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Series and Parallel Addition of Matrices

W N AndersonJr. and R J. Duffin*

ABSTRACT

Let A and B be Hermitian sem-definite matrices and let A" denote
the Moore-Penrose generalized inverse. Then we define the parallel sum of
A and B by the formula A(A + B) B and denote it by A: B. If Aand B are
nonsingi|Qar this reduces to A: B =. (A~1 + B"l)"l which is the well known
electrical formila for addition of resistors in parallel. Then it is
shown that the Hermitian sem-definite matrices forma commtative partial -
l'y ordered semgroup under the parallel sumoperation. Here the ordering
A>Bneans A: Bis semdefinite and the follow ng inequality holds:
(A+B) : (C+D >A: C+B: D If R(A) denotes the range of Athen it
is found that RIA: B) = R(A) DR(B). Moreover if Aand B are orthogonal

projection operators then 2 A: Bis the orthogonal projection on

R(A) fl R(B). The norns are found to satisfy the inequality ||A B | <J_| A||:||B|],

CGeneralization to non-Hermtian operators are al so devel oped.

* Carnegi e-Mel lon University. Prepared while the authors were at
Texas A8MUniversity. Some of the material is fromthe first author's
Ph.D. thesis at Carnegie-Mllon University. :
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In this paper a new operation, called parallel addition,
is defined for pairs of linear operators. Parallel addition originally
arose in an attenpt to generalize a network synthesis procedure of
buffin 131 and has al ready been studied in the scal ar case by Erickson f5e¢].
The connection of resistors in series and parallel is a famliar
concept fromel ementary network theory. If two resistors having
resi stances A and E are connected in series the joint resistance is

S»A+B, and if they are in parallel, the joint resistance is

P «. (A'"* o} f.L )‘:L « AB/ (A + B). These two nethods of conbining
resistance are then called series and parallel addition.

It has been tacitly assumed in the above that A and B are
positive nunbers, since the forrmula for Pis not necessarily defined
ot herwi se* In the physical context the normal situationis for A
and Bto be positive, however, the case Aand B » 0 - a short circuit -
can be handl ed by Iotti'ng P»0if A» 0 and Bis non-negative. Thus
the concept of parallel addition of non-negative scalars is, a well
defined mat hermatical operation; it -wll be denoted here by A:B.

As is well known, positive sendefinite matrices are a generalization
of non-negative scalars. This suggests that the parallel addition of
such iriatrices be defined by AA-B « A(A + B) ~1£. If Aand B are both
nonsi ngul ar t_hi s is equivalent to AB » (A~1 + B~1) -1 The latter

formula is not defined for singular A and B,.however,'_ the fornmer wll




be defined if A+ Bhas an inverse. Even when A+ B is singular, the

paral l el addition may be defined .by replacing (A+ B)" lby (A+B)",

t he Moore-Penrose generalized inverse. The generalized inverse has a
particularly sinple formwhen A + Bis symetric semdefinite. In fact,
A+ Bwhen restricted to its range i-s one to one, so that a genuine inverse
may be defined there. |

It proves just as sinple to consider Hernitian senidefinite matrices
rather than matrices which are necessarily real. However, in this paper,
the operators are restricted to a finite di mensional vecth space V.

Suppose that Aand B are Hermitian semdefinite natrices. |[If they
are bot h nonsi ngul ar it is obvious that parallel addition is conmtative
and associ ative. Mreover, the resulting matrix A/'Bis also Hernitian
semdefinite. However, if Aand B are singular then these properties are
not clear consequences of the definition. Nevertheless indirect arguments
show thfct these properties hold in all situations.

Let R(A) denote the range subspace of the matrix A Then it is well
known that RRA+ B) = R(A) + R(B) if Aand B are Hermtian semdefinite
matrices. It is found here that RCA'B) « RCA) DR(B). The above two
oper ati ons arle just the operations used in defining the lattice of subspaces
of the vector space V. As a consequence a sequence of series and par él | el
additions of matrices induces corresponding lattice 6per ations. As is well
known the lattice of subspaces is nmodular. This property is found to give
identities relating certain series-parallel connections. |

Ot hogonal projection operat or's are, of course, Hermtian semdefinite

and the theoremjust nentioned has the follow ng interesting application.




If Aand B are orthogonal projection operators then 2A B is the orthogonal
projection into the subspace R(A) f) R(B).
Semdefinite matrices forma partially ordered systemif A>Bis
taken to mean A - Bis senmidefinite. Interns of this systemthe
foll owi ng general inequality hol ds |
(A+B) : (C+D >AC+BD

VW termthis the series-parallel inequality and it is a generalization of

~a scalar inequality of A Lehman [I1]. Ih particular if A>Bthen it
results that A'C>BC . Thus we can say that the Hermtian semdefinite
operators on a finite dinensional space forma partially ordered comutative
senmigroup with parallel addition as the group operation.

If is of interest to note that the boundary ihequalities for parallel
additions of matrices seemto be best expressed in terns of parallel addi-
tion of scalars. For exanple the following inequalities hold for the

norm trace, and determ nant:

I[AB[< [[A] = [IB]
tr(AB) < (trAd) : (trB)
|AB <[A : I8

These inequalities are best possible.




[1. Prelimnaries

In this paper we will consider operators on a finite dimensional
conpl ex inner product space. The range and nul | 'space of an operator A
will be denoted by R(A) and N(A) respectively. The orthogonal projection
onto R(A) will be denoted by PA' A Hemitian operator Awill be said to be
positive semdeflnite if (Ax,x)._>_ 0 for all x; the abbreviation HSD wil |
be used. For an HSD operator Ait is easy to prove that (Ax,x) =0 iff
Ax * 0, and that RIA+ B) = R(A) + R(B).

The Moore-Penrose generalized inverse [1], [13] of an operator A

wi Il be denoted by AY  Inthe cases considered here Awill be HSD. Then

Awhen restricted to its range is one to one, and therefore i nvertibl e ;

+ + f

+ o -
A is this inverse. It then follows that AA « AA« Pg and that A is
HSD iff Ais HSD




I'11. A gebraic Properties

Definition: Let A and B be Hermtian senmdefinite operators on
the finite dinensional conplex vector space V. The seflef sumof A and

Bis defined to be the ordinary sumA + B. The parallel sumof A and B

is defined by
(" A B « A(A + B) 'B.

Sin.ce R(B) CRA+B): for any x we have Bx e HA + B) . Then, since
A+ Bis invertible onits range, the‘conplete definition of the generalized
inverse is never used. In the later devel opment of-the theory it v/ill turn
out that reasonable results are obtai ned only when we can guarantee that
R(B) CR( A+Basisthecase hore,

For scalars a,b we define a:b « a(atb) +b, where 0V =0. Thisis

the case studied by Eri ckson f5j1-

Lenma 1; 1f Aand Bare Hermtian semdefinite, then AB =BA

Proof: A B- A(A+B)'B
- (A+B- B(A+BA+ B-A)

- (A+B(A+B)(A+B) - BA+B(A+B) - (A+B(A+B"A
+ BA

"-A+B- BPw > - Pas AL BA

- BA
&0
If the definition of ABis extended to general operators A and B,

this proof would work if A+ Bis nonsingular; if not, the | emma need not

hol d:




Lemma 2: Lf Aand Bere Hermtian semdefinite, then ABis

Herm ti an.

Proof; (A:B)* - (AA + B)'B)*

- B* (A + B)**A* «B(A+ B)*A

« BA
« A'B by lemma 1 CeD
Lemma }: |f Aand Bare Hernitlan semdefinite, then R(A B) « R(A)HR(B).

Proof: Consider X e R(A)AR(B). Then

A B(A" 4- B)x « A(A + B)"BB'x + B(A + B) "AA'X
~A(A+B) "x +B(A+B) "x
»P.oe X «X
A+B

Therefore R(A:B) 3R(A)OR(B). Since RA(A + B)'B)C R(A); the lemma then

follows from leraaa 1. QDD

fgmm K; —I;‘—A and B are Herxnitian senidefinite, then A:B jl:g

semidefinite.
Proof: For any K, let A:Bz=x. Then, as in lcninia pf AB(A "4 B )x=x
and
| (A:Bzz) » (x,z) - (A:B(A" 4- B")x,2)
« ((A" + BY)x, A:B2) by lemma 2
= ((a* + BN)x,x)
o (A™x,x) + (B'x,x) > 0
QED




Al t hough we cannot in general wite AB « (A~ 1, B~"-') ~1, and by letting

R 1 0 | BfOO’I
0 1 L« 1J

we see that the "obvious" extension A/B * (A* + B)*™ will not work either,

we do have an alternative definition of this type.

Theorem 5; 1f Aand B are Hernitian semde.finite, then AB = (P(A" + B") P) 7,

V\h_ere Pjis the projection onto R(A)AR(B) .

Proof; Consider any x e V. Since RLA'B) » RAf|RB) and ABis
Hermtian, (A B)"™x » (AB)'Px. But, as inlema 3, A B(A" + B")PiC « PX.
Then, by lemma 1.6, (A B)*Px « p(A" + B*)Px. But A"™ * A therefore
A B m (p(A" +, B)P)". @&D

Lemma6, |ITA B, and Care Hermtian semdefinite, then (AB):C« A (E Q).

.Proof: By | emma. J, the range of both sides is RAfiR3)f|Rc). How,
for x e RAfIRBriROQ;

A(BGQ(A"+B" + C)x « A(A+B:.O'B.C(A" + B ++ C")x
« A(A+B CO'B(B+ C)"CC" x 4 A(A + B Q) *C(B + QBB 'X + 71 QA +B: C) "I AA'X
«A(A+B QO (B+0O(B+0O'x +BQA+B O
« (A+BOQ(A+BO' - x.
A si-nilar conputation holds for (AB):C Then, as in the proof of theorem
6, if Pis the projection onto RANRBf)RQO, A(BC - (AB):C-
(P(A" + B" + C)P)". &ED

Theorem 7: The Hernitian senidefinite operators onViforma partially

ordered comutative semigroup with the sem”rroup or»ex*ation paralHel addition.
Proof; The semgroup property follows fromleninas 1, 2, 3> Qrd "[. The

partial order property is proved in corollary 21, to follow




It has been proved that if Aand B are HSD, then RGA+ B) = R(A) + R(B)
and RCA'B) = R(A) 0 R(B). These are just the operations used in defining
the lattice of subspaces; it seens natural, therefore, to consider that

lattice* (ne question in this regard may be easily answered.

Theorem8: 1f P and Qare projections, then the projection onto
R(P) OR(Q i£f2P:Q

Proof: By lemmas 2 and 3> 2P.Qis an Hermtian operator with the
correct range. For x e R(P) DR( Q) we have x = Rqﬁ" + Q)x =P.Q2x) = 2P .
QD

The fornula of theorem8 answers problem96 of Halnos [8], for the
finite dimensional case. In the published solution it is stated that the
famliar al gebraic operations are not likely to furnish a solution;
theorem8 appears to nmeet the requirenent.

Because the lattice of subspaces is nmodul ar, equalities nay be between
the range of various series-parallel conbinations of operators. In any
nodul ar lattice (aA(b vc)) A(bAcva)) =(avb)A(bvc) A(cva) [2];
it follows that for HSD operators A B, C, the operators A (B+C) + B: (CG+A
and (A+B) : (B+CQ) : (C+A) have the sane range. |t appears that these facts
about range spaces could be used to study switching circuits, possibly by

using projections to represent their range spaces.
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Tasorem 9° JILA I1SI® 2. % Hermitian_seffiiclefinite, and Ax » ax, Ex «= bx,

then A:Bx = a:bx.

Proof: (A:B)'X - Pa.g(A* + B*)PajaX

+
P, ,pla" + BT )x

(a" + b")x
Then A:Bx » (a" + b") *x » a: bx.

The paral l el addition is not distributive with respect to series
addition. There is, however, a weak distributive lawwi th respect to
mul tiplication.

Theorem10: 1f A B, and Care Hermtian semdefinite, and AC = CA

BC = CB, then (AQ:(BO « (ABC Inparticular, Cnight be CI, for sone

—

non- negati ve scal ar C

Proof: (A0):(BQ = AQ(AC + BC)™BC
ACC'(A + B)*BG

A(A + B) "BCC'C - (ABC @D
This is the nost general distributive lav; that could be expected,
since if AC/ CA then ACis not Hernitian.

Lemma 11: 1T Aand Bare Hermtian semdefinite, _and Aw« Bx * u,

Ay =Bz «v, and wx = y+z, then u « v.
Proof: By direct conputation, A B(wx) - u, AB(y+z) =v, and since

WX « y+z, it follows that u « v. &ED
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The inpedance matrix of a resistive n-port network is semdefinite [10].
A series-parallel connection of 3-port networks is shown in figure 1. If
two n-port networks with nonsingul ar inpedance matrices A and B are connected
inparallel, then the inpedance natrix C of fhe paral | el connection is
given by C= (A"l + B"l)"'l =A:B. If Aor Bis singular, then our formul a

for AB still gives the correct inpedance. Lemmal1llis the crucial step in

the proof, which will not be further discussed here.
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IV. 'The Matrix of a Parallel Sum

If Aand B are Herniitian, an orthononnal basis may be chosen such
that A+Bis diagonal. Let A+B=C AB«D Thena. ~-b. for

: IJ ij'
i ~j, and C" has the matrix di ag(c“+) » di ag((a.i.i + b&1)+)- Then

, 457 | ek E “krAg

= % kKK - Pkk>"P:y

since Cis diagonal* If a, =0, then since Ais HSD a,

i « 0 for all i,

k

and we may then wite with the convention’\g « 0.
e .
ik bk
(2) ;= L T

and, in particular,

_ 2
(3) q o "oy Py .
e hi ady %y TPy

Lenma 12: Let a.,e*e,a , by ¢*s,b be non-negative real nunbers. Then

Proof: This is nerely Hnkowski's inequality 191 . This inequality
is nore extensively discussed in section V.

Theorem13: 1f Aand B are Hermtj.an seinidefinite, then

tr(AB) <tr(A): tr(B), wthequalityiff A«cB, for sone scalar

c (necessarily real)-




13

Prooft Since trace is invariant, we may choose a basis such that

A+ Bis diagonal. Then by (2),

2
tr(AB) » Z (aii’bii— Y, E&TB*\-
: . a. +b..
< L a .:b..
- i 11 11

SR . |
< (Zqii) ‘(anj‘ e tr(A):tr(B).
Inthe first ineqUaIity, equality holds iff all a. . « 0, that is,
_ 2
iff A3 taBA In the second inequality, equality holds iff the ax3» and
ba1 are proportional. Thus equality will hold inbothiff A« cB QEI)

Theorem14: Lf Aand Bare Hernitian senmdefinite, then

|a:3] < |4]:[3]-
Proof; |f either AIl =0 or IBI':O, thenIA:BI:O. If not, then

A and B are invertible, ahd

o]y bt el o ol
Then
I N I [

Theorem 15: If Vis 2-diraensional, and A + B jLs nonsingular, then
.~ NB[ +BUL

+B|

Proof: The result follows fromdirect conpute-tion with matrix

el enentse QSD.

No generalization to higher dinensions has been found.

RUNT sy
GAP-“EE%E—MELL(IN YHIVERSITY
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V¢ Partial -Qdering and Parallel .Addition

Definition: If Aand B are linear operators, then A> B is defined
to nean that A - Bis positive serridefinite.

The results of this section will be notivated by el ectrical networks.
The proofs, however, will be purely algebraic. Consider the diagrambel ow,

whi ch shows nine resistors in a series-parallel network*

A B C
—— VWA AN ¢ AN
i |
| |
D  E \F
x o ‘M—_?'——'—WT T MM -0 Y
: :
G tH b
L A AN —AAAA——

FI GUEE 2

If the dotted connections are not present, the joint inpedance between

terminals x and y is

(4) B-(A+B+Q:(D+E+P:(G+H+1J),

and if the dotted connections are present

(5) Z' « ADG+BEH+CPJ
It vas observed by Lehman [II'_j that Z> Z" because the current takes
the path of |east resistance, and in the second case nore paths are avail -.

able. The general case vioud then be
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Theorem16:- 1 f r, . >01i -=1, «eemj =1, eee;ng then
k! v 1
m /{ n S R n / m A n 1
(6) ) o 3 | .
i=1 \ =1 v j=1  i=1 :

Proof: This is H nkovski's inequality f9j1 e In the present notation
we may rewite this.

Corol lary 17: 1fr. . >0i « 1, eeeinj «1,e¢* n, then

m n n m
7 7f: T r;. br. .
(7) i=l  §=1 "% fE h—_’ r
whereNrr ., «=r1- .l 1<« T ..

Proof; For r. > 0this is theorem16 above; the caser. . =0is
easily obtained by continuity. |

It seens that the same physical reasoning rmust apply to n-port
net_works, so that corollary 17 will hold for the joint inpedance natrices.
The proof bel ow follows a proof of theorem 16 given by Reza [IIj"

Lenma 18: 1f Aand Bare Hermtian semdefinite, then for any

f y» Z°U°h that X +y » z
(8) (A:Bz,z)<_(AX,x) + (By,y).

Moreover, if ze R(IA) +R(B)¢_thenif x » (A + B) Bz and

(0] —_—

Yo * (A+B +AZ, >§, + Y, « Z and equality holds in (8).

W first give a heuristic argunent. Consider the network of Figure 3

d
AN
Ol | e ¢
AN
b




For a given current input z, the current will divide z « x +y in such

a fashion that the power dissipated ax2 + by2is mninum That is

2+ by 2V\lni chis lemma 18 in the scalar case. The sane

a b22<_ ax
argunment nmay be used for n-ports with inpedance matrices.

Proof: For x , y as above, AXx « By « A:Bz, and
Xt o o o o

x°+y°« (A+B)+(A+B)Z « z* Then
(ABz,z) « (ABz,Xo) + (ABzZYyg « (AXo Xo) + (BYo, Yo)

H *
so that equality hol ds 1 1

A - .
For any z, and x + y = z, let X « PA.gX, y » PA+Byf an<i
z' « P. -,z. Thenlet x*- (A+B)*Bz!, y!'=(A+B)'Az'. Since
11y | 1 1

1 . o) _
(o] e [a] s}

X +y =z =x +y, wenmywite x « -ft y »y -t. Then
0

Y < (5 2RY T 2 RECE) T ().

S nce Axo1 » Byolit foll ows that

(A *1) + (By™ ) « (Ax~x7) + (Byry?) + (AL t) + (B, t)

(9)
> (A:le,zl) .
1 . 1.1
But (AXox ) « (A Pa:gX, Pa:g™) ~ (AX;x) and simlarly for y7 z~
The lemma then follows from (9)* QED

Gorollary 19: 1f Aand B are Hermitian sezoidefinite, then

(ABz,z) < (Az,2) : (Bz,2).

16
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Proof: If (Az;z) + (Bz,z) « O then the result is clear. |If not Iet

(Bzjjz) : A7)
X ~ ((A"+ B)z,z) Z3"QY " (A + B)z,2)

Z

Then x +y « z and by lemma 17

(ABz,z) 2 (A, X) + (By,y) = (ABz2) &ED

Cena 20: Tet A B, C, and Di)e Hermtian Semdefinite, Then

(A+B):(C+D) SAC+BD
roof: It suffices to consider ze RA+B+ C+ D), then by

| emma 18, for suitable x2, y°

((A+B) x (C+Dz2) = ((A+B)xgX) + ((C+ D)yo, 7o)

« (AXo, Xo) + (BXo, Xo) + (Yo, ¥o) + (170, Yo)
> (ACz,z2) + (B Dz 2 CED
Cor-oblary21:  +F A B, and C ate Hermtian sem-debinite, t—hen
A>_B i-pl+es-A Cx= B C
ér-od—: Let A- B« D Then Dis ESD and
AC«(B+D) : (C+0)>BC+DO0=BC QD
This conpl etes the proof of theorem7. The bfoperty of corollary 21

is the necessary relation between the senigroup operation and the parti al

b
order \ 6j &
Ve may now prove the series-parallel inequality for operators.
Theorem22: |et Ai;} Pl m ) o»' | s«wsn be Hernitian semdefinite.
Then
m n n m
(10) T2 VA, >y TT. A
i=1 §=) Y 7 531 i=) J
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Proof: The-proof is by induction. Lemma 20 is the case m» 2, n = 2.

Now assune that (10) is true for mn and all snaller, then for mn+l

.mt " n+1 _l_né | n +A
il,l J_ A43 i1 \}gﬂl 137 1,04
> 11 E A. .+ rrln: A. 141 by the case m2
"1 1= 0 g T
> ETCI A +TtJA - by the case-mn
3_1_ _ i0 I-l 1> ml
ntl__m
- ETC 1,
0=1 i-1

And for mtl , n

)E ﬁ‘m+1,:j by the case mn

Z K 1;';&“ A+J) : Am+1’j by the case 2,n

. -

Corol lary 23; Let A< A be Hermtian senmdefinite. Then
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Proof: This follows fromtheorem22 with m« n.  For exanpl e,
if n« 3
(A+B+C : (B+C+A : (C+A+B)>ABC+BCA+CAB

%‘(A+B+C)_>_5A:B:C QD

Corollary 23 is a generalization of the classical inequality betv/een
the arithmetic and harnoni ¢ neans [9 J* This inequal ity is sometimes
proved by a convexity argument* In the present case, we have

Theorem24: Parallel addition ijs _a_concave operation for Hemitian

sem definite operators'.

Proof: Let 8(AB) =A:B. Then, if ais a scalar, 0(aA aB) « aQ A B)..

Then if ay, &> 0 and a, + a® » 1, using theorem 22 '

O(alhl + ashy, 8B, + a.2]32) > a.lg(Al,Bl) + a29(A2,332) XD
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VI. Conti nuilty

Theorem25: 1f Aand Bare Hernitian semdefinite, then
[A-BII< W INI-
Proof: By lenuna I'1.2¢ for any x
(1) (A, A)< {TAT) (AX)
and infact, if A/ O, for any e there is an X, such that
(A, AX)
(12) 2_'|Af,— c.
Lo

Now | et y = A:Bx, where MMLZf' A8252 > 1] ABII - e Then
A B(A" +B)Y =y as in lemma 3» and

) (ABX) . (v.x) = (AB(A +B)y,x)
13

=((A +B)y, ABx) - (Ay,y) + (BY,y).
Sinceye RCA:B), let y =Au -~ Bv. Then (A',y) = (u, Au) and

(B*y,¥)- (v,Bv). Then from(ll) and (12)

(u, Au) +.(v, Bv) (A Bx, x)
(Au, Au) (Bv,Bv) " (ABx, A EX)

and then from (1)

T * RIS =

or [IATll.Ilell>1ITisll-.

but e was arbitrary. CED
By theorem9i equality will hold if there is ay such that
Ay = [[Af-y and By » |[Jy-

Theorem 25 expresses continuity of parallel addition about O; the

next theoremapplies at other points. W thus consider (A+X) : (B+Y) - AB
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and obtai n bounds for the error in terns of the partial order of operators.

Lemma 26: Lf Aand B are Hermtian senmdefinite operators such that

B> A then

(14) (B* - A"YPa - B (B - AA
Proof: B'(B - A)A" « B'BA* - B'AA" « PJI * - B'P5, « A" - B'P.. since

R(B) DR(A) . QED

Lenma 27: |£ A and Bare Hermtian seroidefinite operators and

C- A+Bthen Py(l - CB+« CA
Proof: CA+CB- CC- P» Then P(l - CB) - P,- CB=CA @D

Theorem28: Let A, Band X bE Hermtian semdefinite and

G»A(B+X - AB Then- Gis HSDand if C=A+B,
(15) G -AC’(C:X)C'A and
G C+A|2 11 X
(16) I L
- Rroof:
G-A(C+X)+ (B +X) - AC'B
= AF(C+X)" - c+]B+A(CfX)+X

Since P-B « B lemma 24 applies and then

L.
(17) G- - A(C+ X)"™XC'B + A(C + X)*X

By the definition of G P,G=G and since Gis Hermtian GP« « G Therefore
G= G, =- A(C + X) "XC'BPo + A(C + X) "XP,;

- A(C + X)*XPy(l - C'B).

Then | enma 27 appl i es and we have
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G - A(C + X)'XC*A = AC'C(C + X)'XC'A
(18)
- AC*(C:X)C*A.
Since CXis HSDand (18) is congruent to CIJX, Gis HSD. Then using

~theorem 25

IMUIKIT MI H™
<A1 x| o
Lemma 29; If A B, and X are HSD, then
2A+X):(B+X) + (A+B):(2X) - 2A+B+ X: X+A(B+2X) + (A+2X:B
Proof: Let A+B + 2X » D, then by conputation both sides equal
2AD'B + 4AD'X + 2XD'B + 2BD'X + 2XD'X

Lenim$0: Jf A B and X are HSD, and

H- (A+X):(B+X)'- AB- XX
t hen H‘_II..-:;Q‘ HSDand for C» A+ B

(19) . 2H « AD*(C: 2X)C'A + BC(C. 2X)C'B - | C2X
and
@ e el ]l

Proof; By lemma 29,

2H = A:(B + 2X) - A:B + B?A + 2X) - BA + 2X(A + B + X) - 2X;X - (A + B);(2X)
then using theorem 28

2H = AC'(C;2X)C'A + BC*(C:2X)C'B + 2X(2XA+(C:2X)(2X)+X - C:(2X)

whi ch si rrpl.ifies to (19). By theorem22 His HSD. Therefore

2H< AC'(C 2X)C'A + BC'(C. 2X)C'B and, as in theorem 28

HHI < 1000112 211 11BC 117 1 24 whichis (20).  QED
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Theorem 51: _If A, B, X_and Y_are Herctitian semi-definite, then

(21) [I(A+X)i(B +T) -A:B||<_2(]l (A +B) A

12+ la+ByBIZ + DX + x|

Proof; It follows fromcorollary 21 that
(A+X):(B+Y) - AA B (A+X+Y):(B+X+Y) - A B,
and using |l emma 30
|| A+ X +Y):(B+X+Y) -ABJ
< fJa+x+Y)@ X +Y) -AB - X+ V)X + V)]
« Jlx . x. Y)” |
<2()| (A B 1%+ {ka+B)B1Y) 11X+ D]} |30+ )]
=2(“(A+B)+A“2+ H(A+.’B)+}3H2+—i-)“}{+‘.(” QED
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VI1. Ceneralization

The definition of parallel addition A:B « A(A + B)+B may be applied
to any pair of linear operators, since the generalized inverse is always
defined. However, without suitable restrictions, very little of the pre-
ceding theory will hold. Four rather natural extensions have been con-
sidered, and will be developed in another paper. These extensions are
the follow ng:

(1) = The networks which notivated the'theory here were resistive.

A natural extension is to consider networks with reactive elenments. In
that case the inpedance matrices will be "positive real" [4], and will

in general be non-Hernitian. Certain parts of the series-parallel algebra
wi |l extend.

(I'l) Alineax operator Aon a real vector space is said to be al nost
positive definite if (Ax,x) >0 for all x and (AX,x) =0 only if X =0
.'[12]; alternatively, if A=H+ SwithHHerntian semdefinite, S skew
and E(S) ¢ R(H). The latter definition is related to positive real
matrices, where a simlar range relation holds between the real and i magi nary
parts. The algebra of section Il holds for alnost positive definite
matrices; however, lemma 18 is not true in this case, and the remainder of

the theory will not follow.

(1) If A:[a bl, is apartitioned matrix with a square, then the

e a

gyration of A, r (A), is defined by
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This operation has been studied by Tucker [17], and is the basis of the
network synthesis nethod Duff in, Hazony, and Mrrison [A. A hybrid
addition of operators A and B may then be defined by AB =r(r(A) +r(B)).
For nonsingular A and B this includes series and parallel addition as
speci al cases, depending on the partition. Even in the singular case
hybrid addition may be made the basis for an algebra sinlar to that

devel oped here.

(I'V)  The question of extending the defi nition of parallel sumto
operators in Hlbert space suggests itself. A though (A+ B) " is defined
[l1jj it need not be bounded, and thus A(A + B)+B may not be defined on
the whol e space. It woul d appear that a different definition of parallel

addition is necessary.
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