

(s,t) and continuous at s and t then the function u - 0(u) =

*(F ,Pfu)) is differentiable almost everywhere on (s,t) and

at each u in (s,t) at which ĵ(u) exists

S(FU,F(u)) -F(u) > 0(u) .



-28-

Proof. (1) This property follows from the definition of ^

and the construction of $(f,-) as a potential for S(f,•) .

(2) Property (2) is implied by (1) of Proposition 2 and the

construction of TT(*) as a potential for S*(*) •

(3) The result (3) of Proposition 2 can be written

*(f,f(O+)) -

from which (3) follows since (1) of Theorem 1 tells us that

lll(f) < 0.

(4) Let F,s,t be as in the statement of (4) and let G be

any process for which G = F , G is continuous and piecewise

smooth on [s,oo) and for which there is some u > t such that

u! > u implies G(ul) = F(s) (see Fig. 5) . The history GU

is a closed connection of FS and consequently

tn(FS) <w(G,s,oo) = w(F,s,t) + w(G,t,c°) .

On noting that G also connects F to F(s) and taking the

greatest lower bound over all such G we deduce the inequality

!MFS) < w(F,s,t)+tl\(Ft,F(s)) 9

which3 by (3) of Lemma 2, implies

w(F,s,t) > (7T(F(t))-m(Ft))-(7T(F(s))-tn(FS)) .

Since F is continuous at s and t9
 <J(FS^F(s)) = $(F ,F(t)) = 0

and the result follows on using the definition of ^ .

(5) If F is continuous and piecewise smooth on (s,t) and con-

tinuous at s and t and s <̂  u < u! <_ t then F is continuous

and piecewise smooth on (u,uj) and continuous at u,u* so that

(4) holds and we can write

S(FV,F(v)).F(v)dv
u
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which implies

u») - f S(FV,F(v)) T(v)dv < 0(u) - f S(FV,F(v)) -P(v)dvJ s J s

In other words the function

u
r u

(u) - S(FV,F(v)) -F(v)dv

is monotone decreasing on [s,t] • By Lebesgue*s theorem it has

a non-positive derivative almost everywhere and this proves (5) .

Q.E.D.

The properties (1),(2), (3)9 (4) and (5) of the free energy

are,, of course^ familiar results in theories of thermodynamics'

which introduce free energy as a primitive concept and adopt the

Clausius-Duhem inequality as a starting point. In fact the

relation (1) is what COLEMAN [2] calls the generalised stress

relation and (2) is its counterpart in equilibrium. Property (3)

is the assertion that among all histories f ending with â  given

value e = f(0+) the constant history e* gives the least free

energy, which is the form of the result given by COLEMAN.

Property (4) is the integrated dissipation inequality and the

local inequality (5) jjŝ  the form assumed by the Clausius-Duhem

inequality in homothermal processes.

It now appears that there are certain notable features of

the present theory of thermodynamics which deserve to be empha-

sised. For the sake of concreteness let us think of the first

example introduced in Section 2 with H a certain ten dimensional

rSee, for example,, COLEMAN [2] 3 COLEMAN and MIZEL [5] , GURTIN [9]
and WANG and BOWEN [14] .



-30-

space and where the pairs (F,0) in U consist of a deformation

gradient F and an absolute temperature 9. Our procedure

takes work as primitive and then stress and entropy are defined

in terms of the work functional. Furthermore on the basis of

the thermodynamical axiom W5 we construct a free energy function

related to the stress and entropy by familiar rules. It should

be noted too that we do not need balance laws for linear momentum,,

moment of momentum and energy - they are quite irrelevant to our

purpose.

We conclude this section by proving two more theorems.

The first characterises hyperelastic materials within the class

of materials considered here,. We know already that if the

generalised stress is hyperelastic, if f is any history and if

F is a process with F = f and F a closed connection of

f then w(F,s,t) >_ 0; in fact equality holds here. The con-

verse statement is also true and is given in

Theorem 3. Suppose that for every history f and every process

s t

F, with F = f and F a. closed connection of f, the

work w(F,s,t) >_ 0 . Then the generalised stress is hyper-

elastic.

Proof. The hypotheses imply that the minimal work ^(f) = 0

for any history f and, consequently, if the process F is

continuous at u, >£(FU,F (u) ) = * (P(u)) . It suffices to

show that, for any history f and any e in U, S(f,e) = S* (e)

for then, by Theorem 2, S(f,e) = grad # (e) , which proves the

result. Given any a in B (e), the largest open ball with
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centre e contained in U, define a process F by requiring

that F° = f, F(u) = e+ua for 0 < u £ 1 and F (u) = e+a

for u > 1. For s,t in 0 < s < t < 1 (4) of Theorem 2

implies

£t
S(FU,F(u)) -a du > *(F ,F(t)) ->3>(FS, F (s) )

Dividing throughout by (t-s) and letting t - s+ gives

S(FS,F(s)) -a > S^ (e+sa) -a

and now letting s -+0+ and using the smoothness assumptions

S on the generalised stress gives

(S(f,e)-S*(e)) -a > 0

for every a in B (e) and this implies the result. Q.E.D.

Finally we prove a theorem relating the present theory

to the work of various authors who have studied the restrictions

which are imposed on constitutive relations by assumptions about

work. The assumption that non-negative work must be performed

to perturb a System1 from an equilibrium state was used by

KONIG and MEIXNER [11] in their study of one dimensional

constitutive relations and they called constitutive relations

with this property dissipative. More recently, GURTIN and

HERRERA [10] and SHU and ONAT [12] have investigated conditions

on the relaxation function of a linear viscoelastic material

necessary for it to be dissipative. Let us agree to say that

an element e in U is locally stable if e lies in a stability
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N in U with (e) < \& (a) for every a iin

N and turn to proving

Theorem 4.

(1) -LIL F i§. any continuous path then

w(F) >_ ̂ *(F(°°)) -#* (F(-co)) .

(2) Let e iri U bê  locally stable and let F bê  <a continuous

process with F = e*. Then there is â  number e > 0 such

that t iri (O^e) implies

w(P,o,t) > 0 .

Proof, (1) If F is a continuous path then, for all large

numbers t, F connects the constant history F(-a>)* to F (°°)

and so

w(p) > m(p(-»)*,p(oo)) .

The result follows on using (2) of Lemma 2.

(2) Let N be a stability neighbourhood for e. The continuity

of F enables us to choose e > 0 so that t in (0,e) implies

that F (t) is in N. An application of (1) now shows that

w(F,o,t) >. **(F(t))- 0 Q.E.D.
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6. Optimal Processes.

For each history f and each e in U the numbers

and tn(f,e) are defined as the greatest lower bounds of certain

sets in (3.2) and (4.2) . It may happen that there is a process

F which attains the greatest lower bound in the sense that

s tthere are numbers s,t with s < t, F = f, F connecting f

to e and

w(F,s,t) = lU(f,e) .

We shall call any process with these properties an ogtimal grocess

for f and e. An optimal process extracts all the useful work

possible from the history f in processes connecting it to e.

Whether optimal processes exist or not would seem to be a question

decided by the detailed structure of the collection of histories

P, the work functional w and the pair f and e and we shall

not enter into this question here. Our purpose is to prove a

theorem describing certain features of optimal processes, assuming

that they exist. Of course, optimal processes do exist in

certain cases. For example, if the generalised stress is hyper-

elastic any process connecting f to e is optimal. Also, for

any work functional we know that if f is the constant history

e* the constant process with value e is optimal because

ft\(e*) = 0- Even if no optimal process for f and e exists

the definition (4.2) of the minimal work to(f,e) does guarantee

that for any e > 0 there is a process F with

n\(f,e) < w(F€,s,t) < to(£,e)+€ ,
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and it would be of great interest if alternative characterisations

of F could be found. The Corollary 1 to Lemma 2 provides

such a characterisation in the simple case where f is a constant

history.

We turn to proving Theorem 5 which gives necessary and

sufficient conditions for a process to be optimal.

Theorem 5. Let f b<a any history, e any element of U and

s t

f <a process with F = f and with F connecting f to e.

Then F i^ optimal for f and e i.e. w(F,s,t) = fU(f,e) if

and only if each of the following conditions holds:

(1) ât t the free energy and generalised stress assume their

equilibrium values i.e.
^(Ft,F(t)) = tt*(e) and S(Ft,F(t)) = S* (e) ,

(2) on the interval (s_,t) the internal dissipation vanishes

i.e. for each u iri (s,t)

S(FU,F(u)) -P(u) = 0(u) ,

where 0 (u) = tf(Fu,F(u)) .

Proof. Firstly we show that conditions (1) and (2) are necessary

for F to be optimal.

(1) If we choose any process G with G a closed connection

of F for some t! > t then G also connects f to e

and consequently

But, if F is optimal,

w(G,s,t») = w(F,s,t)+w(G;t,t') = tl\(f,e)+w(G,t,t')
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and we deduce that w(G,t,t') > 0 for any such G, which implies

IMF*) = 0 . (6.1)

Using (6.1), the definition (5.1) of the free energy and noting

that Ft(0+) = F(t-) = e gives the first result in (1), namely

= **(e) (6.2)

one consequence of (6.1) and (6.2) is that for any element b

in U

Now choose any a in the open ball B (e) and define a process

G by requiring that G = F 3 G(u) = e+(u-t)a for t <_ u £ t+1

and G (u) = e+a for u > t+1. Then for any u in (t^t+1) we

have,, by (4) of Theorem 2,

1 S^GfvD-adv = w(G,t,u) >. ̂(^^(u)) = * (e+ (u-t) a) -* (e)
J t

Dividing throughout by (u-t) and letting u -* t+ gives

S*(e) -a < S(Gt,G(t)) -a = S(Ft,F(t))-a

and this inequality can hold for all a in B(e) only if the

second result of (1) holds.

(2) By hypothesis, w(F,s,t) = lTl(f,e) and, by (3) of Lemma 2,

tn(f,e) = **(e)-tf*(f(O+))+to(f) .

However, we have already proved that 0(t) = >£ (e) and it

follows from the definition of free ener«gy that ^(s) = <S/ (f (0+))-tU(f)

Consequently

w(F,s,t) = 0(t) -0(s) . (6.3)
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If we now choose any numbers u,u! in s < u < u f < t then

the integrated dissipation inequality (4) of Theorem 2 applied

to each of the intervals (s,u), (u,u!), (u',t) states that

w(F,s,u) > 0(u)-0(s); w(P,u,u>) > 0(u')-0(u); w(F,u',t) >

and these inequalities are compatible with equation (6.3) only if

equality holds in each of them. In particular

i: S(F ,F(v)) -F(v)dv = 0(u

and so 0 is differentiable on (s,t) and the result (2) holds.

To prove the sufficiency of conditions (1) and (2) we observe

that integration of the equation in (2) produces equation (6.3)

Condition (1) tells us that 0(t) = ^ (e) and also, by the

definition of free energy, 0 (s) = ^ (f (0+)) -to (f) . Thus

w(F,s,t) = tf*(e) -tf*(f (0+))+to(f) = to(f,e)

and F is optimal for f and e. Q.E.D.
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7. Extending The Definition of Work.

Let us agree to say that a process F has a small dis-

continuity at t if F(t+) is in the open ball B(F(t-)) . If

F does have a small discontinuity at t then the line segment

joining F(t-) and F (t+) lies entirely in U. Of course

if U = H every discontinuity of a process is small. Thus far

we have defined the work w(F,s,t) for a process F and an

open interval (s^t) on which F is continuous and piecewise

smooth. In this section we show that provided we make a further

smoothness assumption on the work the structure of our theory

suggests a natural definition of work for a process and a finite

open interval on which the process is piecewise smooth and has

small discontinuities * In short, we can handle processes with

a finite number of small discontinuities provided that for the

purposes of computing work these processes can be approximated

by processes which are linear near the discontinuities. It turns

out that the results (3) and (4) of Theorem 2 and the result

(1) of Theorem 4 can be extended to discontinuous processes. The

extended form of (1) of Theorem 4 is used in Section 8 to obtain

restrictions on the relaxation function of a linear viscoelastic

material necessary for compatibility with thermodynamics.

The extra assumption we need concerns a process with a

single small discontinuity and may be motivated in the following

way. Let F be a process which is smooth on the intervals

(s^u) and (u,t) and has a small discontinuity at u. For

each integer n > l/(t-u) define a process F (see Fig. 6)
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by requiring that F coincide with F on (-00,u) and (u+—_,°°)

and that on [u^u+—]

Fn(v) = F(u-)+n(v-u)F(u+£)-F(u-)) .

Then F is continuous and piecewise smooth on (s.t) and
n

linear on [u^u+—] and

w(Fn,s,t) = w ( F n , s , u i i

= w(F,s,u) + nS(Fn
V,Fn(v)) -P (v)dv + w(P ,u+i,,s,u) + | U + n S ( P n
v , ]

= w(F,s,,u)

0 1 1 1
+ I S (F nA,F(u-)+A(F(u+-) -F(u-))) • (F (u+-) -F(u-) ) dA

Jo n n n

+ w(Fn,u+—^t) (7 .1)

It is reasonable to expect, with mild assumptions on the generalised

stress Sj that on letting n -• » in the equation (7.1) we obtain

r 1 u
lim w(Fn,s,t) = w(F^s^u) + I S (F ,F (u-) +A (F (u+) -F (u-) ) • (F (u+) -F (u-)) dA
n~*°° ^o

+ w(P,u,t) . (7.2)

By the definition of the potential $ the right hand side of

(7.2) can be rewritten as

w(F,s,u) + $(FU,F(u+)) + w(F,u,t) .

The limit lim w(F ̂ s^t) certainly exists and has the value

(7.2) in the example cited in section 3 where the collection of

histories P is a certain normed vector space of admissible

functions and the generalised stress jS is a compact H-valued

function on P X U. We proceed by assuming the result explicitly:
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W6. Let F be a process which is smooth on (s,u) and (u,t)

and has a. small discontinuity at. u. If. Fn is. the sequence

of processes defined above then

lim w(Fn,s,t) = w(F^s,u)+$(F
U
J,F(u+))+w(Fj,u/t) . (7.3)

n-+oo

With this axiom we can extend the definition of work. Suppose

that the process F is piecewise smooth on the interval (s,t)

with small discontinuities at u,3 ^u, in (s^t) and is

continuous at every other point of (s,t). For notational con-

venience write s = u and t = ^4.1 • Corresponding to each

choice of a k-tuple (n,, ,ru ) of large integers define the

k processes

F • • • • • F ... • • • • « • • F F
nl V n2 V "k-lV "Tc

according to the following prescription: Define F .... to
nl "k

be that process which is continuous and piecewise smooth on

(u ,uk+^) which coincides with F on the open intervals (-a^u,),

u ^ > ^ — *• — k"1^ ^uk+n °̂°̂  a n d i s l i n e a r o n t h e

1

closed intervals [u..,u.+—], 1 < i < k. Define the (k-1)
I i n . •— "™*

remaining processes inductively by demanding that F ...
m K

coincide with F on (-cô u ) and with F ..« on [u »)
m nm-l "k m

for 2 < m < k (see Fig. 7). Then repeated application of axiom

W6 shows that, for 1 <_ m < k,

m
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Adding these k equations together tells us that the multiple

limit

lim ... lim w(F ... ,u .u- .) (7.4)
xy- n^- nl "k ° *+1

exists and has value

k k u.
£ w(F,u.,u.+1) + S *(P

 1,P(u.+)) . (7.5)

i=o 1 1 + ± i=l x

In the case k = 1 the expression (7.5) reduces to the right

side of (7.3) and furthermore F ... -• F pointwise every-
nl nk

where, with the possible exception Of the points of discontinuity

ul^*"*J>uk:> a s n i ^ # # # ^ n ] c "* °° • Accordingly we take the expression

(7.5) as the definition of w(F^sJ,t) , the "work done in. the grocgss,

F on (s,t) If F is any path we shall write, as before,

w(F) = w(F,s,t) where s is negative and large and t is

positive and large. The utility of the definition is illustrated

by

Theorem 6.

(1) if f is. any history in P and e is. any element of

B(f(O+)) then

(2) Let F be. any process continuous at s and t, piecewise

smooth on (s,t) and with all its discontinuities in (s,t)

small. Then

w(F,s,t) >

(3) Ijf F is,, any path whose discontinuities are small then

w(F) >_ # #
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Proof» (1) Let f in P be the extension of f defined by

f (u) = e, for 0 < u < 1, and f (u) = f(u-1) for u > 1

and let F be any process connecting f to f (0+), with

FS = f and F (t) = f (0+) (see Fig. 8). If

e ^ f(0+)^ F(u) has a discontinuity at u = s-1. Let F

be the sequence of processes approximating F constructed in

extending the definition of work. Then each history F is

s-1
a closed connection of f with F = f and son

w(F ,s-l,t) > lU(f) .

n •—

On letting n - oo we deduce, since F is constant on (s-l,s),

that
^(f.eJ+wfF.s.t) > tU(f) .

s t

Now F = f and F connects f to f (0+) and so on taking

the greatest lower bound over all such processes F we deduce,

on using (3) of Lemma 2, that

<S>(f,e)+7r(f (0+)) -7r(e)+tn(f ) > fo(f) .

But M f e ) < 0 and so

Tr(f(O+))-H\(f)+*(f,e) >7r(e) ,

which implies the required result.

(2) Choose any process G coinciding with F on (-oô t) and

with G a closed connection of F for some u > t. Construct

an approximating multiple sequence G ... for G on (s,u)
n l "k
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in the manner described in extending the definition of work.

Then each G •.. connects P to F(t) and so
nl "k

w ( Gn "••n, ' s' u ) > ln(pS>

On taking the multiple limit lim .•• lim it follows that
n,-+oo n.. -+CQ

K. 1
S <w(6,s,u) = w(P,s,t) + w(G,t,u) .

Taking the greatest lower bound over all such processes G

yields

m(FS,F(t)) < w(F,s,t)+tn(Ft)

and the result follows on using the continuity of F at s and

t and the definition of the free energy.

(31) Let F be any path whose discontinuities are small and con-

struct the multiple sequence F ... as in extending the

definition of work. Each F ... is a continuous path with

F ... (-oo) = F(-co) and FM ... (°°) = F («) and so, by (1) of
n l "k nl • "k

Theorem 4,
w(Fn ... > **(F(»))-tf*(F(-co)) .

nl "k ~

Since w(F) = lim ... lim w(F ... ) the result follows. Q.E.D.
n̂ -oo n±^

 nl "k

The result (1) of Theorem 6 extends (3) of Theorem 2 and

the result (2) is an extension of the integrated dissipation
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inequality (4) of Theorem 2. When written out in full it reads

f ̂ (F^FCu)) -F(u)du + S * (FU,F(u+)) > *(Ft,F(t)) - *(FS,F(s)) •
)s ue(s,t)

The result (3) of this Theorem extends (1) of Theorem 4. We

close the section by proving a Corollary which is used in the

next section.

Corollary.

(1) Ij? F iŝ  any closed path whose discontinuities are small

then w(F) >_ 0 .

(2) I_f F ijs any piecewise constant closed path whose dis-

continuities are small then

S $(Ft,F(t+)) > 0 . (7.6)
-oo<t<»

Proof. (1) is a special case of (3) of the theorem, whilst (2)

is a direct consequence of (1) and the definition of w(F) . Q.E.D.
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8. Restrictions On Linear Viscoelasticity.

Throughout this section we will assume U = H so that

every discontinuity of a process is small. The theory of linear

viscoelasticity corresponds to taking U and H to be the six

dimensional space of symmetric endomorphisms of a three dimensional

inner product space.

For the purpose of obtaining restrictions on the relaxation

function of a linear viscoelastic material it suffices to work

with the minimal collection of histories P, defined previously

as the class of admissible functions f on (0,00) with f

constant on some subinterval (t^00) . We choose to think of P

as a vector space with the usual pointwise definitions of addition

and scalar multiplication. By a <J^LSSSvtiGQ function we mean any

smooth function £ on [0_,°°) whose values are endomorphisms
f °° *of H and |!T (s) | ds < °°. For any relaxation function 3 (°°) =
^0

lim JI (s) necessarily exists.
S-**oo

Any relaxation function !J induces a linear function S

on the direct sum P @ H with values in H defined by the

constitutive relation for a linear viscoelastic material., namely

J *
00

S(f,e) = 3(0)e + I 3(s.)f(s)ds . (8.1)
'o

It can be verified that if we adopt S as the stress and define

work by formula (2.7) then axioms S:,W1^W2J,W3J,W4 and W6 hold. If

it happens too that the thermodynamic axiom W5 holds we say that

3* is compatible with thermodynamics. Examples of one dimensional

relaxation functions compatible with thermodynamics are discussed
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in the final section 9. The results of sections 4 and 7 provide

certain interesting conditions necessary for compatibility with

thermodynamics. They are given in

Theorem 7. I_f the relaxation function 3 i^ compatible with

thermodynamics then

(1) 3 (0) and 3 (°°) are symmetric

(2) ar (o) -g- (») > + (T- (s) -jr (°°)) ' for o < s < °° .

(3) 3 (0) < 0 .

Proof. (1) The definition (8.1) shows that, for any e in H,

S(O*,e) =JT(O)e , S*(e) = J (») e .

By hypothesis, the results of Lemmas 2 and 3 apply and the

symmetry of ? (0) and # (°°) is immediate.

(2) To prove (2) we use the Corollary to Theorem 6. The potential

$(f,•) for the instantaneous response S (f,•) is given by the

formula

*(f,e) = |(3:(O)e-e-5(O)f(O+) -f (0+) ) + (e-f (0+)) • [ jf(s)f(s)ds .
J° (8.2)

For any integer N > 1, any N+l numbers t < t < o o. < t

and any N elements e,,...,e of H we can construct a piece-

wise constant closed path F with F(s) = 0 for s < t and

s > tjj and F(s) = ek for t^_± < s < tk, 1 < k < N. Direct

computation shows that for this F the inequality (7.6) becomes

N k-]

k=2 m=]
> 0 (8.3)

'We use the notation L -̂ M to mean that L-M is positive s e m i _
definite. ^ negative
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In the inequality (8.3) set N = 2, t2-t = s and e, = e~

e. This produces the inequality

(3(O)-3:(s))e-e > 0 ,

holding for all e in H^ and proves that 3(0) >̂  3"(s) or,

as we prefer to write it_,

a:(o).ff(«) > + (j(s)-ar(«)) (8.4)

for all s in 0 < s <̂  °° . To prove

3(o)-a:(») > - (?(s)-a:(«>)) (8.5)

we take the following special choices of N, the t and the

(i) N = 2N1 + 1 > 3 is odd,

(ii) for given s,t > 0 define tQ < t 1 < ... < t 2 N, + 1 t»y

requiring that t^ = t + ^k(s+t) if k is even and that

t^ = tQ + j(k-l) (s+t) + t if k is odd,

(iii) for given e in H define e, = 0 if k is even and

, ,A (k-l)/2 . _ .e, = (-1) ' e if k is odd.

If we now employ the symbol £' to denote that the indicated

summation is over odd integers only the inequality (8.3) becomes

2N'+1
ev -e.

k=l K K

2N-+1
£' S1 (ff (i(k-m) (s+t) +t) -23" (̂ (k-m) (s+t)

k=3 m<k * *

' S1 (ff (i(km) (s+t) +t) 23" (̂

+ 2(^-(k~m) (s+t) -t)em-e, > 0 .

On letting t - «>, using (iii) and dividing throughout by N1

the latter inequality becomes
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^ j(0))e.e > O ,

holding for all integers N! > 1 and all e in H. On letting

Nf -• °° we deduce (8.5) and so (2) is proved.

(3) This result is an immediate consequence of (2) and the

assumed differentiability of 3. Q.E.D.

Aside from an arbitrary additive constant, the equilibrium

free energy for the linear viscoelastic material defined by (8.1)

must have the form

tf*(e) = ~3(«>)e-e .

If we assume that 0 in H is locally stable, in the sense of

section 5, then 3" (°°) is positive semi-definite and it follows

from (2) of Theorem 7 that 3 (0) is positive semi -definite. The

positive semi^definiteness of 3(0) and the negative semi-

definiteness of 3(0) are significant results for the theory

of plane acceleration waves in linear viscoelastic materials since

they guarantee that these waves are damped in time.' Results

similar in nature to those in Theorem 7 have been given by

GURTIN and HERRERA [10] on the assumption that the work done,

starting from equilibrium, is always non-negative i.e. that the

material is dissipative. They establish the symmetry and positive

semi-definiteness

(2) of Theorem 7,

semi-definiteness of 3(0) ' ' and 3 (<») and obtain, in place of

'cf. COLEMAN and GURTIN [4] .

''The symmetry of ^(0) was also established by SHU and ONAT [12]
using the same assumption about work as GURTIN and HERRERA [10].
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It should be noted that (2) of Theorem 7 implies the latter

inequalities whenever U (°°) is positive semi-definite.

Finally we consider cases in which the stress S has a

more general form than (8.1) but nevertheless can be approximated

by a linear viscoelastic law in certain circumstances. It turns

out that the restrictions given in Theorem 7 must also apply to

the resulting infinitesimal relaxation function if S itself is

to be compatible with thermodynamics. As before we take U = H

and work with the minimal collection of histories throughout.

We assume then that we have a work functional for the min-

imal collection of histories satisfying axioms S^W1J,W2^W3^W4

and W6 y that the stress S is defined by (2.6) and the free

energy by (5.1) . Let e be some element of H. We add one

assumption:

r *

(A) For histories close to e and present values close to

e . S can be approximated in the form

S(f,e) = S*(eQ) + Sff(f,e) + T(f,e)

where
ST(f,e) = 1(0) (e-e ) + 3(s) (f(s)-eJds ,j o J Q o

for some relaxation function U, and where

T(f,e) = o(sup|f (s) -eQ| + |e-eo|)

as sup|f(s)-e | + |e-e | -> 0
s

•vid. COLEMAN and NOLL [6], [7] and COLEMAN [3] for a discussion
of the circumstances in which an approximation of this type is
valid.
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It is easy to see that if U in (A) exists then it is

unique; we call 3 the ̂ finitesinja^ ^giaxafeASXi &4BG&U3B

e . We can now state and prove Theorem 8.

Theorem 8. ^f (A) holds then the infinitesimal relaxation function

satisfies the conditions (1) , (2) and (3) oj? Theorem 7 •

Proof, (1) If the gradient of the instantaneous free energy

\i>(e*,, •) is denoted by grad ^(e*, •) , in the usual way, then,

by (1) of Theorem 2 and assumption (A) ,

grad \I>(e£,e) = S(e£,e)

(0) (e-eQ)+T(e£,e)

(0) (e-eo)+o(|e-eo|)

for all e in some neighbourhood of e . It follows that

>£(e*,-) is twice differentiable at e with second gradient

Z (0) , which must be symmetric. In a similar way,

grad tf* (e) = S*(e) = S* (e )+3 («) (e-e )+o(|e-e I)

o o o

in some neighbourhood of e so that ^l (•) is twice dif ferentiable

at e with symmetric second gradient ̂ (»).

(2),(3). Firstly we show that if F is any continuous closed

path with F(-oo) = F i00) = e then

I .
S (F ,F(u) ) -F(u)du >_ 0 • (8.6)

To prove this, define, for each A > 0, the continuous path

F by

FA(u) = eQ+A(F(u) -eQ) .



-50-

Then, by assumption (A), we have that

FA(u))= S*(eQ)+A S^F^F (u) )+T (F^F^ (u)

and so

FA(u)du

= A |S*(eo) *F(u)du + A
2|s (FU,F(u)) -F(u)du

•F(u)du .

But

V F(u)du = 0

^ since F is bounded, T(F^,F. (u) ) = o(A) as A -• 0 and

so

2 I u * 2w(F.) = A IS^ (F ,F(u) ) *F(u) du+o (A ) .

By our assumptions on S, (4) of Theorem 1 applies and we have

w(F^) >_ 0 .

It follows that

T (F
U,F(u)) -F(u)du + o(l) > 0 as A - 0 ,

which implies the required result (8.6).

Next we observe that, since g; (0) is symmetric, the function

0 defined on P X H by

*(f ,e) = iff (O) (e-e ) • (e-e )'-̂ ir(O) (f (0+) -e^) • (f (0+) -e )2 o o /. o o

(e-f(O+))- | .ir(s) (f (s)-e )ds
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is a potential for S^, in the sense that grad $(f, •) = S(f, •)

and ^(f,f(0+)) = 0 . It is now not difficult to show, on the

basis of (8.6), that if F is any piecewise constant closed path

with F(~co) = F(°°) = e then the inequality (7.6) holds. (The

proof of (7.6) depends on approximating F by continuous closed

paths which are linear near the discontinuities of F) . From

the inequality (7.6) we now deduce that the infinitesimal relaxa-

tion function satisfies the inequality (8.3) and the proof of

properties (2) and (3) proceeds precisely as in Theorem 7. Q.E.D.

The restrictions placed on infinitesimal relaxation functions

by thermodynamics have been considered previously by COLEMAN [3]

who showed that J (0) -3(°°) is symmetric and positive semi-

definite. If we impose the additional assumption that e is

locally stable then, since, as we have seen, the second gradient

of $f at e is g: (°°) it follows that 3 (°°) is positive

semi-definite and hence, by Theorem 8, that 3 (0) is positive

semi-definite and

3(0) > + ar (s) for s > o .

In other words, we recover results obtained by GURTIN and HERRSRA

[10] for the purely linear viscoelastic case if we make the

assumption that e is locally stable.
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9. One Dimensional Linear Viscoelasticity.

In this section we discuss one dimensional linear visco-

elasticity, which corresponds to taking both U and H to be

the real numbers, and confine our attention to relaxation

functions of the form

N -At
?(t) = S y,e K (9.1)

k=o

where the A!s are ordered so that 0 < A < . „ . < AXT and
o N

y ,...,y > 0. We take the vector space of all admissible real-

valued functions f on (0,°°) with

e"AoS|f(s)|ds < «

to be the collection of histories P and endow the direct sum

00 reals with the norm

r oo

ll(f,e)|| = |e|+ e"V|f(s) |ds .
Jo

The stress is taken to be the linear form S defined on P0 reals

by

iS(f,e) = 3(0)e+ ff(s)f(s)ds . (9.2)
Jo

In fact S is a continuous form and, in particular, is a compact

map. It follows, as we have seen previously, that if we define

work by the formula (2.7) the axioms P,S,W1,W2,W3,W4 hold. Our

object is to establish that the thermodynamic axiom W5 also holds

and, moreover, to produce explicit expressions for the free energy,

Relaxation functions of type (9.1) have been considered

previously by BREUER and ONAT [1] in their work on maximum
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recoverable work in linear viscoelasticity. They obtained an

integral equation of Wiener-Hopf type as a necessary condition

on a process giving the maximum work recoverable from a given

history and showed how, for relaxation functions of type (9.1),

one can obtain a formal solution of the equation. Their solu-

tion is formal in the sense that the derivative of the process

maximizing the recoverable work has a Dirac 6-function singularity

and so corresponds to no actual connection in our sense.

Before entering into the details of proving compatibility

with thermodynamics and evaluating the free energy let us out-

line the approach to the problem presented here. Let f be any

history in P and e any number and let C(f,e) be the class

of processes with F = f and with the property that for some

T > 0, F connects f to e and t >_ T implies F(t) = F(T) =

e. Then, by definition, the minimal work

to(f,e) = inf{w(F,O,«) : FinC(f,e)}

and

fo(f) = n\(f,f(o+)) .

Firstly we establish to(f) >-», that is to say W5 holds, and

in the course of proving that result we obtain a particular lower

bound, ^(f) say, for the set

{w(F,O,co) : F in C(f,f (0+)) }

and we wish to show that this lower bound is actually the greatest

lower bound to(f)• T o d o this we notice that for the particular

relaxation function 3 of (9.1) JT (°°) = 0 and so we can take
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the equilibrium potential ir of Lemma .2 to be identically zero.

The result (3) of Lemma 2 then tells us that

fo(f,e) = n\(f) ,

for every number e. As the next step we choose a convenient

number e and construct a sequence of processes F in C(f^e )

for which w(Fn,O,») - I (f) . It must follow that -t(f) = fo(f)

and in this way we get an explicit formula for ^(f) from which

one can easily write down the free energy by using the definition

(5.1). We turn to th6 details.

If the process F is in some class C(f^e) the stress at

t >. 0 is

S(Ft,F(t)) = 3(O)F(t) + f ^(s)Ft(s)ds
Jo

f t
^o

f= af(t) + ff(t-s)P(s)ds , (9.3)

where ô (̂*) is defined on [0,00) by

r °°o

af(t) = 3:(t)f(O+) + 3(t+s)f(s)ds
Jo

and is determined by f and 3». In this case

a (t) = SyJf(O+)-A e"\Sf(s)ds(e"\t , (9.4)
k=0 •- ^o J '

It follows from (9.3) that

w(F,O,») = J af(t)F(t)dt + \ J ] JT(|t-s|)F(s)F(t)dsdt
°° (9.5)

In order to proceed further we need the following Lemma

which is due to BREUER and ONAT [1] .
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Lemma 4. There are numbers j8 fi^y . . . ,j8 ,M.,. . . ji 9 depending

on f and Z , with 0 < /i , < ...</x such that the integral

equation

3"(|t-s|)£_(s)ds + £ ?(t) = a^t) , t > 0 (9.6)

is solved by the function

N g

fix: (s) = S fie ^k . (9.7)
r k=l K

Tto prove this result BREUER and ONAT choose a,,...,/!.- as the
1 JM

N positive distinct roots of the equation

Q(,u) s s A f r 2 = ° (9-8)
k=0 k ^

and fio* ••••'fin
 t o satisfy the linear equations

N -ft. r f00 -A is 1
J- V o 7 vu.o I • X — V / « J L . . . . , Jo AT¥k=l i *K

(9.9)

and it is a simple matter to verify that with these choices the

integral equation is satisfied.

Now let F be any process in some class d{f,e) „ Noting

the following facts (i) F has compact support on [0,m),
f00

(ii) |/8(s)|ds<», (iii) 0 < 3(|t-s|) < 3(0), (iv) ^ is
Jo

of positive type, we have that for any positive integer n
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0 < f a'dt-sl) (F(s)+2j3 (£) e
Jo -'o """

-ns 2

-n t 2

2-) e +/3 f(t))dsdt

F(s)F(t)dsdt
i r °° r °°
2" ^ ( I t - s

Jo ->o

Jo I Jo ( | t - s | ) 2 ^ o ^ e ds-^oar(t)+af(t) Fw(S "e ds-^(t)+a^(t)[ P(t)dt

:-s|)

x | 20 o (£ ) e + ^ f ( t ) | d t

(

1
)

I {ff(|t-s|)-3(t)}2fl (£)V ds F
•̂ o L-'o ° " J

2 f f f "fa r( |t-s!)-ir(t))2fl (a
'O L •'o u "

= w(P,0,») + I {ff(|t-s|)-3(t)}2fl (£)V ds F(t)dt
L ° J

§) e +^f(t)J dt

= w(P ,o , - ) + - ^ Q a f ( 0 ) + f j o f ( t ) / J f ( t ) d t

if"2-J («
'o

+ r e ds|F(t)dt

(9.10)
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The mean value theorem applied to any smooth function £(*) with

bounded derivative £(•) tells us that

O
(4(ts)4(t)}A

O

r °° % - n s 2 . _%
£ max | 4 (u) | I 2 (—) e sds = max | £ (u) | (irn) ,

u ^o u

and employing this inequality in (9.10) enables us to deduce the

following estimate: there is ja positive number A{f,^) such

that if F ijŝ  any process in some class C (f _,e) and n jLs_ any

positive integer then

f f °° f °° • ^ \c -ns2

0 < f 3T( |t-s|) (P(
o ^o

-nt
+j8f(t))dsdt

/• oo

\ j af(t)j8f (t)dt + O(P,f,ff,n) (9.11)

where

|O(P,f,a:,n) | < A(f,ff)|l+ I |p(t)|dtl - i - . (9.12)

L Jo J n 2

One consequence of this estimate^ which follows on letting

n -> oô  is that for each F in C(f^f(O+))

f oo

af(t)j8f(t)dt > — ,

i.e. the thermodynamic axiom W5 holds and the minimal work

in closed connections of f satisfies

> - ^ o a f ( 0 ) - 1 atn(f) > -i^a^(o) - i | af(t)0f(t)dt . (9.13)
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In fact we can show that equality holds in (9.12)• As remarked

above, if suffices to exhibit a sequence of processes F in

C(f,e ), for some e 9 with

w(Fn,O,°o) - -i^o
a

f(°)-7 I af(t)/5f(t)dt , as n - » .
•'o

We choose e to be the numbero

- I |8f(u)du

and define the sequence of processes F in C(f^e ) by

2 fs
U du - £(u)du , 0 < s < n ,

)̂

n)) y n < s <_ 2n ,

s s > 2n .

It is clear from the definitions of e and F that F (n) - e

as n -* oô  and it is straightforward to verify that

Fn(s) = <J F J n )

/• oo r o

Jo •'o
e +j8f(s))

% - n t 2

X (Fn (t) +2/3Q (S) e

-ns'

n h -nt2

x (Pn(t)+2j8o(S) e +J8f(t))dsdt

2tf" r °° ..a r » T 9
-Fn(n) | + -T^. I e"

u du + I |/8f (u) |du ̂
7T *̂ n 'A n J

F

= o(l) as n
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Thus equation (9.11) tells us that

r co

n , 0 , » ) + | j 3 o a f ( o ) + j J a f ( t ) ^ f ( t ) d t + O ( P n , f , ? , n ) = o ( l ) , as n -

(9.14)

But

2n .
| F n ( t ) | d t = I | F n ( t ) | d t

r n 3$ - n t 2 . f 2n
< J {20O<£) e + |a f ( t ) |}dt+J i |eo-Fn(n) |dt

Jo n

< ^ o + 1 |5 f(t) |dt + |e -F (n) | = as n
• • x - - • - o n • v

and so the estimate (9.12) tells us that

O(F ,f,3,n) = o(l) , as n - « (9.15)

On combining (9.15) and (9.14) we deduce that, as n -» °° 3

JP 00

af(t)/3f(t)dt ,
o

which proves that equality holds in (9.13) and completes the

proof.

The results of this section are summarised in Theorem 9.

Theorem 9. If 0 < A <...<A 1 V T and y 3 ... 9 v T > 0 , the
O N O XT N

- A +•
one dimensional relaxation function 3> (t) = S y e" K is com-

k=0 k

patible with thermodynamics. Given any history f with
-A s
° | f (s) |ds < °° and any number e define a A

r

r A
j e ° | f (s) |ds < °° and any number e define a A •)
^o r

equation (9.4) and j8f(
Q) by equations (9.7) , (9.8) , and (9.9).
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Then the free energy is

>.o f

1

(0) + \ I a (t)]8f(t)dt

(e2-f (0+)2) + (e-f(O+)) I 3-(s)f(s)ds .

The sequence of processes F which ultimately extracts,

the maximum recoverable work from the history f has the point-

wise limit F(s) = lim F (s) with F° = f, F(0) = f(0+) and

-flo{%f(»F(s) = f(O+)-jS - j3 (u) du for s > 0. That is to say, F jumps

instantaneously from the value f(0+) to the value f(O+)-j3

at 0 and thereafter decays exponentially to the value
r co

F(oo) = f(o+)-j8 - I /? (u) du = e . This behaviour agrees with

that found by BREUER and ONAT [1] .
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Fn(t) = F(t-n)

I
I F(-oo)

Fig. 1

F (u) = F(s+n(u-s))

F(-oo)

I
I F(°°)

I

J I-

Fig, 2
u
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Fn(t) = F(t)
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Fn(t) = G(t-n)

/
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Fig. 3
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F S=FS=f
n

F (u)=F(u) F (u)=G(u-n)
n

I
I f(0+)

Fig. 4(a)

u

F S=FS=f
ji - - - - * < - n

I a

u

Fig. 4(b)
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G ( u ' ) = F ( u ' ) G ( u ' )

F i g . 5

u



-67 -

F (v) = F(v)
n

F (v) = F(v)

Fig. 6

s = u
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s - 1 u

Fig. 8


