REPRESENTATION OF FAITHFUL NORMAL
 EXPECTATIONS IN von NEUMANN ALGEBRAS

A. de Korvin
Report 67-35

> A. de Korvin

Introduction.
Let G and IB be two C* algebras with identity. . Suppose 8 c G. Let $<\mathrm{p}$ be a positive linear map of G on $I B$ such that $<p$ preserves the identity and such that $<p(B X)=B<p(X)$ for all B in IB and all X in. G. \quad p is then defined to be an expectation of G on \mathbb{B}. The extension of the notion of an expectation in the probability theory sense $_{3}$ to expectations on finite von Neumann algebra is largely due to J. Dixmier and H. Umegaki [1]. In [4] Tomiyama considers an expectation on von Neumann algrbras to be a projection of norm one. If $<p$ is an expectation in the sense $C p(B X)=B C p(X)$, $<p$ positive and $<p$ preserves identities, then $<p(X B)=<p(X) B$ for all X in G, B in B. IB is the set of fixed points of $<p$. By writing $<p\left[\left(X-(p(X))^{*}(X-(p(X))]>=0\right.\right.$ we have $<\mathrm{p}\left(\mathrm{X}^{*} \mathrm{X}\right) \quad>_{2}<\mathrm{p}(\mathrm{X}) *<\mathrm{p}(\mathrm{X}) \quad$. In particular $<\mathrm{p}$ is a bounded map.

Let h and k be two Hilbert spaces, -h © will denote the tensor product of h and k. Let G be a von Neumann algebra acting on h, by an ampliation of G in h © one means a $\operatorname{map} i j)$ of G in $L\left(h\{\wedge k)\right.$ such that $\$(A)=A \subset I_{v}$ where I_{1}. denotes the identity operator on k. The image of G by an ampliation is then a von Neumann subalgebra of $L(h \mathbb{C}$) . In what follows $C T$ will designated the image of G by an ampliation 0 and \widetilde{A} will stand for $i / /(A)$.

In this paper expectations of a particular type are considered. If $I B$ is a subalgebra of G and if $I B$ is the range of a faithful, normal expectation $<p$ defined on $G 3$ then it will be shown that
there exists an ampliation of G in $h(D\} L$, independent of B and of cp , such that $<\mathrm{p} 0 I_{k}$ is a spatial isomorphism of $S \backslash$ This result extends a result by Nakamera, Takesaki, and Umegaki [2], which consider the case when G is a finite von Neumann algebra. Definitions.

Let M and N be C^{*} algebras and $<p$ a positive linear map of M on N. Let M be the set of all $n X n$ matrices whose entries are elements of M, call those entries $A .{ }_{1 \wedge}$. . ${ }_{3}$. Define for

 uniformly bounded self adjoint operators in G. $<p$ is called normal if $\sup _{\boldsymbol{a}}<p\left(\mathrm{~A}_{\mathbf{u}} j=<\mathrm{p}\left(\sup _{\boldsymbol{a}} \mathrm{A}_{\boldsymbol{\alpha}}\right)\right.$

The ultra-weak topology on G will be the weakest which will
 and $S\left\|y^{2}\right\|^{2}<c o$. In what follows if N is arbitrary von Neumann algebra, N^{T} will denote the commutant of N. If h is any Hilbert space, dim h will denote the cardinality of the dimension of h. Propo ition 1.

Let M and N be two von Neumann algebras acting on h^{M} and h^{\wedge}. Let $<p$ be $a *$ isomorphism of M on B. Let k be a Hilbert space such that $\operatorname{dim} k>_{-}^{-} \operatorname{Max}(\wedge, \stackrel{\perp}{\prime} \operatorname{dimh} \underset{,}{M} \operatorname{dim} h \wedge)$, then ($p \circledR I^{\mathbf{K}}$, is a spatial isomorphism.
This theorem says that there exists a isometry V of $\mathrm{H}^{\mathrm{N}} \mathrm{Ok}$ on
 Tomiyama has shown this result in [5].

Proposition 2.
Let M and N be two $C \sim *$ algebras with identities. Let <p be an expectation of M on N_{3} then $C p$ is completely positive. This result was shown by Nakamura, Takesaki, and Umegaki in [2] , One of the tools for the proof of the theorem will be the Stinespring construction which is given in [3] and which will be sketched here for completeness sake.

Let M be any vo "Neumann algebra acting on h. Let M © h denote the tensor product of M and h as linear spaces. Let N be von Neumann algebra of M which is the range of a faithful, normal expectation $<\mathrm{p}$. On M 0 h define an inner product by:
$\left\langle T^{a_{i}}\right.$ ®*i$\left.* I^{l_{b}} j O Y_{L}\right\rangle=I\left(*<o_{r j} a^{\wedge} x^{\wedge} \cdot l_{L}\right.$
i=l j=l i,j
where $a_{\mathbf{i}^{\prime}} \mathrm{b}_{\boldsymbol{j}}$ are in $\mathrm{M}, \mathrm{X}_{\mathbf{i}}{ }^{\wedge} y_{\mathbf{z}}$ are in h and where $\left({ }^{\wedge}\right)$ denotes the inner product in h. Now:

Let A be in M_{n} with $\cdot A^{\wedge} \exists=a \boldsymbol{y} a^{\wedge}$ then if $x=\left(x_{\mathbf{w}}, x_{2}, \ldots, x_{n}\right)$

$$
\begin{aligned}
&(A x, x)=\wedge\left(a_{j} a_{ \pm} x_{ \pm}, x^{\wedge}\right) \geq 0 \\
& i^{\star} j
\end{aligned}
$$

By proposition 2,

$$
\stackrel{\rightharpoonup}{\wedge}\left(\wedge\left(a^{\wedge} \cdot{ }_{j}^{*} a_{i}\right) x_{ \pm}, x_{j}\right) \geq 0
$$

Hence the product defined on M 0 h is bilinear and positive. However it is possible to have < £.,£ > =0 with $£ \wedge 0$. Divide
out the space $M 0 \mathrm{~h}$ by all vectors of norm zero. Then taking the completion of that space, one obtains a Hilbert space which will be denoted M QtY .

Lemma 3. h is imbedded as a Hilbert space in $M \odot h$.
Proof: In fact we shall show that h is isomorphic to N © . Let $a_{i} \quad i=1,2, \ldots, n$ be operators in B, consider the map

$$
\left.S()_{i=1}^{\sim n} a \cdot \stackrel{\rightharpoonup}{\odot} x \cdot\right)=\sum_{1=1}^{-n} a \cdot x .
$$

then

$$
\begin{aligned}
& <)_{i}^{n} a . \odot x \cdot, \int_{-1}^{n} \text { a. © } x_{1}> \\
& =\bar{j}_{i>j}\left(\varphi\left(a_{j}^{*}-a_{1}\right) x_{x}, x_{3}\right) \\
& =\vec{\prime}\left(a^{\wedge} a . x ., x .\right) \\
& \text { i. }{ }^{j} \\
& =\left(\sum_{i \equiv 1}^{n} a_{i} x_{i}\right)
\end{aligned}
$$

Hence S is an isometry of N oh on h. In particular then, one can view h as a subspace of M © h.

Lemma 4.
$<$ defines a self adjoint projection E of $M \odot h$ on $N(J) h$.

Proof: Let $a_{1}, i=1,2, \ldots, n$ be operators of •M. Define

$$
E\left(\sum_{i=1}^{n} a_{i} \bigcirc x_{i}\right)=\sum_{i=1}^{n} \varphi\left(a_{i}\right) O x_{i}
$$

the proof in [2] shows that E is a well defined self adjoint projection of $M \odot h$ on $N \subset h$. Recall for example how self
adjointness is checked out.

$$
\begin{aligned}
& <E\left(\sum_{i}^{-} a_{i} \otimes x_{i}\right), \sum_{j}^{j} b_{j} \diamond y_{i}> \\
& =\left\langle\underset{i}{\underset{i}{V}} p\left(a_{i}\right) \otimes x_{i}, \sum_{\dot{3}} b_{j} \otimes y_{j}\right\rangle=\underset{i, j}{=1}\left(\left\langle p\left(b_{j}^{*} \varphi\left(a_{i}\right)\right) x_{i}, y_{j}\right)\right. \\
& =\sum_{i, j}\left(\varphi\left(\varphi\left(\mathrm{~b}_{\mathrm{j}}^{*}\right) \mathrm{a}_{\mathrm{i}}\right) \mathrm{x}_{\mathrm{i}}, Y_{\mathrm{j}}\right) \\
& =\left\langle\sum_{i} a_{i} \otimes x_{i}, \sum_{j} \varphi\left(b_{j}\right) \otimes y_{j}\right\rangle=\left\langle\sum_{i} a_{i} \otimes x_{i}, E\left(\sum_{j} b_{j} \otimes y_{j}\right)\right\rangle
\end{aligned}
$$

Lemma 5.
There exists an ultra-weakly continuous representation I
of M in L (MOi) such that $t(b) E=E l(b)$ for all b in N, Moreover if h and N (2) h are identified by the isometry S of lemma 3, then $\mathrm{Cp}(\mathrm{a})=E l(a) E$ for all a in M.

Proof: For each a in M define
l is then a representation of M in $L(M X h)$. Let $b_{1}, i=1,2, \ldots, n$ be operators in N then:

$$
\begin{aligned}
& E \ell(a)\left(\sum^{-} b_{j} \otimes x_{j}\right)=E\left(\sum_{j} a b_{j} \otimes x_{j}\right) \\
& \left.=j_{i}<p(a) b_{3} \odot x_{j}=q(a)\left({ }_{\wedge}\right){\underset{D}{D}}^{b} 0 x_{\dot{D}}\right)
\end{aligned}
$$

 Let b be in N then

$$
\begin{aligned}
& \ell(b) E\left(\sum a_{i} \times x_{i}\right)=\ell(b)\left(\sum \varphi\left(a_{i}\right) \otimes x_{i}\right) \\
& =\wedge \operatorname{bcp}\left(a_{i}\right) O x_{i}=E \ell(b)\left(\sum a_{i} \otimes x_{i}\right)
\end{aligned}
$$

So $\quad l(b) E=E p(b)$ for all b in N. To show now that I is u. W. continuous. Let

$$
\zeta_{k}=\sum_{i=1}^{n_{k}} a_{i}^{(k)} \otimes x_{i}^{(k)} * h_{i=1}^{=\sum_{i=1}^{n_{h}} b_{3}^{(h)} \otimes y_{j}^{(h)}}
$$

with $\overline{\mathrm{L}} \mid \mathrm{C}_{\mathrm{k}} \|^{2}<\infty$ and $\overline{\mathrm{X}} \mathrm{IN}^{\wedge} \wedge^{\wedge}{ }^{2}<.00 *$ Let $a_{o c}$ be a net converging u.w. to a in M. Then it is sufficient to show that A tends to zero where

$$
A=\sum_{k, h}<\ell\left(a-a_{\alpha}\right) \zeta_{k}, \eta_{h}>
$$

We have

$$
\begin{aligned}
& \mathrm{k}, \mathrm{~h} \mathbf{i}, \mathrm{j}
\end{aligned}
$$

Now $b:{ }_{j}^{(h)}\left({ }^{\star}-a \operatorname{a}\right)^{a} \frac{(k)}{l}$ tends to zero u.w. As $<p$ is normal, A tends to zero. Let N c: M be two von Neumann algebras acting on h. Let $<p$ be a faithful, normal expectation of M on N.

Proposition 6.
There exists a Hilbert space k such that:
(1) h can be imbedded in k
(2) There exists an u.w. continuous representation I oj? M in $L(k)$ such that $<p(A)=p, t(A) p$, where p, is the projection 으 k On h.
(3) t í^ $^{\wedge}$ isomorphism.
(4) p commutes with all $I(\mathrm{~b})$ with b in N .

Proof: Let $k=M \subset h$, if $I(a)=0$ then $t\left(a^{*} a\right)=0$ so $\varphi\left(a^{*} a\right)=0$.

By faithfulness of $\langle p\rangle$ this implies $a=0$. Hence I is a * isomorphism of M in $L(k)$. The rest of proposition 6 is a restatement of lemma 5 .

Theorem 7 .
There exists an ampliation of M in $h 0 k$ such that if $\wedge i^{s}{ }^{a n} Y$ von Neumann subalgebra of M which is the range of JL faithfuly normal expectation $<p 3$ then there. exists an is.omet.ry_ $V \operatorname{in}_{\underline{\prime}}\left(\mathrm{N} O I_{k}\right)^{f}$ such that $<p \subset I_{k}(\widetilde{A})=V \widetilde{A} V^{*}, V V *=I$, jbn putting
 $\widetilde{\mathrm{A}}$ positive. $\tilde{\mathrm{AP}}=0$ implies $\tilde{\mathrm{A}} \bullet=0$.

Proof: Let s be a Hilbert space with cardinality greater or equal to the maximum of x_{1} and cardinality of a Hammel basis
 $\widetilde{\varphi}(\widetilde{A})=\left(P_{\hat{\mathbf{x}}} \bar{J}(\mathrm{x}) I_{\mathbf{s}}\right) \mathrm{T}(\widetilde{A}) \quad\left(\mathrm{P}_{\mathbf{n}} \subset I_{\mathbf{s}}\right) \quad$. By proposition $1, X$ is spatial, There exists an isometry U of h © s onto $k(\hat{x})$ s such that $\tilde{<\mathrm{p}(A)}=U(\tilde{A}) U^{*}$. Hence

$$
\tilde{\varphi}(\tilde{A})=P_{h Q_{s}} U\left(A \bigcirc I_{s}\right) U * P_{h(S)}
$$

where P-ưv, denotes the projection of k ©s on h Os. Moreover $P_{\text {n }}$ q. $_{3}$ commutes with all $\tilde{U B U} *$ as B ranges over N (proposition
6) . So $U * P_{h} \wedge U$ commutes with all \widetilde{B} for B in N.

 for all A in M.; Claim: V is in (N © I J^{\prime} '. Let B be in $\mathrm{N}^{\wedge} \widetilde{\mathrm{B}}=\widetilde{<\mathrm{p}} \widetilde{(\mathrm{B})}=\widetilde{\mathrm{VB} V^{\wedge}}$ so $V^{\star} \widetilde{B}=\widetilde{\mathrm{PBV}^{\wedge}} \wedge=\widetilde{\mathrm{BP}} V^{\wedge}=\widetilde{(\mathrm{B})} \mathrm{V}^{\wedge}$ so V is in N. Now

$$
\begin{aligned}
& P \widetilde{A P}=V * V \widetilde{A} V^{*} V \\
& =\mathrm{V} * \widetilde{\mathrm{p}} \widetilde{(\widetilde{A})} \mathrm{V} \\
& =\mathrm{V} * \mathrm{~V} \widetilde{\mathrm{p}}(\widetilde{\mathrm{~A}})=\mathrm{P} \widetilde{\mathrm{p}}(\widetilde{\mathrm{~A}}) \quad \mathrm{Also}, \\
& P \widetilde{A P}=V^{*} \widetilde{(p}(\tilde{A}) V=\widetilde{\sim p} \widetilde{(A)} V^{\star} V \\
& =\widetilde{\varphi}(\widetilde{\mathrm{A}}) \mathrm{P} .
\end{aligned}
$$

Let \bar{P} be now the central carrier of $P, I-F={ }^{\wedge}(I-* \bar{P})=(I-\bar{P}) P_{h} \Omega_{s}=$ O. So $\overline{P^{\star}}=I$. Hence if $A(\widetilde{B})=\widetilde{\mathrm{PBP}^{\wedge}}$ then 7 is an isomorphism. If $\tilde{A P}=0$ then $\tilde{P} \widetilde{p}(\widetilde{A}) P=0$ so $\widetilde{p}(\widetilde{A})=0$. By faithfulness if A is positive^ $\mathrm{A}=0$.

References

[1] Dixmier, Y. 'Formes lineaires sur un anneau d'operateurs^' Bull. Soc. Math., France, 81: 9-39, 1953.
[2] Nakamura, M., M. Takesaki, and H. Umegaki, *A remark on the expectations of operator algebras, ${ }^{\text {f }}$ Kadai Math. Seminar Reports, 12: 82-89, 1960.
 Proc. Amer. Soc, £: 211-216, 1955.
[4] Tomiyama J., ! On the projection of norm one in w^{*} algebras ', Proc. Jap. Acad., 11^: 125-129, 1959.
[5] \qquad , ${ }^{f}$ A remark on the invariance of w^{*} algebras, Tohoku Math. J.,] Jo: 37-41, 1958.

Carnegie-Mellon UniversityPittsburgh, Pennsylvania

