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0. Introduction. In his classical paper On computable numbers (with an
application to the Entscheidungsproblem) Turing analyzed what can be done
by a human computor in a routine, "mechanical" way. He argued that
mechanical operations obey locality conditions and are carried out on
configurations satisfying boundedness conditions. Processes meeting these
restrictive conditions can be shown to be computable by a Turing machine.1

Turing viewed memory limitations of computors as the ultimate reason for
the restrictive conditions. In contrast, Gandy analyzed in his paper Church's
Thesis and principles for mechanisms what can be done by "discrete
deterministic mechanical devices" and appealed to physical considerations to
motivate restrictive principles. These devices include crucially ones that
carry out parallel processes, e.g., cellular automata. Following Turing's
methodological ways and guided by Conway's "Game of life" as a paradigm,
Gandy formulated four restrictive principles and proved that devices
satisfying them are computationally equivalent to Turing machines.

The definitional preliminaries in Gandy's paper are rather lengthy;
Shepherdson wrote in 1988: "Although Gandy's principles were obtained by a
very natural analysis of Turing's argument they turned out to be rather
complicated, involving many subsidiary definitions in their statement. In
following Gandy's argument, however, one is led to the conclusion that that
is in the nature of the situation." The "nature of the situation" is actually not
as complex. The presentation can be simplified by choosing definitions
appropriately, focusing sharply on the central informal ideas, and using one
key suggestion made by Gandy in an Addendum to his paper; see Note 1. Our
simplifications do not change the "form of presentation", i.e., the states of
mechanical devices are given by hereditarily finite sets as in Gandy's paper.
However, the subsidiary definitions are streamlined significantly, and of the
four principles Gandy used only the principle of local causality is explicitly
retained to characterize "Gandy Machines". It is formulated in two separate
parts, namely, as the principle of Local Causation and that of Unique
Assembly .

Our presentation of Gandy machines is not given solely for Gandy
machines' sake; rather, we want to address the broader issue of obtaining a

For details of this analysis cf. [Sieg, 1994], [Sieg & Byrnes, 1998], but also note 5 below. Roughly speaking,
the first conditions make operations local in the sense that the "next "operation must take place within a fixed
finite neighborhood; the second conditions require that the configurations (on which the operations are
carried out) have a fixed bounded size. Turing machines obviously satisfy these conditions.



truely abstract model for parallel computations. In [Lamport & Lynch] one
finds this observation:
The theory of sequential computing rests upon fundamental concepts of computability that are
independent of any particular computational model. If there are any such fundamental formal
concepts underlying distributed computing, they have yet to be developed.... Nevertheless, one
can make some informal observations that seem to be important.
Underlying almost all models of concurrent systems is the assumption that an execution consists
of a set of discrete events, each affecting only part of the system's state. Events are grouped into
processes, each process being a more or less completely sequenced set of events sharing some
common locality in terms of what part of the state they affect. For a collection of autonomous
processes to act as a coherent system, the processes must be synchronized, (p. 1166)

It seems to us that Gandy's analysis is conceptually convincing and provides a
sharp mathematical form of the informal assumption(s) "underlying almost
all models of concurrent systems". Indeed, the central informal idea is just
this: operations on states are composed of local transformations that modify
"parts" of bounded size, and the resulting configurations are then uniquely
assembled into the next state of the system. Turing and Gandy both focus on
mechanical processes operating deterministically on discrete states; whereas
Turing arrived at his distinctive analysis of human calculability by exploiting
broad limitations of the computing agent, Gandy uses evident physical
limitations of mechanisms to arrive at a general notion of machine
computation; cf. section 4.

Gandy machines allow a direct and most straightforward formalization
of paradigmatic parallel computations; it remains to be seen, whether they are
also a convenient tool for the theoretical investigation of such computations.
However, some results for Gandy's original formulation were obtained by
Shepherdson and Dahlhaus & Makowski in 1988. In an independent second
paper we will change the form of presentation from hereditarily finite sets to
graphs, discuss connections to other models of parallel computation, and give
some informative applications.

1. Structural classes & operations. Gandy machines consist of classes of
"states" together with a "transition operation" that allows one to step from
one state to the next. As mentioned above, we use Gandy's original set
theoretic framework for the specification of such machines: states are
represented by hereditarily finite sets, and transitions are given by restricted
operations from states to states. The hereditarily finite sets are built up from a
potentially infinite set U of atoms. These atoms can be thought of as the basic,
unanalyzed components of machines. In this section and in section 2 we give
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needed general set theoretic definitions; section 3 contains and motivates the
formulation of two restrictive principles for mechanisms.

The hereditarily finite sets over U are obtained by the finite powerset
operation Pp that does not admit the empty set as a subset:

PF(X)={Y I Y£X & Y* 0 & Y is finite};
the hierarchy of hereditarily finite sets is inductively defined by

HF0 = 0
HFn+1 = PF(HFnuU)

The class HF of all hereditarily finite sets over U is the union of the HFn
fs

together with the empty set. The elements of HF are finite trees whose leaves
are in U; for example, the e -tree

a b
is a graphic representation of the set {{a, b}, {a, c, {a, b, {a, b}}, d}}. Here we are
following a convention we will use throughout: we have a three-sorted
language with names a, b, c, d,... for atoms from U and variables r, s, t, u,...
ranging over U; the variables v, w, x, y, z,... range over HF and X, Y, Z,... over
subsets of HF. In order to take into account finitely many different kinds of
atomic components, one would have to increase the number of sorts; as this
is without any theoretical consequence, we consider just the simplest case.

Two observations are immediate: (i) 0G HF, but for each ne N, 0£ HFn;
(ii) the hierarchy is cumulative. The e -relation on HF is well-founded; so we
can use the e -recursion principle to define operations on HF. For example,
the transitive closure ofx, Tc(x), is defined as x uU{Tc(y) lyex}; Tc(x) is the
smallest transitive set y with x£y. The atoms contained in Tc(x) form the
support ofx, Sup(x), i.e., Sup(x) = Tc(x)nU. Elements of HF, or structures in
HF, are to reflect states of physical devices just as mathematical structures in
physics are to represent states of nature. Thus, any isomorphic structure will



do as well; one should notice that this reflection is done somewhat indirectly,
as only the e -relation is available.

Definition, x and y are e -isomorphic or simply isomorphic (x=y) iff there is a
bijection F: Tc(x)->Tc(y), such that for all zeTc(x): [for all w€Tc(z)(wez iff
F(w)e F(z)) and for all re Sup(z): (re z iff F(r)e F(z))].

The class of structures isomorphic to a given structure x is called its
stereotype. Notice that an e -isomorphism F between structures x and y is
uniquely determined by a bijection n between Sup(x) and Sup(y) with
F(r)=7c(r) for all re Sup(x). That comes from the fact that any permutation n
on U can be extended to an e -isomorphism rc*:HF-»HF by e -recursion: rc*(x)
= {n(r) I re x}u{rc*(y) I ye x}. We will write xn for n*(x).

Definition. A subclass X of HF is called structural iff X is closed under e -
isomorphisms; we use S as a variable over structural classes.

The set of states of a mechanical device is thus represented only by a class X of
HF-structures that is structural. Gandy emphasized: "All the information
about that state which is relevant to the operation of the machine must be
encoded in any structure x which is used to describe it."

Transitions for a mechanical device must be operations F from a
structural class S to S, where this class contains all the possible states of the
device. What broad conditions should be satisfied by such an operation? —
There is an obvious first requirement, namely, that isomorphic states are
mapped to isomorphic states; but this is not enough, as the operation should
depend only on the stereotype (i.e., "structure") of a state. Consider the
operation F defined for the ordered pair <a, b> by F(<a, b>)={b} and for the
ordered pair <c, d> by F(<c, d>)={c}; isomorphic states are indeed mapped to
isomorphic states, but F operates not just on the structure of the states. To
remedy this shortcoming by requiring full invariance, i.e., F(x*) = F(x)* for any
permutation n, would be too restrictive: in stepping from one state to the next
the device may be expanded, and additional atoms may be used for the new
parts; there is no reason for restricting the choice of atoms (for building up
new parts) so that identity results. To capture this idea we introduce a refined
notion of e -isomorphism between structures in HF: x and y are called e-



isomorphic over A, x=Ay, where A is a set of atoms, iff there is a permutation
n on U with 7c(r)=r, for all re A, and x*=y. Using the abbreviation x=zy for
x=sUp(z)y, we can now formulate the informal requirement by F(X*)=XJCF(X)*.

Definition. Let S be a structural class; an operation F: S~>S is called structural
iff for all permutations n and all XG S: F(x*) =x*F(x)*.

More graphically, an operation is structural, if the following diagram
commutes for any permutation n: ,_-i

3

Now we have all the basic ingredients for the description of
mechanical devices: a machine M is (described by) a pair <S, F>, where S is a
structural class and F is a structural operation from S to S. If xoe S is an initial
state of M, then F(xo), F(F(xo)), ... are the subsequent states of M. Thus, M is a
special case of a discrete dynamical system. Gandy pointed out that the class
of machines given in this way is so comprehensive that any number theoretic
predicate P can be decided by them. Let XP be the characteristic function of P
and consider the following machine Mp with S:={{r}nl reU, n>l}, where
{r}i={r} and {r}n+i={{r}*}, and F({r}*):= {r}* if XP(n)=l, else {rP; this machine does
compute Xp. Gandy used as one principle that the set theoretic rank of
machine states is bounded; the "omniscient machine" is obviously not
bounded in this sense. The principle is motivated by the fact that the
hierarchical structure of actual machines, as reflected by the height of the
epsilon-trees of their states, is not modified by their operation. The "principle
of limitation of hierarchy" is then formulated as follows: if M= <S, F>, then
the set theoretic rank of the states of M is bounded, i.e., there is a k in N, such
that S is contained as a subset in HFk. (Cf. end of section 2.) In the next two
sections we will present physically motivated operating principles that will
exclude such "omniscient" machines from being counted as Gandy machines;
indeed, section 2 is preliminary, as it only formulates more precisely on what
kind of structures operations are carried out.
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2. Substructures of states. Gandy's principle of unique assembly expresses, in
his words, "that any device can be assembled from parts of bounded size, and
that these parts can be so labelled that there is a unique way of putting them
together. Model-construction kits aim, not always successfully, to satisfy this
principle". We are not going to use that as a general restrictive principle for
states of Gandy machines; however, we are using the notions involved in its
formulation. So it is necessary to introduce some additional set theoretic
preliminaries; in particular, we will need a "pruning operation" xtY for a
variety of classes Y. As a first example we let Y be a subset of Sup(x) and
define

xtY = (xnY) u [ {yt(YnTc(y)) I yex} \ {0} ].
The set xtY is obtained from x by pruning all nodes with atoms that are not in
Y (and resulting empty sets); i.e., we obtain the part of the e -tree that is built
up solely from atoms in Y. We consider now the earlier G -tree; if Y = {a, c, d},
then xtY is

If Y = {b, c}, x will be pruned to



Three remarks are of immediate interest for our motivating considerations:
(i) if Y=0, then =y coincides with =, (ii) if x=yyv then xtY=ytY, and (iii) if x=yy
and Y is the support of x, then x=y.

As a second example for the pruning operation xtY we let Y be a subset
of HF. Y may contain now elements y and z such that y is a subtree of z, i.e.,
ye Tc(z). To make the priming operation unique and prune with respect to
the largest possible subtrees, we first define when Y is a set of parts for x,
namely, just in case Pt(x,Y)=Y; the operation Pt(x,Y) is defined by e -recursion
as follows:

Pt(x,Y)=(xnY) u U{Pt(y,Y) I ye x & yi Y}.
Note that Y is a set of parts for x iff (i) YcTc(x) and (ii) for all w, ze Y, if w*z,
then weTc(z). The operation thus selects from Y those elements that are
maximal in the € -tree for x. If every element of x is in Y, then Pt(x,Y)=x; in
particular, Pt(x,x)=x. For a set Y of parts for x we define then as before

xtY = (xnY) u [ {yt(YnTc(y)) I yex }\{0} ].
For sets of parts with Yi^Y2 we have xTYi=(xTY2)TYi. — One final auxiliary
notion: Y bars x iff every e -chain r e xi e ... e xn e x contains an element of Y.
Now we can formulate the central notions for assembling machines.

Definition, (i) y is a subassembly2 for xfrom Y, briefly yc*x, iff Y is a set of
parts for x and y=xTY.
(ii) C is an assembly for x iff C is a set of subassemblies y for x from Yy, such
thatU{Yy I yeCJbarsx.

An assembly for x is a covering for x in the literal sense of the word. Though
elements of an assembly C for x are subassemblies for x, such a C can also be
an assembly for y, y*x. To see that consider x = {{a, bi},. . . , {a, bn}}, where a, b\,
..., bn are distinct atoms; consider YcSup(x) with card(Y)<n. If y = x u {{a}},
then yTY = xtY. Thus, x cannot be uniquely assembled from subassemblies of
the form xtY with Y of properly smaller size, i.e., here YcSup(x). If C is an
assembly for exactly one x, we say that x can be uniquely assembled from C or
also that C uniquely assembles to w. If W=AX, we also say that C uniquely
assembles to w over A.

This is what Gandy calls a located subassembly. He suggested in his "Notes added in proof", p. 147, using
these definitions, where an assembly is obtained from located" subassemblies, instead of the definitions
actually given in the body of the paper.
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Gandy postulated a general boundedness condition for machine states:
they can be uniquely assembled from subassemblies y of bounded size, where
the size ofy, size(y), is understood as the cardinality of Sup(y): if M = <S, F>,
then there is a qe N and for each xe S there is an assembly C for x, such that (1)
x can be uniquely assembled from C, and (2) the size of every ye C is bounded
by q. If M satisfies also the principle of limitation of hierarchy (cf. end of
section 1), then the bound q is not just a bound for the size of each ye C, but it
also determines a bound for the cardinality of each y: from the given less than
q atoms only finitely many different sets can be built up at each level of HR ,
j<k. I.e., card(y) <£, where the dots bounded by 2's indicate a stack of k two's.
We are not using these restrictions; the relevant aspects follow from other
considerations below, namely, the finiteness of structurally different parts
that can be directly affected by a machine.

3. Locality of operations. Turing's requirement that a computation step
should depend only on a bounded portion of the record was motivated by the
evident limitations of the human sensory apparatus; as we mentioned
already, memory limitations were viewed as the ultimate reason. This
motivation is replaced here by an appeal to physical limitations: signals can
only be conveyed with finite velocity; the possibility of instantaneous action
at a distance is rejected by contemporary physics. This is the background for
the Principle of Local Causality, formulated by Gandy in the following
preliminary way:
The next state, Fx, of a machine can be reassembled from its restrictions to overlapping
"regions" s and these regions are locally caused. That is, for each region s of Fx there is a
"causal neighborhood" f2Tc(x) of bounded size such that Fxts depends only on xtt.

We are going to distinguish between the "local determination of regions"
and "assembling the next state" (unique up to isomorphism) from these
regions. That regions are locally determined means that there is some
structural function G acting on suitable substructures of x, but also that G's
domain is finite up to isomorphism. The physical motivation for the
domain's finiteness is straightforward3: within the bounds set by the
propagation of signals with finite velocity there can be only finitely many
atoms, as it is assumed that their size has a lower bound. (Cf. section 3,
Physical Limits, of [Mundici & Sieg].)

3 Gandy derives this finiteness by the considerations mentioned at the end of section 2. Our direct appeal to
physical constraints at this point avoids the rather forced detour through the particular set theoretic frame.
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I

Now let T be the finite set of stereotypes whose elements make up the
domain of G. The causal neighborhoods of a state x are structurally
determined by T. y is called a T-maximal subassembly ofx just in case ye UT,
y is a subassemby of x, and there is no subassembly y* of x in UT, such that y is
e-embeddable in y*.

Definition. Cn(x) = {y I y is a T-maximal subassembly ofx}; Cn(x)is called the
set of causal neighborhoods ofx determined by the set T of stereotypes.

The underlying informal idea is that the causal neighborhoods y of x
determine unique regions G(y) via the structural operation G; these regions
are isomorphic over y to subassemblies v of F(x), i.e., v=yG(y). G may
introduce additional atoms; we require that these atoms be new for x, i.e., that
G satisfy Sup(G(y))nSup(x)£Sup(y). For such G the isomorphism between v
and G(y) can be strengthened to v=xG(y). (This is going to be used after the
next definition to specify in what sense the "effects of causes" are unique.)

Definition. Dr(x)={v I (3y)(yeCn(x) & v=G(y))}; Dr(x) is called the set of
determined regions of x — the regions are determined by G from elements in
Cn(x).

Viewing the causal neighborhoods of x as causes and the determined regions
as effects, we can formulate that "every cause has an effect":

(1) (VyeCn(x)) (3veDr(x)) v=G(y),
Diagrammatically, the relations are as follows:

x

I.e., y is e -isomorphic to a proper subtree of y^s e -tree.
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If determined regions are isomorphic over x, we actually require — to prevent
the construction of omniscient machines (cf. Gandy's discussion on pp. 139-
40) — that they are identical:

(2) (Vv, weDr(x)) (w=xv -> w=v).
Now we have to take the second step: having determined the regions

locally, we must assemble (an isomorphic copy of) the next state from them.
To see the issues clearly, consider a simple example: if x = {<a, b>, <c, d>}, then
we might have chosen G(<a, b>) = {b, f} and G(<c, d>) = {d, g}. In this case F(x)
= {b, f, d, g}; alternatively, we might have chosen G(<c, d>) = {d, f}, in which
case F(x) = {b, f, d}. F is a functional operation, as the computations are to be
deterministic; thus, such ambiguity must not exist. Supposing that overlaps
do not occur would be too restrictive. Indeed, multiple causal neighborhoods
do sometimes introduce the same new atoms: consider, for example, the
outward growth of the underlying grid of a cellular automaton. The
agreement or disagreement of the newly introduced atoms must be
predetermined; i.e., the isomorphism type (over x) of any class of determined
regions with common new elements must also be given by a function on
appropriate substructures of x. Calling such a function G2, we require that it
satisfy the same restrictions as G, except that regions determined by it need
only be unique up to isomorphism over x (as we have introduced G2

explicitly for determining only isomorphism types over x, whereas G is
required to produce a particular assembly). We use G2 now for G; if i=l or 2
and Tj is the set of stereotypes of states in the domain of Gif then Cn̂  and DT{

are the causal neighborhoods and regions determined by G{ and T{. (The
principles are formulated for fixed M = <S, F>, G{ and Tt.)

Principle I (Local Causation). For every xe S:
(1.1) (VyeCniM) (3veDn(x)) v ^ y ) ,
(1.2) (VyGCn2(x))(3veDr2(x))v=G2(y),

and
(2) (Vv, wGDri(x)) (w=xv -» w=v).

An arbitrarily large number of regions determined by G1 might introduce
some common atom, but the size of the regions of G2 are bounded. It is a
combinatorial fact established by Gandy (on pp. 143-5 of his [1980]), that F(x) is
determined uniquely up to isomorphism as long as the regions of G2
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determine the overlap on up to rGl-many regions obtained via G! at a time,

where
rGl = maxIcardfSupfG^y)) \ Sup(y)) I y e T^+l.

The G1-determined regions of x and the G2-structurally determined overlaps
should allow us to put together F(x) - up to isomorphism over x.

Principle II (Unique Assembly). For every xe S (writing r for rGl):

1. (VCQ^x)) [card(C)<r & Pi{Sup(v) I veC} is not a subset of Sup(x)

-> (3weDr2(x))(VveC)vc*w]
2. Dri(x) uniquely assembles to F(x) over x.

We are finally where we wanted to be: a machine M = <S, F> is called a Gandy
Machine if and only if there are finite sets Ti and T2 of stereotypes and
structural functions Gi and G2 so that Principles I and II are satisfied.

To make this rather abstract discussion a bit more textured, we
represent a Turing machine M as a Gandy machine; we think of a Turing
machine here as a Post production system as in [Davis]. Suppose the set of
symbols of M to be {so,..., Sk} and that of internal states to be {qo,..., qr}- We can
represent so,.../Sk/<lO/—Air by {r}1,...,{r}r+k+2 respectively, for every atom r. A cell a
of the tape which contains the symbol s and has cell b to its immediate right is
indicated by the ordered pairs <a, b> and <s, a>. (We will ignore the problem
of keeping track of the leftmost and rightmost cell; we can assume that extra
symbols are introduced, as was done by Post.) The machine's head position
and its internal state qi are given by <qi, a>, where a is the cell currently being
read. A state of a Turing machine is its instantaneous description which can
be represented by the set of all the ordered pairs for cells together with the pair
indicating the head position and internal state; let S be the class of all such
states.

We can define Gi as follows. For the command "if in state qi and
scanning symbol Sm, move to the right and enter state qj", we have

and similarly for the other commands. In addition we have for each symbol s
in the language, each internal state q, and each

Again, these are made for all atoms a and b (and all atoms r underlying the
representations of s and q), i.e., we take the "structural closure" of the
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function minimally indicated above. Since at most one neighborhood
introduces a new cell, we can choose G2 = Gi. These define a unique
structural function F on S in accordance with the principles above, and F
clearly carries out the same transfomations on instantaneous descriptions as
the given Turing machine M.

4. Gandy's Thesis. Gandy analyzed the notion of machine computation or,
making the first analytic step, what can be done by a "discrete deterministic
mechanical device". In this Gandy followed Turing's methodological ways
and sharpened the informal notion at hand. First of all, he considered, as
Turing did, calculations that are deterministic and whose progress can be
"described in discrete terms". Secondly, he made explicit broad physical
considerations that constrain a mechanism in carrying out such calculations,
namely, (i) there is a lower bound on the size of the machine's atomic parts,
and (ii) signals can be transmitted only with bounded velocity. He considered
the possibility of carrying out steps in parallel as distinctive for such devices
and appealed to (i) and (ii) to motivate restrictive principles. Gandy did not
present yet another model for parallel computations, but rather attempted to
isolate principles any such model must obey.5

The fact that M = <S, F> is a "discrete dynamical system" reflects simply
the discrete and deterministic character of the devices that are being modeled:
discrete states can be adequately represented by hereditarily finite sets ;
transitions must be given by an operation, as the calculations are to be
deterministic. (Since the atoms are indistinguishable, operations must
depend only on the structure of states; thus the insistence that S be a
structural class and F a structural operation.) It is only now that the
specifically physical considerations come into play. By (i) and (ii) the devices
can directly affect just finitely many structurally different parts of a state;
however, as they can operate in parallel, the total transition must be uniquely
determined by local actions on such necessarily bounded parts.

In sum then, Gandy's Thesis is the claim that any discrete deterministic
mechanical device (can be represented as a discrete dynamical system and its

To see very dearly, how directly Gandy's analysis "follows" Turing's, the reader should look at our earlier
work on K-graph machines that generalized, in a suitable sense, Turing's; cf. [Sieg 6c Byrnes 1996 and 1998]
and references mentioned there, in particular, [Turing 1953] and [Kolmogorov & Uspenski].

Graphs would work as well, if not better, as structural features of the devices can be more directly
reflected; indeed, we have developed a simple graph-theoretic presentation; cf. [Byrnes & Sieg].
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operation) must satisfy the restrictive principles of local causation and unique
assembly. This is completely parallel to Turing's Thesis expressing the claim
that any human computor (can be represented by a discrete dynamical system
and his operation) must obey appropriate locality conditions. The crucial
difference between these two abstract models of computation lies in the fact
that Turing machines modify only one bounded part of a state, whereas
Gandy machines operate on arbitrarily many bounded parts.
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