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0.1 Introduction

According to the familiar, Bayesian account of probabilistic updating, full beliefs change by accretion:
in light of new information consistent with one's current beliefs, one's new belief state is the the result
of simply adding the new information to one's current beliefs and closing under deductive consequence.
Inductive generalizations that extend both one's current beliefs and the new information provided are not
licensed, although the new information may increase the agent's degree of belief in such a proposition.*
This account breaks down when new information contradicts the agent's current beliefs, for accretive
updating leads, in this case, to a contadictory belief state from which further accretion can never escape.
Belief revision theory aims to provide an account of how to update full belief so as to preserve consistency
when one's current beliefs are refuted by the new information provided. Belief revision theory has
attracted attention in a number of areas, including data base theory (Katsuno and Mendelson 1991),
the theory of conditionals (Boutilier 93; Levi 96; Arlo-Costa 1997), the theory of causation (Spohn 1988,
1990; Goldssmidt and Pearl 94), and game theory (Samet 1996).

A belief revison method is a rule for modifying an agent's overall epistemic state in light of new
information. An agent's beliefs are only part of her epistemic state, which also specifies an implausibility
assignment over possibilities inconsistent with the agent's full beliefs. Upon receipt of new information,
these degrees of implausibility determine the agent's revised belief state according to the following belief
revison rtde: the new belief state is the proposition satisfied exactly by the most plausible possibilities
satisfying the newly received information.> According to this rule, the character of the revised belief
state depends on the character of the agent's initial epistemic-state. If all possible worlds are assigned
implausibility degree 0, the agent starts out as a tabula rasa with vacuous beliefs and updates by mere
accretion, without taking any inductive risks. At the opposite extreme, consider an agent whose initial
epistemic state is maximally refined, in the sense that all possible worlds are assigned distinct degrees of
implausibility. Such an agent starts out fully convinced of a complete theory and retains this conviction
until the .theory is refuted, at which point she replaces it with the complete theory of the most plausible
world consistent with the new information. The new theory may differ radically from its predecessor.
Described this way, belief revision sounds like a process of "eliminative" or "enumerative' induction,
in which a "bold conjecture" is retained until it is refuted, after which it is replaced with the first
alternative theory (in a subjective "plausibility ranking") that is consistent with the new information
provided (Popper 68; Kemeny 53; Putnam 63; Gold 67; Earman 92). Between these two extremes
are agents with moderately refined initial states whose inductive leaps from one theory to another are
correspondingly weaker.

The belief revision literature has focused on the aim of minimisingdamageto the agent’ sep|stem|c (or
belief) state when new information contradicting the agent's beliefs is received. The similarity between

.« - belief revision and diminative induction suggests a natural, alternative aim for belief revision: namely,

" to arrive at strong, true, empirical beliefs on the basis of increasing information. This aim is largely .
unexplored in the belief revision literature,® but it has long been the principal 1ocus cf formal learning
~ theory, the study of processes of sequential belief update that are reliable,-or guaranteed. to stabilise to

s meweee true, . informative-beliefs on increasing, true.infixmatkxi.-The pur pose of this.paper |sto brlng framlng :
. - theor etkaiialyBW to bear c» a variety <rf methods of iterated belief revision proposed by 11388),
‘Boutilier (1993) Nayak (1994), GoIdttmkIt and Pearl (1994) and Darwiche and Pear| (1997) A very
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simple model of learning is employed, in which the successive propositions received by the agent are true
reports of successive outcomes of some discrete, sequential experiment. An inductive problem specifies how
the outcome sequence might possibly evolve in the unbounded future. The agent's task is to stabilize to
complete, true beliefs about the outcome sequence, regardless of which sequence in the inductive problem
is taken to be actual.
The investigation yields an interesting mixture of positive and negative results. Some of the methods
are empirically complete, in the sense that for each solvable learning problem, there exists an initial
epistemic state for which the method solves it. Others restrict reliability, in the strong sense that there
are solvable learning problems that they cannot solve no matter how cleverly we adjust their initial
epistemic states. All of the restrictive belief revision methods considered can have their initial epistemic
states adjusted so that they remember the past, and nearly all of them can be adjusted to eventually
predict the future. So such a method has the odd property that it can remember the past perfectly
but then it cannot eventually predict the future and it can eventually predict the future, but then it
forgets some of the past. | refer to this odd limitation as inductive amnesia. Inductive amnesia is the
sort of thing we would like rules of rationality to protect us from rather than impose on us.® Avoiding it
can therefore function as a nontrivial, motivated constraint on proposed methods and principles of belief
revision.
Among the inductively amnestic belief revision methods, it is of interest to determine which are
“more restrictive than others. To answer these questions, | introduce a hierarchy of increasingly difficult
inductive problems based on the number of applications of Nelson Goodman's (1983) "grue" operation,
which reverses the binary outcomes in a data stream from a given point onward. For each of the methods
considered, | determine the hardest problem in this grue hierarchy that the method can solve, obtaining,
thereby, a reliability "fingerprint" of the method.
It might be expected that aglobal consideration such as eventually finding the truth would impose only
the loosest short-run constraints on concrete methods of belief revision. However, sharp and unexpected
recommendations are obtainable. For example, several proposed belief revision methods are equipped
with a parameter a, which is the amount by which the updated implausibility of a possibility exceeds its
prior implausibility when it is refuted.- Lower values of a may be interpreted as more stringent notions
of "minimal" change since they correspond, in a sense, to less distortion of the original epistemic state.®
Two of these methods (Spohn 1988, 1990; Darwiche and Pearl 1997) turn out to fail by the second level
of the grue hierarchy if a = 1 but succeed over the entire, infinite grue hierarchy if a is incremented to
2. Thedifference between 1 and 2 isinnocuousin light intuitive coherence and symmetry considerations,
but it is pivotal for reliability. 1t will be argued, moreover, that the infinite leap in reliability at a =2 is
not a technical aberration, but rather reflects a fundamental epistemological dilemma between memory
and prediction faced by iterated belief revision methods of the sort under consideration.
..-Hie purpose of this paper isnot to argue that reliability consider ations alwayswin when they conflict
with coherence, symmetry, or minimality of belief change. Asin every case of oonflk*ing aims, a personal
balance most be sought. But if the ultimate balance is subjective, structural -conflicts between intuittve
rationality considerations and reliability are not. The isolation and investigation of.such conflicts is o
.+« s 1 entherefor*.a,suitable>aim.for .objective, epistenK>logk” .analyst. .The following results are admittedly,. ..~~~
- preliminary and subject to generalisation and refinement along a number of dimensions. “Nongtheless,”
| hope they illustrate how reliability analyses m|ght usefully and routmely be carrled out for proposed
theories of iterated belief revision. . : AU = S A iy
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0.2 Ordinal Implausibility

Let W be a set of possible worlds.” The agent's eptstemtc state at a given time is modelled as an
implausibility assignment (I1A), which is a (possbly partial) ordinal-valued function r defined on W
Possibilitiesthat are not even in the domain of r are *beyond possible condderation” in the srong sense
that they will never be consstent with the agent's belief state, no matter what information the agent
might encounter in the future. For agiven world w, let [w],, M £, and [w]g denote, respectively, the set
of al worlds equally, no more, or lessimplausiblethan w.

A propodition is identified with the set of all possble worlds satisfying it. The full belief state of r is
defined to be the propostion satidfied exactly by the possible worlds of implausbility zero.

b(r) = r~1(0).
Define the minimum degree of implausbility of worlds in E as follows
rmin(£) = min{r (W) '-tveE f\ dom(r)}.

It will also be convenient to refer to the lowest degree of implausbility that is grictly greater than the
implausbility of each world in E:

"above(*) =min{a: V> €EH dom(r),r(w) < or}.

If a < (3 then —a +/? denctes the unique 7 such that a+7 =0 (i.e,, -a+/? isthe order type of the
"tail" that remains when the initial ssgment a is "ddeted” from /?). r(.\E) isan ordinal valued function
with.domain dom(r) O E such that for each w in this domain:

r(w|E} = —rpin(E) + r(w)-
Then ryo(A\E) and r4jyove(i4[JF) may be defined as follows:

*min{AlE) = (*(-|E))min(4)-
Tabove(AlE) = (r(-|E)) ahove(4)-

0.3 Some Implausibility Revision Methods

An implausibility revision method takes an |A r together with an input propostion E and returns an
updated |A 17,
Wewill consider thefollowing examples. Perhaps the most obviousideaissimply to eiminaterefuted
- worlds from. on€'s ranking and to lower..all the other .worlds, keeping intervals of rdative implausbil-
ity fixed, until the most plausible world toadies bottom. This is what Spohn (1988) refers to as the
conditional implausbility ranking given thedata.

Definition 1 (conditioning) r *c E=r(\E).

Conditioning throws away refuted wor lds,soitcannot recover when later daUomtradict earlier data®

The remaining proposals boost the impUudK Uty of refuted worlds rather than disposing with them
Lty DAL AR UL wey Apillu-tn 24N, o SARMA Dy CLIMALNALSSd.ptrf - flm). Lffinim tif>
e ol e e :_.:_m_ II w_ l\-‘ll - ‘m:b“‘“m&- ) ’I?“gamﬁ---| - --wln - _' = II!I - I’ I .
- are contradicted by future data.® It will prow hteresting to analyxe a gener al tion of this proposal in
which all refuted worlds are amgned afixed ordinal a. S

"The«ppro™h adopted in thb aectfon foDom Spohn (1068).

*lib** generally e.c«p4edthmtdegr” of implausibifity are well-ordered. This assumption will be dropped in section

OS. !
®Goldesmidt and Peari introducethkpropo®a. mni”” ice of the method » 3, below, with a=w.
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Definition 2 (The "all to a" method)

f r@E) ifwe dom(r)nE
(rex.aE)(w)={ ot ifwe dom(r) - E
| otherwise.

Another proposal boosts all refuted worldsjust above all the non-refuted worlds, maintaining intervals
of implausbility among refuted worlds and among non-refuted worlds but not between the two classes.

Definition 3 (The lexicographic method)

r(WE) ifwe dom(r) HE
(r e E){(w)

laove(E\E) + r{wAW - E) if we dom(r) -

f otherwise.
A variant of this method was defined by Spohn (1988) who rgected it because it isirreversble, fails to
commute (the resulting | A depends on the order in which thedata arrive) and places extreme importance
on the data (the refuted worlds are put above all the non-refuted worlds rather than being shuffled in).
‘Againg these condderations, S. M. Glaiger (1997) has argued that a generalization of this rule due to
Nayak (1994) is uniquely characterized by plausble symmetry conditions.

At the opposte extreme, consder the method that drops the lowest worlds consstent with the new
information to the bottom level, and that rigidly elevates all other worlds by one step, keeping their
relative postionsto one ancther fixed.

Definition 4 (The "minimal” method)

I o ifweEnb(r(\E))
r*wE)WwW) ={ r(w+1 ifwe dom(r)-(Ed b(r(\E)))
otherwise.

In asense, thisisthe minimum alteration of the epistemic state consstent with the principle that one's
new belief state be the set of all most entrenched possbilities consstent with the new information.
Boutilier'8 " natural method" (1993) generalizes this method to apply to total pre-orders on worldsrather

- than I As.”® Spohn (1998) describes amethod of thiskind and rejectsit. It doesn't fare better in termsof
rever sibility and commutativity and, in Spohn's opinion, places too little importance on the data, since
the method can easily end up admitting possibilitiesexcluded by the information received at the previous
stage.

*Spohn recommends, .instead, the following sort of method. As usual, sort the worlds at each level
intothose that are refuted fay the current evidence and those that are not. Lower both groups of worlds,
preserving distances within the two groups, untU thek * " worlds in each group are at the bottomlevel. --
Now raise all of the refuted worlds together so that the lowest refuted words end up at. level a:** Spohn

= shows that«thisrule can feerepresented. as updating anonstaadaid probability measure by Jeffrey'srule, -
50 long as there are but countably many possible worlds nfWJgH to each. degree of implaugbility. -1t . -
is also shown fay Spohn to be both reversble and commutative (if a is understood to be an adj ustable
paramgser)g Nor isit as " extreme* asthe preceding roles. Bat acoordlrgtothlsrole thelmpl y '
R ofwmm‘mlry@mm “t* il ethisiK X maybl@"‘urih : th
-t inightbe the kmcst reftittd woktt st ¢ stage of inciry. IR

“ww&mnmum Buﬁcuhenﬁdamtheproblem ofupdallngonrendltlonah '
WhICh isnot addressed in thisjpapes. _
"Thfaisactually a special case of Spodn'sproposal. In general, Spohn'srale updateson a partition of possbleworlds
withasepan” gforeachcenofthepartHkw.UkasiumuJthatone smth o is wero. Here I present only the speciel case

ot nmwy par uiaons*




Definition 5 (Spohn’s “Jeffrey conditioning” method)

r(w|E) ifwe dom(r)NE
(r+5,a E)(w) = { r(w|lW —-E)+a ifwé€ dom(r)— E
1 otherwise.

Darwiche and Pearl (1997) propose an interesting modification of Spohn’s Jeffrey conditioning method.
Instead of dropping the refuted worlds to the bottom level before elevating them by a, Darwiche and
Pearl propose lifting the refuted worlds by a from their current position, whatever that might be. The
rule is presented with a = 1, presumably to minimize alteration of the epistemic state, but the possibility
of raising the value of a is left open.

Definition 6 (Darwiche and Pearl) Let a be an ordinal.

r(w|E) ifwe dom(r)NE
(r *ppo E)(w) = { rfw)+a ifwe dom(r)— E
1 otherwise.

Proponents of different belief revision methods have in mind different conceptions of minimal change and
different assessments of the relative importance of minimality as opposed to other symmetry conditions.
Such debates may be irresolvable. My purpose is to shift the focus of such debates to the relative abilities
of the various methods to generate true, informative beliefs; a natural goal that distinguishes sharply and
objectively between the above proposals.

0.4 Iterated Implausibility Revision as Inductive Inquiry

Iterated belief revision involves successive modifications of one’s epistemic state as successive input propo-
sitions are received. Iteration of an implausibility operator over a sequence of propositions is defined
recursively as follows:

lL.rs()=r
2. r*(Eo:---’EngEn+l) = (r*(Eo,...,Es)) #* Eny1.

A belief revision agent starts out with an initial epistemic state r and sequentially updates her beliefs
using a belief revision operator %, 5o we may identify the agent with a a pair (r, +), which I refer to as an
implementation of +. Such an agent determines a unique map from finite sequences of input propositions
‘to new belief states as follows:

(r,$)(Bo, - - ., Ea) = b(r % (B, ..., En)).
Fii i owoInsgeneral,-an mdudwemeﬂwdlsamlethatpmdueeamanpumlhypothmmmpometonﬁmte
leqnenoeofmpntptopouhom - .
f(Eﬂv'-tEn) Bu'l-l-

— A.Jndnchvemethodsmthemalobjedsdleunm;theomhcualym Smeeanmplmm(r,t)of('
Wmmtuuapeadhndofmduchwmetbod 1tnduectlynb3ecttohammgtheorehc




0.4.1 Data Streams

Suppose a scientist who uses an inductive method / is faced with the task of studying the successve
outcomes of experiments on some unknown system. We will suppose that the outcomes are discretely
recognizable, and hence may be encoded by natural numbers.

The data stream generated by the system under study isjust an infinite tape on which the code
numbers of the successve outcomes of the experiment are written. The first datum arrives at stage O,
S0 a data stream is atotal function e defined on the natural numbers. Let U denote the set of al data
streams. An empirical proposition isasubset of U. In other words, the truth of an empirical proposition
supervenes on the actual data stream.

Condider the scientist's idedized situation at stage n of inquiry. At that stage, she obsarves that the
outcome for stage n is e(n). Epistemically, she updates on the empirical proposition [n,e(n)], which is
defined to be the set of all datastreamsc such that €(n) = e(n). The initial segment of the data stream
scanned by stage n is

cn = (e(0),..., c(n-1)).

The length of of this sequence is defined to be n:
Ih(c(0),...,e(n-1)) = n.
The tail of the data stream remaining to be scanned from stage n is:
nle = (e(n),e(n+l),...).
Prior to stage n, the scientist updates on the sequence of empirica propositions
[[einl] = ([0, «(<N]..... [n-1.e(n-1)]).
Then her inductive method's output prior to observing e(n) isjust
[(ttd»D) = /(([0, &0)),..., [n- 1, &n - 1)])).
Note that [[€n]] is not the same thing as the empirica proposition
[e\n] = {€€U: e\nisextended by €'},

which states that thefinite outcome ssquence e\n has occured. Rather, [en] istheintersection of all the
propositions [»,«($)] occurringin Qen]]. Now that thesedigtinctionsaredear, IW|IIsmpI|fynotaI|on by

writing
J(eln) = f((feln]))-
0.4.2 Empirical Questions

Inquiry lias two cognitive aims, seeking troth and av0|d|ng error.t 3 Seeking truth involvesrelief from
ignorance. One ample way to specify nontrivial content isto partltlon possibilitiesand to requirethat .

theoutputs of the method eventually entail thetrue<” c€thistarget” j>artitkm.. Wemaythlnkofthe_--_ L

R T MuuWMM&-ﬂdmmuﬁeMWbﬁc'""""

60 denotes the singleton partition {{€} :-e € V}, which corresponds to the hardest ernplrlca] qg &tion R

s\what isthecompleteempirical truth?' and 6i denotesthetrivial question {CT}, answered by Vactioudy
truebeliefs. : :

UWflfiam fame* '(| MS), (Leti 1981).




0.4.3 Réliability in the Limit

Given an empirical question 6, one may hope that one's method is guaranteed to halt with a correct
answer to 6. But no bell rings when science has found the truth,™® suggesting the wesker requirement
that inquiry eventually stabilize to a correct answer to 6, perhaps without ever knowing when it has
done so. Then we say that the method identifies an answer to 6 on ¢, or that the method identifies 6
on e for short.

It is not enough that a method happen to stabilize to the right answer in the actual world: scientific
success should be more than opinionated luck. Reliability demands that a method succeed over some
broad range K of possble data streams. One may think of A' as the domain of the agent's initial
epistemic state (i.e., the set of worlds that the agent might possibly admit as serious possibilities in the
future). But one might also think of K simply as a range of possibilities over which the method can be
shown to succeed, so that the method is more reliable insofar as AT is larger (weaker). When the method
identifies 6 on every data stream in K, we say that it identifies 6 given K. In the specid case when the
target partition is 6o, we may speak simply of identifying K.

Definition 7
1. f identifies © given K just in casefor each e £ K, for all but finitely many n, e £ f(e\n) C 0(e).
2. fidentifies K just in case f identifies 0o given K.

Identification requires that inquiry eventualy arrive at complete, true beliefs both about the future and

.the past. One may.weeken this requirement by countenancing incorrect or incomplete memories of the
past, so long as these do not compromise predictive power. Then it will be said that method projects the
complete future.

Definition 8 / projectsK just in casefor each e in K andfor all but finitely many n, 0~ /(e|n) C [n\g].

U projection looks forward, we may aso look backward and ask if the method's conjecture at each stage
consistently entails the data received thus far.

Definition 9 / remembers K just in casefor each e in K, for each n,0 " /(t|n) C [€\n]. |

Clearly, / identifies K just in case / remembers K and / projects K. Intuitively, it seems as though
- perfect memory-would only ‘make reliablerprojection of the future easier. But for some of the methods
introduced above, thisis not true, ‘as will be apparent shortly.

. 0.4.4 .. ldentifiability, Restrictiveness and Completeness

Let if be the set of all inductive methods and let M C_ M. Think of M" as a a proposad architecture
or regriction on adimssibk inductive methods. For example, AT may reflect-someone's " intuitive' ideas
. about rationality (e.g.. that / = (r,*), for some choice of r,*). Then we may say that 6 k identifiable
"= by W gfcortf just in casethere isan /:€-M' such that / identifies’0 given #, and nmilarty for the
identifiability or projectability of K hyM'. When M' = M, the explicit referenceto M will be dropped.
- Architecture AT isinductively completejust in-case each identifiable 6 is identified by some method

..in Af=..Otherwise, M]. burixKtivtly,restrictive, in the sense that it prevents usftom solving:inductive - |

“problemsiwe teald have solved by other means.™ In-a'similar manner, we may speak of completeness’ ;-

and regrictivragas with respect to function identification, projection, or memory. RestikUvqicsB faises ...

“ThkdMrmiii¢phr Meit from Wilfiam James (IM S).
“Thctorn " wtrictitmiM* m dueto O»ha»on et al. (1966).




serious questions about the normative standing of a proposed account of rational inquiry, since it seems
that rationality ought to augment rather than inhibit the search for truth.1®

The main question before us is whether insistence on a particular belief revision operator * is restrictive
(i.e., prevents us from answering inductive questions we could have answered otherwise). Let M* denote
the set of all inductive methods that implement the plausibility revision operator * (i.e., M* = {(r,*) :
r € IA}. I say that * is complete or restrictive (in any of the above senses) just in case M* is.

Some of the belief revision operators introduced above are restrictive. But their restrictiveness is
manifested in a curious way: they are complete with respect to projection and they are complete with
respect to memory, but they are restrictive with respect to identification. In other words, such methods
can be implemented to remember or to project the future, but cannot be implemented to do both. Such
a method is said to suffer from inductive amnesia. Inductive amnesia says that those who don’t want to’
repeat history should forget it!

Since restrictiveness is a matter of preventing the solution of solvable problems, it is useful to charac-
terize the set of solvable problems. Identifiability has an elegant topological characterization. Let K be
a collection of data streams. Recall that for finite sequene ¢, [¢] = {e € U : € is extended by e}. A K-fan
is a proposition of form [¢] N K. Then we say S is K-open (or open in K) just in case S a union of K-
fans. S is K-closed just in case K — S is K-open.

.. Proposition 1. (characterization theorem for partition identification) Let O[K] denote the re-
striction-of © to K (i.e, {CNK : C € ©}). Then O is identifiable given K just in case O[K] is countable
and each cell in O[K] is a countable union of K- closed sets.1®

Proof: (Kelly 96). - .
The characterization of function identifiability is even simpler:

Proposition 2 (characterization theorem for identification) The following propositions are equiv-
alent:
1. K is identifiable; 2. K is projectable; 3. K is countable.

Proof: In Appendix I. 4

Projectability and identifiability are equivalent with respect to the collection of all possible inductive
methods, but not when we restrict attention to methods implementing an inductively amnestic revision
operator *.

0.4.5 Counting Retractions
No scientist likes to retract. The social stigma associated with retraction reflects the painful choices and

.. costly conceptual retooling that scientific revolutions entail (Kuhn 1970). Counting retractions provides

a refinement of identification results. If © is identifiable, we can ask how many retractions are required
in the worst case to identify © and demand that a method never exceed this bound.
Definition 10 '
1. retractions(f,e) = |{k : f(elk) € f(e|k + 1)}].
2. £ identifies K with n retractions just in case f identifics K and for each ¢ in K, retractions(f, ¢) <

3. K is identifiable with n retractions just in case  identifies K and for each ¢ in K, retractions(f, ) <
n. o

“mwwm&mmmmmamam' enunciated in
(James 1948) and (Putnam 1963). mmmmmwm(&gnm&«nﬁam. '

1996).
"Le.,e-g:eell'ul.'gintheBonlhiaudqu(Kelly%).
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Identification with n retractions has a natural characterization in terms of Spohn's implausibility assign-
ments independently of any choice of operator, a pleasant and revealing connection between learning
theory and belief revision.

Proposition 3 (characterization of n retraction identifiability) Q is identifiable given K with at
most n retractionsjust in case thereisan r such that rng(r) = {0,...,n}, K C dom(r) andfor each cell
C E O, for each k<n,

1. Cisopen (and hence clopen) in r~*(k) and
2. Lt-; »'~%0 *s closed in dom(r).

Proof: In Appendix I. H
eisisolatedin SC U just in case for somen, [é\n] OSC {€} (i.e, {c} isclopenin S).

-Proposition 4 (characterization of n retraction function identifiability) K is identifiable with
n retractionsjust in case there is an r such that rng(r) = {0,...,n}, K C dom(r) andfor eache €K, e
isisolatedin [e]®.

Proof: In Appendix I. H

0.5 Some Diachronic Properties of | mplausibility Revision

Three diachronic properties of implausibility revison operators have particular relevance for reliability
considerations. Thefirst requiresthat the operator aways produce new beliefs consistent with the current
datum and the domain of the current LA. All belief revison theorists insist on this requirement and all
the methods under consideration satisfy it.

Definition 11 (local consistency) (r,*) is locally consistent just in case for all (A\,. ..,A+\) such
that dom(r * (Ay.. ,An) NAge #0,

Angr N¥{r+ (As,..., An1)) # 0.

- > The next property: requires preservation of the implausibility ordering among worlds satisfying all the
input propositionsreceived sofar. Thisdoes not entail that the ordinal distances between such possibilities
are preserved (gaps may appear or disappear).

-Definition 12 (positiveorder-invariance) (r,*) ispositively order-invariantjustin caseforall(Ai,...

such that n > 0, for all w,u/ e dom(r)nAin...nA,
L Wtuf edom(r*(Ai,...,An) and

Y 2 '.(') P "(”') <> (r* (AN ,Aﬂ))(ﬂ) < (f & (All - 45 Al»(")

A stricter property requires, as well, pr@ervatlon of the ordinal distances among worlds consistent W|th

aII the data received to far.

,An)

Deflnltlon 13 (positiveinvariance) (r,*) u’positivdy invariant just in casefor all A.. A*) sucih'l. .

~ thatn> 0,for dlwsu/edom(r)r\AN...NA
L ww*edom(r*(Ai,...,An) and
2. 1(w) = r(w) = (r ¢ (Ar,. .., Aa))(w0) = (r s (A,,. .., 4a))(v).




Local consstency and positive order-in variance say nothing about what to do with worlds that do not
sdtisfy E. One requirement, reflecting high respect for the data, demands that each world satisfying E
be strictly more plausible than every world failing to satisfy E. This property goes much farther than the
requirement that the updated belief set b(r « E) entail E. It governs the overal implausibility structure
concerning even remotely plausible worlds.

Definition 14 (positive precedence) (r, *) is positively precedent just in casefor all (A\,..., A,), for
all w e dom(r) n A\ C\... H A,, for all w* £ dom(r) HA\ C\...D A,

1. w! e dom(r * (Ai,..., i4,)) and w' £ dom(r * (A\,..., >t,)) or
2. wu £ dom(r*(Ai;...;.A)) and (r* (As,.. SA)W) > (r * (As.., A))W).

For each of the propertiesjust defined, we say that * has the property just in case (r, ¢) has the property,
foreach IA 1.

Local consistency, - positive order-invariance and positive precedence are logicaly independent. To-
gether, they force a bdlief revison method to behave in a manner that makes a great deal of sense if
finding the truth is the goa of inquiry. Consider a method with all three properties. It starts out with a
fixed implausibility ranking r on worlds. Upon updating on E, positive precedence requires that dl the
non-i?-worlds are.either .weeded .out altogether (they are not even in the domain of (r « E) or are sent
to a "safe’ place beyond all the E worlds). By positive order-invariance, the E worlds remain ranked
as they were before, (the ordinal intervals between two £7-worlds may stretch or contract, however). By
loca consistency, the lowest of these 22-worlds must drop to the bottom of the revised 1A. As inquiry
proceeds,-such a method continues to weed out the non-2? worlds and to conjecture the most plausible
remaining worlds, according to afixed implausibility ranking, so eventualy the actual world migrates to
the bottom of the ranking and the method's belief state is true forever after.

This kind of procedure has long been entertained under a variety of headings. In the philosophy of
science it has been referred to as the method of bold conjectures and refutations (Popper 1968) or the
hypothetico-deductive method (Kemeny 1953, Putnam 1963). In-the learning theoretic literature it is
referred to as the enumeration method (Gold 1967). Such a method is natural if one's aimis to converge
to true, sufficiently strong beliefs. | refer to an operator that satisfies all three propertles as an enumerate

- and test operator. Then we have:

-Proposition 5 7/0 is identifiable given-K then there exists an r such that
1. rng{r) Cu> and
fL for each « such that (r, ¢) enumerates and tests, (r, ) identifies O given K.

Proof: In Appendix 1. H

Now supposethat (r, +) islocally.consistent and positivdy onler -invariant but does not satisfy positive
precedence. Then the method still maintains a fixed ranking of implaasibflity over the E worlds, bat
ey Agon-ATWoridsimay fail torise above” theiffl* orkb.$Henoe/dt(1 possible for them to return, eventually,

to the bottom of the ranking-as inquiry continues, ftom the viewpoint of inductive methodology, this
means that a refuted world may reappear to remain forever in the agent's beliefs, even if all the data
‘recaived are mutually consistent. - In-other words, the agent :may. |rrevoc;ably focget the past.. It 4s.not -
T s2ndifficult to choose particular initial emstemm«Utesthat lead sudramethod toforget. ‘ nductiveamnésia’

is the much less trivial situation in which every initial eptstemk sUte _that ensures that the method--—-"--

réeliably predicts the future also causes it to forget some past datum. :

Although *ppin does not satisfy positive precedence, it satisfies the following, weakened verson of
positive precedence. The operator *sn lades this property became possibilities may backdide upon
refutation.
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Proposition 6 (climbinglemma) Supposer(e),r(e),n are/fmiteandr(e) >r(e'). Then
(r+op.n [lelE) (e} - ( *orn [[EF]N)(E) < (1(E) - r(€)) — mprle. ).

Proof: By induction on p*(e,€'). H
The following properties, like local consstency, are axioms of the AGM theory of belief revison
(Gérdenfors 88) and are satidfied by all the belief revison operators under consideration.

Definition 15 (timidity and stubbornness) (r, ¢) istimid[stubborn]just in casefor each (A\,..., An+m)
such that (Any fl. ..nX o em)n6(r* (ili,...,A)) ?0,
b(r*{Au....,A))N(Ar+ 1n...nA+ ) C[ D] b(r* (Au...1A+ m)).-

Timidity and stubbornness force full belief to evolve by mere accretion (according to the sandard
Bayesian approach) until one'sfull beliefs are refuted by new information. All enumerate-and-test meth-
ods are timid and stubborn and enumerate and test methods are all complete inductive ardiitectures
(proposition. 5), which: provides something of a reliabilist motivation for these properties’’ Once positive
precedence is dropped, however, timidity and subbornness assume a more siniser aspect, since these
properties are involved in each of the negative arguments presented in this paper.

Proposition7 - The'following table specifies which of the above properties hold of the operators under
consideration regardless of the choice ofr and of a.

diachronicproperties| C | L |DP,a| S,a|Aal| M

pos. order-invariance | yves | yes | yes yves | yes | yes
pos. invariance yes | yes | vyes yes | yes | no
local consistency yes | yes | yes yes | yes | yes
positiveprecedence yes | yes no no no | no
timidity yes | yes | yes yes | yes | yes
stubbor nness yes | yes | vyes yes | yes | yes

Thefollowingtable summarizesthe changesin the above tablewhen itisassumedthat a> raixsve(dom(r)).

diachronicpropertiesf ~{ L | DP,a|Sa |A,a|M
| positiveprecedence | yes{ yet | vea | yes| yes | no

Proof: Induction on the stage of inquiry and some smple examples. H

.0.5.1 . .Inductive Completeness Theorems

In light of the preceding discussion of enumerate-and-tes methods, it should come as little surprise that
methodslike «<?,+L%* D/>,«$<*, and * x" arecompletestrategiesfor partitionridentification.

~ . <sProposition 8<(complete partition-id*miifieation methods) Thefollowingstatementsareall equiv-

alent:

1. Gisidentifiable given K;
2. Q isidentifiable by *c given K; AR
S. © isidentifiable by *L: given K;

" Poritive iervarisnce k o umrefiited worlds at the bottom of therankingbelow all other inom-pefated worlds. Positive
[:)recedence sends all refuted worlds permanently above the non-refuted worlds. And local consistency ensuresthat die

owest of the non-refuted worlds stay down, so we havetimidity and stubbornness.
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( 6 widentifiable by *bDP+> given K;
5. 6 isidentifiable by *sw given K;
6. 6 isidentifiable by *A,u> given K.
Hence, *C*L,*B»*1>P,U»*S,U»*A,W are complete inductive architecturesfor partition identification.

Proof: In Appendix II. H

The following result concerns methods that are complete architectures for identification with n re-
tractions. Recall that problems solvable with n retractions can be packed into an initial epistemic state
whose highest level is n (proposition 3). Methods *An+i,*c,*L,*i>P,n+i, and *sn+i safdy launch re-
futed worlds above al non-refuted worlds in such an ordering. Since the truth drops one leve at each
retraction, convergence occurs by the nth retraction.

Proposition 9 (n retraction completenessfor partitions) 7/6 isidentifiable given K with at most
n retractions, then *cv*Li*DP,n+ii*s,n+ii*jt,n+i can identify O given K with at most n retractions.

Proof: In Appendix I1. H
The following completeness results concern the narrower problem of function identification. It is left
open whether item 7 can be extended to arbitrary partition identification.

Proposition 10 (completefunction identification methods) Thefollowing propositions are equiv-
alent:

1. K isidentifiable;

2. K isprojectable;

S K isidentifiable by *c;
4- K isidentifiable by *£,;

5. K isidentifiable by *s&;
6. K isidentifiable by *A,u>;
7. K isidentifiable by * DP2t
'8. K isprojectable by *DP,I;
9. K isprojectable by *si-

Proaof: In AppendixI1. H

Most of these equivalences follow from the preceding proposition-and concern methods that boost
refuted possibilities above all live* possb|llt|ei A aurprising exception. b the fact: that *DP,) isa -
- = = vwa-< complete function identification architecture® To prove completen&ss onemost construct, for each K,
an epigemic state r such that {r*ppj) identifies K. Here is how this can be done in the special case
in which all dements of K are finite variants of one another. Flrst we define the difference set of all
positions on which twodata streams differ:

- AR R s -'_._.. .
Aed)={icw: o® #4000, oo
Then define Hamming distance to be the sue of the difference set.
ple,e’) = |Ale, ).
"1t i* left open whether this can be extended to the caae of partition identification.
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Hamming distance is readily seen to be an extended metric on U. Given afixed data stream e, we can
construct an epistemic state
reu(€) = pleo, €

on K. This "Hamming" state has the nice property that a data stream t' that is n steps below the true
data stream t differs from e in at least n positions. When a = 2, € moves up with respect to e at least
two steps each time one of these n positions is seen, so € ends up at least one step above e after dl of
these positions have been observed. The full completeness theorem is proved by a similar but somewhat
more complicated construction.

0.6 The Grue Hierarchy

To show that a methodological recommendation restricts reliability, one must find an otherwise easly
solvable problem that the recommended method fails to solve, no matter how its initial epistemic state
is arranged. This end is served admirably by an unfamnlar appllcatlon of a familiar idea due to the
philosopher Nelson Goodman (1983). 9 et O represent a "green” outcome and let 1 represent a "blue"
outcome. Then a "gruen” outcome is either agreen outcome by stage n or a blue outcome after stage n.
The everywhere green data stream is the everywhere 0 sequence and the everywhere gruen sequence is a
sequence of n Os followed by all Is. More generally,let »6 denote the Boolean complement of 6. Let B
denote the set of all Boolean-valued data streams. Then if ¢ € B, let -* denote the outcome stream in
which each outcome occurring in e is reversed (i.e., (~*€)(n) = -*e(n)). Now define the grue operation as
follows:
e\n = (eln)-i(nle).

In other words, (e\n)(f) = g(f) if{ < n and = »g*) otherwise.

Grue operations are commutative:*

(cdn)tm=(ctm)Jn.

Also, gruing twicein the same place yieldsthe original datastream. Hence, each composed grue operation
can be represented by the set S of positions that have grue operations applied an odd number of times.
Let et Sdenote the (unique) data stream that results from applying, in any order, any odd number of
grue operations at positions in 5 and-any even number of grue operations (possibly sero) at all other
positions.

Now given K C By we can define a hierarchy of ever more complex inductive problems as follows:

‘Definition 16 (The Grue Hierarchy) LetKCB.
1. ®(K)={e$S:|S|=nandc€ K}.
2. GMK) = Uiga 5™ (K).
3. G¥(K) = U«:..a"(K) :
"Theewm grog hlerarchy GgvenCO % defined amilariy, except that (1) is replaced with:

feven(K)={e$5:|S|=2n and ¢ € K}.

A -dnhmbmahemudthefull grae. hlerarch|$|5|mportant|Wsoraotshebdu£m' '
-methodstlnder consideration, but it makes no dlfference to |dent|f|abO|ty When no extraCOnstralntsaX
imposed on the scientist's'inductive method: - : R AP

G oodman WBSnot |ntereﬂed in constructln_gtmsofoshIleKJuutlvt ptoblems* His DUTDaewasto show tht ‘a-hnq"
of the data stresm e not - . = »foratheo thom.

AL ct Q denotethedosim under conpo™tioQ of the set of grucaflfuikK MiotiK {(4*) *€«}. (a 0) kan Abcfiwigrwip
in which emch dement isitsown inwene.
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Proposition 11 For alln € w,eq € B,
1. G™(eo), Gyen(eo) are identifiable with n retractions but not with n — 1 retractions.

2. G¥(eo), G¥yen(€o) are identifiable but not under any fized bound on the number of retractions per-
formed.

Proof: In Appendix I. -

0.7 The Main Result

The following proposition determines exactly which problems in the grue hierarchy and the even grue
hierarchy each of the methods under consideration can solve.

Proposition 12 (The grue scale) For each eg € B, the following table specifies which problems in the
grue and even grue hierarchies each of the methods under consideration can identify. The classifications
are optimal, in the sense that no lower value of a than the one reported suffices for identification of the
corresponding problem.

| problem M |Aa S, DPa | L C
[ G¥(e0) no |a=w a=2|a=2| yes | yes
[ G"(e0) no [a=n+1lla=2|a=2] yes | yes
G*(eo) no la=3 a=2]|a=2]| yes | yes
G'(eo) no |a=2 a=2]|a=1] yes | yes
| G%(eo) yes | a=0 a=0]a=0] yes | yes
’E‘m(co) no tx:w f’=l tx:l yes yes
[ Gigenl(o) [n0 |a=n+1|a=1|a=1[yes | yes
'szmeo no |a=3 a=1 ;z=l yu yes
e) | no |a=2 a=1]a=1] yes | yes
‘ 6‘ | Geven() | yes | a=0 a=0]a=0] yes | yes

Proof: Propositions 10 and 18 in Appendix II, proposition 21 in Appendix III, undproposmom% 29,
30, and 31 in Appendix IV. 4

, Moddthepmhnxmlhmthetabkfoﬂow&ommmmdwmpmremlhahudydu-
'aned.Nmtbymmtheﬁhhudtn llldtpp;t()m@'m(eo) ‘This contrasts
marhdlythhthentmhonmthefnllgmelmnxd;y in which these methods all fail by level three.
The situation is quite different for #5s and s, 4, which see no improvement in the even grue hierarchy

o ,.._(ptopoaﬁonNz)aﬂhe\ptoblan@m(eo)iljutzthetetofallﬁnuenﬂmdzmdatam“, U
The evolution of +5,; and of #pp1 in this problem can be pictured as follows. Suppose the method starts

out with an initial epistemic state ranking each data stream according to its Hamming distance from a
given data stream ¢o. Suppose ¢ is the truth. Then the set of data streams differing from ¢ only where
e, differs from ¢ may be viewed as a finite dimensional hyper-cube whose dimensionality matches the
total number of differences between ¢o and e. Think of this hypercube as resting balanced on the vertex
labelled with eo. To find the initial implausibility of a vertex, find the shortest path from the bottom of
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the cube to that vertex. It isshown (proposition 31) that if we resrict attention to these possibilities, the
sequential operation of both *s,i and *DP,I can be viewed as the rigid rotation of the hypercube from
one vertex to another on adirect path to the true (originaly uppermost) vertex e. After e is rotated to
the bottom, the rotation stops and the method has converged to the truth!

The happy image of learning as hypercube rotation cannot be extended to the full grue hierarchy.
Indeed, no matter where we insert the data stream -»e0 into the restriction of the Hamming ranking to
~dren(®0)> *s,<* failseven when a= 2.

Proposition 13 For each r D rf\G%yen, (r, *s2) does not identify G () U {4 Ca}.

Proof: Appendix IIl. H
Why-should adding asingle possibility to G*en(c0) matter so much? Consider the case in which a = 1.
If we place -no at an infinite level of the Hamming ranking, then |t never fals the infinite distance to
the bottom of the ranking, since the infinitely many elements of G*(eo) occurring lower than »0 are
never al refuted. If we insert -to at afinite leve, then -to is bdow some other data stream e agreeing
with -* 0 as far as we please. If e happens to be the truth, then the cube rotates as usud until *eo ends
up at the bottom vertex. By timidity and stubbornness, -*€, occupies the bottom leve of the epistemic
state until its first position differing from e is observed. By positive invariance, the presence of -*e, at
the bottom prevents the next vertex of the hypercube from dropping to the bottom level when the vertex
currently at the bottom is refuted. Now instead of resting on a new vertex, the cube rotates up with one
edge paralldl to but not touching the plane. This causes e to become forever confused with a unit variant
that was previoudly one level below it, as asimple simulation on a three-dimensional cube will illustrate.
By proposition 13, the initial state 452 employs to identify G"(e0) cannot be an extension of the
Hamming ranking over Geven(*<> |°8487 | employ aranking based on grue dlstance or the number of
grue operations required to transform one data stream into another (cf. Appendix 111).%* Define the grue
set for two data streams as follows:

re,€)={n€w:[n=0A¢en) 22N} V[n>0A-*nh-1) =€(n-1) Oegh) =€(n)]}.
The terminology isjustified by the following fact.

Proposition 14 F(e,€) istheleast5C w such thate' can be obtainedfrome by applying grue operations
only at positions in S.

Proof: Omitted. H
Now define the grue distance on B as follows:

¥(e,¢’) = [T(e, e')l.

In light of the preceding proposition, groe distance is the least number of grne operations required to
trandorm. e into tf. It isreadily verified that groe distance is an extended metric over B. H|e |n|t|al
-epistemk state on B induced by grnedlstancelswst : .y

= 7(eo, ¢’).

‘For an algebraic peapacthw an thaitf.nﬂnmﬂup batavani Jg I\M:L rg, AiLm..th. H.ammmgzz..AGoodmmv-
*r-orders asfollows(flgure 1.

1< aar(e.,ef)cr('e.,a)' |
2. & <% ¥ ¢ Aleo, &) C Aleo, ).
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Figure 1: Hamming and Gnie algebras

These orderings are isomorphic copies of the incluson ordering on the power set of o; and hence are
isomor phic Boolean algebras, but they label this structure very differently (e.g., adjacent elements of the
Goodman algebra areccomplementsin the Hamming algebra). Moreover, GF(eo) isthe union of the finite
levels of r £, whereas the union of the finite levels of rfy, isjust G&Ven(%o)

Proposition 15 For each n, G'(to) = U;<,"S-

Proof: direct consequence of propostion 14. H
The method (r£,*s,2) identifies GP(eo) in an intuitively attractive manner. It starts out gamming
that the true data stream is «o- When it encounters a surprise at stage n, it then assumesthat the true
datastream istotn, and so forth, alwaysintroducing the smallest number of gnie applicationsto ¢, that
is consistent with the data (propositions 21.2 and 20). Recall that *s,2 has the objectionable property
that apossibility can become more plausible when it is refuted if only very implausibleworlds are refuted
‘by thecurrent datum/ The implausibility ranking based on gnie distance prevens this possibility from
ever occurring. This initial state has the property that, at each stage prior to convergence, a highly
plausible (degree O or 1) possibility isrefuted. Sincea = 2, all refitted possibilities are pushed up at least
. .one step by *s,2- .When or < 2 refuted possibilities do not rise when the agent's beliefs are not refuted,
so the same argument does not work and in fact cannot be made to work since G'(eo) is not identifiable
by *5,i.
Turning to the negative results, it is remarkablethat *jr, *s,i and *A,I- cannot even identify G'(eo)
-« (proposition,29)." DPyi survivesjust one levet higher, failing on g?(co)- (proposmon 28). *a,* compares
unfavorably with *s,<* and *DPJ*, because *G,»+I fails on G**}(co), far each », whereas *sj and *DPJ
succeed on G"(«0)- By t"opositioo 11, G"(cp) can besolved withjust nretractk)nsl"ﬂlem
that startsout conjecturing eo'and that refuses to believem groeop er ateu/\tiltbeymohernd.?l‘he .
“T“Megative resnkssimplythi® tthk sensiUesbehavior cannot be obtalned from -Jr +Si or M| , no- matter :
how deverly theinitial eplstemk state is arranged. .
By thefotkmiogpiopoatkm, aUoftlie n» AMWEN%MM&MM

2T hkidcak famlfi»rincompqt€r>ciencc>«m way to compeer image filo. hmUmd of reootdtng the inteantgr of each .

p b separately, onerecordstheplacesat which | ot * ” changes, which saves space i many adjacent pixels have the same
intensity.
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Proposition 16 Let g € B.
1. All of the methods under consideration can remember the past.

2. All of the methods under consideration can project G*(eo) so long as a > 0 Among these, only M
fails to be a complete projector.

Proof: propositions 19, 21, and 10. H

The inductive amnesia results reflect a fundamental, epistemic dilemma for iterated belief revision meth-
ods. Recall tha belief revision theory can be stretched in two directions. Lumping all possible worlds
together at one level of implausibility makes belief revision behave like an accretive tabula rasa that
takes no inductive risks.and never encounters a contradiction. Spreading worlds out at distinct levels of
implausibility makes belief revision look more like Popper's methodology of bold conjectures and refu-
tations. The former extreme secures perfect memory and the latter secures predictive reiability. But
if as a is set too low, the Popperian belief re visor "leaks' information about past refutations since re-
futed possibilities are inserted back into the enumeration of "live' possibilities. So memory requires a
sufficiently " compressed" epistemic state and prediction demands a sufficiently “rarified”® epistemic state.
Once this fundamental duality is recognized, the question is whether there exists a critical value of a
below which the competing pressures can no longer be satisfied jointly. Perhaps the most striking result
of this investigation is that the methods *s;a and */>j>, enjoy an infinitejump in reliability when or is
incremented from one to two. For a > 2, the methods succeed over the entire grue hierarchy. For a < 2,
neither can cope with more than two grue shifts in the data stream.

0.8 Dropping Well-ordering

So far, it has been assumed that epistemic states well-order the possible worlds in their domains, since
epistemic states assume ordinal values. This assumption is not generally accepted in the belief revision
community, so we should consider what happens when it is dropped. The positive identifiability results
are not affected since success based on a well-ordered initial state is still success. It is the negative
results that require scrutiny. For example, well-ordering isinvolved in the proof that ¢ j# fails on the easy
problems (Feven(‘o) and G'(e0). Since *M has a straightforward extension to a wide class of non-well-
ordered epistemic states (Boutilier 94), we should examine whether its modest learning abilities improve
in this more general setting.

Let R = (/?,<) be atotally ordered set. Let min(RE) denote the set of all minimial elements of
EdD. For present purposes, an epistemic state is a total order R = (D, <) such that D C U and
for each proposition E € {U} U {[t,it] : j,* €fa/},min(A,E) ~ |. In other words, an epistemic state

« -w=-js-artotal txder-on data streams-that-has aleast:dement and-in -which each observation of an outcome

(consistent with the domain of the order) has aleast dement. The associated belief state of A isgiven fay
b(R) = ndn(RU). Upon receiving new information [«;*], *\, updates the epistemic state R, = {Dy,<1)
producing a new state R* = (i>],<i), such that -

1. min(RZtU) = mhk(R.[igk]) (which is nonempty) and
2. for all e, ef € Di- min(Ap[f,ft]), e <, ef «+ ey ef.

“In otherTOrds,*] * brmgs min(Af; [teft]) to thé bottom of the hew state and rlgldly rals&eall-ﬂnrut,__
the wodds so that the lowest are immediately above min(Ai;[t,ft])in the revised ordering.’ A mdnﬂi’ue
method implementing *jf is a pair of form (it, +n). Now we have:

Proposition 17 Redefine *M and epistemic states asjust described. Then:
1. GYe),G'axn(e0) are identifiable by *.
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t. G*(en),Geven(€) are not identifiable by *M .

Proof: in Appendix IV. H

So the learning power of *M improves slightly in the more general setting in which the well-ordering
assumption isdropped. Thisresult illustrates how learning theoretic analysiscan be employed to criticize
controversial assumptions about the nature of epistemic states.

The well-ordering assumption is also involved in the negative results concerning *>t.,,” *s;i, and
*DP,- But these methods were originally defined only on ordinal-valued epistemic states (Goldszmidt
and Pearl 94; Darwiche and Pear| 97; Spohn 88), and it is unclear how these methods should be extended
to arbitrary, totally ordered states. If, more modestly, degrees of implausibility are taken to be numbers
in a non-well-ordered system (e.g., rationale, reals, or nonstandard reals) then all of these methods are
enumer ate-and-test operators if the domain of the initial epistemic state is confined to the [0,1) interval,
and hence are empirically complete (proposition 5). A systematic survey of possible generalizations of
these methods lies beyond the scope of this paper.

0.9 Conclusion

The normative principles of belief revision theory have been motivated by intuition, coherence, and
symmetry considerations. The natural question whether following such a rule would help or hinder the
formulation of informative, true beliefs has largely been ignored. Once this question is entertained, a
range of interesting and unanticipated issues emerges, such as (i) inductive amnesia, (ii) the essential
-tension between compression and rarefaction in the epistemic state, (iii) the pivotal significance for the
resolvability of this tension of the value a = 2, (iv) the idea of generating epistemic statesfrom operations
on datastreamsor asranksin Boolean algebras, (v) theutility of gruedistancefor improvingthereliability
of belief revision methods, (vi) the appealing portrayal of induction asrigid rotation of a hypercube, (vii)
" the image of tail reversals in data streams "derailing" thisrotation and (viii) the relevance for reliability
of well-ordered degrees of implausibility. These issues are not drawn from a priori intuitions. They are .
rigorously derivable from the straightforward aim of arriving at nontrivial, true beliefs. As such, they
can serve as well- motivated constraints on theories of rational belief revision.

The results of this study should be expanded and generalized. It is left open, for example, whether
5,2 and *DP,7 are complete architectures for partition identification. The rest of the results could be
cast in more general settings, in which the order of the data may be-scrambled, experimental acts may
be performed, meaning shifts are possible, and so forth.*®* But even the simplified, narrow setting of the
present study illustrates how asystematic logical analysisfounded cm the aim of findingtrue, informative
beliefs can serve as a powerful and interesting constraint on belief revision theorizing; a constraint that,
it.ishoped, will become asfamiliar.to beliefrevision theorists asthe usual representation and equivalence
results are today. .
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0.12 Appendix I: Proofs of Characterization Theorems

Proof of proposition 2: 1 = 3 follows from proposition 1. .

3 = 1: Suppose K is countable. Then ©¢[K] has countably many cells. Moreover, each cell {e} €
©o[K] is K-closed, since U — {e} = | J{[e] : ¢ ¢ ¢}. Hence, by proposition 8, O, is identifiable given K,
so K is identifiable.

1 = 2 is immedate.

2 => 1: suppose that method f projects K. Now define method g, which identifies K, as follows.

9() = { (el h(e)le] if 3,8 # f(c) S [Ih(e)le]
{¢'} i

otherwise,

where ¢’ is an arbitrary element of [¢].-

Proof of proposition 3: (—): Suppose
+(i)- f-identifies © given K-with n retractions. Define for each ¢ € K:
(ii) (e) = k <oretractions(f, ) = k. Thus,
(iii) mg(r) = {0, ...,n} and K = dom(r).
Let C € ©. (1) Suppose for reductio that C is not open in r~!(k). Then some e € KNr-(k)NC is
+alimit- point of K N r~1(k)— C.‘So for each i there is an ¢; € r~1(k) — C such that e;}i = e|i. Let
w = the least m, such that for all m’ > m, f(e]m’) = f(e|m), 8o by (i), f(e|w) C C and (by ii) f uses
a full k retractions along ¢ by stage w. But since e, ¢ C and ey |w = e|w, there is a w’ > w such
é"(,e.iw)(_:Cbntf(cflo’)QK-C.Hm,fpdmkaMahnge.. Contradiction. .
(iv) C is open in r—1(k).

(2) Define:
G = {€ € w<¥ : f performs at least k + 1 retractions by the end of ¢}. Then

U:'g‘ r~1(i) = {e € dom(r) : retractions(f,e) < k} = K —J{[¢] : € € G}. Hence,
(v) U:‘=, r~1(4) is closed in dom(r). The proposition is established by (iii), (iv) and (v).
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(<-): Deferred to propostion 9. H

Proof of proposition 4: (->): let r be as guaranteed by propostion 3. So K C dom(r), rng(r) =
{0,...n}, and for eadi t G K, {€} is open in r~*(f) and for each k< n, (jf-1 r"*(t) isdosed in dom(r).
Let ¢ G A". So there exists a * such that r(e) = k. Since {€} is open in r~*(t), 32Vm = n,[elm] n
r-*(*) = {«+ Also, Ufr_/r-’\i) is dosed in dom(r). So 3n'Vm = n',[em] O UA**-17) = o So
Vm_>max(n,n’),[cjm]nUf-, r***) = {c}. Hence c is isolated in [€]£.

(«—): Deferred to propostion 9. H

Proof of proposmon 11: (1) For the (*(eo) case let r~'(i) = C?(co), for each t < n. For the
GBvenM case, let r~'(i) = (*(eojevenfco). Obsarve that for each ¢ G r-~t), {c} is isolated in [e£ and
apply proposition 4.

For the negative claim, assume for reductio that g succeeds on G"**(eo) with n mind-changes. Fesd
to g data drawn from g, until a stage K, is reached at which g outputs {ey}, which g mugt do since
Co G G™en). Then proceed by feeding e = g1 * until y outputs {ei}. This procedure can be continued
until n + 1 grue operations have been applied. But then n -f 1 retractions are perfomed by g on the
resulting data stream Cn+i- Contradiction. The negative argument for G&ven(%o) is similar except that
welet i1 ={e;s 1 k)L k+1.

(2) Thefollowing method identifies Cf'"(e0): enumeratethewholeset and output thefirst datastream
in the set that is consstent with the finite outcome sequence e seen so far. The negative claim follows
from part (1). H

0.13 Appendix Il1: Completeness Proofs

Proposition 18 For each c,{c} isidentifiablewith Oretractionsby*j#,*A,0,*S0,*DP,0-
Proof: Choose r so that dom(r) = {c} and r(e) =0. H

Proposition 19 Le* Co G B. *A/ con project G¥(eo).

Proof: Let fA0) = {co} and let r~'(1) = {-*0}. If e G ~(c0), then e is afinitevariant of either ¢, or
-no. It iseasy tochek that (r,*j/) succeeds. H

Proof of proposition 5. Suppose 6 is identifiable given K. By propodtion 1, we may suppose
‘that for -each cell Cj G- O[K], there exists a countable union Bj = \J%° S? of K-c\osed sets such that
ByNK =Cyn K. Enumerate {5? H/f :ijew} as/lo,...,~,. # Dédine
(i) r(e) = (ui){e € R)). _
Evidently, rng(r) C ai. Let » be such that (r, *) enumerates and tests. Hence, (r, *) islocally consistent,
--podtively-invariant,-and-satisfies:positive precedence. - It remains to show that (r,«) identifies 6 given
K. Let e G if. Sincethe ft cover if, r(e) is defined and ¢ G iir(e). Since each ft is AT-doedd, so is
MAU&Mft.aiKAfimteuiik” of K-closed sets are K-closed. So U/ — [e]S is K-open. So there is
a set 5 of finite sequences such that K - [clg = KnU”s[e].Sinoee€/ir-[e] <, there k aft such that
‘dir G 5- So sincedom(r) =if; we have for-each V > Kk,

(li[]l$['1f=t1 ={JaWix

By (ii) and positive precedence we have that e 6 dom(r » Hcf*gj) and for each €' €[«!g,

e Mo o Mol LN Y v o MLV

Sincee € H e by osiUveds iervmva ance that for «” e"edan(n[[elb']l) {els, -
g(% M})&),g(#ffel* )(O- But by local condstency,
iii-v), we havé

(V|) cEOB(re cl*7])) = (r *)(e|*'). It remainsonly to establish that
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Let C be the cell of G to which e belongs. Let € € dom(r) - C. Then € £Rr C C, 0

le

Casel: supposec £ [gJdb]. Then by positive precedence, either ¢ g dom(r*[[el/t]]) or (r*[[cfc]])(e) <
(r* [[eFTI)(€). Thus, «* *(r *CL [W"]) = (r, )(«!*")

Cas |1: suppose t! € [elf]. Then by (ii), and (vii), r(e) > r(e'). By postive invariance, (r *cL
IMVDMO > (r » «. [M*W(<0, so again € * 6(r *cL [W*1]) = (r,*)(¢]*'). H

Proof of proposition 8: The implications 2=»1,...,6=*lar e immediate. The implications
1=+ 2 3,4,5,6follow from propostions5and 7. H

Proof of proposition 9: Suppose 6 is identifiable given K with at most n retractions Then by
propostion 3, there existsan r such that
(i)rng(r)€{0,...n}and '
(i) K € dom(r) and for each cdl C€6 for each k<n,
(iii) Cjs open (and hence clopen) in r~*(k) and
" uisi’ 1(0*e ~A-closed. Let * rangeover *c, *L, *DP,k+i, *sk+u *Ak+i- By (i), *+ 1.2 »' spove(
-dom(r)), so by propostion 7, * generates and tests. So by propostlon 5, (r *) identifies 6 given K.

Le t € K. It remains to show that each of these operators performs at most & retractions along e
when gstarted out on r. Suppose that (r, *)(e\k) £ (r, *)(dJb + 1). Then
6(r * [[e\k + 1]]) £ b(r * [[e\k]]). So there exists an t' such that
(v) (r * \[e\k + 1[])(e)) =0 but (r * Qeb]])E) ~ 0. So by the definition of *,
(r «tt*1))(€llt, «(*)]) = 0-So
(vi) -min{(r* [[¢*]])€O : € €dom(r * [[&]]) n [*,e(*)]} + (r < [[el*]])") = 0. By (v) and (vi),
min{(r« ag*Il)(€0 *«' €dom(r* ([e|t]])n [*,«(*)]} > 0. Hence,
-min{(r* tie\k)])(c"): € € dom(r * [[ef]]) n [t, e(*)]} + (r * [[e[*]])(e) < (r * [[ef*]])(€), SO
(r * [[edb + 1]])(«) < (r * [[ef*]])(€). Sowe have that
(vii) for each it such that (r,*)(e]*) £ (r, *)(e|* +1), (r *[[eldt+I]])(e) < (r*[[e\k]])(e). But by hypothess,
r(e) <n. Hence, (r,*) performsat most n retractions alonge. H

Proof of proposition 10: 3= 1,...,7=>18=>2,9-> 2 areimmediate.

1=»3,...,1 =6 areingdances of propostion 8. 1 <* 2 isfrom propostion 2.

2=>9. Ld * = es.i- Ld if be projectable. Then K is countable. Enumerate if as eo, «i, L&
r~*(t) = {e-}. Let e €K, sofor somet,c = e- Fird it isestablished that:
(i) VnVi, (r *ox ffelnD)" 19 firte-
Thisisevident by the definition of r when n = 0. Suppose (i) holdsup ton. Let m =min{(r* [[e|n]])(e/)
tt €dom(r * Qgn]]) Ae*e[n,e(n)]} and let .
ml = min{(r « Qen]])(€O : t>€ dom(r * [[gn]]) A€ € (/ [n,e(n)]}
Then by the definition of *,we have (r * Qgn +1©- '© = ([nen)] n(r* "IanJ Am+»)) U ((U -
[n, e(n)i) n(r* [[eln]])- Ym' - 1)), under the convention that (r * [[eH)" **)) =0ifz< 0. Thisset
“u finite by the induction hypothesis. So we have (i). Next, we establish
(i) 1£*(r « Rejn]]) H [n, e(n)] = 0 then (r * [[ejn + I]])(€) < (r * [[eln]])(€) - 1 .
For suppose b(r * Qdn]]) n[n,e(n)] = 0. Then since e € [n, e(n)], we have

= —min{(r « ([&nlJ)(€O : & € dom(r* Qa\ndi)n[n,e(n)]} + (r + [lelnl)(e)
< -1+ (r «ffeglnD)(e). So we have (H). Next we establish:
(iiii) if W€ Hr * tt«d»D). " K # »l«. then 3m >, b(r * HgmJl) n [m, e(m)] =

- -fFbroppose that for™JI_ete *(r *{[e[n]]).n| #n|e.. Suppose for ndnctio that for all m >n, b(r*:‘._ S

- Qgm]]) n [m, &(m)] # 0. Then by timidity and stubbornness (proposition 7), : :
(iv) Vm_2> n, *C*[[«IH]) = b{r*U.e\nd\)n[n,e(n))n.. .n[m-l,e(m-I)).b{r*\[€\n]\) isfiniteby (i). So by '
the hypothesis of (iii), there exists an ml > n such that *0*»[le|nfl)nin,e(n)]n.. \[m-l,e(m-1)] = 9. -
By (iv), b(r * gdraTl) = 0, contradicting local consgtency and wUHrhhing (iii). Next weneed . . ;
(v) if Be' € *(»"*[I<nD) such that n\ef = n|e, then then 3m > n such that *<r*[[gm]]) = {</" 6 6(r*[[e]n]]):
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Figure 2: Completeness of *DP,2

m\e" = mjc}. For by (i), thereis an m_> n such that b(r * [[en]]) H [n,en)] fl...fl[m- 1, e(m - 1)] =
{e" G 6(r « [[¢m]]) : m|c = m|e"}. But by timidity and stubbornness, b(r ¢ [[c|m]]) = 6(r * [[e\n]]) H
[n,c(nN)] O...0[m—1,c(m— 1)], establishing (v). Finally, it is shown that

(vi) if V€ G b(r « [[e]n]]), n\e" = n|c, then Vm > n, 6(r * J[em]]) = b(r * [[c|n]]).

For by local consistency, b(r « [[e]n]]) ~ 0. So by timidity and stubbornness, (iv) holds at each stage
m > n, yielding (vi).

Consider the following procedure: Start out at stage O with r and let no = 0.

At stage k, if b(r) contains no € such that n*|e = n”"|e, apply (iii) to obtain an rik+i such that
b(r * [[eln*+i]]) fl [n"i, «(n”.i)] = 0. Otherwise stop the procedure.

- Theprocedure halts by-stage'r (€), for by (ii), (r * [[eln*+i]])(€) < ("* [M™]])(®) — 1 (i-%i ¢ drops by
at least one step at each stage) and when ¢ G 6(r « (Hn”c)]]), the condition for continuing is no longer
satisfied. Let k be the last stage and let m = tik. Then by the halting condition, we have b(r) contains
an t' such that mje' = mj|e. By (v), thereisan mf > m such that 0 C 6(r ¢ [[dm']]) C [m'\e] By (vi), this
situation remains for each m" > m'. So (r, *) projects /if.

2 =» 8: Follow the steps in the preceding argument. A shorter argument may be given using the
climbing lemma.

1 => 7. Define restricted Hamming distance as follows:
p*(ee') = |A(e,€) H{0,...ib— 1}|. While thisisnot a metric, it does satisfy the triangle inequality,
which will be used below.

‘Suppose K isidentifiable. So by proposition 2, if is countable. If e € K then let [e]x be the set of
all finite variants of e in K. Since.if is countable, we may enumerate these classes as Co, ..., Cy For
each f, choose a unique element ei € C;. For each e G K; let z(€) denote the unique w such that e G C,.
Now define the 1A r as follows:
re) = p(«(e),e) + z(e). Let eeK and et
() r(e) =mand z(c) =w. DefineP = {i <m :i” u;}. Ift'G P, then there areinfinitdy many m such
that ti(m) £ e(m)y so there is aft* such that Afc<(dg) > 2m. Moreover, there is a/ sufficiently large so
th** «(«e*.«) = /<«e.«)* Since P isfinite let k = max{{i|]: t € P}U{j}).Utk'>k.So
(ii) pk'(ci,c) > 2m. We now establish that
Hi) W= kge e K¢€? £ e = (I *pp] M™)W) > (r *DP+tte[*T])(e)." eekEne,

Case 1: € G [€” - [djr. So x(ef) *w.Lct x(J) =t. So by the definition of r,

ﬁ')( M *€>«0 =*K*,«0 =m.By thetrlanglelnequallty . _
e’)+w(ﬁ.¢(13:w e:(c) 0 ’

puele , tf) = pk* (&, e) - ¥, «0 > 2m - m = m, by (ii, iv). Hence

g)-smfﬁﬁ v { PN i@“@ﬁé)ﬂ’%%ﬁl 2pw(e, ')

<m-r(€)-2m <0 (by i, v) SoN( ainsin this
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Case 2: ' € [c]E H [e]k. By choice of *,
(vi) Pk*(««,«) = [K««,«)- By the triangle inequality,
p*/(elel) + p*'(e«ne) _> pk»{e\Nve)! SO
(vii) p*'(e€') > /~jt'(ck;,0) — p*'(e«,,€'). By the definition of r:
r(e) - r(e’) = (p(cw, & +u;) - (p(ex, €) +uy)
= plew, €) — plew, ¢’}
< Pfc'(cwc) - p*'(ewse’) (by Vi)
<p*'(e,e') (by vii). So
(viii) r(e) —r(e') < p*'(e,€). By proposition 6,
(r*z>p, [M* W) " (r *>P2 [[e*1])(e)—< (r(€]) - r(c)) — 2px (e, ")
< Pfc'(c,c”) — 2pk*(ee) (by viii), which quantity is negative, so long as p*'(e,e') > 0.** So it suffices for
(iii) to show that pk'{e€) > 0. Suppose p*'(e,e') = 0. Then
(ix) t\k' =c'l*. By (vi), we have :
(X) V\e = V\t,. By the case hypothesis, r(e) > r(c’). So by the definition of r,
A>(e©) + W= p(ew,e) + u;, SO
P{ew,e) > p(tw,e)- So by (ix, x),
(xi) k'\e = ifcle*. But by (ix, x, xi), we have ¢ = ¢/, contradicting the choice of €. Hence, p/k'(c,c’) > 0
and we have (iii) under this case.
Case 3: t' $ [e]£. Then (iii) follows by positive order-invariance (proposition 7) and proposition 6).
By proposition 7, r*DP,2 is locally consistent. Hence,
(xu) for each V > k, b(r *ppr,[[€lk"]]) £ 0. So by (iii), we have that
for each V z kyb(r*DPi [[e\kk*]]) = {e}. H

0.14 Appendix Il1: A Positive Result for S,2

This appendix is devoted to proving that *s,2 identifies G*(eq).

Definition 17 Let a be an ordinal and let e> € B.- Letr = r®,, Let € be a finite boolean sequence of
nonzero length and let last(e) denote the last item occurring in e. Then define:

-1 if b= last(c) A tt(c) - 1 € r(ep, €)
Jo ifb = last(e) A Jo@ - 1 £ 1 (eo, ©)
L Bale,d)=1q 116/ last{c) Atfi(e)- 1 e r(eq. ©)

a—1 ifds last{e) Alh{e) — 1 ¢ D(eo,€)
2. i (e, ) = EPOB(eli, /(i - 1)).
3. fule, @) = r(¢) + Aale ).

Proposition 20 LeteMr beasin the preceding definition. Letee?€&" (e0). letem] = Cot{t <m:
t€r(eoge)} andleta>2. Then

1. fi(elm,¢) 2 0.
. 2 [felm = e'|m then B (eim,¢') 1 < =m . | €1 (e0n>I-
S. IfeT #gm] fAen /" (elmge0 > 0.

MEbr Uiosetndng the magic of a = 2, note that the argument would fril hoeif cr = 1.
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Proof: Define

M={i€w:i<m},

G =T'(eo, ),

G’ =T(eop,¢’), and

E={icw:e(i) =€'(i)}

(1) using the definition of B, and the fact that o > 2, we have:

Balelm, e') = r(e') + Bo(elm, &) =

= r(e’) + TiemncnePaleli + 1,€'(¢))+

+Xie(M-E)nGBaleli +1,¢'(1))+

+Zie(MnE)-GPa(eli +1,€'(i))+

+Zie(M-E)-GPaleli +1,¢(7)) >

>IG'|-IMNGNE|+|(M-E)NG|4+0+|(M—-E)-G|=

=|G'|-IMNGNE|+|M-E|=

=|G'|-IMNGNENG'|+|M-E|-|[MNGNE-G'| >

> |M — E|+ |(M NnGN E) — G'|, so it suffices to show that |M — E| < |(M NG N E) — G’|. For this we
construct an injection f from (M NGNE)—-G'|to |[M —E|. Let i€ (MNGNE)—G'. So we have
(i) i < m, (ii) e() = ¢'(d), (iii) ¢ € ['(eo,e) and (iv) i ¢ I'(eo, €¢’). Suppose for reductio that i = 0. Then
by (iv), eo(i) = ¢’(3) and by (ii), e(t) = €/(¢), so eo(i) = (s), contradicting (iii). So we may assume

(v) i > 0. Define f() = i — 1, which is evidently injective and it is also immediate that f(i) € M if
i € M. Suppose for reductio that f(f) =i— 1 € E, so e(i — 1) = ¢/(¢ — 1). Then by (iii, iv, v), we obtain
e(i) # eo(f), contradicting (iii). Hence, f(i) € M — E.

(2) Suppose ejm = ¢’|m. r(e’) = |G’|. For each-j < m, if j € M NG', then B,(elj +1,€'(7)) = -1
and if j € M — G/, then Ba(e|j + 1,¢'(j)) = 0. Hence, B, (ejm,¢’) = —|M N G’'|. So B(elm,¢') =
IG'|-IMNG|=|G'—M|=|{i>m:i€T(eo,e)}

(3) We begin by establishing
(i) Ao (ejm,e’) = 0=> M NG’ C G. Suppose for contraposition that there exists k € M NG’ — G. We will
construct ¢” such that g7 (e|m,e”) < 5 (e|m, €’), so by (1), B (elm,e’) > 0. :

The construction of ¢” proceeds as follows. If ¢’(k) = e(k), let ¢” be just like ¢’ except that e”(k—1) =
—e’(k — 1). Else, ¢” is just like ¢’ except that ¢”(k) = —e¢’(k). This construction is well-defined because
¢’(k) # e(k) if k = 0. For suppose otherwise. Since k € G', ¢/(0) # eo(0). But by hypothesis, ¢/(0) = ¢(0),
80 €(0) # eo(0) and hence 0 =k € G, oontradlctmg the choice of k

We now show that
(ii-a) r(¢”) < r(¢’) and
(ii.b) B, (elm, ") < Ba(e|m,¢’).

Case: e(k) = ¢/(k). Then k > 0 and ¢” is just like ¢’ except that ¢”(k — 1) = —~¢/(k —1). So
(iii) e(k) = ¢/(k) = ¢” (k). Since k € G' — G, we have
(iv.a) e(k — 1) = e(k) &> eo(k — 1) = eo(k) and
(iv.b) &(k — 1) # €¢/(k) & eo(k — 1) = eo(k). So
e(k — 1) # e(k) & ¢(k — 1) = &(k). So by the case hypothesis,

e(k —1) # e(k) & &(k — 1) = e(k). Hence,

(v) ¢"(k—1) = e(k — 1) # &/(k — 1). Also, by (iv.b)

(vi) k ¢ G”. Since ¢” differs from ¢’ only at k — 1, we also have:

(vi) for all j ¢ {k,k—1},j € G” &+ j € G- By (vi, vii), |G”| < |G'|, which is just (ii.a). By the definition
of Ba, (v), and the fact that a > 2, :
Ba(elk,&(k — 1)) — Ba(elk,e"(k — 1)) > a—1—0 > 1.2° For each j # k — 1, ¢(§) = ¢"(j), s0 ﬁ.(eu +
1,€(5)) = Ba(eli + 1,¢"(j)), 0 we have (iv.b).

Case: ¢/(k) # e(k). Then ¢” is just like ¢’ except that e”(k) = —e¢’(k). So by the case hypothesis,
(viii) e”(k) = e(k) # ¢/ (k). Since k € G, and ¢”(k) = —~e’(k), it follows that

25x = 2 is critical for the argument at this stage.




(ix) KEG". Sncet" differsfrom € only at I we also have
(x) for al j $ {*,k+ 1}J € (? *+j € C. By (viii, ix), we have |G"| <.|G'|, which isjugt (ii.a). By
(viii) and the fact that a > 2,
(%) 19(elft + 2.t +1))-/" (el * 2 Ib- 1) >a-1>1.2 ¢ and €' agree everywhere dse, 50 again we
have (iv.b).
The next task is to establish:
(xii) /%(cm,e) =0=>G -M = 0. Suppose that t > m and k e G'. So I contributes one unit
tor(e'). Snce* > m, * contributes nothing to the sum #,(em,e'). La €' =e J (G - {*}). Then
1%(elm, ') =r(e") +&(c|m, &) =r(c) - 1L +&(elm, €) = /%(gm, €) - 1. So by (1), fc(em, €) > 0.
Finally we show that
(xiii) K(em,ef) = 0 => M DG C G'. Suppose that #;(elm,e') = 0. Suppose for reductio that D =
(MnG)-G70. By the hypothess and (i, xiii), we have G' - M = G- M and G'fIM C Gn Af. So
r(c) --r(c/) = |G| - ICI = |D]. Soif we esablish that
(xiv) "a(elm,e0 -"5(elm,e) > |D|,
then we have* (cIm”") >~ (c|m,e) so by (1), ££(ejm,e') > 0. It therefore suffices to establish (xiv).
Let D beenumerated in ascending order as{*i,...,**}. Obsarvethat e\ki = €'\k\ sosince*i G G—G',
eki) £ €(ki). Thereafter, there is constant disagreement between e and € until ky where another
reversal of sense yidds congtant agreement until £3, etc. In general, we have for each j such that
l1<k<d
(xv) ekj) = €(*) Qj is even.
Also, we have by the definition of f$q:
(xvi) If e(kj) * €(kj) then 0,(e\kj + 1, *'(*)) - 05(€\kj + 1, e(kj)) = a- (-1) > asince” a > 2 and
(xvii) 1f eN) = e(Kj) then 0u(e\kj + I7kj)) - IM«l*i + I.er)) = (-1) - (-1) = O.
By (xv, xvi, xvii) we have
(xviii) 1" gAx(e[*J +1, «(*i)) - 0a(e\kj + 1, ctifg)) >.3(d+1)/2if d isodd and > 3d/2 if dis even (note
that 3<f+1)/2 isthe number of odd numbers < d when d is odd). Observe that
(xix) for all d>0, 3(d-1)/2>d ifdisodd and 3d/2 ><t if <* is even.”® We haven't yet mduded in the
sum terms whose indices are not in D. Solet 0 < k < m and suppose k—1 £ D. Then by the definition
of p, and the fact that a > 2, we have
(xx) /Mc|* e*~1)" IM*I*"(* - 1) >0. Soby (xviii, xix, xx), we have,
A (e]m,e*) — /?a(em, t) > d, eﬂabllshmg (xiv) and hence (xiii).
Now suppose that O£(e|m, ef) = 0. By (i, xii, xiii) weinfer that e* = ¢, t{*' > tn : { €X(co,.€)} = «m]
-which completesthe proof of (3). H
Next, we establish that S, implements/% when a > 2 and r is the grue ranking.

Proposition 21 Lea>2 aru//ei ¢y, r1,C,C,€gn] be asin proposition 20 and let mEuj. Then
1. (r+s2 [leln]l){<) = fa(elm,¢’),
2. (r,+81)(ejn) = {e[n]}, and
-&. (r,*83) identifies G»{to).

Proof: (2) By propostion 20.2, ~ (e|nge[n]) = 0. By propostion 20.3, for all tf £ c[m], *(e|ny eO > 0.
So the result followsfrom (1). _
- ,(3) isaconsquence of (2). (2)-saysthat (r,*g) alwaysremembersthe past-and ochednlesthat the
cuwat datum will.be iq*eeked fotever. If e € G*(co) then for somen, e € (eo0). Let n” be the least
such n. Then the method (r,*5,2) retracts exactly ri timesitior to wtnhiKiing to {e}. :

My = 2 is critical for the m Lo

Nas 2 b critical for the argument at this stage

MTbe Inequality k barely strict at rf = 1 and would feil if a = 1, lllustrating ooce again the critical role of the value
a>2.
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(1) By inductionon n. Le * =*5,«. #,((),«') =r(€) +#,((), tf) = r(ef) = (r * ())(ef). Now suppose
that for each t> € G M, (r * tte|n]])(€') = /E(ejn, €). Then snce a > 2, propostion 20 parts 2 and 3
yield
(i) If gn = €\n then *(<|n,e') = (¥ >n: S er(e,e')}| and
(i) 1f € # «In] then ~ (e[n, €) > 0. Now condder (r « [[e\n + Ij])(€).

Case 1. €(n) = e(n) Then
(r* [[ein+1]]}{c) = (r * [[e\n]))(€'\[n,&(n)))
=-min{(r* [[en]])(e") : € €dom(r * [[e\n])) D [n, &(n)]} + (r « [[cIn]])(C). 3

Caxe I.A: n€r(eye). Hence €[n] $ [n,e(n)] (recall that €n] = col{*<n: f€r(eye)}). Soby (ii)
and the induction hypothesis,

(ii)) Ot {(r « [[einl])(e") : &' 6 dom(r = [[cnl]) n [, e(n)]}. o o
Sncecn-HI]jn+1=¢e\in+1and {t>n:i€F(co,n-f 1)} ={n}, weabtain by (i) and the induction
hypothesis that,

(V) *[leln])(n+1]) = 1. Alsp, .

(V) e[n+ 1] €[n,e(n)], snce gn] ~ [n,e(n)] and n €r(e,,€). By (iii, iv, v):

min{(r* {len]])(e") : €" € dom(r* [[e]n]])n [n,e(n)]} = 1. So,

(r* [[en+1]](€) = (rlenll)) -1

= 0" (e\n,e') — 1 (by the induction hypothess)

= /%(gn, €0 + 04(e\n + 1, €(n)) (by the case hypotheses)

= fo(eln + 1,¢).

Cax|.B: n”™ r(co,e). Hence, gn] €[n,e(n)]. So by (i) and the induction hypothesis,

min{(r * [[en]])(€") : €" € dom(r * [lejn]]) n [n, &(n)]} = 0. Hence, ,
(r* Hgn + 1]3)(€) = (r * [[e|n]])(eO =/3"(gn, €) + 0 (by the induction hypothesis)
= /9E(g]n, €) + O4(e\n + 1,«'(n)) (by the case hypotheses)

= fuleln +1,¢').

Case 2. €(n) #¢e(n). Then
(r* [[an + 11)(€) = (v« [[e[n]])(" - [N, en)) +a '
=-min{(r * [[enflIKO = «" €dom(r * [[gn]]) n (* - [n,e(n)])} + (r * [[dNDKeO + a-

Cae 2A: n€r (e, e) Hence €[n]  [n,e(n)]. So by (i) and the induction hypothess,

- min{(r * ff¢n]])(e"): €' 6 dom(r « HAAn\)n(U - [n, e(n)])} = 0.
Henge, (r * [[gn + Ifl)(€) = 0+ (r * (Tqnl])(«) +a
= I5a( e) +% CM the induction hypothesis)

e)l+/'? a(eln + 1.e'(n)). (by the case hypotheses)
Il

Casxe2B: n £r(«0 e). Hence en] €[n,e(n)]. So by (ii) and the induction hypotheﬂs
(V|) min{(re [[e|n|])(éO €' €dom(r* [[e|n]])HU [n,e(n)]} >0. Let
@ =¢gn]tn. €\n=¢gnand {*<n: *€r(eo,e")} ={n}. Soby (i) and the induction hypothesis,
(vii)) r * [[en]])€0 = L. Snceeln](n) =e(n),
(viii) €' ™ [n, e(n)). Sncee €a" (eo) =dom(r), (vi, vii, viii) yield
min{(r ¢ 11eND)(€0 :«" € dom(r * [[en]]) n (U - [n,e(m])} = 1. So
(r Q<<h+ |D;EGO (re fcMM +«-1

=~ (e|n,e') +0-1 by the induction hypothesis

=££(gjin, e0 +/’>a(e|n +1,€(n) by the case hypotheses _
=fe(dn+1,¢).

Proof of proposition 13: Let * = *5o. Recal that (-«o)(n) = --(«o(n)). L r D r~" 1 G” and
-uppoee for reductio that (r”s.s) identifies GeVen(eo)U{--«o}. For each’t, let a = (-«0)$i = (eotO)tf €

G
evgnaseA Suppose r(-«e0) > w. Then for each t,r(e*) < r(-ieo), contradicting the isolation condition
(propostion 23).
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Case B: So suppose for some n € a; that r(-*o) = n. By the reductio hypothesis, thereisa k 6 w
such that
(i) (r « [hcol*]])-**) = {-*0}. Let j = max{n + 1,*}. Then
@ii)) r(g) >n =r(-*g) and r(c;.i) =rfo) + 1 and
(iii) g\j = €+i|j = -»«0li. By timidity and subbornness and (i, iii), for each f < j + 1,
(iv) (r* [k+x1/]])-**) = {-eo}. By (iv), }
(V) (r « [[ci+i]iID(ci) > 0. By positive invariance and (ii),
(vi) (r* [[C|+I|I]])(CI+I) = (r* [[g+i\]]])(g) + 1. By postive invariance (iv), and (iii),
(V”) (r [[e|+1|| + ]])(e|+l) - (I‘ ¢ [[e|+1tf]])(e|+|) By (”l) and (lV)
(viil) min{(r«[[ci+i[i]])(€) : € €dom(r)n(f/-[},ci+i(i)])} = 1. Sosince €{j) £ e.i(j), the definition
of * yields

(ix) (r* [[g.) + ]])(eJ) < -1+ (r e [[esali]])(e) +2

= ('I‘[[TW!A;P

<@ *[[e D)(«|+|) by (vi). Now (j + l]e) = (j +1]ei4i), s0 by postive invariance, for all *'= j +1,
(r* [[e|+||*U)(e|)-< (r * [[e+1\k")(e41). Hence, for aU such *'

(r*[[ei+i[*1])-"(0)#{ei.i}. H

0.15 Appendix IV: Restrictiveness Proofs

Proof of proposition 17: (1) Case Gl(ey): let R = (G(&)),<) be defined so that b(R) = {ey} and
for each k,k' > k €w, cot® < g (note that this condition induces an infinite descending chain in R).
It iseasy to see that.R is an epistemic state and that (R, *u) succeeds.

Case G|ven(«0): Let R = (Gven(«0)),<) be defined so that b(R) = {e;} and for each k, k' >k,ki>
V,Jg >Jb €w, eot {k'ki} <tot{*.*i} (thiscondition-also induces an infinite descending chain). R is
an epigemic state and (R, *M) succeeds.

(2) Case G'(ey): let» = *M, let R = (D, <g), and suppose for reductio that (R, *) identifies G*(ep)-
Then for someKk,

(i) b(R* \[eo\K]]) = {co}. Define e = gt JtbnG*(ey)- By proposition 24, we can find &' > fc such that,
lettinge =t%V 6 G"eo
(i) e >(||»||eo|*]]) But (i, ||)andthestackmglemma(propostlon 22) contradlctthereductlohypotheﬂs

Case Geven(®o)' ' * = *J# and suppose for reductio that R = (£>, *) identifies <7)ven(°0)- Then for
omeJg
() 6(H*([e0]A]]) = {eo}. Ddfine e = «ot{*,* +1}€ G|ven(eo)- By propostion 26, wecanflndf >* 4]
auch that, letting e* = e| {if,if +1} eG*enM_.

(i) ef >(offef]D «. Let &' =eot {*' ** +1} 6 G’eventa) B thepropplng Iemma(propostlon 22) and

£m‘)¢'>(JHI«0|*D) <o Notethat:
(w) eo\k = &\k,

viek=¢k(#ekad
“(vi)* + N« :* +1/ . By (ii, iv),
(vii) tf * min((3{* \[ef\kJi),Ik,ef(K)]). By (V),
(viii) €' £ min((A* Qel*])), [~ J]). Soby (iii, v, vii, viii) and dause (2) of the definition of +* :

(ix) ef 2{/t*"[€\k+iID €'. So by (vi) and positive order-invariance (propodtion 7), for all F > I+ 1, -

T 2JHILI*1D ™' contradicting thereductio hypothesis. H

Definition 18 e ispropped up at n in r just in casefor each t! € [e\?,e?(n) £ e(n). « ispropped up in
rjustin easethere existsan n such thate isproppedup atninr.
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Proposition 22 (propping condition for *M) //(r,*M) identifies dom(r) then for each e 6 dom(r),
for each m, thereisan m' >_m such that e ispropped up in (r *M [[e\m]]) at rri; so in particular, e is
propped up inr.

Proof: Suppose that for al m' > m, ¢ 6 dom(r *M [[«*r]]) i* "°" propped up in (r *A# [Mm]]) a m'.
Using the definition of *M, show by a straightforward induction on k —m that for al k > m, ik > it, ¢
is not propped up in (r *M [[*17]) »t *'» Hence, for dl it > m, (r]* [[ed]])(© > O, so (r, *M) does not
identify dom(r). H

The following definition generdizes the notion of isolated points to the case in which there is sufficient
information after a given position n to distinguish e from al other points in S "-isolation is more
stringent than isolation when * > 0. For example, 0°° is isolated but not l-isolated in { 10"°° : n € w}.

Definition 19 e isk-isolated in S<P> there exists ann>k such that [(k\e)\n] D5 C {e€}.

Proposition 23 (isolation condition) If * is positively order-invariant and (r, *) identifies dom(r)
then for each e € dom(r), for all k, e isk-isolated in [7]f;mn\k]\)> *™ particular, e isisolatedin [c]p.

Proof: Suppose c is not ~-isolated in [e_I"*er*'I]) Then for each n> Kk, there is an &, / e such that
'(°n) <"(%) and (Arjen)in = (&le)|n. So by positive order-invariance, for each n, if (r« [[en]])(e) = O then
(r* [[en|n]]) = 0. Hence, (r, *) does not identify dom(r). H

Proposition 24 //* ispositively order-invariant and (r, *) identifies G*+"e0) C dom(r) ande 60"(:0)
_then for all k, for all but finitely many j, (r« [[&[*]](C) < (r* [[el*1])(e} ))-

Proof: Let e 6 G"eo). Then for each J, c ti 6 dom(r). Suppose that for some k there are infinitely
many distinct j such that (r *.[[eFID@© = (r * [[eF]])(e{]). Then e is not ~-isolated in W( rHfcord])- So
by proposition 23 and the fact that * is positively order- invariant, (r, *) does not identify G™**(co). H

Proposition 25 (stacking lemma) For all kn,n' <_n, if  is positively order-invariant and (r, *)
identifies G"(eo) Q rfom(r) and (r * [[colM]])(co) = O then there exists an g,» such that

1. eqr € ’“'(eﬂ):
2. eol(k+1) = ewl|(k +1) and
. (r+ [leoft)(en) 2 7.

Proof Assumethe antecedent. Let n, k begiven. Weshowtheconsequent by induction on n* < n. When
-n-=0,4{1-3) aretr|V|aIIy satisfied by to- Now suppose that n' + 1 < n and that there exist «o,.. -di’
satisfying (1-3). Since n”+ 1 < n, {(r,*) identifies GA'+*co). So by propostion 24, we may choosej
aufficiently lange so that so thui
(i) (r * neoD)(e».) < (r *tt«o|*D)(«Vti) ««i
T (i) i > max(r(eo,e<) U {* +1}). Now set «,«H =*/ti. e«',i satiffies (1, 2) because of (ii) and the
fact that ««' does, tn.+i satisfies (3) because of (i) and the fact that <v does. H
Proposition 76 If * it positively order-invariant and (r,*) identifies @&%enM Q dom(r) and e €
_);/«:J N)<k«>> for all k, for all butfinitely manyj, for all m> 0, (r * (l«d*D)(@ < (r * [[eo|*f|)((e/1
Niji+m

Proof: Similar to the proof of propostion 24. H

Proposition 27 (even stacking lemma) Proposutlon S5 continues to hold when G", f* are replaced

wit* CgdefeNen-

D




Proof: Similar to the proof of proposition 25, using proposition 26. -

Proposition 28 (with Oliver Schulte) For all eo € B, For all j > 2, GI(eo) is identifiable using just
j retractions, but is not identifiable by *pp ;.

Proof: The positive claim is from proposition 11. For the negative claim, suppose for reductio that there
is an IA r such that (r,+) identifies G(eo), where * = *pp; and j > 2. Then since eo € G°(eo) and
0 < j, there exists a least n such that
(i) (r, *)(eo|n) = {eo}. Then there exists a least k > n such that
(i) (r, *)((eo § n)|k) = {eo t n}, since eg § n € G'(eo) and 1 < j. Define
R={e" €U :|I'(eo,€")| is odd}. Since |T'(eo, (€0 $ n))| = 1 is odd, we have by (i) and (ii) that there is a
least k' > n such that
(iii) &(r * [[(eo $ n)I¥']])(e) N G (e0) C R. Since k' is least, there exists an e such that
(iv-a) (r * [[(eo  W)I(K — DI)(e) = 0,
(iv.b) (r * [[(eo 1 n)|£']])(e) > O, and
(iv.c) e € G¥(eo) — R. Since * = *pp, we also have?®
(iv.d) (r * [[(eo 3 n)|K']])(e) = 1.
Case 1: k' = n+ 1. Then e = eg, by (i), (iv.a). Define
¢’ =(eg1n)1n+ 1. Hence,
(va) eln+1=(eofn)n+1,
(v.b) n+ 1|¢’ = n + 1|eq, and :
(v.c) ¢ € G'(eo) — R, since |I'(eg,¢’)] = 2 and j > 2.3° By (v.a, c) and the reductio hypothesis, ¢’ €
dom(r#[[(eotn)|n+1]]), else (r, #) fails to identify e’ € G7(eo). So by (iii), (v.a,c), and the case hypothesis,
(vi) (r *[[¢|n + 1]])(¢’) > 1. By (iv.d), (v.a), and the case hypothesis,
(vii) (r s [[¢'|n + 1]])(e) = 1. By positive order invariance (proposition 7) and (v.b), (vi), (vii), we have
that for each m > n+ 1, (r * [[¢/|m]])(e’) > (r * [[¢/Im]])(e0), contradicting the reductio hypothesis.
Case 2: k' > n + 2. Then by the definition of * and (iv.a,b), we have
(viii.a) e(k’ — 2) = (eo § n)(k' — 2) = —eo(K — 2) and
(viii.b) e(k’ — 1) = ~(eo § n)(kK’ — 1) = eo(k’ — 1). Let ¢’ be defined so that:
(ix.a) ¢’'|k' = (eo 1 n)|¥', and
(ix.b) k’'le’ = k'le. By (viii.a), there exists some j < k'’ — 2 such that j € I'(eo,e). ‘By (viii.a,b),
K -1 €T(eo,¢). So|{j < ¥ :j € T'(eo,e)}| > 2. But by (ix.a,b) we also have |{j < k¥’ : j € I'(eo, ¢’)}| < 2.
So by (ix.b) and (iv.c),
(x) ¢’ € GI(eg). So by the reductio hypothesis and (ix.b), )
(xi) ¢ € dom(r # [[(e § n)|&]]), else (r,*) does not identify ¢’ € GLyen(eo)- By (iv.c), [I'(eo, €)| is even.
Hence, e agrees almost everywhere with ¢o. By (ix.b), ¢’ agrees almost everywhere with ¢ and hence

- with gg. So, |[I'(eo,¢’)| is even. So ¢’ ¢ R. Thus, by (iii, xi), (r * [[(eo 1 n)|¥']])(¢’) > 1. So by positive

invariance, (iv.d, ix.a,b), we have that for all m > ¥/, (r + [[¢/|m]])(¢’) > (r * [[¢'Im]])(eo), contradicting
the reductio hypothesis. -

Proposition 29 Let ey € B.
1. Gl(eo) s :dentiﬁable by *DP,1-
2. For all j > 1, GI(eo) is not identifiable by sar,%s5,1,%4,1-

Proof of (1): Let # = spp,. Define r~1(0) = g°(eo) = {eo} and r~(1) = g'(eo) = {eo L k : k € w}.Then
dom(r) = G'(eo). Let e € G(eo). Case: e = 9. Then by timidity and stubbornness, we have that for
each k, b(r « [[e|k]]) = {e}. Case: for some n, e = eo § n. Suppose k < n. On data e|k, ¢, stays uniquely

29This is where the value a = 1 enters the negative argument.
30This is where j > 2 enters the argument.
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at level 0 by timidity and stubbornness. Positive in variance kegps e at level 1, along with all the eo X™
auch that n' > ft. For each n' < ft, the dimbing lemma impliesthat e t n' is at leas as high as leve
k - n' on data k. So by the time é\n has been read, we have
(i-2)6(r*[[eln]]) = {ed},
(i.b) ifn" > nthen (r « [[en]])(ep$ ') = 1, and
(i.c)if " <nthen (r * [[gn]])(&oX n") > 1. On data e\n + 1, g is refuted and moves up one level along
with all data greams of form eo X n', where n' > n. By (i.a,b,c), e is the lowest data sream consigtent
with the data, so e dropsto leved 0. All data streams of form ¢ $n' such that n' < n also drop one leve
with e, but fortunately, by (i.c) they all end up above level 0. So b(r « [[e\n +1]]) = {c}. By timidity and
gubbornness, e remains uniquey at leve O forever after.
Proof of (2): Case * = *A|l- Ingtance of proPosition 30. Case * = *s,1,*M- SQuppose for reductio
that thereisan 1A r such that (r, *) identifies G (). Then there exists aleast n such that
(i) b(r * [[eqn]]) = {eo}. Furthermore,
(i) 3* > nsuch that V*' > *, (r « [[en]])(Co X **) = (r * [[&]n]])(Co X *); for otherwise, there would exist
an infinite.descending chain of ordinals in the range of (r « [[eon]]). By (ii), there exists a k > n such
that
(iii) (r « [[&n](& t * + 1) = (r « [[Con]])(Co t k). Observe that:
(iv) (80 % K)\k = (eo]i + 1)|* = e|* and
(V) (eo ]| k-fI)(K) = es(k) (e $ k)(k). By timidity and stubbornness (propostion 7) and (i, iv, v),
(Vi) Vn',n<n' <Jb-f1=>Db(re[[(e0tk4 1)nT]) = {0}« By (iii, iv, vi) and positive order-invariance
(propodtion 7),
(vipvn,ngn' sk=>(re[[(@Jdk+1)|n")(cot* +1) > (r*[[(Co$* + )\n*H)(eotk) > 0. Now it is
claimed as wdl that: o
(viii) (r « [[(&ol* + D) +I]])(€o1 * + 1) = (r * [[(Col * + L) + 1]])(co I *). For consder the case of * .
By (v, vi) and the definition of *M,
(r*M [[(0$* + b+ 1]])(eat *) = (r *m [[(€$* + )I*]])(&t *) + 1 and
(r*M [[(ed* + D1* +1]])(ep*ft+ 1) = (r *m [[(e@t* +1)I*]])(e0l * +1) + 1. So by (vii), we have (viii)
for *M-
Le usturn now to the case of *si- By (v, vi),
min{(r * [ $* + N[*]1)(€) : t! G dom(r « [[(& X * + DFI]) H [*, (& X * + (f)]} = 0 and
min{(r « [[(eot * 4- N)[]])(€0 : & € dom(r * [[(Co$* + D) O (" - [*, (& $* + 1)(*)])} > 0. So by (v)
and the definition of *s|,
“(resiHeX*+ 11* +1])(eot* +1) =-0+ (r *si [[(ot* + 1)|*D)(el* + 1) and
(r*sji[[(eoX* +1)1* +Ifl)(e0 X *) > -1+ (r *s,i [[(e0$**+ |)[*D)(e0t *). So again by (vii) we have (viii)
for es.i-
' Finally, snce (* +1)|(eo Xft) = (ft +I)|(eo X* +1)> we have by (viii) and positive order-invariance that
forallt/>ft+l. . ]
(r«[[(€OX* + D[ftH)(eo* ft+1) > (r * [[(totft+ 1)!* "]])* X ft), contradicting the reductio hypothesis. H

Proposition 30 (restricthrenessof *An) Letto € B.
1. G°(e0) isidentifiable by *x.o- '
Jy /or all n, G"(ey) is identifiable by ex.n+2- _
5. forall m;n,Gm+1(<<o) w'not identifiable by * A,n+2- *A n+i-

Proof of (1):" Let"dom(r) = {eo} and let r(eo) = 0. Then for all ft, (r, *5,0)(e|t) = {co}.

Proof of (2): by propodtions 9 and 11.

Proof of (3): Suppose for reductio that (r, *Amn+i) identifies GN+"co), with m>n. Then for somej,
(i) H" *An+i [[e0UU) = {eo}- So by positive invariance (proposition 7) and CF*+'(eo) C dom(r) by the
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reductio hypothess, proposition 25 yields

(i) there exists an t e G™'{e0)-G"(e,) such that ey|i + | = e|i+1 and (r* [[etfH)(«) >n-h 1. ¢ ~ ¢y,
S0 let z be least such that e(2) / e,(2). So,

(iii) z>j. Sosince z> 0, we may define ¢' to bejust liket except that € (z- 1) = -*(ey(z- 1)). Hence,
(iv)yc(z-D)Ee(z-1) =e(* -1). Also

(v) é\z=cok and

(vi) 2¢ = zJe. By (i, v), and the timidity of *x,n+ (propostion 7),

(vii) for all x such that j_<x<z, (r *x,n+i [M*]])(«0) = 0. By positive invariance and (ii, v, vii),

(viii) (r *AnH [[«*]])(«) > n + 1. By (iv) and the definition of *i4.,+i,

(ixX) (r *an+i [M*]])(© = n + 1. By (vi, viii, ix) and positive invariance,

(ix) for aUf>.z,(r x.n+i [[cfT])<e) = (r *.n+i [[e*W)- Hence (r,*a,n+i) does not identify
G"**(cy), contradicting the reductio hypothesis. H

Proposition 31 Ld e 6 £.
A~ G»cfi(®o) isidentifiable by *si, *DP,I-
2. Vm.> [.G*"W”"eo) W not identifiable by * -
s. Schen(®o) widentifiable by * 4,0
4- GBven(®0) W identifiable by *A n+i
5.Vm>n,G"",(co) ** not identifiable by * A,n+i

--Proof of (1). Cass e+ = *DP|- Le r be rf resricted to Ggven(®» 8 ™ e " € Gg,en(9)>
(') =p(e€). Le ebegiven and let € € GMen(d)- I>dine es so that

(ka) e\i = e\i and (i.b) tle- = i\e. Hence, e = €. Also let

c(€', A) = 1+ the greatest t < * such that €(i) * &f), if thereissuch an t, and let c(€', *) = 0 otherwise.
Recall that GE£,en(€) is precisdy the set of al finite variants of e, so A(e,€') is finite. Let m(€) = 1+
max(A(e€)). Then

(i) for all ' k'> m(€),ee7b) = € | daim that * satisfies the following symmetry condition: for each
€ ,e" eG%.e(€),

(iia) (re* [eFIN) 2 v, (€9, and

(iii.b) if «"* = €1* then (ro* (€]](EO = ref,p(e”). Then for each e’ € Ggyen(e). for each * > m(e),
*(re* [[€PF]]) = * (re” ) = {<(.'.*)} = > Ov»§y T"*2. (o> *) identifies Ggren(€). So it remainsonly -
to establish (iii.a, b). (iii.a, b) are immediate when * = 0. Now suppose (iii.a,b) hold at J& Then

(iv) *(r;*a€*D) = {<(M)>- I** "*«&#) «ejust like " except that "("N(k) = -«(,,,*))(*).
KV (N F))»A(E») = 12N x = (A< M))|* A (i™0) of the induction hypothesis yidds
(V)(rene*]])(var (€ egesan)) = 1.

Cae 1: e&,k+1)=k+1. Then wK AN JW =«(*) #/~ A~ W - So by (iv, v),

~(vi) min{(r * [[FINEO : €' € dom(r * ([€l*]]) n [*,~(ib)]} = 1. Now let &' € Ggvento- Subcase
€'Jb) = €'(t). Then by the induction hypothesis and (vi),

(re* [ +I)(€0 = -I+(re*[[€[F]])(€") 2 -I+/K «c(«h).«") = P(«e(41),€") = s («”)- When
el‘le\llélfr 1 = €l* + 1, the inequality is srenghened to an equality by (iii.b) of the induction hypothesis,
yielding _

(re* RelJfdIHE") =r ", .q)(e"). Subcase: €' (k) # €(Jb). Then by the induction hypothesis,

(r,e[[€l* + 1IDXO = (r. * [[E}I)EO + L > /K«<«).O+1=P(""*+i),0 =ri” jxyW). Snce
e'(*) » elk), <'[F+ 1/'ffc+ | so (iii.b) istrivial in this subcase. '

Case 2: cM,*+1)<*+1. Then
(Vii) ety = €c(eMii). Hence, var "~ X*) 4 €(*) = *afk). So by (iv),
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(viii) min{(r * Qe[it])€") : €' € dom(r * [[€\K]]) O [*,€(*)]} = 0. Now let t" € Gg,eN(<0- Subcase:
€' (k) = €(k). Then by the induction hypothesis and (vii, viii),
(re * [[e1* + DE") = -0+ (re * [[EK]))(€2 > P(Esetoi®) = P(Ec(cr,*+1),€") = Iiwn(€’). When
e*l* + 1 = €\k + 1, the inequality is strenghened to an equality by (iii.b) of the induction hypothesis,
yielding
(re o [[EPID(C") = ree,, k*y(€"). Subcase: €'(k) ?¢'(k). Then by the induction hypothesis and (vii),
(re » [[e\k+ I]])(e") ="(re o [[€]D(€") + 1> p(ye)€) = ,(€c(crs*+1),€") = Tcece+n(c”). Since
e*)re(*), e*+1xe \k+ 1 so (iii.b) istrivial in this subcase.

Case * = *sji- The argument is similar to the preceding one, except that the symmetry condition
(iii.a,b) can be strengthened to:
(iii) for each € € G&en(®)> ("c * ft*I*]]) = "¢’ a4y Which implies the success of (r, *) as before® (iii) is
immediate when k = 0.

In case 1, the induction hypothesis yields (vi) as well as
(vi') min{(r e [[c'I*]])") : € € dom(r « [[€\K]]) MJ-[K, €(*)]} = 0. Subcase c" (k) = €(k), is as before,
with an equality replacing the inequality. In subcase €" (k) * € (k), (vi, vi') yield:
(re * \[e\k + 1]])(e") = -0+ (re * [[€]F])(€") + 1 = ,(c(enicy €') + 1 = plegeksny t") = e, pey(€").

In case 2, the induction hypothesis yields (viii) as well as
(ViiiO min{(r«[[c'I*]1]D)") : € edom(r «[[c'*]]) n 17— [ib,c"*)]} = 1. Subcase c" (k) = €(ib) is as before,
with an equality replacing the inequality. In subcase €" (k) / €(k), (viii, viii') yield:
(re * \[e\k + I]I)(c") = -1 + (re « [[€]D(€") + 1 = p(egeny €') = Pl€senksn,€) = retiy(€").

Proof of (2): Let * = *,. Suppose for reductio that there is an 1A r such that (r,*) identifies
<?even(®0)- Then there exists aleast n such that
(i) (r;*)(eo\n) = (r,*)(co) = {co}. Furthermore,
(i) 3t =>n,(r* [[colnID((co $i) \i+2) <_(r * [[coln]]D((co } t +1) $t+ 3), else, there would exist an infinite
descending chain of ordinalsin the range of (r * [[cojn]]). Let e = (o 1I) $t1+2, € = (ggJt+ 1)} 1 + 3,
and ¢’ = (@1 $i+3.

Case 1: (r ¢ [[e]n]])(€") > (r * [[&In]])(cO. Then by (i,ii), € is not propped up in (r « [[con]]),
contradicting the reductio hypothesis by proposition 22.

Case 22 (r » [[coinID(e") ~ (" * [M*]])™). coff = €\i = €'\i, so by timidity and positive order-
invariance (proposition 7),
(i) (re[[cltIKco) = 0 < (r+ DEtO)(EY) < (r * QE[tR)(¢). So by timidity, stubbornness, (iii) and the fact
that €\i -f 1 = g,|t' + 1, we have:
(iv) b(r*[[e\i+I}](er) = {eo}. So €',e" $? 6(r«[[c'It>hI]])(.|[i,€'(i)]). So by the definition of * and (iii),
(rre'li+1133te’0 = (r*[Mtl])(e-)+I < (r*[[€']|i]])(e0+] = (r*[Mi+I]])(e"). Sosince +l|e' = ,-+l|e",
positive order-invariance yields that for all k> i+ 1, (r « [[c\ifeHX"O < ("= tt*"1*]])*)* contradicting the
reductio hypothesis.

Proof of (3): Immdediate.

Proof of (4): Immediate consequence of propositions 9 and 11.

Proof of (5): The argument isidentical to the one provided for proposition 30 except that the appeal
to proposition 25 is replaced with an appeal to proposition 27. H

% Condition (jii) impliesthe hypercuber otation representation of the evolution of (*, ), as was mentioned in the informal
discussion of this proposition.
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