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ABSTRACT

Let A and B be Hermitian semi-definite matrices and let A denote

the Moore-Penrose generalized inverse. Then we define the parallel sum of

A and B by the formula A(A + B) B and denote it by A : B. If A and B are

nonsingi|Q.ar this reduces to A : B = (A~ + B" )" which is the well known

electrical formula for addition of resistors in parallel. Then it is

shown that the Hermitian semi-definite matrices form a commutative partial-

ly ordered semigroup under the parallel sum operation. Here the ordering

A > B means A- B is semidefinite and the following inequality holds:

(A + B) : (C + D) > A : C + B : D. If R(A) denotes the range of A then it

is found that R(A : B) = R(A) D R(B). Moreover if A and B are orthogonal

projection operators then 2 A : B is the orthogonal projection on

R(A) fl R(B). The norms are found to satisfy the inequality ||A:B|| < ||A||:||B|

Generalization to non-Hermitian operators are also developed.

* Carnegie-Mellon University. Prepared while the authors were at
Texas A§M University. Some of the material is from the first author's
Ph.D. thesis at Carnegie-Mellon University.
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I. Introduction

In this paper a new operation, called parallel addition,

is defined for pairs of linear operators. Parallel addition originally

arose in an attempt to generalize a network synthesis procedure of

Duffin 13 I and has already been studied in the scalar case by Erickson f5 • ]

The connection of resistors in series and parallel is a familiar

concept from elementary network theory. If two resistors having

resistances A and E are connected in series the joint resistance is

S » A + B, and if they are in parallel, the joint resistance is

P «. (A""* •}• f )" « AB/(A + B). These two methods of combining

resistance are then called series and parallel addition.

It has been tacitly assumed in the above that A and B are

positive numbers, since the formula for P is not necessarily defined

otherwise* In the physical context the normal situation is for A

and B to be positive, however, the case A and B » 0 - a short circuit -

can be handled by lotting P » 0 if A » 0 and B is non-negative. Thus

the concept of parallel addition of non-negative scalars is, a well

defined mathematical operation; it will be denoted here by A:B.

As is well known, positive semdefinite matrices are a generalization

of non-negative scalars. This suggests that the parallel addition of

such iriatrices be defined by A:B « A (A + B)~ £. If A and B are both

nonsingular this is equivalent to A:B » (A~ + B~ )~ . The latter

formula is not defined for singular A and B,.however, the former will



be defined if A + B has an inverse. Even when A + B is singular, the

parallel addition may be defined by replacing (A + B)" by (A + B)+,

the Moore-Penrose generalized inverse. The generalized inverse has a

particularly simple form when A + B is symmetric semidefinite. In fact,

A + B when restricted to its range is one to one, so that a genuine inverse

may be defined there.

It proves just as simple to consider Hermitian semidefinite matrices

rather than matrices which are necessarily real. However, in this paper,

the operators are restricted to a finite dimensional vector space V.

Suppose that A and B are Hermitian semidefinite matrices. If they

are both nonsingular it is obvious that parallel addition is commutative

and associative. Moreover, the resulting matrix A:B is also Hermitian

semidefinite. However, if A and B are singular then these properties are

not clear consequences of the definition. Nevertheless indirect arguments

show thfct these properties hold in all situations.

Let R(A) denote the range subspace of the matrix A. Then it is well

known that R(A + B) = R(A) + R(B) if A and B are Hermitian semidefinite

matrices. It is found here that R(A:B) « R(A) D R(B). The above two

operations are just the operations used in defining the lattice of subspaces

of the vector space V. As a consequence a sequence of series and parallel

additions of matrices induces corresponding lattice operations. As is well

known the lattice of subspaces is modular. This property is found to give

identities relating certain series-parallel connections.

Orthogonal projection operators are, of course, Hermitian semidefinite

and the theorem just mentioned has the following interesting application.



If A and B are orthogonal projection operators then 2A:B is the orthogonal

projection into the subspace R(A) f) R(B).

Semidefinite matrices form a partially ordered system if A > B is

taken to mean A - B is semidefinite. In terms of this system the

following general inequality holds

(A + B) : (C + D) > A:C + B:D .

We term this the series-parallel inequality and it is a generalization of

a scalar inequality of A. Lehman [ll]. In particular if A > B then it

results that A:C > B:C. Thus we can say that the Hermitian semidefinite

operators on a finite dimensional space form a partially ordered commutative

semigroup with parallel addition as the group operation.

It is of interest to note that the boundary inequalities for parallel

additions of matrices seem to be best expressed in terms of parallel addi-

tion of scalars. For example the following inequalities hold for the

norm, trace, and determinant:

I|A:B||< ||A|| : ||B|| ,

tr(A:B) < (trA) : (trB) ,

|A:B| < |A| : |B| .

These inequalities are best possible.



II. Preliminaries

In this paper we will consider operators on a finite dimensional

complex inner product space. The range and null space of an operator A

will be denoted by R(A) and N(A) respectively. The orthogonal projection

onto R(A) will be denoted by P . A Hemitian operator A will be said to be

positive semideflnite if (Ax,x) > 0 for all x; the abbreviation HSD will

be used. For an HSD operator A it is easy to prove that (Ax,x) = 0 iff

Ax * 0, and that R(A + B) = R(A) + R(B).

The Moore-Penrose generalized inverse [l], [13] of an operator A

will be denoted by A . In the cases considered here A will be HSD. Then

A when restricted to its range is one to one, and therefore invertible ;

+ + + • -f

A is this inverse. It then follows that AA « A A « P., and that A is

HSD iff A is HSD.



III. Algebraic Properties

Definition: Let A and B be Hermitian semidefinite operators on

the finite dimensional complex vector space V. The se£ie£ sum of A and

B is defined to be the ordinary sum A + B. The parallel sum of A and B

is defined by

(l) A:B « A (A + B)+B.

Since R ( B ) C R(A + B) f for any x we have Bx e H(A + B). Then, since

A + B is invertible on its range, the complete definition of the generalized

inverse is never used. In the later development of-the theory it v/ill turn

out that reasonable results are obtained only when we can guarantee that

R ( B ) C R ( A + B)t a s i s t h e c a s e here.

For scalars a,b we define a:b « a(a+b) b, where 0 = 0 . This is

the case studied by Erickson [5 j•

Lemma 1; If A and B are Hermitian semidefinite, then A:B = B:A.

Proof: A:B - A (A + B)+B

- (A + B - B)(A + B)+(A + B-A)

- (A + B)(A + B)+(A + B) - B(A + B)+(A + B) - (A + B)(A + B)+A
+ B:A

" - A + B - B P M ) > - PA+B A + B:A

- B:A

QEO)

If the definition of A:B is extended to general operators A and B,

this proof would work if A + B is nonsingular; if not, the lemma need not

hold.



Lemma 2: Lf A and B e.re Hermitian semidefinite, then A:B is

Hermitian.

Proof: (A:B)* - (A(A + B)+B)*

- B* (A + B)*+A* «B(A + B)*A

« B:A

« A:B by lemma 1# OED

Lemma }: If A and B are Hermitlan semide finite, then R(A:B) « R(A)HR(B)

Proof: Consider x e R(A)AR(B). Then

A:B(A+ -i- B+)x « A(A + B)+BB+x + B(A + B)+AA+x

~ A (A + B)+x + B(A + B)+x

» P. • x « x

A+B

Therefore R(A:B) 3 R ( A ) 0 R ( B ) . Since R(A(A + B)+B)C R(A)f the lemma then

follows from leraiaa 1. QJID

Lgmm k; If A and B are Herxnitian senidef in i te , then A:B jLs

semidefini te .

Proof: For any K, l e t A:Bz=x. Then, as in lcninia j>f A:B(A -I- B

and

(A:Bzfz) » (x,z) - (A:B(A+ 4- B+)x,z)

« ((A+ + B+)x, A:Bz) by lemma 2

o (A+x,x) + (B+x,x) > 0



Although we cannot in general write A:B « (A~ + B~")~ , and by letting

1 0

0 1

f 0 0

J L «
we see that the "obvious" extension A:B * (A* + B*)*1" will not work either,

we do have an alternative definition of this type.

Theorem 5; If A and B are Hermitian semide.finite, then A:B = (P(A+ + B+)P)+,

where P jis the projection onto R(A)AR(B) .

Proof; Consider any x e V. Since R(A:B) » R(A)f|R(B) and A:B is

Hermitian, (A:B)+x » (A:B)+Px. But, as in lemma 3, A:B(A+ + B+)PJC « Px.

Then, by lemma II.6, (A:B)+Px « p(A+ + B*)Px. But A4"1" * A, therefore

A:B m (p(A+ +,B+)P)+. QED

Lemma6; IT A, B, and C are Hermitian semidefinite, then (A:B):C « A:(E:C).

Proof: By lemma. J, the range of both sides is R(A)fiR(3)f|R(c). How,

for x e R(A)flR(B)riR(C)f

A:(B:G)(A+ + B+ + C+)x « A (A + B:C)+B:C(A+ + B+ •+ C+)x

« A (A + B:C)+B(B + C)+CC+ x 4- A (A + B:C)+C(B + C)+BB"Ix + 7J:C(A +B:C)"!AA+X

« A (A + B:C)+(B + C)(B + C)+x + B:C(A + B:C)+x

« (A + B:C)(A + B:C)+x - x.

A si-nilar computation holds for (A:B):C. Then, as in the proof of theorem

6, if P is the projection onto R(A)nR(B)f)R(C), A:(B:C) - (A:B):C -

(P(A+ + B+ + C+)P)+. QED

Theorem 7: The Hermitian semidefinite operators on V form a partially

ordered commutative semigroup with the semî rroup or»ex̂ ation paralH.el addition.

Proof; The semigroup property follows from leninas 1, 2, 3> Q-nd "[. The

partial order property is proved in corollary 21, to follow.



It has been proved that if A and B are HSD, then R(A + B) = R(A) + R(B)

and R(A:B) = R(A) 0 R(B). These are just the operations used in defining

the lattice of subspaces; it seems natural, therefore, to consider that

lattice* One question in this regard may be easily answered.

Theorem 8: If P and Q are projections, then the projection onto

R(P) 0 R(Q) i£ 2P:Q.

Proof: By lemmas 2 and 3> 2P:Q is an Hermitian operator with the

correct range. For x e R(P) D R(Q) we have x = P:Q(P + Q+)x = P:Q(2x) = 2P:Qx.

QED.

The formula of theorem 8 answers problem 96 of Halmos [8], for the

finite dimensional case. In the published solution it is stated that the

familiar algebraic operations are not likely to furnish a solution;

theorem 8 appears to meet the requirement.

Because the lattice of subspaces is modular, equalities may be between

the range of various series-parallel combinations of operators. In any

modular lattice (aA(b v c)) A (bA(c va)) = ( a v b ) A ( b v c ) A ( c v a ) [2];

it follows that for HSD operators A,B,C, the operators A:(B+C) + B:(C+A)

and (A+B) : (B+C) : (C+A) have the same range. It appears that these facts

about range spaces could be used to study switching circuits, possibly by

using projections to represent their range spaces.



s JJL A I S l B a , r e Hermitian seffiiclefinite, and Ax » ax, Ex «= bx,

then A:Bx = a:bx.

Proof: (A:B)+x - PA.B(A+ + B+)PAjBx

= (a+ + b+)x

Then A:Bx » (a+ + b+)+x » a:bx.

The parallel addition is not distributive with respect to series

addition. There is, however, a weak distributive law with respect to

multiplication.

Theorem 10: If A, B, and C are Hermitian semidefinite, and AC - CA,

BC = CB, then (AC):(BC) « (A:B)C* In particular, C night be CI, for some

non-negative scalar C.

Proof: (A0):(BC) = AC(AC +

= ACC+(A + B)+BG

= A (A + B ) + BCC+C - (A:B)C QSD

This is the most general distributive lav; that could be expected,

since if AC / CA, then AC is not Hermitian.

Lemma 11: IT A and B are Hermitian semidefinite, and Aw « Bx * u,

•Ay = Bz « v, and w+x = y+z, then u « v.

Proof: By direct computation, A:B(w+x) ~ u, A:B(y+z) = v, and since

w+x « y+z, it follows that u « v. QED
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The impedance matrix of a resistive n-port network is semidefinite

A series-parallel connection of 3-port networks is shown in figure 1. If

two n-port networks with nonsingular impedance matrices A and B are connected

in parallel, then the impedance matrix C of the parallel connection is

given by C = (A" + B" )"" =A:B. If A or B is singular, then our formula

for A:B still gives the correct impedance. Lemma 11 is the crucial step in

the proof, which will not be further discussed here.
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•AAA

I AAA/W-

-AAAA/V-

out,.

a. A SERIES PARALLEL NETWORK ( I -PORT)

b. SERIES

. . . A
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PARALLEL CONNECTION

B

C

OF 3 PORTS

D

E

C. SYMBOLIC REPRESENTATION OF SERIES-PARALLEL CONNECTION

FIGURE 1
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of a Parallel Sum

If A and B are Herniitian, an orthononnal basis may be chosen such

that A +B is diagonal. Let A + B = C, A:B « D. Then a. ~ -b. for
IJ ij

i ̂  j, and C+ has the matrix diag(c..+) » diag((a.. + bf.) )• Then
iiii

I ik E C+krAg
k m J

a i k K k - bkk>+b
t

since C is diagonal* If a., = 0, then since A is HSD, a., « 0 for all i,

and we may then write with the convention ̂ r « 0.

(2)

and, in particular,

(3)

y

1 1 aii + bii a . + b

Lemma 12: Let a.,•••,a , bn,•••,b be non-negative real numbers. Then

n \
a

n n

Proof: This is merely Hinkowskifs inequality 19 1 . This inequality

is more extensively discussed in section V.

Theorem 13: If A and B are Hermitj.an seinidefinite, then

tr(A:B) < tr(A): tr(B), with equality iff A « cB, for some scalar

c (necessarily real)•
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Prooft Since trace is invariant, we may choose a basis such that

A + B is diagonal. Then by (2),

tr(A:B) » Z _ y a.

. /. a . + b .

< L a,.:b..
- 11 11

*ii;
tr(A):tr(B).

In the first inequality, equality holds iff all a. . « 0, that is,
ij

iff A3 ta BA. In the second inequality, equality holds iff the a,. and

b.. are proportional. Thus equality will hold in both iff A « cB. QEI

Theorem 14: Lf A and B are Hermitian semidefinite, then

Proof; If either AI = 0 or B I = 0, then A:B = 0. If not, then

A and B are invertible, and

> A
, - 1

B
- 1

A I " 1 * B-1.

Then

A:B " 1 B - 1 , - 1 B

Theorem 15: If V i s 2-diraensional, and A + B jLs nons ingular , then

A|B[ + BUI

Proof: The result follows from direct compute-tion with matrix

elements • QJSD

No generalization to higher dimensions has been found.



V* Partial Ordering and Parallel .Addition

Definition: If A and B are linear operators, then A > B is defined

to mean that A - B is positive semidefinite.

The results of this section will be motivated by electrical networks.

The proofs, however, will be purely algebraic. Consider the diagram below,

which shows nine resistors in a series-parallel network*

FIGUEE

If the dotted connections are not present, the joint impedance between

terminals x and y is

(4) B -(A + B + C):(D + E + P):(G + H + J),

and if the dotted connections are present

(5) Z1 « A:D:G + B:E:H + C:P:J .

It v/as observed by Lehman [llj that Z> Z.f because the current takes

the path of least resistance, and in the second case more paths are avail-

able. The general case v/ould then be
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Theorem 16: If r, . > 0 i - 1, • • • fm j = 1, •••fn9 then

/m / n ' i i n / m - 1 I - 1

Proof; This is Hinkovskifs inequality [9j • In the present notation

we may rewrite this.

Corollary 17: If r. . > 0 i «• 1, • • • fin j « 1, • • * ,n, then

m n n m

ii> E 7T: r(7) 7f: T; r,,> /M i

where ̂ r . , «= r- :ro.:«*«:r ..

Proof; For r. •> 0 this is theorem 16 above; the case r. = 0 is

easily obtained by continuity.

It seems that the same physical reasoning must apply to n-port

networks, so that corollary 17 will hold for the joint impedance matrices

The proof below follows a proof of theorem 16 given by Reza [llj •

Lemma 18: If A and B are Hermitian semidefinite, then for any

xf y» z su°h that x + y » z

(8) (A:Bz,z)< (Ax,x) + (By,y).

Moreover, if z e R(A) + R(B)f then if x » (A + B)
+Bz and

" ' • ' ' ' " "J" O ———-.

y • (A + B) A Z , X + y « Z and equality holds in (8).

We first give a heuristic argument. Consider the network of Figure 3

a

b

FIGURE 3
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For a given current input z, the current will divide z « x + y in such

2 2
a fashion that the power dissipated ax + by is minimum. That is

2 2 2
a:bz < ax + by which is lemma 18 in the scalar case. The same

argument may be used for n-ports with impedance matrices.

Proof: For x , y as above, Ax « By « A:Bz, and
"•' - • - O O O O

x + y « (A + B)+(A + B)z « z* Then

(A:Bz,z) « (A:Bz,xo) + (A:Bz,yQ) « (AX O,X Q) + (Byo,yo)

so that equality holds*

For any z, and x + y = z, let x « PA + BX, y »
 PA+Byf an<i

z1 « P. -,z. Then let x X - (A + B)+Bz1, y 1 = (A + B)+Az1. Since
A-ho O O

x + y = z = x + y , we may write x «x -ft y »y -t. Then

(Ax^x1) « (Ax 1fxQ
1) + 2 RefAx^t) + (At,t)

- 2 ReCBy^.t) + (Bt,t).

Since Ax » By it follows that
o o

(Ax1,*1) + (By1^1) « (Ax^x^) + (By^y^) + (At,t) + (Bt,t)

But (Ax 9x ) « (A PA+Bx, PA+B^) ~ (Axfx) and similarly for y , z .

The lemma then follows from (9)* QED

Corollary 19: If A and B are Hermitian sezoidefinite, then

(A:Bz,z) < (Az,z) : (Bz,z).



17

Proof: If (Azfz) + (Bz,z) « 0 then the result is clear. If not let

(Bzjjz) , JLAZIJ?L)

X ~ ((A"+ B ) z , z ) Z a n Q y " ((A + B ) z , z ) Z '

Then x + y « z and by lemma 17

(A:Bz,z) < (Ax,x) + (By,y) = (A:Bz,z) QED

Lemma 20: Let A, B, C, and D t)e Hermitian semidefinite, then

(A + B):(C + D) > A:C + BiD.

Proof: It suffices to consider z e R(A + B + C + D), then by

lemma 18, for suitable x , y

((A + B) x (C + D)z,z) = ((A + B)xQ,Xo) + ((C +'D)yo,7o)

« (Axo,xo) + (Bxo,xo) + (Cyo,yo) + (l^o,yo)

> (A:Cz,z) + (B:Dz,z) QED

Corollary 21: IT A, B, and C are Hermitian semidefinite, then

A> B implies A:C > B:C.

Proof: Let A - B « D. Then D is ESD and

A:C « (B + D) : (C + 0) > B:C + D:0 = B:C. QED

This completes the proof of theorem 7. The property of corollary 21

is the necessary relation between the semigroup operation and the partial

order \ 6j #

Ve may now prove the series-parallel inequality for operators.

Theorem 22: let A,, i * l,***,m j »'l>«««>n be Hermitian semidefinite.

Then

m n n m

77" 2 V A. . > y 7T: A. .
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Proof: The proof is by induction. Lemma 20 is the case m » 2, n = 2.

Now assume that (10) is true for m,n and all smaller, then for m,n+l

m n+1

it* I.A4

m / n

TC : I y A-- + A-

And for m+l,n

m+1 n

m n

i
n m

m
> ft: E A + rr: A
" i-1 .1=1 10 i=l 1'

n+1

m
> E TC i A. + Tt J A

3-1-i-1 i0 i-1 1 > m l

by the case m,2

by the case m,n

n+1 m
E TC:
0=1 i-1

m n n

n
^ ,

d=i

n

kd=i

n

3-1

m
7 T : A

1 = 1
:

/ m

| TC t A ± J

m+1

n

3-1

: A

by the case m,n

by the case 2,n

Corollary 23; Let A.,»«',A be Hermitian semidefinite. Then

n n
A, > n TC i A, .
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Proof: This follows from theorem 22 with m « n. For example,

if n « 3

(A + B + C) : (B + C + A) : (C + A + B) > A:B:C + B:C:A + C:A:B

~ (A + B + C) > 5 A:B:C Q,ED

Corollary 23 is a generalization of the classical inequality betv/een

the arithmetic and harmonic means [9 J* This inequality is sometimes

proved by a convexity argument* In the present case, we have

Theorem 24: Parallel addition ijs a concave operation for Hemnitian

semidefinite operators'.

Proof: Let 8(AfB) = A:B. Then, if a is a scalar, 0(aA,aB) « aO(A,B).

Then if a , a? > 0 and a. + a^ » 1, using theorem 22

QKD'
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VI. Continuity

Theorem 25: If A and B are Hermitian semidefinite, then

I | A - B | I < IWI • I N I -
Proof: By lenuna II.2f for any x

(11) (Ax, Ax)< (I A I) (Ax,x)
and in fact, if A / 0, for any e there is an x such that

(Ax , Ax )

o' o'

Now let y = A:Bx, where ^A/?f' A'8?*' > II A:B II - e. Then

A:B(A+ + B+)y = y as in lemma 3» and

(A:Bx,x) . (y,x) = (A:B(A+ + B+)y,x)

= ((A+ + B+)y, A:Bx) - (A+y,y) + (B+y,y)

Since y e R(A:B), let y = Au - Bv. Then (A+y,y) = (u,Au) and

+ - (v,Bv). Then from (ll) and (12)

(u,Au) (v,Bv) (A:Bx,x)
(Au,Au) (Bv,Bv) " (A:Bx, A:Ex)

and then from (ll)

1

o r | | A | | , | | B | | > | | I I B | | - .

but e was arbitrary. QED

By theorem 9i equality will hold if there is a y such that

Ay = ||AJ|-y and By » ||s|J y-

Theorem 25 expresses continuity of parallel addition about 0; the

next theorem applies at other points. We thus consider (A + X) : (B + Y) - A:B
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and obtain bounds for the error in terms of the partial order of operators.

Lemma 26: Lf A and B are Hermitian semidefinite operators such that

B > A, then

(14) (B+ - A+)PA - B
+(B - A)A+

Proof: B+(B - A)A+ « B+BA* - B+AA+ « PJl+ - B+PA « A
+ - B+P. since

R(B)DR(A). QED

Lemma 27: I£ A and B are Hermitian seroidefinite operators and

C - A + B then P (I - C+B)•« C+A.

Proof: C+A + C+B - C+C - Pp» Then P_(l - C+B) - Pn - C
+B = C+A. QED

Theorem 28: Let A, B and X b£ Hermitian semidefinite and

G » A:(B + X) - A:B. Then- G îs HSD and if C = A + B,

(15) G -AC+(C:X)C+A and

( 1 6 ) | | G | | l ||C+A||2 | I X | 1
Rroof:

G - A(C + X) + (B + X) - AC+B

= AF(C + X ) + - C + ] B + A(C + X)+X

Since P-B « B lemma 24 applies and then

(17) G - - A(C + X)+XC+B + A(C + X)+X

By the definition of G, PnG = G, and since G is Hermitian GP« « G. Therefore

G = GP = - A(C + X)+XC+BPO + A(C + X)
+XPrt

- A(C + X)+XPn(l - C
+B).

Then lemma 27 applies and we have
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G - A(C + X)+XC+A = AC+C(C + X)+XC+A

- AC+(C:X)C+A.

Since C:X is HSD and (l8) is congruent to CJX, G is HSD. Then using

theorem 25

IMUIKII Ml Hc+All
< II A 0 + I) 2 l l x

Lemma 29; If A, B, and X are HSD, then

2(A + X):(B + X) + (A + B):(2X) - 2(A + B + X):X + A:(B + 2X) + (A + 2X):B

Proof: Let A + B'+ 2X » D, then by computation both sides equal

2AD+B + 4AD+X + 2XD+B + 2BD+X + 2XD+X

Lenim $0: Jf A, B and X are HSD, and

H - (A + X):(B + X)'- A:B - X:X

then H JLS HSD and for C » A + B

(19) . 2H « A0+(C:2X)C+A + BC+(C:2X)C+B - | C:2X

and

(20)

Proof; By lemma 29,

2H = A:(B + 2X) - A:B + B?(A + 2X) - B:A + 2X:(A + B + X) - 2X:X - (A + B);(2X)

then using theorem 28

2H = AC+(C;2X)C+A + BC+(C:2X)C+B + 2X(2X^+(C:2X)(2X)+X - C:(2X)

which simplifies to (19). By theorem 22 H is HSD. Therefore

2H< AC+(C:2X)C+A + BC+(C:2X)C+B and, as in theorem 28

H || < || A0+||2|| 2X || + ||BC
+ ||2 j| 2X|| which is (20). QED



Theorem 51: _If A, B, X and Y are Herctitian semi-definite, then

(21) | | ( A + X ) i ( B + T) - A : B | | < 2 ( | | (A + B ) + B)+B | | 2 + | ) || X

Proof; It follows from corollary 21 that

(A + X):(B + Y) - A:B< (A + X + Y) :(B + X + Y) - A:B,

and using lemma 30

(A + X + Y):(B + X + Y) - A:BJ|

+ X + Y):(B + X + Y) - A:B - (X + Y):(X + Y)

+ Y):(X + Y

(A + B)
+A||2 B)+B||2) ||(X



VII. Generalization

The definition of parallel addition A:B « A(A + B) B may be applied

to any pair of linear operators, since the generalized inverse is always

defined. However, without suitable restrictions, very little of the pre-

ceding theory will hold. Four rather natural extensions have been con-

sidered, and will be developed in another paper. These extensions are

the following:

(I) The networks which motivated the theory here were resistive.

A natural extension is to consider networks with reactive elements. In

that case the impedance matrices will be "positive real" [4], and will

in general be non-Hermitian. Certain parts of the series-parallel algebra

will extend.

(II) A lineax operator A on a real vector space is said to be almost

positive definite if (Ax,x) > 0 for all x and (Ax,x) = 0 only if Ax = 0

[12]; alternatively, if A = H + S with H Hermitian semidefinite, S skew,

and E(S) c R(H). The latter definition is related to positive real

matrices, where a similar range relation holds between the real and imaginary

parts. The algebra of section III holds for almost positive definite

matrices; however, lemma 18 is not true in this case, and the remainder of

the theory will not follow.

(III) If A = f a bl is a partitioned matrix with a square, then the

gyration of A, r (A), is defined by

"1

r (A)
ca" d-ca" D



This operation has been studied by Tucker [l^], and is the basis of the

network synthesis method Duff in, Hazony, and Morrison [̂ J. A hybrid

addition of operators A and B may then be defined by A:B = r(r(A) + r(B)).

For nonsingular A and B this includes series and parallel addition as

special cases, depending on the partition. Even in the singular case

hybrid addition may be made the basis for an algebra similar to that

developed here.

(IV) The question of extending the definition of parallel sum to

operators in Hilbert space suggests itself. Although (A + B) + is defined

[ljj it need not be bounded, and thus A(A + B) B may not be defined on

the whole space. It would appear that a different definition of parallel

addition is necessary.
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