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Suppose that a material has been subjected to a given strain

history in the past with the result that energy has been stored

in it. It is natural to ask if it is possible to extract part

of this energy as useful work by taking the material through an

appropriate path in strain space. If this is possible then we

would like to know how much work can be extracted and which strain

paths can be used to extract useful work. Questions of this sort

have been considered previously for very special classes of one

dimensional linear viscoelastic materials by BREUER and ONAT [1]

and by DAY [3]. This paper treats an extensive class of (three

dimensional) linear viscoelastic materials• Our purpose is to

give simple conditions on a strain history guaranteeing that the

history be useful in the sense that useful work can be extracted

from it in closed connections of the history - processes connecting

the history to its final value by a closed path. In addition we

give a lower bound on the amount of useful work which can be re-

covered from a history meeting our condition and we construct

closed connections extracting useful work.

To make these ideas precise we use the following notation

and terminology. By the strain space £ is meant the set of

all symmetric linear transformations of R into itself. The

elements a,P,Y • •• of £ are to be interpreted as infinitesimal

strain tensors and C is to be considered an inner pro-

duct space with inner product a*fi = tracea£ and norm ||a|| = (a*a

We also consider the vector space "£(£) of all linear trans-

formations of C into itself endowed with the usual
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norm ||L|| = sup{ ||La||: ||a||=l) . We say that a measurable function

f: [Ô co) ~* C is a strain history if it is continuous at 0 and

we call f (0) its final value. The constant function Of* with

value a on [0,«>) is a simple example of a strain history.

We call a function $: (-»,<») - £ a closed connection of the

strain history f if (1) $(t) = f(-t) for -co < t < 0, (2) there

is a number T > 0 such that $(t) = f (0) for t >_ r and (3) $

is continuous and piecewise smooth on [0,<») . if $ is a

closed connection of f , then $(t) = $(0) = f(0), for all

sufficiently large numbers t . An example of a closed connection

of f is provided by the constant continuation f with values

7(t) = f (-t), for -co < t < 0, and 7(t) = f (0) , for t > 0 .

It should be noted that if 4 is a closed connection of f then,

for each t >^ 0, the function 0 : [0,a>) -+ £ defined by * (u) =

$(t-u) is a strain history with final value *(t-) = lim

A linear viscoelastic material is determined by its relax-

ation function by which we mean any smooth function G: [O,co) -*

with derivative G: [0,<») -» £(C) and having the following proper-
r « .

ties: (1) G(«) = lim G(t) exists and lim G(t) = 0, (2) I tG(t)dt < «,
t-^oo t-»oo -t 'O

(3) G(O)-G(«) is symmetric and positive definite. With each

strain history f and each strain a in £ (a is the !present

value1) we associate a stress s(f,a) by means of the constitu-

tive relation of linear viscoelasticity, namely

s(f,a) = G ( O ) a + I G(u)f(u)du ,

•Various authors have discussed !thermodynamic! assumptions which
ensure the symmetry and positive semi-definiteness of G(0)-G(°°) .
See, for example, COLEMAN [2], DAY [3], GURTIN and HERRERA [4] and
SHU and ONAT [5]. Our assumption that G(0)-G(°°) is actually
positive definite rules out elastic materials since for those materials
G is constant.
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provided the integral exists. The equilibrium stress for the

strain a is

s*(a) = s(a*,a) = G(«)a .

Let f be a strain history and f its constant continuation

defined previously. We say that f has the stress relaxation

property if the function t -• s (f ,f(0)) is continuous on [0,»)

and

lim •s(ft,f(O)) = s*(f(O)) .
t-oo

Since

I G(u
Jo

= G(t)f(O) + G(u+t)f(u)du ,
'o

the history f has the stress relaxation property if and only

if the function t -* 1 G(u+t)f(u)du is continuous on [0,»)

and

poo.
lim G(u+t)f(u)du = 0 .

For closed connections 4 of f the work w($) may

be computed from the usual expression

•*(t)dt ,

whenever this integral exists, and if it happens that w(*) < 0

we say, following BREUER and ONAT [1], that the material does

useful work of amount -w($) > 0. We say too that a strain

history f is useful if the maximum recoverable work

W(f) = sup{-w($) : 4 a closed connection of f)

is positive.
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The following theorem is an assertion about strain histories

f with s(f,f(0)) ^ s*(f (0)) . For an elastic material no his-

tory can meet this requirement and consequently we distinguish

these histories by calling them inelastic with respect to the

given viscoelastic material.

Theorem. If the strain history f is. inelastic and has the

stress relaxation property then it is useful, the maximum recover-

able work W(f) JL£ bounded below by the positive number

*(f) = ~H(G(O)-G(-))-1/2(s(f,f(O))-s^(f(O)))||2 t

and there is a sequence $ of closed connections of f with
_ _ _ _ _ _ — _ _ — — — — — — _ _ _ _ i _ - _ _ - _ _ _ ^ — — • ' '•' «-«--«——--

-w(* ) -» 4*,(f) as_ n -» oo .

Proof. If a in C is any strain we can define a sequence <&

of closed connections of f, each of which is piecewise linear
o

on [Ojoo) , by requiring that $ = f and

f (0)+nu(a-f (o)) , 0 < u < l /n

a , l /n < u < n

a+i(u-n) (f (0) -a) , n < u < 2n

f (0) , 2n < u < •

The strain a is at our disposal and will be chosen in a con-

venient way later on.

Assuming that f has the stress relaxation property, the

definition of work tells us that

•n(u) = <

T 1/2
"Here (G (0) -G (°°) T ' is the unique positive definite and symmetric
square root of (G (0) -G (°°)) ~ .
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w(* ) =v n

r l / n f 2n\

• ° l / n ) 8 ( n ' . n ( t ) ) ' V t )

nf ns(*^,*n(t))dtj • (a-f(o))

i\( 2n . \
+ lnjn s ^ v ^ y ^ 0 ^ •

A straightforward computation shows that

f Vn - f1
 t / n

n I s ( * , * (t)dt = s(*M
/ ,* (t /n))dt

Jo n n Jo n n

1 f °°-
= iG(O) (Off (0)) + G(u)f(u)du

z Jo
I (G (u

o L •'o
+t/n) -G (u)) f (u) du

+ (G (t/n)-G (0)) (f (0) + t (a - f (0 ) ) )

- (i 1 u G(u/n)du) (a-f(O)) dt

and that

i f ns(**,*n(t))dt = [ s(^t+n,*n(nt+n))dt
-'n *o

= -|G(OO) (OH-f(O))

ir G (u+nt+n) f (u) du

+ (G(nt+n-l/n)-G(»))a

+ t (G (nt)-G (»)) (f(O)-a)

+ (G (nt+n) -G (nt+n-l/n)) f (0)

nt .
_ ,1 ( uG(u)du) (f (O) -Oi)

+ (n I uG(nt+n-u)du) (a-f (0)) I dtuG
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It follows from the properties of the function G and the

assumption that f has the stress relaxation property that, as

n -> oo 9

r v n t i r°°.
n s (* , * (t))dt -» ^G(O) (a+f(O)) + G(u)f(u)du
* o ^ o

and

n j s(*n,*n(t))dt - |G(<») (OH-f (O)

and so

lim w (*n) = -|(G (0) -G (»)) (a+f (0)) • (a-f (0))

Jo °- (a-f(0)) • I G(u)f(u)du .
J o

If we introduce E, the symmetric and positive definite square

root of G(0)-G(«>), this limit can be written as

\ Ef (0) «Ef (0) +.Sf(O)-E~1 \ G(u)f(u)du -\ EOJ-Ea
* Jo z

00 #

G (u) f (u) du
o

= |l|Ef(O) + E~L \ Q(u)f (u)du|r

G(u)f(u)dul|2- -|l|Ea + E" 1 G
/o

= |||E-1(s(f,f(O))-s*(f(O)))||2

- ~||E-1(s(f,a)-s*(a))H2 .

By choosing

- 1 f 0 0 -
a = - (G (0) -G («)) G (u) f (u) du
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we ensure that s(f,a) = s* (a) and so, with this choice,

- lim w(*n) = |||E"
1(s(f,f(O))-s*(f(O))||2 ,

which proves the theorem.

Remark. For the one dimensional Maxwell material with relaxation

function G(t) = ae" (a,b > 0) the maximum recoverable work

can be computed explicitly (see [1] and [3]) and has the value

2W(f) = ialf(O)-b f e"btf(t)dt

[= | [ (G (0) -G (•)) "1/2 (s (f, f (0)) -s* (f (0)) )1 2

In other words, the lower bound given in the theorem is actually

equal to the maximum recoverable work in this special case and

the sequence $ ultimately extracts all the recoverable work.



-8-

REFERENCES.

[1J BREUER, S. and E. T. ONAT: On recoverable work in linear

viscoelasticity, Z. angew. Math. Phys. 1JS(1964) , 12-21.

[2] COLEMAN, B. D.: On thermodynamics, strain impulses and

viscoelasticity, Arch. Rational Mech. Anal. 1^(1964), 230-254.

[3] DAY, W. A.: Thermodynamics based on a work axiom. To be

published.

[4] GURTIN, M. E. and I. HERRERA: On dissipation inequalities

and linear viscoelasticity, Quart. Appl. Math. 23,(1965), 235-245.

[5] SHU, L. S. and E. T. ONAT: On anisotropic linear visco-

elastic solids, Proceedings of the Fourth Symposium on Naval

Structural Mechanics, Purdue University, April 1965. Reprinted

in Mechanics and Chemistry of Solid Propellants. Oxford and

New York, Pergamon, 1966.

Department of Mathematics
Carnegie-Mellon University, Pittsburgh, Pennsylvania

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSITY


