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0.1 Introduction
According to the familiar, Bayesian account of probabilistic updating, full beliefs change by accretion:
in light of new information consistent with one's current beliefs, one's new belief state is the the result
of simply adding the new information to one's current beliefs and closing under deductive consequence.
Inductive generalizations that extend both one's current beliefs and the new information provided are not
licensed, although the new information may increase the agent's degree of belief in such a proposition.1

This account breaks down when new information contradicts the agent's current beliefs, for accretive
updating leads, in this case, to a contadictory belief state from which further accretion can never escape.
Belief revision theory aims to provide an account of how to update full belief so as to preserve consistency
when one's current beliefs are refuted by the new information provided. Belief revision theory has
attracted attention in a number of areas, including data base theory (Katsuno and Mendelson 1991),
the theory of conditionals (Boutilier 93; Levi 96; Arlo-Costa 1997), the theory of causation (Spohn 1988,
1990; Goldssmidt and Pearl 94), and game theory (Samet 1996).

A belief revision method is a rule for modifying an agent's overall epistemic state in light of new
information. An agent's beliefs are only part of her epistemic state, which also specifies an implausibility
assignment over possibilities inconsistent with the agent's full beliefs. Upon receipt of new information,
these degrees of implausibility determine the agent's revised belief state according to the following belief
revision rtde: the new belief state is the proposition satisfied exactly by the most plausible possibilities
satisfying the newly received information.3 According to this rule, the character of the revised belief
state depends on the character of the agent's initial epistemic state. If all possible worlds are assigned
implausibility degree 0, the agent starts out as a tabula rasa with vacuous beliefs and updates by mere
accretion, without taking any inductive risks. At the opposite extreme, consider an agent whose initial
epistemic state is maximally refined, in the sense that all possible worlds are assigned distinct degrees of
implausibility. Such an agent starts out fully convinced of a complete theory and retains this conviction
until the .theory is refuted, at which point she replaces it with the complete theory of the most plausible
world consistent with the new information. The new theory may differ radically from its predecessor.
Described this way, belief revision sounds like a process of "eliminative" or "enumerative" induction,
in which a "bold conjecture" is retained until it is refuted, after which it is replaced with the first
alternative theory (in a subjective "plausibility ranking") that is consistent with the new information
provided (Popper 68; Kemeny 53; Putnam 63; Gold 67; Earman 92). Between these two extremes
are agents with moderately refined initial states whose inductive leaps from one theory to another are
correspondingly weaker.

The belief revision literature has focused on the aim of minimising damage to the agent's epistemic (or
belief) state when new information contradicting the agent's beliefs is received. The similarity between
belief revision and diminative induction suggests a natural, alternative aim for belief revision: namely,
to arrive at strong, true, empirical beliefs on the basis of increasing information. This aim is largely
unexplored in the belief revision literature,3 but it has long been the principal locus cf formal learning
theory, the study of processes of sequential belief update that are reliable, or guaranteed to stabilise to

.true, informative beliefs on increasing, true infixmatkxi. The purpose of this paper is to bring framing
theoretkaiialyBW to bear c» a variety <rf
Boutilier (1993), Nayak (1994), Goldttmklt and Pearl (1994), and Darwiche and Pearl (1997).4 A very

to the rale jast demibed.
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simple model of learning is employed, in which the successive propositions received by the agent are true
reports of successive outcomes of some discrete, sequential experiment. An inductive problem specifies how
the outcome sequence might possibly evolve in the unbounded future. The agent's task is to stabilize to
complete, true beliefs about the outcome sequence, regardless of which sequence in the inductive problem
is taken to be actual.

The investigation yields an interesting mixture of positive and negative results. Some of the methods
are empirically complete, in the sense that for each solvable learning problem, there exists an initial
epistemic state for which the method solves it. Others restrict reliability, in the strong sense that there
are solvable learning problems that they cannot solve no matter how cleverly we adjust their initial
epistemic states. All of the restrictive belief revision methods considered can have their initial epistemic
states adjusted so that they remember the past, and nearly all of them can be adjusted to eventually
predict the future. So such a method has the odd property that it can remember the past perfectly
but then it cannot eventually predict the future and it can eventually predict the future, but then it
forgets some of the past. I refer to this odd limitation as inductive amnesia. Inductive amnesia is the
sort of thing we would like rules of rationality to protect us from rather than impose on us.5 Avoiding it
can therefore function as a nontrivial, motivated constraint on proposed methods and principles of belief
revision.

Among the inductively amnestic belief revision methods, it is of interest to determine which are
more restrictive than others. To answer these questions, I introduce a hierarchy of increasingly difficult
inductive problems based on the number of applications of Nelson Goodman's (1983) ttgrue" operation,
which reverses the binary outcomes in a data stream from a given point onward. For each of the methods
considered, I determine the hardest problem in this grue hierarchy that the method can solve, obtaining,
thereby, a reliability "fingerprint" of the method.

It might be expected that a global consideration such as eventually finding the truth would impose only
the loosest short-run constraints on concrete methods of belief revision. However, sharp and unexpected
recommendations are obtainable. For example, several proposed belief revision methods are equipped
with a parameter a, which is the amount by which the updated implausibility of a possibility exceeds its
prior implausibility when it is refuted. Lower values of a may be interpreted as more stringent notions
of "minimal" change since they correspond, in a sense, to less distortion of the original epistemic state.6

Two of these methods (Spohn 1988, 1990; Darwiche and Pearl 1997) turn out to fail by the second level
of the grue hierarchy if a = 1 but succeed over the entire, infinite grue hierarchy if a is incremented to
2. The difference between 1 and 2 is innocuous in light intuitive coherence and symmetry considerations,
but it is pivotal for reliability. It will be argued, moreover, that the infinite leap in reliability at a = 2 is
not a technical aberration, but rather reflects a fundamental epistemological dilemma between memory
and prediction faced by iterated belief revision methods of the sort under consideration.

Hie purpose of this paper is not to argue that reliability considerations always win when they conflict
with coherence, symmetry, or minimality of belief change. As in every case of oonflk*ing aims, a personal
balance most be sought. But if the ultimate balance is subjective, structural conflicts between intuitive
rationality considerations and reliability are not. The isolation and investigation of such conflicts is
therefor*.a,suitable >aim.for objective, epistenK>logk^ analyst are, admittedly,
preliminary and subject to generalisation and refinement along a number of dimensions. Nonetheless,
I hope they illustrate how reliability analyses might usefully and routinely be carried out for proposed
theories of iterated belief revision.

a defects
of the quality or reliabffity of the inp^



0.2 Ordinal Implausibility
Let W be a set of possible worlds.7 The agent's eptstemtc state at a given time is modelled as an
implausibility assignment (IA), which is a (possibly partial) ordinal-valued function r defined on W*
Possibilities that are not even in the domain of r are beyond possible consideration" in the strong sense
that they will never be consistent with the agent's belief state, no matter what information the agent
might encounter in the future. For a given world w, let [w]r, M£, and [w]< denote, respectively, the set
of all worlds equally, no more, or less implausible than w.

A proposition is identified with the set of all possible worlds satisfying it. The full belief state of r is
defined to be the proposition satisfied exactly by the possible worlds of implausibility zero.

Define the minimum degree of implausibility of worlds in E as follows:

(w) '-tveE f\ dom(r)}.

It will also be convenient to refer to the lowest degree of implausibility that is strictly greater than the
implausibility of each world in E:

rabove(^) = min{a : Vu> € E H dom(r), r(w) < or}.

If a < (3 then — a + /? denotes the unique 7 such that a + 7 = 0 (i.e., -a + /? is the order type of the
"tail" that remains when the initial segment a is "deleted" from /?). r(.\E) is an ordinal valued function
with domain dom(r) O E such that for each w in this domain:

Then rm^n(A\E) and raj)Ove(i4|JF) may be defined as follows:

0.3 Some Implausibility Revision Methods
An implausibility revision method takes an IA r together with an input proposition E and returns an
updated IA 1̂ .

We will consider the following examples. Perhaps the most obvious idea is simply to eliminate refuted
- worlds from one's ranking and to lower all the other worlds, keeping intervals of relative implausibil-

ity fixed, until the most plausible world toadies bottom. This is what Spohn (1988) refers to as the
conditional implausibility ranking given the data.

, Definition 1 (conditioning) r *c E = r(.\E).

Conditioning throws away refuted worlds,soitcannot recover when later daUomtradict earlier data^
The remaining proposals boost the impUustKUty of refuted worlds rather than disposing with them
idt /ytW Aft vU wry AniUu-tn ^^U^»ir,g r^tin^A hy CUM^^iAt »~J p^rf flm). ffinim ttlf>

are contradicted by future data.9 It will prow mteresting to analyxe a general^
which all refuted worlds are amgned a fixed ordinal a.

TThc«ppro^h adopted in thb aectfon foDom Spohn (1068).
• l i b * * generally •c«p4edthmtdegr^

OS.
ri introduce thkpropo^ a. m n i ^ ^ below, with a = w.



Definition 2 (The "all to a" method)

f r(t(w\E) if we dom(r)nE
(r •x.a E)(w) = { ot if we dom(r) - E

otherwise.

Another proposal boosts all refuted worlds just above all the non-refuted worlds, maintaining intervals
of implausibility among refuted worlds and among non-refuted worlds but not between the two classes.

Definition 3 (The lexicographic method)

{ r(w\E) if we dom(r) H E

raboV€(E\E) + r{w\W - E) if we dom(r) - E
f otherwise.

A variant of this method was defined by Spohn (1988), who rejected it because it is irreversible, fails to
commute (the resulting IA depends on the order in which the data arrive) and places extreme importance
on the data (the refuted worlds are put above all the non-refuted worlds rather than being shuffled in).
Against these considerations, S. M. Glaister (1997) has argued that a generalization of this rule due to
Nayak (1994) is uniquely characterized by plausible symmetry conditions.

At the opposite extreme, consider the method that drops the lowest worlds consistent with the new
information to the bottom level, and that rigidly elevates all other worlds by one step, keeping their
relative positions to one another fixed.
Definition 4 (The "minimal" method)

f ° ifweEnb(r(.\E))
(r *M E)(w) = { r(w) + 1 if we dom(r) -(Ed b(r(.\E)))

otherwise.

- - *

In a sense, this is the minimum alteration of the epistemic state consistent with the principle that one's
new belief state be the set of all most entrenched possibilities consistent with the new information.
Boutilier'8 "natural method" (1993) generalizes this method to apply to total pre-orders on worlds rather
than IAs.10 Spohn (1998) describes a method of this kind and rejects it. It doesn't fare better in terms of
reversibility and commutativity and, in Spohn's opinion, places too little importance on the data, since
the method can easily end up admitting possibilities excluded by the information received at the previous
stage.

•Spohn recommends, instead, the following sort of method. As usual, sort the worlds at each level
into those that are refuted fay the current evidence and those that are not. Lower both groups of worlds,
preserving distances within the two groups, untU the k ^ ^
Now raise all of the refuted worlds together so that the lowest refuted words end up at level a.11 Spohn
shows that this rule can fee represented as updating a nonstaadaid probability measure by Jeffrey's rule,
so long as there are but countably many possible worlds nfWJgnH to each degree of implausibility. It
is also shown fay Spohn to be both reversible and commutative (if a is understood to be an adjustable
parameter). Nor is it as "extreme* as the preceding roles. Bat according to this role, the implacability
f ^ t f /fedi b ^

p ) p g g , p t y
of^ t f t*«/ufed,>siiKX^ inay b e ^
i i h b h k f d M ^ %it inight be the kmcst refuted wortt - . . . , . _

i the problem of updating on rendition ah,

'

which is not addressed in this]
"Thfa is actually a special case of Spoon's proposal. In general, Spohn's rale updates on a partition of possible worlds,

withasepan^qforeachcenofthepartHkw.UkasiumuJthatone
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Definition 5 (Spohn's "Jeffrey conditioning" method)

f r(t
I t

{w\E) if we dom(r)nE
(r *st<* E)(w) = ^ r(w\W - £) + a 1/u; 6 <fom(r) - £

otherwise.

Darwiche and Pearl (1997) propose an interesting modification of Spohn's Jeffrey conditioning method.
Instead of dropping the refuted worlds to the bottom level before elevating them by a, Darwiche and
Pearl propose lifting the refuted worlds by a from their current position, whatever that might be. The
rule is presented with a = 1, presumably to minimize alteration of the epistemic state, but the possibility
of raising the value of a is left open.

Definition 6 (Darwiche and Pearl) Let a be an ordinal.

• ?
(w\E) if we dom(r)ClE

(r *DP,a E)(w) = ^ r(w) + a if we dom(r) — E
otherwise.

Proponents of different belief revision methods have in mind different conceptions of minimal change and
different assessments of the relative importance of minimality as opposed to other symmetry conditions.
Such debates may be irresolvable. My purpose is to shift the focus of such debates to the relative abilities
of the various methods to generate true, informative beliefs; a natural goal that distinguishes sharply and
objectively between the above proposals.

0.4 Iterated Implausibility Revision as Inductive Inquiry
Iterated belief revision involves successive modifications of one's epistemic state as successive input propo-
sitions are received. Iteration of an implausibility operator over a sequence of propositions is defined
recursively as follows:

1. r*() = r

2. r

A bdief revision agent starts out with an initial epistemic state r and sequentially updates her belieEs
using a belief revision operator *, so we may identify the agent with a a pair (r, •) , which I refer to as an
implementation of *. Such an agent determines a unique map from finite sequences of input propositions
to new belief states as follows:

Inigeoeral, 4n inductive method is a rule.that produces an empirical hypothesis in response to a finite
. sequence of input propositions:

^Inductive methods are the usual objectsof learning theoretic analysis. Since an implementation(r,*) of aV, :" '•'• V
belief revision operator * is a special land of indncttve method, it b i : ,'
analysis. ' .-. • " "yj^^;/ v^



0.4.1 Data Streams
Suppose a scientist who uses an inductive method / is faced with the task of studying the successive
outcomes of experiments on some unknown system. We will suppose that the outcomes are discretely
recognizable, and hence may be encoded by natural numbers.

The data stream generated by the system under study is just an infinite tape on which the code
numbers of the successive outcomes of the experiment are written. The first datum arrives at stage 0,
so a data stream is a total function e defined on the natural numbers. Let U denote the set of all data
streams. An empirical proposition is a subset of U. In other words, the truth of an empirical proposition
supervenes on the actual data stream.

Consider the scientist's idealized situation at stage n of inquiry. At that stage, she observes that the
outcome for stage n is e(n). Epistemically, she updates on the empirical proposition [n,e(n)], which is
defined to be the set of all data streams c' such that e'(n) = e(n). The initial segment of the data stream
scanned by stage n is

c|n = (e(0) , . . . ,c(n-l)) .

The length of of this sequence is defined to be n:

lh(c(0), . . . ,e(n-l)) = n.

The tail of the data stream remaining to be scanned from stage n is:

n|e = (e(n),e(n+l),. . .).

Prior to stage n, the scientist updates on the sequence of empirical propositions

[[e|n]] = ([0, «(<))],..., [ n - l . e ( n - l ) ] ) .

Then her inductive method's output prior to observing e(n) is just

/(tt«l»D) = /(([0, e(0)),..., [n - 1, e(n - 1)])).

Note that [[e|n]] is not the same thing as the empirical proposition

[e\n] = {e'€U: e\n is extended by e'},

which states that the finite outcome sequence e\n has occured. Rather, [e|n] is the intersection of all the
propositions [»,«(»)] occurring in Qe|n]]. Now that these distinctions are dear, I will simplify notation by
writing

0.4.2 Empirical Questions
Inquiry lias two cognitive aims, seeking troth and avoiding error.13 Seeking truth involves relief from
ignorance. One ample way to specify nontrivial content is to partition possibilities and to require that
the outputs of the method eventually entail the true <^ c€ this target" i>artitkm. We may think of the

^ ^
6o denotes the singleton partition {{e} : e € V}, which corresponds to the hardest empirical question
•what is the complete empirical truth?" and 6i denotes the trivial question {CT}, answered by vacuously
true beliefs.

UWflfiam fame* (IMS), (Leti 1981).



0.4.3 Reliability in the Limit
Given an empirical question 6, one may hope that one's method is guaranteed to halt with a correct
answer to 6. But no bell rings when science has found the truth,13 suggesting the weaker requirement
that inquiry eventually stabilize to a correct answer to 6, perhaps without ever knowing when it has
done so. Then we say that the method identifies an answer to 6 on c, or that the method identifies 6
on e for short.

It is not enough that a method happen to stabilize to the right answer in the actual world: scientific
success should be more than opinionated luck. Reliability demands that a method succeed over some
broad range K of possible data streams. One may think of A' as the domain of the agent's initial
epistemic state (i.e., the set of worlds that the agent might possibly admit as serious possibilities in the
future). But one might also think of K simply as a range of possibilities over which the method can be
shown to succeed, so that the method is more reliable insofar as AT is larger (weaker). When the method
identifies 6 on every data stream in K, we say that it identifies 6 given K. In the special case when the
target partition is 6 0 , we may speak simply of identifying K.

Definition 7

1. f identifies © given K just in case for each e £ K, for all but finitely many n, e £ f(e\n) C 0(e).

2. f identifies K just in case f identifies 0o given K.

Identification requires that inquiry eventually arrive at complete, true beliefs both about the future and
the past. One may weaken this requirement by countenancing incorrect or incomplete memories of the
past, so long as these do not compromise predictive power. Then it will be said that method projects the
complete future.

Definition 8 / projects K just in case for each e in K and for all but finitely many n, 0 ^ /(e|n) C [n\e].

U projection looks forward, we may also look backward and ask if the method's conjecture at each stage
consistently entails the data received thus far.

Definition 9 / remembers K just in case for each e in K, for each n, 0 ^ /(t |n) C [e\n].

Clearly, / identifies K just in case / remembers K and / projects K. Intuitively, it seems as though
perfect memory would only make reliable projection of the future easier. But for some of the methods
introduced above, this is not true, as will be apparent shortly.

. 0.4.4 Identifiability, Restrictiveness and Completeness
Let if be the set of all inductive methods and let M' C M. Think of M' as a a proposed architecture
or restriction on adimssibk inductive methods. For example, AT may reflect someone's "intuitive" ideas
about rationality (e.g.t that / = (r,*), for some choice of r, •) . Then we may say that 6 k identifiable
by W gfcortf just in case there is an / € M' such that / identifies 0 given #, and nmilarty for the
identifiability or projectability of K hyM'. When M' = M, the explicit reference to M will be dropped.

Architecture AT is inductively complete just in case each identifiable 6 is identified by some method
in Af'- .Otherwise, Ml burixKtivtly,restrictive, in the sense that it prevents us ftom solving inductive
problems we teald have solved by other means.14 In a similar manner, we may speak of completeness
and restrictivraeas with respect to function identification, projection, or memory. RestikUvqicsB raises

uThkdMrmiii€phrMe it from Wflfiam James (IMS).
uTbc torn "wtrictiimiM* m due to O»hct»on et al. (1966).



serious questions about the normative standing of a proposed account of rational inquiry, since it seems
that rationality ought to augment rather than inhibit the search for truth.15

The main question before us is whether insistence on a particular belief revision operator * is restrictive
(i.e., prevents us from answering inductive questions we could have answered otherwise). Let M* denote
the set of all inductive methods that implement the plausibility revision operator * (i.e., M* = {(r, *) :
r € IA}. I say that * is complete or restrictive (in any of the above senses) just in case M* is.

Some of the belief revision operators introduced above are restrictive. But their restrictiveness is
manifested in a curious way: they are complete with respect to projection and they are complete with
respect to memory, but they are restrictive with respect to identification. In other words, such methods
can be implemented to remember or to project the future, but cannot be implemented to do both. Such
a method is said to suffer from inductive amnesia. Inductive amnesia says that those who don't want to
repeat history should forget it!

Since restrictiveness is a matter of preventing the solution of solvable problems, it is useful to charac-
terize the set of solvable problems. Identifiability has an elegant topological characterization. Let K be
a collection of data streams. Recall that for finite sequene c, [e] = {e 6 U : c is extended by e}. A if-fan
is a proposition of form [e] n K. Then we say 5 is K-open (or open in K) just in case S a union of K-
fans. S is K-closed just in case K — S is /C-open.

- Proposition 1. (characterisation theorem for partition identification) Let Q[K] denote the re-
striction of S to K (i.e, {CdK : C € 6}). Then 6 is identifiable given K just in case S[K] is countable
and each cell in Q[K] is a countable union of K- closed sets.16

Proof: (Kelly 96). H
The characterization of function identifiability is even simpler:

Proposition 2 (characterization theorem for identification) The following propositions are equiv-
alent:
1. K is identifiable; 2. K is projectable; 3. K is countable.

Proof: In Appendix I. H
Projectability and identifiability are equivalent with respect to the collection of all possible inductive

methods, but not when we restrict attention to methods implementing an inductively amnestic revision
operator *.

0.4.5 Counting Retractions
No scientist likes to retract. The social stigma associated with retraction reflects the painful choices and
costly conceptual retooling that scientific revolutions entail (Kuhn 1970). Counting retractions provides
a refinement of identification results. If 6 is identifiable, we can ask how many retractions are required
in the wont case to identify 6 and demand that a method never exceed this bound.

Definition 10

/ . retractions(f,e) = \{k:f(e\k)<£f(t\k + l)}l

t f identifies K with n retraction* just in ease f identifies K and for each e in K, retractions(f,c) <

S. K u identifiabU with n retract ions jttst in case
n. """"

"The principle that ratrictbcnew calk into qmcition the normative ttencfiag of rales of rationality it -minriitH in
(James 1948) and (Putnam 1963). Thk principle motivates much learning theoretic work ( e * , Osherson et al.t 1906),
(KeOj 1996).

16Le.t each cell is 1% in the Bond hierarchy over K (Kelly 96).



Identification with n retractions has a natural characterization in terms of Spohn's implausibility assign-
ments independently of any choice of operator, a pleasant and revealing connection between learning
theory and belief revision.

Proposition 3 (characterization of n retraction identifiability) Q is identifiable given K with at
most n retractions just in case there is an r such that rng(r) = {0,. . . , n}, K C dom(r) and for each cell
C E 0, for each k<n,

1. C is open (and hence clopen) in r~x(k) and

2. Lt= 1 »"~1(0 *s closed in dom(r).

Proof: In Appendix I. H
e is isolated in S C U just in case for some n, [e\n] OS C {e} (i.e., {c} is clopen in S).

Proposition 4 (characterization of n retraction function identifiability) K is identifiable with
n retractions just in case there is an r such that rng(r) = {0, . . . , n}, K C dom(r) and for each e € K, e
is isolated in [e]^.

Proof: In Appendix I. H

0.5 Some Diachronic Properties of Implausibility Revision
Three diachronic properties of implausibility revision operators have particular relevance for reliability
considerations. The first requires that the operator always produce new beliefs consistent with the current
datum and the domain of the current LA. All belief revision theorists insist on this requirement and all
the methods under consideration satisfy it.

Definit ion 11 (local consis tency) (r, •) is locally consistent just in case for all (A\,. ..,An+\) such
that dom(r * (Alf... , ) ) 0

> The next property requires preservation of the implausibility ordering among worlds satisfying all the
input propositions received so far. This does not entail that the ordinal distances between such possibilities
are preserved (gaps may appear or disappear).

Definition 12 (positive order-invariance) (r, •) is positively order-invariant just in case forall(Ai,..., An)
such that n > 0, for all w,u/ e dom(r)nAin...nAn,

L Wtuf edom(r*(Ai,...,An) and

>(r*(Ai^

A stricter property requires, as well, preservation of the ordinal distances among worlds consistent with
all the data received to far.

Definition 13 (positive invariance) (r,*) u positivdy invariant just in case for all A x,..., A*) such
thatn>0,fordlw$u/edom(r)r\Aln...nAnt

L w,w*edom(r*(Ai,...,An) and

2. r(W)



Local consistency and positive order-in variance say nothing about what to do with worlds that do not
satisfy E. One requirement, reflecting high respect for the data, demands that each world satisfying E
be strictly more plausible than every world failing to satisfy E. This property goes much farther than the
requirement that the updated belief set b(r • E) entail E. It governs the overall implausibility structure
concerning even remotely plausible worlds.

Definition 14 (positive precedence) (r, •) is positively precedent just in case for all (A\,..., An), for
all w e dom(r) n A\ C\... H An, for all w1 £ dom(r) H A\ C\... D An,

1. w1 e dom(r * (Ai,..., i4n)) and w1 £ dom(r * (A\,..., >tn)) or

2. w,u/ £ dom(r*(Ai1...iAn)) and (r* (Ax,.. .,An))(w') > (r * (Au..., An))(w).

For each of the properties just defined, we say that * has the property just in case (r, •) has the property,
for each IA r.

Local consistency, positive order-invariance and positive precedence are logically independent. To-
gether, they force a belief revision method to behave in a manner that makes a great deal of sense if
finding the truth is the goal of inquiry. Consider a method with all three properties. It starts out with a
fixed implausibility ranking r on worlds. Upon updating on E, positive precedence requires that all the
non-i?-worlds are either weeded out altogether (they are not even in the domain of (r • E) or are sent
to a "safe" place beyond all the E worlds). By positive order-invariance, the E worlds remain ranked
as they were before, (the ordinal intervals between two £7-worlds may stretch or contract, however). By
local consistency, the lowest of these 2?-worlds must drop to the bottom of the revised IA. As inquiry
proceeds, such a method continues to weed out the non-2? worlds and to conjecture the most plausible
remaining worlds, according to a fixed implausibility ranking, so eventually the actual world migrates to
the bottom of the ranking and the method's belief state is true forever after.

This kind of procedure has long been entertained under a variety of headings. In the philosophy of
science it has been referred to as the method of bold conjectures and refutations (Popper 1968) or the
hypothetico-deductive method (Kemeny 1953, Putnam 1963). In the learning theoretic literature it is
referred to as the enumeration method (Gold 1967). Such a method is natural if one's aim is to converge
to true, sufficiently strong beliefs. I refer to an operator that satisfies all three properties as an enumerate
and test operator. Then we have:

Proposition 5 7/0 is identifiable given K then there exists an r such that

1. rng{r) C u> and

fL for each • such that (r, •) enumerates and tests, (r, •) identifies 0 given K.

Proof: In Appendix II. H
Now suppose that (r, •) is locally consistent and positivdy onler-invariant but does not satisfy positive

precedence. Then the method still maintains a fixed ranking of implaasibflity over the E worlds, bat
^non-^TWorids may fail to rise above ̂  the i£fl*orkb.$Henoe/dtu^

to the bottom of the ranking as inquiry continues, ftom the viewpoint of inductive methodology, this
means that a refuted world may reappear to remain forever in the agent's beliefs, even if all the data
received are mutually consistent. In other words, the agent may irrevocably focget the past. It 4s not

^difficult to choose particular initial epistemic«Utes that lead sudra method toforget. Inductive amnesia
is the much less trivial situation in which every initial eptstemk sUte that ensures that the method
reliably predicts the future also causes it to forget some past datum.

Although *DPtn does not satisfy positive precedence, it satisfies the following, weakened version of
positive precedence. The operator *stn lades this property became possibilities may backslide upon
refutation.

10



Proposition 6 (climbing lemma) Suppose r(e), r(e'), n are /mite and r(e) > r(e'). Then

- (r *DP,n [[e|*]])(e') < (r(e) - r(e'))

Proof: By induction on p*(e,e'). H
The following properties, like local consistency, are axioms of the AGM theory of belief revision

(Gardenfors 88) and are satisfied by all the belief revision operators under consideration.

Definition 15 (timidity and stubbornness) (r, •) is timid [stubborn] just in case for each (A\,..., An+m)
such that (An+l fl. . .nX n + m )n6(r* (ili , . . . ,An)) ? 0,
b(r*{Au...,An))n(An+1n...nAn+m)C[D]b(r*(Au...1An+m)).

Timidity and stubbornness force full belief to evolve by mere accretion (according to the standard
Bayesian approach) until one's full beliefs are refuted by new information. All enumerate-and-test meth-
ods are timid and stubborn and enumerate and test methods are all complete inductive ardiitectures
(proposition 5), which provides something of a reliabilist motivation for these properties.17 Once positive
precedence is dropped, however, timidity and stubbornness assume a more sinister aspect, since these
properties are involved in each of the negative arguments presented in this paper.

Proposition 7 The'following table specifies which of the above properties hold of the operators under
consideration regardless of the choice ofr and of a.

diachronic properties
pos. order-invariance
pos. invariance
local consistency
positive precedence
timidity
stubbornness

C
yes
yes
yes
yes
yes
yes

L
yes
yes
yes
yes
yes
yes

DP, a
yes
yes
yes
no
yes
yes

yes
yes
yes
no
yes
yes

A, a
yes
yes
yes
no
yes
yes

M
yes
no
yes
no
yes
yes

The following table summarizes the changes in the above table when it is assumed that a > raiK>V€(dom(r)).

diachronic properties
positive precedence

c
yes

L
yet

DP, a
yea

S,a
yes

A, a
yes

M
no

Proof: Induction on the stage of inquiry and some simple examples. H

0.5.1 Inductive Completeness Theorems
In light of the preceding discussion of enumerate-and-test methods, it should come as little surprise that
methods like •<?,+L%*D/>, •$,<*, and *x^ are complete strategies for partition identification.

Proposition 8 (complete partition id*
alent:

1. G is identifiable given K;

2. Q is identifiable by *c given K;

S. © is identifiable by *L given K;

tifi tion methods) The following statements are all equiv-

"Poritiv keep efiited worlds at the bottom of the ranking below all other i efated worlds. Positive
precedence sends all refuted worlds permanently above the non-refuted worlds. And local consistency ensures that die
lowest of the non-refuted worlds stay down, so we have timidity and stubbornness.

11



( 6 w identifiable by *DP+> given K;

5. 6 is identifiable by *s,w given K;

6. 6 is identifiable by *A,U> given K.

Hence, *C,*L,*B»*I>P,U»,*S,U»,*A,W are complete inductive architectures for partition identification.

Proof: In Appendix II. H
The following result concerns methods that are complete architectures for identification with n re-

tractions. Recall that problems solvable with n retractions can be packed into an initial epistemic state
whose highest level is n (proposition 3). Methods *Atn+i,*c,*L,*i>P,n+i, and *s,n+i safely launch re-
futed worlds above all non-refuted worlds in such an ordering. Since the truth drops one level at each
retraction, convergence occurs by the nth retraction.

Proposition 9 (n retraction completeness for partitions) 7/6 is identifiable given K with at most
n retractions, then *cv*Li*DP,n+ii*s,n+ii*jt,n+i can identify 0 given K with at most n retractions.

Proof: In Appendix II. H
The following completeness results concern the narrower problem of function identification. It is left

open whether item 7 can be extended to arbitrary partition identification.

Proposition 10 (complete function identification methods) The following propositions are equiv-
alent:

1. K is identifiable;

2. K is projectable;

S. K is identifiable by *c;

4- K is identifiable by *£,;

5. K is identifiable by *s&;

6. K is identifiable by *A,U>;

7. K is identifiable by *DPt2t

8. K is projectable by *DP,I;

9. K is projectable by *sti-

Proof: In Appendix II. H
Most of these equivalences follow from the preceding proposition and concern methods that boost

refuted possibilities above all live* possibilities. A surprising exception b the fact that *DP,I is a
< complete function identification architecture.18 To prove completeness, one most construct, for each K,
an epistemic state r such that {rt*DPj) identifies K. Here is how this can be done in the special case
in which all dements of K are finite variants of one another. First, we define the difference set of all
positions on which two data streams differ:

Then define Hamming distance to be the sue of the difference set.

"It i* left open whether this can be extended to the caae of partition identification.

12



Hamming distance is readily seen to be an extended metric on U. Given a fixed data stream e0 we can
construct an epistemic state

on K. This "Hamming" state has the nice property that a data stream t' that is n steps below the true
data stream t differs from e in at least n positions. When a = 2, e' moves up with respect to e at least
two steps each time one of these n positions is seen, so e' ends up at least one step above e after all of
these positions have been observed. The full completeness theorem is proved by a similar but somewhat
more complicated construction.

0.6 The Grue Hierarchy
To show that a methodological recommendation restricts reliability, one must find an otherwise easily
solvable problem that the recommended method fails to solve, no matter how its initial epistemic state
is arranged. This end is served admirably by an unfamiliar application of a familiar idea due to the
philosopher Nelson Goodman (1983).19 Let 0 represent a "green" outcome and let 1 represent a "blue"
outcome. Then a "gruen" outcome is either a green outcome by stage n or a blue outcome after stage n.
The everywhere green data stream is the everywhere 0 sequence and the everywhere gruen sequence is a
sequence of n 0s followed by all Is. More generally,let -»6 denote the Boolean complement of 6. Let B
denote the set of all Boolean-valued data streams. Then if c € B, let -* denote the outcome stream in
which each outcome occurring in e is reversed (i.e., (~*e)(n) = -*e(n)). Now define the grue operation as
follows:

e\n = (e|n)-i(n|e).

In other words, (e \ n)(t) = e(t) if t < n and = -»e(*) otherwise.
Grue operations are commutative:20

(c J n) t m = (c t m) J n.

Also, gruing twice in the same place yields the original data stream. Hence, each composed grue operation
can be represented by the set S of positions that have grue operations applied an odd number of times.
Let e t S denote the (unique) data stream that results from applying, in any order, any odd number of
grue operations at positions in 5 and any even number of grue operations (possibly sero) at all other
positions.

Now given K C B9 we can define a hierarchy of ever more complex inductive problems as follows:

Definition 16 (The Grue Hierarchy) LetKCB.

The ewen groe hierarchy GgvenCO » defined amilariy, except that (1) is replaced with:

- ^ ^ the full grae hierarchies is important iwsora
methods tinder consideration, but it makes no difference to identifiabOity when no extra constraints axe
imposed on the scientist's inductive method:

Goodman WBS not interested in constructing tmsofoshls JiKJuutivt ptoblems* His DUTDOse was to snow
»for a theory <tf

^Lct Q denote the dosim under conpo^tioQ of the set of grucaflfuiK îotiK {(4*) : * € « } . (a,o) kan Abcfiwigrwip
in which emch dement is its own inwene.

13
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Proposition 11 For all n S a/, c0 6 B,

1. Gn(eo)1G
1eV€n(eo) are identifiable with n retractions but not with n — 1 retractions.

2. GUf(co)1G%V€n(eo) are identifiable but not under any fixed bound on the number of retractions per-
formed.

Proof: In Appendix I. H

0.7 The Main Result
The following proposition determines exactly which problems in the grue hierarchy and the even grue
hierarchy each of the methods under consideration can solve.

Proposition 12 (The grue scale) For each e0 G B, the following table specifies which problems in the
grue and even grue hierarchies each of the methods under consideration can identify. The classifications
are optimal, in the sense that no lower value of a than the one reported suffices for identification of the
corresponding problem.

problem
G»(co)

G"(eo)
':

G*(eo
G*{eo
G»(co
OtvenM
I
GivenM

Given

eo

M
no

\

no
i

no
no
yes
no

\
no

•

no
no
yes

A, a
o = u/

a = n + l
•

a = 3
a = 2
a = 0
a = u>

a = n+l

a = 3
a = 2
a = 0

S,a

a = 2

•

a = 2
•

a = 2
a = 2
a = 0
a = l

I
a = l
•

a = l
a = l
o = 0

DP,a
a = 2

•

a = 2

a = 2
a = l
a = 0
a = l

•

a = l

•

a = l
a = l
o = 0

L

yes

':

yes
i

yes
yes
yes
yes

:

yes

I
yes
yes
yes

C
yes

yes
-

yes
yes
yes
yes
i

yes

I
yes
yes
yes

Proof: Propositions 10 and 18 in Appendix II, proposition 21 in Appendix IE, and impositions 28, 29,
30, and 31 in Appendix IV. H

Most of the positive results in the table follow from more general completeness resolts already dis-
cussed. Noteworthy exceptkms are the abilities of *s,i and *DP9I to identify ^ ^ ( e o ) . This contrasts
markedly with the situation in the fall grue hierarchy, in which these methods all faU by level three.
The situation is quite different for *M and • A ^ , whkh see no improvement in the even grue hierarchy
(proposition tt^.^Xbejxoblem^
The evolution of •s.i and of •pp.i in this problem can be pictured as fbOows. Suppose the method starts

ih i i i l j iout with an initial rpjstcmic state ranking each data stream according to its
given data stream to. Suppose e is the truth. Then the set of daU streams differing fro

r distance from a
g o only where

e# differs from e may be viewed as a finite dimensional hyper-cube whose dimensionality irHtirbwy the
l b f diff b d h k

p y
total number of differences between eo ande. Think of this hypercube as resting balanced on the vertex
labelled with eo. To find the initial impossibility of a vertex, find the shortest path from the bottom erf
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the cube to that vertex. It is shown (proposition 31) that if we resrict attention to these possibilities, the
sequential operation of both *s,i and *DP,I can be viewed as the rigid rotation of the hypercube from
one vertex to another on a direct path to the true (originally uppermost) vertex e. After e is rotated to
the bottom, the rotation stops and the method has converged to the truth!

The happy image of learning as hypercube rotation cannot be extended to the full grue hierarchy.
Indeed, no matter where we insert the data stream -»eo into the restriction of the Hamming ranking to
^even(eo)> *s,<* fails even when a = 2.

Proposition 13 For each r D rfo\G%ven, (r, *st2) does not identify G^V€n(e0) U {-̂ Co}.

Proof: Appendix III. H
Why should adding a single possibility to G^ven(co) matter so much? Consider the case in which a = 1.
If we place -no at an infinite level of the Hamming ranking, then it never falls the infinite distance to
the bottom of the ranking, since the infinitely many elements of G1(eo) occurring lower than -»co are
never all refuted. If we insert - to at a finite level, then - to is below some other data stream e agreeing
with -*o as far as we please. If e happens to be the truth, then the cube rotates as usual until -*eo ends
up at the bottom vertex. By timidity and stubbornness, -*€0 occupies the bottom level of the epistemic
state until its first position differing from e is observed. By positive invariance, the presence of -*e0 at
the bottom prevents the next vertex of the hypercube from dropping to the bottom level when the vertex
currently at the bottom is refuted. Now instead of resting on a new vertex, the cube rotates up with one
edge parallel to but not touching the plane. This causes e to become forever confused with a unit variant
that was previously one level below it, as a simple simulation on a three-dimensional cube will illustrate.

By proposition 13, the initial state 4*5,2 employs to identify GUf(eo) cannot be an extension of the
Hamming ranking over Geven (*<>)• I 0 8 ^ 8 ^ I employ a ranking based on grue distance, or the number of
grue operations required to transform one data stream into another (cf. Appendix III).21 Define the grue
set for two data streams as follows:

r(e, e') = {n € w : [n = 0 A e(n) ?e'(n)} V [n > 0 A -*(e(n - 1) = e'(n - 1) O e(n) = e'(n))]}.

The terminology is justified by the following fact.

Proposition 14 F(e, e') is the least 5 C w such that e' can be obtained from e by applying grue operations
only at positions in S.

Proof: Omitted. H
Now define the grue distance on B as follows:

In light of the preceding proposition, groe distance is the least number of grne operations required to
transform e into tf. It is readily verified that groe distance is an extended metric over B. Hie initial
epistemk state on B induced by grne distance is just:

For an algebraic peapacthw on tha trfntinmiliip hatawawi ig iwH r g , Afim. tin. Hamming »*A
-orders as follows (figure 1): ... . •
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Figure 1: Hamming and Gnie algebras

These orderings are isomorphic copies of the inclusion ordering on the power set of o; and hence are
isomorphic Boolean algebras, but they label this structure very differently (e.g., adjacent elements of the
Goodman algebra are complements in the Hamming algebra). Moreover, GF(eo) is the union of the finite
levels of r£, whereas the union of the finite levels of rf0, is just GeVen(eo):

Proposition 15 For each n, Gn(to) = U,<n
 r S -

Proof: direct consequence of proposition 14. H
The method (r£,*s,2) identifies GP(eo) in an intuitively attractive manner. It starts out gamming

that the true data stream is «o- When it encounters a surprise at stage n, it then assumes that the true
data stream is to tn, and so forth, always introducing the smallest number of gnie applications to c0 that
is consistent with the data (propositions 21.2 and 20). Recall that *s,2 has the objectionable property
that a possibility can become more plausible when it is refuted if only very implausible worlds are refuted
by the current datum/ The implausibility ranking based on gnie distance prevenst this possibility from
ever occurring. This initial state has the property that, at each stage prior to convergence, a highly
plausible (degree 0 or 1) possibility is refuted. Since a = 2, all refitted possibilities are pushed up at least

. .one step by *s,2- When or < 29 refuted possibilities do not rise when the agent's beliefs are not refuted,
so the same argument does not work and in fact cannot be made to work since Gl(eo) is not identifiable
by *5,i.

Turning to the negative results, it is remarkable that *jr, *s,i and *A,I cannot even identify Gl(eo)
«. (proposition,29).^DPti survives just one level higher, failing on g?(co) (proposition 28). *a,* compares

unfavorably with *s,<* and *DPJ*9 because *G,»+I fails on G*+1(co), far each », whereas *sj and *DPJ

succeed on G^(«o)- By t^opositioo 11, G^(cp) can be solved with just nretractk)nsl^
that starts out conjecturing eo and that refuses to believe m groe o p e r a t e u^

-negative resnkssimplythi^tthk sensiUe behavior cannot be obtained from •jr, +s9i or ^ l , no matter
how deverly the initial epistemk state is arranged.

By thefotkmiogpiopoatkm, aUoftlie n ^ ^
21Thkidcakfamlfi»rincompqt€r>ciencc>«m way to compeer image filo. hmUmd of reootdtng the inteantgr of each

p b ^ separately, one records the places at which l o t ^ ^
intensity.
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Proposition 16 Let e0 € B.

1. All of the methods under consideration can remember the past.

2. All of the methods under consideration can project G*(eo) so long as a > 0 Among these, only M
fails to be a complete projector.

Proof: propositions 19, 21, and 10. H
The inductive amnesia results reflect a fundamental, epistemic dilemma for iterated belief revision meth-
ods. Recall tha belief revision theory can be stretched in two directions. Lumping all possible worlds
together at one level of implausibility makes belief revision behave like an accretive tabula rasa that
takes no inductive risks and never encounters a contradiction. Spreading worlds out at distinct levels of
implausibility makes belief revision look more like Popper's methodology of bold conjectures and refu-
tations. The former extreme secures perfect memory and the latter secures predictive reliability. But
if as a is set too low, the Popperian belief re visor "leaks" information about past refutations since re-
futed possibilities are inserted back into the enumeration of "live" possibilities. So memory requires a
sufficiently "compressed" epistemic state and prediction demands a sufficiently ararified'9 epistemic state.
Once this fundamental duality is recognized, the question is whether there exists a critical value of a
below which the competing pressures can no longer be satisfied jointly. Perhaps the most striking result
of this investigation is that the methods *s,a and */>j>,a enjoy an infinite jump in reliability when or is
incremented from one to two. For a > 2, the methods succeed over the entire grue hierarchy. For a < 2,
neither can cope with more than two grue shifts in the data stream.

0.8 Dropping Well-ordering
So far, it has been assumed that epistemic states well-order the possible worlds in their domains, since
epistemic states assume ordinal values. This assumption is not generally accepted in the belief revision
community, so we should consider what happens when it is dropped. The positive identifiability results
are not affected since success based on a well-ordered initial state is still success. It is the negative
results that require scrutiny. For example, well-ordering is involved in the proof that • j# fails on the easy
problems (?even(co) and Gl(eo). Since *M has a straightforward extension to a wide class of non-well-
ordered epistemic states (Boutilier 94), we should examine whether its modest learning abilities improve
in this more general setting.

Let R = (/?,<) be a totally ordered set. Let min(RtE) denote the set of all minimial elements of
E d D. For present purposes, an epistemic state is a total order R = (D, <) such that D C U and
for each proposition E € {U} U {[t,ft] : j , * € fa/}, min(A,£) ^ I. In other words, an epistemic state

-is a total txder on data streams that has a least dement and in which each observation of an outcome
(consistent with the domain of the order) has a least dement. The associated belief state of A is given fay
b(R) = ndn(RtU). Upon receiving new information [«,*], *M updates the epistemic state Rt = <
producing a new state R* = ( i>j ,<i) , such that

1. min(R2tU) = mhk(Ru[i9k]) (which is nonempty) and
• • • .

2. for all e, ef € D i - min(Al9 [t, ft]), e <2 ef «+ e <x ef.

In other TOrds, * j * brings min(Aif [t9ft]) to the bottom of the new state and rigidly raises
the wodds so that the lowest are immediately above min(Ai,[t, ft]) in the revised ordering. A
method implementing *jf is a pair of form (it, +n). Now we have:

Proposit ion 17 Redefine *M and epistemic states as just described. Then:

1. G1(eo)yG
1
ev€n(eo) are identifiable by *M
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t. G2(e0)yG
7
€V€n(e0) are not identifiable by *M

Proof: in Appendix IV. H
So the learning power of *M improves slightly in the more general setting in which the well-ordering

assumption is dropped. This result illustrates how learning theoretic analysis can be employed to criticize
controversial assumptions about the nature of epistemic states.

The well-ordering assumption is also involved in the negative results concerning *>t>n,
22 *s,i, and

*DP,I- But these methods were originally defined only on ordinal-valued epistemic states (Goldszmidt
and Pearl 94; Darwiche and Pearl 97; Spohn 88), and it is unclear how these methods should be extended
to arbitrary, totally ordered states. If, more modestly, degrees of implausibility are taken to be numbers
in a non-well-ordered system (e.g., rationale, reals, or nonstandard reals) then all of these methods are
enumerate-and-test operators if the domain of the initial epistemic state is confined to the [0,1) interval,
and hence are empirically complete (proposition 5). A systematic survey of possible generalizations of
these methods lies beyond the scope of this paper.

0.9 Conclusion
The normative principles of belief revision theory have been motivated by intuition, coherence, and
symmetry considerations. The natural question whether following such a rule would help or hinder the
formulation of informative, true beliefs has largely been ignored. Once this question is entertained, a
range of interesting and unanticipated issues emerges, such as (i) inductive amnesia, (ii) the essential
tension between compression and rarefaction in the epistemic state, (iii) the pivotal significance for the
resolvability of this tension of the value a = 2, (iv) the idea of generating epistemic states from operations
on data streams or as ranks in Boolean algebras, (v) the utility of grue distance for improving the reliability
of belief revision methods, (vi) the appealing portrayal of induction as rigid rotation of a hypercube, (vii)
the image of tail reversals in data streams "derailing" this rotation and (viii) the relevance for reliability
of well-ordered degrees of implausibility. These issues are not drawn from a priori intuitions. They are
rigorously derivable from the straightforward aim of arriving at nontrivial, true beliefs. As such, they
can serve as well- motivated constraints on theories of rational belief revision.

The results of this study should be expanded and generalized. It is left open, for example, whether
•5,2 and *DP,7 are complete architectures for partition identification. The rest of the results could be
cast in more general settings, in which the order of the data may be scrambled, experimental acts may
be performed, meaning shifts are possible, and so forth.33 But even the simplified, narrow setting of the
present study illustrates how a systematic logical analysis founded cm the aim of finding true, informative
beliefs can serve as a powerful and interesting constraint on belief revision theorizing; a constraint that,
it is hoped, will become as familiar to belief revision theorists as the usual representation and equivalence
results are today.
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0.12 Appendix I: Proofs of Characterization Theorems
Proof of proposition 2: 1 => 3 follows from proposition 1. .

3 =» 1: Suppose K is countable. Then 6o[«K] has countably many cells. Moreover, each cell {c} 6
Qo[K] is K-cloeed, since U - {e} = \J{[e] : e £ c}. Hence, by proposition 8, 6 0 is identifiable given K,
so K is identifiable.

1 => 2 is immedate.
2 =» 1: suppose that method / projects K. Now define method g, which identifies K, as follows.

'<"={&)[e]nph(e)|e] if 3e ,»# /(e) C ph(e)|e]
otherwise,

where e* is an arbitrary element of [e].H
Proof of propodtion3: (-*): Suppose

• (i) /identifies 6 given Jftwith n retractions. Define for each e € K:
(ii) r(e) = k Oretraction«(/,e) = k. Thus,
(ill) ng(r) = {0, . . . ,n} and K = dom(r).
Let C € 6 . (1) Suppose lor reductio that C is not open in r'^k). Then some e € KHr-^nC is
a KmH point of A - n r - ^ ( t ) - C. So for each » there is an a € r"1^) - C soch that «\i = e\i. Let
» = t h e k » t m , «ichthatforaUm /> m,f(e\nf) = /(e|m), so by (i), f(e\w) C C and (by ii) / uses
a full * retractions along e by stage w. But since e . ^ C and e«|to = e|w, there is a vaf >.w such that
/ ( « » W £ C *«* J(*mW) £ i f - C Hence, / performs more than k retractions ak»g e». Gootradktioii.

• S o • • - . . " ' ' " " ' • • - • - • • •-

(iv) C ie optm in r~l(k).
(2) Define:

{ceu><» :/performsat least ft + 1 retractions by the end of e}. Then
ULir~H*) - {«€ dom(r): retraction^/,e) < *} = K-[}{[e] :e€G}. Hence,
(v) U?=i r~l(i) is closed in dom(r). The proposition is established by (iii), (iv) and (v).
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(<-): Deferred to proposition 9. H
Proof of proposition 4: (->): let r be as guaranteed by proposition 3. So K C dom(r), rng(r) =

{0,.. .n}, and for eadi t G K, {e} is open in r~1(t) and for each k < n, (jf=1 r"1(t) is closed in dom(r).
Let c G A". So there exists a * such that r(e) = k. Since {e} is open in r~1(t), 3nVm > n,[e|m] n
r-x(*) = {«}• Also, Ufr/r-^i) is closed in dom(r). So 3n'Vm > n',[e|m] O U^ 1 *- 1 ^) = •». So
Vm >max(n,n/),[c|m]nUf=1 r"1^) = {c}. Hence c is isolated in [e]£.

(«—): Deferred to proposition 9. H
Proof of proposition 11: (1) For the (^(eo) case, let r~l(i) = C?(co), for each t < n. For the

GevenM case, let r~l(i) = (^(eojevenfco). Observe that for each c G r-^t), {c} is isolated in [e]£ and
apply proposition 4.

For the negative claim, assume for reductio that g succeeds on Gn+1(eo) with n mind-changes. Feed
to g data drawn from e0 until a stage k0 is reached at which g outputs {e0}, which g must do since
c0 G G^eo). Then proceed by feeding ei = e01 * until y outputs {ei}. This procedure can be continued
until n + 1 grue operations have been applied. But then n -f 1 retractions are perfomed by g on the
resulting data stream Cn+i- Contradiction. The negative argument for Geven(eo) is similar except that

(2) The following method identifies CfUf(eo): enumerate the whole set and output the first data stream
in the set that is consistent with the finite outcome sequence e seen so far. The negative claim follows
from part (1). H

0.13 Appendix II: Completeness Proofs
Proposition 18 For each c, {c} is identifiable with 0 retractions by *j#, *A,O, *S,O, *DP,O-

Proof: Choose r so that dom(r) = {c} and r(e) = 0. H

Proposition 19 Lê  Co G B. *A/ con

Proof: Let f^O) = {c0} and let r~l(l) = {-^o}. If e G ^(co) , then e is a finite variant of either c0 or
-no. It is easy to check that (r, *j/) succeeds. H

Proof of proposition 5: Suppose 6 is identifiable given K. By proposition 1, we may suppose
that for each cell Cj G O[K], there exists a countable union Bj = \J°° S? of K-c\osed sets such that

. Enumerate {5? H/f :i,jew} a s / l o , . . . , ^ , . •• Define
{

Evidently, rng(r) C ai. Let • be such that (r, •) enumerates and tests. Hence, (r, *) is locally consistent,
positively-invariant, and satisfies positive precedence. It remains to show that (r,«) identifies 6 given
K. Let e G if. Since the ft cover if, r(e) is defined and c G iir(e). Since each ft is AT-doeed, so is
M ^ U & ^ f t . a i K ^ f i m t e u i i k ^
a set 5 of finite sequences such that K - [c]< = K n U^5[e].Sinoee€/ir-[e]<> there k aft such that
e|ir G 5. So since dom(r) = if, we have for each V > k,
( ) [ ] < [ | f t 1 [ l < W t l «
By (ii) and positive precedence, we have that e 6 dom(r • Hc|*qj) and for each e'€[«!<,

U d i r i that for « ^
iH n p

(*•) fr • H«I*T1)(«) < (r •ffel*U)(O- But by local consistency,
()(ff|ftU)l()^#( f f U ) (
By (iii-v), we have
(vi) c € 6(r • [[cl*7]]) = (r, •)(e|*/). It remains only to establish that
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Let C be the cell of G to which e belongs. Let e' € dom(r) - C. Then e' £ Rr(e) C C, so

Case I: suppose c' £ [e|Jb/]. Then by positive precedence, either c' g dom(r*[[e|/t/]]) or (r*[[c|fc/]])(e) <
(r * [[e|*T])(e'). Thus, • * *(r *CL [W^]) = (r, •)(«!*')•

Case II: suppose t! € [elf]. Then by (ii), and (vii), r(e) > r(e'). By positive invariance, (r *CL
IMVDMO > (r • « . [M*W(<0, so again e' * 6(r *CL [W*1]) = (r, *)(e|*'). H

Proof of proposition 8: The implications 2 = » l , . . . , 6 = * l a r e immediate. The implications
1 =*• 2,3,4,5,6 follow from propositions 5 and 7. H

Proof of proposition 9: Suppose 6 is identifiable given K with at most n retractions. Then by
proposition 3, there exists an r such that
(i)rng(r)C{O,...n}and
(ii) K C dom(r) and for each cell C € 6, for each k<n,
(iii) C is open (and hence clopen) in r~1(k) and
(iv) Ui=i r"1(0 *• ^-closed. Let * range over *c, *L, *DP,k+i, *s,k+u *A,k+i- By (i), *+ 1 > »'above(
dom(r)), so by proposition 7, * generates and tests. So by proposition 5, (r, *) identifies 6 given K.

Let t € K. It remains to show that each of these operators performs at most Jfe retractions along e
when started out on r. Suppose that (r, *)(e\k) £ (r, *)(c|Jb + 1). Then
6(r * [[e\k + 1]]) £ b(r * [[e\k]]). So there exists an t' such that
(v) (r * \[e\k + ll])(e') = 0 but (r * Qe|Jb]])(e/) ^ 0. So by the definition of *,
(r •tt«|*]])(e/|[t, «(*)]) = 0-So
(vi) -min{(r* [[«|*]])(e'O : e" € dom(r * [[e|Jb]]) n [*, e(*)]} + (r • [[el*]])^) = 0. By (v) and (vi),
min{(r« ae|*ll)(e'O •'«" € dom(r* ([e|t]])n [*,«(*)]} > 0. Hence,
-min{(r* tie\k)])(c") : e" € dom(r * [[e|*]]) n [t, e(*)]} + (r * [[e|*]])(e) < (r * [[e|*]])(e), so
(r * [[e|Jb + 1]])(«) < (r • [[e|*]])(e). So we have that
(vii) for each it such that (r, *)(e|*) £ (r, *)(e|*+l), (r *[[e|Jt+l]])(e) < (r*[[e\k]])(e). But by hypothesis,
r(e) < n. Hence, (r, *) performs at most n retractions along e. H

Proof of proposition 10: 3 =^ 1, . . . , 7 => 1,8 => 2,9 -> 2 are immediate.
1 =» 3 , . . . , 1 =*• 6 are instances of proposition 8. 1 <* 2 is from proposition 2.
2 => 9: Let * = •s.i- Let if be projectable. Then K is countable. Enumerate if as eo, «i, Let

r~*(t) = {e,-}. Let e € K, so for some t, c = e,-. First it is established that:
(i) VnVt, (r *s,x ffelnD)"1© » fi^te-
This is evident by the definition of r when n = 0. Suppose (i) holds up to n. Let m = min{(r*[[e|n]])(e/) :
t! € dom(r * Qe|n]]) Ae*e [n, e(n)]} and let
ml = min{(r • Qe|n]])(eO : t> € dom(r * [[e|n]]) A e' € (/ - [n, e(n)]}
Then by the definition of *, we have (r * Qe|n + 1 © - 1 © = ([n,e(n)] n (r * ^InflJ-^m +»)) U ((U -
[n, e(n)j) n (r * [[e|n]])-1(m/ + » - 1 ) ) , under the convention that (r * [[eH)"1^)) = 0 if z < 0. This set
u finite by the induction hypothesis. So we have (i). Next, we establish
(ii) If *(r • Re|n]]) H [n, e(n)] = 0 then (r * [[e|n + l]])(e) < (r • [[e|n]])(e) - 1 .
For suppose b(r * Qe|n]]) n [n, e(n)] = 0. Then since e € [n, e(n)], we have

(r« ([e|nlJ)(eO : e' € dom(r* Qe\nJl)n[n,e(n)]} + (r •
< -1 + (r • ffe|nD)(e). So we have (H). Next we establish:
(iii) if W € Hr * tt«l»D). "K # »l«. then 3m > n, b(r * He|mJl) n [m, e(m)] = 0.

fFbr^oppose that for^Jl e t e *(r *{[e|n]]),n|e/ # n | e . . Suppose fcr ndnctio that for all m > n, b(r*
Qe|m]]) n [m, e(m)] # 0. Then by timidity and stubbornness (proposition 7),
(iv) Vm > n, *C*[[«IH]) = b{r*U.e\nJ\)n[n,e(n))n.. .n[m-l,e(m-l)).b{r*\[e\n]\) is finite by (i). So by
the hypothesis of (iii), there exists an ml > n such that *0*»[le|nfl)nln,e(n)]n.. J\[m-l,e(m-l)] = 9.
By (iv), b(r * gelraTl) = 0, contradicting local consistency and wUHmhing (iii). Next we need
(v) if Be1 € *(»"*[I<|nD) such that n\ef = n|e, then then 3m > n such that *<r*[[e|m]]) = {</' 6 6(r*[[e|n]]):
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Figure 2: Completeness of *DP,2

m\e" = m|c}. For by (i), there is an m > n such that b(r * [[e|n]]) H [n, e(n)] f l . . . fl [m - 1, e(m - 1)] =
{e" G 6(r • [[e|m]]) : m|c = m|e"}. But by timidity and stubbornness, b(r • [[c|m]]) = 6(r • [[e\n]]) H
[n, c(n)] O . . . O [m — 1, c(m — 1)], establishing (v). Finally, it is shown that
(vi) if Ve' G b(r • [[e|n]]), n\e' = n|c, then Vm > n, 6(r • J[e|m]]) = b(r • [[c|n]]).
For by local consistency, b(r • [[e|n]]) ^ 0. So by timidity and stubbornness, (iv) holds at each stage
m > n, yielding (vi).

Consider the following procedure: Start out at stage 0 with r and let no = 0.
At stage k, if b(r) contains no e' such that n*|e' = n^|e, apply (iii) to obtain an rik+i such that

b(r * [[e|n*+i]]) fl [ n ^ i , «(n^+i)] = 0. Otherwise stop the procedure.
The procedure halts by stage r(e), for by (ii), (r * [[e|n*+i]])(e) < ( r* [Mn*]])(c) — 1 (i-e-i c drops by

at least one step at each stage) and when c G 6(r • (Hn^c)]]), the condition for continuing is no longer
satisfied. Let k be the last stage and let m = tik. Then by the halting condition, we have b(r) contains
an t' such that m|e' = m|e. By (v), there is an mf > m such that 0 C 6(r • [[elm']]) C [m'\e] By (vi), this
situation remains for each m" > m'. So (r, *) projects /if.

2 =» 8: Follow the steps in the preceding argument. A shorter argument may be given using the
climbing lemma.

1 => 7: Define restricted Hamming distance as follows:
p*(e,e') = |A(e,e /) H { 0 , . . .,ib — 1}|. While this is not a metric, it does satisfy the triangle inequality,
which will be used below.

Suppose K is identifiable. So by proposition 2, if is countable. If e € K then let [e]x be the set of
all finite variants of e in K. Since if is countable, we may enumerate these classes as Co , . . . , Cni For
each t, choose a unique element ei € C,. For each e G Kt let z(e) denote the unique w such that e G Cw.
Now define the IA r as follows:
r(e) = p ( « , ( e ) , e ) + z ( e ) . Let eeK and let
(i) r(e) = m and z(c) = w. Define P = {i < m : i ^ u;}. If t G P, then there are infinitely many m such
that ti(m) £ e(m)9 so there is a ft* such that Afc<(ei9e) > 2m. Moreover, there is a/ sufficiently large so
th** «(«• .«) = /<«•.«)• Since P is finite, let k = max({i|: t € P}U{j}).Utk'>k.So
(ii) pk'(ci,c) > 2m. We now establish that
(Hi) W > k9e e K9€? ± e =» (r *DPj M^)W) > (r *DP* tte|*T])(e). ̂  e'eK9€

f^e.
Case 1: e7 G [e]^ - [ejjr. So x(ef) ^w.Lct x(J) = t. So by the definition of r,

) M * » « 0 <*K*,«0 <m.By the triangle inequality:
( 0 ( )( 0

, tf) > pk*(ei, e) - />**(«*, «0 > 2m - m = m, by (ii, iv). Hence
(v) pk*(cfef) > m. By the climbing lemma (proposition 6),
( ffliflM) ( tt|T])(O* M ( t tt|T])(O (K) K
< m - r(e/) - 2m < 0 (by i, v), so (iii) obtains in this
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Case 2: c' € [c]£ H [e]K. By choice of *,
(vi) Pk*(««,«) = /K««,«)- By the triangle inequality,
p*/(e,e') + p*'(e«,,e) > pk»{ew,e), so
(vii) p*'(e,e') > />jt'(c«;,c) — p*'(e«,,e'). By the definition of r:
r(e) - r(e') = (p(cw, e) + u;) - (p(e«,, e') + u;)

< Pfc'(cw,c) - p*'(eW9e
#) (by vi)

<p*'(e,e') (by vii). So
(viii) r(e) — r(e') < p*'(e,e'). By proposition 6,
(r *Z>P,2 [ M * W ) " (r */>P,2 [[e|*1])(e) < (r(ef) - r(C)) (
< Pfc'(c,c#) — 2pk*(e,e') (by viii), which quantity is negative, so long as p*'(e,e') > 0.24 So it suffices for
(iii) to show that pk'{e,e') > 0. Suppose p*'(e,e') = 0. Then
(ix) t\k' = c'l^. By (vi), we have
(x) V\e = V\tw. By the case hypothesis, r(e) > r(c;). So by the definition of r,
A>(e«,,e) + w > p(ew,e') + u;, so
P{ew,e) > p(tw,e')- So by (ix, x),
(xi) k'\e' = ifc'le*. But by (ix, x, xi), we have c = c;, contradicting the choice of e'. Hence, p/k'(c,c') > 0
and we have (iii) under this case.

Case 3: t' $ [e]£. Then (iii) follows by positive order-invariance (proposition 7) and proposition 6).
By proposition 7, r*DP,2 is locally consistent. Hence,

(xu) for each V > k, b(r *DP7 [[elk"]]) £ 0. So by (iii), we have that
for each V > kyb(r*DPti [[e\k*]]) = {e}. H

0.14 Appendix III: A Positive Result for S,2
This appendix is devoted to proving that *s,2 identifies

Definition 17 Let a be an ordinal and let e<> € B. Let r = r®. Let € be a finite boolean sequence of
nonzero length and let last(e) denote the last item occurring in e. Then define:

-1 if b = last(c) A tt(c) - 1 € r(e0 , c)
0 ifb = last(e) A Jfc(e) - 1 £ r(e0 , e)
a t/ 6 / last{c) A tfi(e) - 1 e r(e0 , e)

Proposition 20 Let e^.r be as in the preceding definition. Let e,e? € &"(eo). let e[m] = Co t {t < m
t€r(eo9e)} and let a > 2. Then

r |{< > m : t € r(eo^>l-

S. IfeT # e[m] fAen /^(e|m9e0 > 0.
MFbr Uiose tndng the magic of a = 2, note that the argument would fril hoe if cr = 1.
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Proof: Define
M = {t € u : i < m),
G = r(eo,e),

(1) using the definition of 0a and the fact that a > 2, we have:
(ra(c\Tn,e') = r(e')+Pa(c\Tn,e') =
= r(e') + J:ieMnanB0c,(e\i + 1, «*(«))+

()
> \G'\ - \M f\GnE\ + \(M - E) C\G\ + 0 + |(M - E) - G\ =
= \G'\-\AfnGnE\ + \M-E\ =
> \M - E\ + \(M OGn E) - G'\, so it suffices to show that \M-E\< \(M nGHE) -G'\. For this we
construct an injection / from \(M n G n E)- G'\ to |A/ —J&|. Let » € (MDGnE) -G'. So we have
(i) t < m, (ii) e(t) = e'(i), (iii) t € r(eo,e) and (iv) t £ r(eo,e'). Suppose for reductio that t = 0. Then
by (iv), eo(t) = e'(t) and by (ii), e(t) = e'(i), so eo(») = e(*)» contradicting (iii). So we may assume
(v) i > 0. Define /(») = » — 1, which is evidently injective and it is also immediate that /(»") € M if
» € M. Suppose for reductio that f(i) = i—l€E,so e(» — 1) = ef(i — 1). Then by (iii, iv, v), we obtain
e(i) ^ £0(1), contradicting (iii). Hence, /(») € M - E.

(2) Suppose e\m = ef\m. r(e') = \G'\. For each j < m, if j € M n C , then /?o(e|i + l.e'O')) = - 1
and if i € M - Gf, then /?a(«|j + l,e'(J)) = 0. Hence, /9Jl(e|m,e/) = -\M n C| . So fil(e\m,e') =
\G'\ -\MH C\ = \G' -M\ = \{i > m : i € r(e0, e')}|.

(3) We begin by establishing
(i) /3£(e|m, e') = 0 =>• Af D G' C G. Suppose for contraposition that there exists * € M n G' - G. We will
construct e" such that y9Ji(e|m,e") < fTa(e\m,c'), so by (1), /0£(e|m,e7) > 0.

The construction of e" proceeds as follows. If e'(Jfc) = e(Jfe), let e" be just like e! except that e"(Jb-l) =
-V(Jt - 1). Else, e" is just like e7 except that e"(k) = -V(Jb). This construction is well-defined because
e'(k) ^ e(i) if Jb = 0. For suppose otherwise. Since * € G', e'(0) # e^O). But by hypothesis, e'(O) = e(0),
so e(0) ?£ eo(0) and hence 0 = Jb € G, contradicting the choice of k.

We now show that
(ii.a) r(e") < r(e>) and

) a ( ) « ( )
Case: e(k) = e'(fc). Then k > 0 and e" is just like t! except that e"(k - 1) = - '̂(ik - 1 ) . So

(iii) e(k) = e?(k) = e"(k). Since * € G* - G, we have
(iv*) e(k -1) = e(t) « eo(* - 1 ) = eo(*) and
(iv.b) tf(k - 1 ) # tf(k) *+ eo(k - 1) = eo(*). So
e(t - 1 ) # e(t) 4+ ̂ (fc - 1 ) = ef(k). So by the case hypothesis,
e(k -l)jt e(k) 44 ̂ (Jt - 1 ) = e(fc). Hence,
(•)«"(*-1) = e(k -1) # t>(k -1). Abo, by (iv.b)
(vi) k $ G". Since tf differs from e* only at Jb — 1, we also have:
(vii) for alii ^ {*, Jt - 1}J € <?» • • j € G". By (vi, vii), \CT\ < |C | , whka is just (ii*). By the definition
of pa, (v), and the fact that a > 2,
fi«(e\k,tf{k - 1 ) ) -fia(e\k,ef(k -1)) > a -1 - 0 > 1 * For each j # Jb - 1 , tf{j) = +{flt to fi*(e\j +
1. e'U)) = A>(«U +1> c"C0). »o we have (iv.b).

Case: ef(k) / e(*). Then e" is just like ef except that e"(&) = -^(k). So by the case hypothesis,
(viii) e"(k) = e(k) / «"(&). Since * € <7, and e"(k) = -V(Jb), it follows that

= 2 b critical for the aigument at this stage.
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(ix) k £ G". Since t" differs from e' only at Jb, we also have:
(x) for all j $ {*, k + 1}J € (?' *+ j € C. By (viii, ix), we have |G"| < |G'|, which is just (ii.a). By
(viii) and the fact that a > 2,
(») /9a(e|ft + 2>e

#(ft + l ) ) - / ^ ( e l ^ ^ J b - 1)) > a- 1 > I.26 e' and e" agree everywhere else, so again we
have (iv.b).

The next task is to establish:
(xii) /%(c|m,e') = 0 => G' - M = 0. Suppose that t > m and k e G'. So Jfc contributes one unit
to r(e'). Since * > m, * contributes nothing to the sum #,(e|m,e'). Let e" = e0 J (G' - {*}). Then
/%(e|m, e") = r(e") + &(c|m, e") = r(c') - 1 + &(e|m, e') = /%(e|m, e') - 1. So by (1), fc(e\m, e') > 0.

Finally we show that
(xiii) K(e\m,ef) = 0 => M DG C G'. Suppose that #;(e|m,e') = 0. Suppose for reductio that D =
( M n G ) - G 7 0. By the hypothesis and (i, xiii), we have G' - M = G- M and G'flM C Gn Af. So
r(c) -. r(c/) = |G| - ICI = |D|. So if we establish that
(xiv) ^a(e|m,e0 -^a(e|m,e) > |D|,
then we have ^(clm^') > ^(c|m,e) so by (1), ££(e|m,e') > 0. It therefore suffices to establish (xiv).

Let D be enumerated in ascending order as {*i,..., **}. Observe that e\ki = e'\k\ so since *i G G—G',
e(ki) £ e'(ki). Thereafter, there is constant disagreement between e and e' until k2i where another
reversal of sense yields constant agreement until £3, etc. In general, we have for each j such that
1 < k < d:
(xv) e(kj) = €'(*,) Oj is even.
Also, we have by the definition of f$Q:
(xvi) If e(kj) * e'(kj) then 0a(e\kj + 1, *'(*,)) - 0a(e\kj + 1, e(kj)) = a - (-1) > a since27 a > 2 and
(xvii) If e ^ ) = e'(kj) then 0a(e\kj + l^kj)) - /M«l*i + l . e ^ ) ) = (-1) - (-1) = 0.
By (xv, xvi, xvii) we have
(xviii) I^slA»(e|*J +1 , «'(*i)) - 0a(e\kj + 1, ctifej)) > 3(d + l)/2 if d is odd and > 3d/2 if d is even (note
that 3(<f + l)/2 is the number of odd numbers < d when d is odd). Observe that
(xix) for all d > 0, 3(d - l)/2 > d if d is odd and 3d/2 ><t if <* is even.28 We haven't yet included in the
sum terms whose indices are not in D. So let 0 < k < m and suppose k—1 £ D. Then by the definition
of pa and the fact that a > 2, we have
(xx) /Mc|*,e'(* ~ 1)) " /M*l*,'(* - 1)) > 0. So by (xviii, xix, xx), we have,
^(e|m,e#) — /?a(e|m, t) > d, establishing (xiv) and hence (xiii).

Now suppose that 0£(e|m, ef) = 0. By (i, xii, xiii) we infer that e* = co t {* > tn : t €X(co, e)} = «[m]f
which completes the proof of (3). H

Next, we establish that Sa implements /% when a > 2 and r is the grue ranking.

Proposition 21 Lei a > 2 aru/ /ei c0, r, c, c', e[n] be as in proposition 20 and let m£uj. Then

identifies G»{to).

Proof: (2) By proposition 20.2, ^(e|n9e[n]) = 0. By proposition 20.3, for all tf £ c[m], ^(e|nye0 > 0.
So the result follows from (1).

- ,(3) is a consequence of (2). (2) says that (r, *sj) always remembers the past and ocxuectnies that the
cuirat datum will be iq^eaked fotever. If e € G^(co) then for some n, e € ^(eo) . Let n# be the least
such n. Then the method (r,*5,2) retracts exactly ri times i^ior to wtnhiKiing to {e}.

^a s 2 b critical for the argument at this stage.
MTbe Inequality k barely strict at rf = 1 and would feil if a = 1, illustrating ooce again the critical role of the value

a>2.
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(1) By induction on n. Let * = *5,«. #,((),«') = r(e') + #,((), tf) = r(ef) = (r * ())(ef). Now suppose
that for each t> € G^M, (r * tte|n]])(e') = /£(ejn, e'). Then since a > 2, proposition 20 parts 2 and 3
yield
(i) If e|n = e'\n then ^(<|n,e') = |{» > n : » e r(eo,e')}| and
(ii) If e' # «[n] then ^(e|n, e') > 0. Now consider (r • [[e\n + lj])(e').

Case 1: e'(n) = e(n) Then
(r * [[e\n+ l]]){c') = (r * [[e\n]))(e'\[n,e(n)))
= -min{(r * [[e|n]])(e") : e" € dom(r * [[e\n])) D [n, e(n)]} + (r • [[c|n]])(c').

Case l.A: n € r(eo,e). Hence, e[n] $ [n,e(n)] (recall that e[n] = c01 {* < n : t € r(eo,e)}). So by (ii)
and the induction hypothesis,
(iii) 0 t {(r • [[e|n]])(e") : e" 6 dom(r • [[c|n]]) n [n, e(n)]}.
Since c[n -H l]|n + 1 = e\n + 1 and {t > n : i € F(c0, c[n -f 1])} = {n}, we obtain by (i) and the induction
hypothesis that,
(iv)(r*[[e|n]])(e[n+l]) = l. Also,
(v) e[n+ 1] € [n,e(n)], since e[n] ^ [n,e(n)] and n € r(eo,e). By (iii, iv, v):
min{(r* {le|n]])(e") : e" € dom(r* [[e|n]])n [n,e(n)]} = 1. So,
(r * [[e|n + l]])(e') = (r • |[e|n]])(e') - 1
= 0^(e\n,e') — 1 (by the induction hypothesis)
= /%(e|n, e0 + 0a(e\n + 1, e'(n)) (by the case hypotheses)

Case l.B: n ^ r(co,e). Hence, e[n] € [n,e(n)]. So by (i) and the induction hypothesis,
min{(r * [[e|n]])(e") : e" € dom(r * [|e|n]]) n [n, e(n)]} = 0. Hence,
(r * He|n + l]J)(e') = (r * [[e|n]])(eO = /3^(e|n, e') + 0 (by the induction hypothesis)
= /9£(e|n, e') + 0a(e\n + 1,«'(n)) (by the case hypotheses)

Case 2: e'(n) # e(n). Then
(r * [[e|n + l]])(e') = (r • [[e|n]])(^ - [n, e(n)]) + a
=-min{(r * [[elnflKO = «" € dom(r * [[e|n]]) n (^ - [n, e(n)])} + (r * [[elnDKeO + a-

Case 2.A: n € r(e0, e). Hence, e[n] ^ [n, e(n)]. So by (i) and the induction hypothesis,
min{(r * ff«|n]])(e") : e" 6 dom(r « Hc\n]\)n(U - [n, e(n)])} = 0.
Hence, (r * [[e|n + lfl)(e') = 0 + (r * (T«|n]])(«') + a
— Pa(e\n'e) + a C^ the induction hypothesis)

jn.e') +/?a(e|n + l.e'(n)) (by the case hypotheses)

Case 2.B: n £ r(«0,e). Hence, e[n] € [n,e(n)]. So by (ii) and the induction hypothesis
(vi) min{(r• [[e|nl])(e'O : e" € dom(r*[[e|n]])HU-[n,e(n)]} > 0. Let
e" - e[n] t n. e"\n = e|n and {* < n : * € r(eo, e")} = {n}. So by (i) and the induction hypothesis,
(vii) (r * [[e|n]])(e/0 = 1. Since e[n](n) = e(n),
(viii) e" ^ [n, e(n)). Since e" € a"(eo) = dom(r), (vi, vii, viii) yield
min{(r • IIe|nD)(e'O :«" € dom(r * [[e|n]]) n (U - [n, e(n)])} = 1. So
(r • Q«|n + lD)(e0 = (r • fcMM + « -1
= ^(e|n,e /) + o - l by the induction hypothesis
= ££(ejn, e0 + /?a(e|n + 1 , e'(n)) by the case hypotheses

( |
Proof of proposition 13: Let * = *s,9. Recall that (-«o)(n) = --(«o(n)). Let r D r ^ l G ^ and

•uppoee for reductio that (r^s.s) identifies GeVen(eo)U{--«o}. For each t, let a = (-«o)$i = (eotO)tt €
G ( )

Case A: Suppose r(-«eo) > w. Then for each t,r(e*) < r(-ieo), contradicting the isolation condition
(proposition 23).
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Case B: So suppose for some n € a; that r(-*0) = n. By the reductio hypothesis, there is a k 6 w
such that
(i) (r • [hcol*]])-1^) = {-*o}. Let j = max{n + 1,*}. Then
(ii) r(ej) > n = r(-*0) and r(c i+i) = rfo) + 1 and
(iii) ej\j = €|+i|j = -»«o|i. By timidity and stubbornness and (i, iii), for each f < j + 1,
(iv) (r * [k+xl/]])-1^) = {-e0}. By (iv),
(v) (r • [[cj+i|i]])(cj) > 0. By positive invariance and (ii),
(vi) (r * [[ci+i|i]])(ci+i) = (r* [[ej+i\j]])(ej) + 1. By positive invariance (iv), and (iii),
(vii) (r * [[ei+1|i + l]])(ei+1) = (r • [[ei+1tf]])(ei+i). By (iii) and (iv),
(viii) min{(r«[[ci+i|i]])(e/) : e' € dom(r)n(f/-[;,c i+i(i)])} > 1. So since ej{j) £ e i+i(j), the definition
of * yields
(ix) (r * [[ej+1\j + l]])(ej) < -1 + (r • [[ei+1|i]])(ei) + 2

[ [ W ] ) ( )( [ [ i W ] ) ( i )
< (»" * [[ei+iliD)(«i+i) by (vi). Now (j + l |e i) = (j + l |e i + i) , so by positive invariance, for all *' > j +1,
(r * [[ei+i|*U)(ei) < (r * [[ej+i\k^)(ej+1). Hence, for aU such *',
(r*[[e i + i |*1])-1(0)#{ei+ i}. H

0.15 Appendix IV: Restrictiveness Proofs
Proof of proposition 17: (1) Case G1(e0): let R = (G1(e0)),<) be defined so that b(R) = {e0} and
for each k,k' > k € w, cot^ < e0 (note that this condition induces an infinite descending chain in R).
It is easy to see that R is an epistemic state and that (R, *u) succeeds.

Case G|ven(«o): Let R = (Geven(«o)), <) be defined so that b(R) = {e0} and for each k, k' >k,ki>
V, Jfcj > Jb € w, eo t {k',ki} < to t {*.*i} (this condition- also induces an infinite descending chain). R is
an epistemic state and (R, *M) succeeds.

(2) Case G1(e0): let • = *M, let R = (D, <R), and suppose for reductio that (R, *) identifies G2(e0)-
Then for some k,
(i) b(R * \[eo\k]]) = {co}. Define e = e0 t Jt»nG2(e0)- By proposition 24, we can find &' > fc such that,
letting e' = t % V 6 G^eo),
(ii) e* >(ii»iieo|*]]) e- But (i, ii) and the stacking lemma (proposition 22) contradict the reductio hypothesis.

Case Geven(eo): ' e t * = *J# and suppose for reductio that R = (£>, *) identifies <7|Ven(eo)- Then for
some Jfc,
(i) 6(H*([eo|A]]) = {eo}. Define e = «o t {* ,*+ l }€ G|ven(eo)- By proposition 26, we can find f > * + l
such that, letting e* = e | {if, if + 1 } e G ^ e n M .
(ii) ef >(«»ffe.|*]D «. Let «*' = eo t {*/, ** +1} 6 Geventa)- B y t h e propping lemma (proposition 22) and
(i),

>(JHI«o|*D) «"• N o t e t h a t :

\k >\k
( ) ( ) ( ) |
(vi) * + !!«" = * + 1 ^ . By (ii, iv),
(vii) tf * min((J{* \[ef\kJi),lk,ef(k)]). By (v),
(viii) e" £ min((A * Qe'l*]]), [*, ̂ J ] ) . So by (iii, v, vii, viii) and clause (2) of the definition of • * :
(ix) ef >{/t^[e'\k+iJD e". So by (vi) and positive order-invariance (proposition 7), for all F > Jfc + 1,
-«*">(JHI«'I*1D •''"» contradicting the reductio hypothesis. H

Definition 18 e is propped up at n in r just in case for each t! € [e\?,e?(n) £ e(n). « is propped up in
r just in ease there exists an n such that e is propped up at n in r.
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Proposition 22 (propping condition for *M) / /(r , *M) identifies dom(r) then for each e 6 dom(r),
for each m, there is an m' > m such that e is propped up in (r *M [[e\m]]) at rri; so in particular, e is
propped up in r.

Proof: Suppose that for all m' > m, c 6 dom(r *M [[«|*n]]) i* n o t propped up in (r *A# [Mm]]) at m'.
Using the definition of *M , show by a straightforward induction on k — m that for all k > m, ik' > it, c
is not propped up in (r *M [[̂ 1 ]̂]) »t *'• Hence, for all it > m, (r • ] * [[e|Jb]])(e) > 0, so (r, *M) does not
identify dom(r). H

The following definition generalizes the notion of isolated points to the case in which there is sufficient
information after a given position n to distinguish e from all other points in S. ^-isolation is more
stringent than isolation when * > 0. For example, 0°° is isolated but not 1-isolated in {10nl°° : n € w}.

Definition 19 e is k-isolated in S <P> there exists ann>k such that [(k\e)\n] D 5 C {e}.

Proposition 23 (isolation condition) If * is positively order-invariant and (r, *) identifies dom(r)
then for each e € dom(r), for all k, e is k-isolated in [e]frmne\k]\)> so tn Particular, e is isolated in [c]p.

Proof: Suppose c is not ^-isolated in [e]̂ .*rTci*T]) • Then for each n > k, there is an en / e such that
r(cn) < r( e) and (Ar|cn)|n = (&|e)|n. So by positive order-invariance, for each n, if (r • [[e|n]])(e) = 0 then
(r * [[en|n]]) = 0. Hence, (r, •) does not identify dom(r). H

Proposition 24 / /* is positively order-invariant and (r, *) identifies G^+^eo) C dom(r) ande 6
then for all k, for all but finitely many j, (r • [[eo|*]])(c) < (r • [[eo|*]])(e } j).

Proof: Let e 6 G^eo). Then for each j, c ti 6 dom(r). Suppose that for some k there are infinitely
many distinct j such that (r * [[e|*]])(e) > (r • [[e|*]])(e { j). Then e is not ^-isolated in W(-r#[[co,fc]]). So
by proposition 23 and the fact that * is positively order- invariant, (r, *) does not identify Gn+1(co). H

Proposition 25 (stacking lemma) For all k,n,n' < n, if • is positively order-invariant and (r, *)
identifies G"(eo) Q rfom(r) and (r * [[co|̂ ]])(co) = 0 then there exists an en» such that

2.

S.

Proof: Assume the antecedent. Let n, k be given. We show the consequent by induction on n' < n. When
n' = 0, (1-3) are trivially satisfied by to- Now suppose that n' + 1 < n and that there exist «o,.. -di'
satisfying (1-3). Since n# + 1 < n, (r,*) identifies G^'+^co). So by proposition 24, we may choose j
sufficiently lance so that so thui
(i) (r • neo|*D)(e».) < (r • tt«o|*D)(«V t i ) ««i
(ii) i > max(r(eo,e«.) U {* +1}) . Now set «„«+! = *,/ t i . e«'+i satisfies (1, 2) because of (ii) and the
fact that ««' does, tn.+i satisfies (3) because of (i) and the fact that <v does. H

Proposition 76 If * it positively order-invariant and (r, *) identifies GevenM Q dom(r) and e €
< % J N <*«» for all k, for all but finitely many j, for all m> 0, (r * (I«ol*D)(e) < (r * [[eo|*fl)((e/1

Proof: Similar to the proof of proposition 24. H

Proposition 27 (even stacking lemma) Proposition S5 continues to hold when Gn, f* are replaced
* G t Seven-
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Proof: Similar to the proof of proposition 25, using proposition 26. H

Proposition 28 (with Oliver Schulte) For all e0 € B, For all j > 2, G*(e0) is identifiable using just
j retractions, but is not identifiable by *DP,I-

Proof: The positive claim is from proposition 11. For the negative claim, suppose for reductio that there
is an IA r such that (r, •) identifies GP(eo)9 where * = *DP,\ and ,; > 2. Then since eo € G°(eo) and
0 < j , there exists a least n such that
(i) (r, *)(co|n) = {c0}. Then there exists a least k > n such that
(ii) (r, *)((c0 t n)\k) = {c0 J n}, since e0 $ n € G1(e0) and 1< j . Define
R = {e" £ U : |r(c0, e")| is odd}. Since \T(eOi (c0 $ n))| = 1 is odd, we have by (i) and (ii) that there is a
least k' > n such that
(iii) b(r • [[(e0t n)|ib/]])(e) H G>(e0) C R. Since k' is least, there exists an e such that
(
(iv.b) (r • [[(eo t n)\k'}])(e) > 0, and
(iv.c) c € G*(eo) — /i. Since • = *DP I, we also have29

[ | 1 ]
Case 1: *' = n + 1. Then c = e0, by (i), (iv.a). Define

e' = (c0 J n) t n + 1. Hence,

(v.b) n + l\e' = n + l|c0, and
(v.c) e' e G (̂co) - R, since ir^o^')| = 2 and i > 2.30 By (v.a, c) and the reductio hypothesis, e' €
dom(r*[[(e0jn)|n+l]]), else (r, •) fails to identify e# G CP(e0). So by (iii), (v.a,c), and the case hypothesis,
(vi) (r • [[e'\n + l]])(e') > 1. By (iv.d), (v.a), and the case hypothesis,
(vii) (r * [[e'\n -f l]])(c) = 1. By positive order invariance (proposition 7) and (v.b), (vi), (vii), we have
that for each m > n + 1, (r • [[e'lm]])^) > (r • [[c'lm]])^), contradicting the reductio hypothesis.

Case 2: *' > n + 2. Then by the definition of * and (iv.a,b), we have
(viii.a) e{V - 2) = (c0 $ »!)(*' - 2) = - ^ ( F - 2) and
(viiLb) elk9 - 1) = -i(e0 t ^ ( ^ - 1) = c o ^ - 1). Let e' be defined so that:
(ix.a) c'|Jf = (c0 | n)!*', and
(ix.b) V\e' = ib̂ le. By (viii.a), there exists some j < V - 2 sudi that i 6 r(co,c). By (viii.a,b),
f - 1 € T(c0, e). So \{j < V : j € T(co, c)}| > 2. But by (ix.a,b) we also have \{j < V : j € r(co, e#)}| < 2.
So by (ix.b) and (iv.c),
(x) c! € G (̂eo). So by the reductio hypothesis and (ix.b),
(xi) ef € dam(r • [[(c | n)|*T]), else (r, •) does not identify ef € G%vcn(eo). By (ivx), |r(eo, e)| is even.
Hence, e agrees almost everywhere with eo. By (ix.b), t' agrees almost everywhere with c and hence
with <o. So, |r(eo, **)l » cv^- So e' f? /L TTius, by (iu, xi), (r » $(*> t n)\k%(et) > 1. So by positive
invariance, (iv.d, ix.&,b), we have that for all m > V, (r • \[e/\m]\)(e/) > (r • Q^lm]])^), contradktiiig
the reductio hypothesis. H

Proposition 29 LetcoeB.

1. Gx(eo) is identifiable by *DP,I»

2. For allj > 1, Cr*(eo) is not identifiable by *M, *5,I, *A,I-

Proof of (1): Let • = *DpA. Define r'l(0) = ^°(eo) = {eo} and r'^l) = gl(eo) = {«o t k : k € ai}/Then
dom(r) = G^eo). Let e € G1(e0). Case: e = eo. Then by timidity and stubbornness, we have that for
each *,6(r*[[e|Jb]]) = {c}. Case: for some n, e = eojn. Suppose * < n. On data e\k, eo stays uniquely

"Tbm b where the value a = 1 eaten the negative argument.
M Th» b where j > 2 enters the argument.
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at level 0 by timidity and stubbornness. Positive in variance keeps e at level 1, along with all the eo Xn'
such that n' > ft. For each n' < ft, the climbing lemma implies that e0 t n' is at least as high as level
k - n' on data e\k. So by the time e\n has been read, we have
(i.a)6(r*[[e|n]]) = {e0},
(i.b) if n' > n then (r • [[e|n]])(e0 $ n') = 1, and
(i.c) if n' < n then (r * [[e|n]])(e0 X n') > 1. On data e\n + 1, e0 is refuted and moves up one level along
with all data streams of form eo X n', where n' > n. By (i.a,b,c), e is the lowest data stream consistent
with the data, so e drops to level 0. All data streams of form c $ n' such that n' < n also drop one level
with e, but fortunately, by (i.c) they all end up above level 0. So b(r • [[e\n +1]]) = {c}. By timidity and
stubbornness, e remains uniquely at level 0 forever after.

Proof of (2): Case: * = *A,I- Instance of proposition 30. Case: * = *S,I,*M- Suppose for reductio
that there is an IA r such that (r, *) identifies G1(e0). Then there exists a least n such that
(i) b(r * [[eo|n]]) = {eo}. Furthermore,
(ii) 3* > n such that V*' > *, (r • [[eo|n]])(co X *') > (r • [[eo|n]])(co X *); for otherwise, there would exist
an infinite descending chain of ordinals in the range of (r • [[eo|n]]). By (ii), there exists a k > n such
that
(iii) (r • [[eo|n]])(eo t * + 1) > (r • [[co|n]])(co t k). Observe that:
(iv) (e0 % k)\k = ( e o | i + 1)|* = eo|* and
(v) (e0 | k -f l)(k) = eo(k) ^ (e0 $ k)(k). By timidity and stubbornness (proposition 7) and (i, iv, v),
(vi) Vn',n < n' < Jb -f 1 => b(r • [[(eo t k 4- l)|nT]) = {co}« By (iii, iv, vi) and positive order-invariance
(proposition 7),
(vii) Vn', n < n' < k => (r • [[(e0 J k + l)|n^)(c0 t * + 1) > (r • [[(c0 $ * + l)\n*H)(eo t k) > 0. Now it is
claimed as well that:
(viii) (r • [[(e01 * + 1)|* + l]])(e01 * + 1) > (r • [[(c01 * + 1)|* + l]])(c0 J *). For consider the case of *M.
By (v, vi) and the definition of *M,
(r *M [[(eo $ * + l)|Jb + l]])(e0 t *) = (r *M [[(e0 $ * + l)l*]])(e0 t *) + 1 and
(r *M [[(eo J * + 1)1* + l]])(e0 * ft + 1) = (r *M [[(eo t * + l)l*]])(e01 * +1) + 1. So by (vii), we have (viii)
for *M-

Let us turn now to the case of *s i- By (v, vi),
min{(r * [[(eo $ * + l)|*]])(e/) : t! G dom(r • [[(e0 X * + 1)|*]]) H [*, (e0 X * + l)(ft)]} = 0 and
min{(r • [[(eo t * 4- l)|*]])(eO : e' € dom(r * [[(c0 $ * + 1)|*D) O (^ - [*, (e0 $ * + 1)(*)])} > 0. So by (v)
and the definition of *s I,
(r •s.i H(eo X * + 1)1* + ll])(eo t * + 1) = -0 + (r *s,i [[(e0 t * + l)|*D)(e01 * + 1) and
(r *s,i [[(eo X * +1)1* + lfl)(eo X *) > -1 + (r *s,i [[(eo $ *•+ l)|*D)(eo t *). So again by (vii) we have (viii)
for •s.i-

Finally, since (*+l)|(eo Xft) = (ft + l)|(eo X* +1)> we have by (viii) and positive order-invariance that
fora l l t / >ft+ l >
(r • [[(eo X * + l)|ftH)(eo * ft +1) > (r * [[(to t ft + l)!*7]])^ X ft), contradicting the reductio hypothesis. H

Proposition 30 (restricthreness of *A,n) Let to € B.

1. G°(eo) is identifiable by •x.o-

Jg. /or a// n, Gfl+1(e0) is identifiable by •x.n+2-

5. forall m > n,Gm+1(«o) w not identifiable by *A,n+2- *A,n+i-

Proof of (1): Let dom(r) = {eo} and let r(eo) = 0. Then for all ft, (r, •5,o)(eo|t) = {co}.
Proof of (2): by propositions 9 and 11.
Proof of (3): Suppose for reductio that (r, *Afn+i) identifies G^+^co), with m>n. Then for some j,

(i) Hr *A,n+i [[eoUU) = {eo}- So by positive invariance (proposition 7) and CF*+l(eo) C dom(r) by the
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reductio hypothesis, proposition 25 yields
(ii) there exists an t e Gn^l{eo)-Gn(eo) such that eo|i + l = e | i+1 and (r* [[eotfH)(«) > n-h 1. c ^ c0,
so let z be least such that e(z) / eo(z). So,
(iii) z > j. So since z > 0, we may define c' to be just like t except that e'(z - 1) = -*(eo(z - 1)). Hence,
(iv) c'(z - 1) £ e(z - 1) = eo(* - 1). Also
(v) e\z = cok and
(vi) z\e' = z|e. By (i, v), and the timidity of *x,n+i (proposition 7),
(vii) for all x such that j <x<z, (r *x,n+i [M*]])(«o) = 0. By positive invariance and (ii, v, vii),
(viii) (r *A,n+i [[«!*]])(«) > n + 1. By (iv) and the definition of *i4>n+i,
(ix) (r *Atn+i [M*]])(e) = n + 1. By (vi, viii, ix) and positive invariance,
(ix) for a U f > z,(r •x.n+i [[c|*T])<e) = (r ^.n+i [ [ e ^ W ) - Hence, (r,*A,n+1) does not identify
Gn+1(c0), contradicting the reductio hypothesis. H

Proposition 31 Lef e0 6 £.

-̂ Gc»cfi(eo) is identifiable by *sti, *DP,I-

2. Vm > l.G^W^eo) w not identifiable by *M-
s- Gcvcn(co) w identifiable by *A,o

4- Geven(eo) w identifiable by *A,n+i

5. Vm > n, G^^,(co) ** not identifiable by *A,n+i

Proof of (1). Case: • = *DP,I- Let re be rf restricted to GgVen(c)» 8° for ea^1 fi/ € GgVen(c)>
^(c') = p(e, e'). Let e be given and let e' € G^Ven(e)- I>efine e< so that
(ka) e\\i = e'\i and (i.b) t|e(- = i\e. Hence, e = e'o. Also let
c(e#, A:) = 1+ the greatest t < * such that e'(i) ^ e(t), if there is such an t, and let c(e', *) = 0 otherwise.
Recall that G£ven(e) is precisely the set of all finite variants of e, so A(e,e') is finite. Let m(e') = 1+
max(A(e,e/)). Then
(ii) for all k > m(e/),ec(e'7b) = e#. I claim that * satisfies the following symmetry condition: for each
e',e"eG%vea(e),
(iii.a) (re * [[e'|*]])(«") > v (e«), and
(iii.b) if «"|* = e7!* then (re * (je'|t]])(e'O = re^, t)(e"). Then for each e7 € GgVen(e). for each * > m(e'),

*)
^ )

*(re * [[e'l*]]) = *(r e ^ fc)) = {<(.'.*)} = {**> Ov»)• T"118. (r«» *) identifies Gg»en(e). So it remains only
to establish (iii.a, b). (iii.a, b) are immediate when * = 0. Now suppose (iii.a,b) hold at Jfc. Then
(iv) *(r,*ae'|*D) = {<(^)>- I** "*«&#) «>e just like ^^ except that ^(^^(k) = -«(,, ,*))(*
/Kvar(<^(«'(*))»<^(e'») = ! a n d ''I* =v"(^<e'^))l* ^ (i"b) of the induction hypothesis yields
(v)(re*ne'|*]])(var(e'e(e,>Jk))) = l.

Case 1: e&, k +1) = k + 1 . Then w K ^ ^ J W = •(*) # ^ ^ W - So by (iv, v),
(vi) min{(r * [[e/|*]])(e'O : e" € dom(r * ([e'l*]]) n [*, ̂ (ib)]} = 1. Now let e" € Ggvento- Subcase:
e"(Jb) = e'(t). Then by the induction hypothesis and (vi),
(re*[[e/|*+l]])(e/0 = -l+(re*[[e'|*]])(e") > -l+/K«c(«^).«") = P(«e(.^+i),e") = re^>lk+1)(«")- When
e"\k + 1 = e'l* + 1, the inequality is strenghened to an equality by (iii.b) of the induction hypothesis,
yielding
(re * Re'lJfcllHe") = r,^, k+1)(e"). Subcase: e"(k) # e'(Jb). Then by the induction hypothesis,
(r, • [[e'l* + 1DXO = (r. * [[e'|*J])(e'O + 1 > /K««^).O + 1 = P ( ^ ^ + i ) , O = r i ^ k+1)W). Since
e"(*) ^ e'(Jk), <'|* + 1 / e"|jfc + l so (iii.b) is trivial in this subcase.

Case 2: c ^ , * +1) < * + 1 . Then
(vii) e<e.tk) = ec(e^+i). Hence, v a r ^ ^ X * ) ,4 e'(*) = ^A){k). So by (iv),
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(viii) min{(r * Qe'|ft]l)(eM) : e" € dom(r * [[e'\k]]) O [*,€*(*)]} = 0. Now let t" € Ggven(<0- Subcase:
e"(k) — e'(k). Then by the induction hypothesis and (vii, viii),
(rc * [[e'|* + l]])(e") = -0 + (re * [[e'\k]))(e») > p(ee(e,tk)ie») = p(ec(c,,*+1),e") = re^lk+1)(e"). When
e/#|* + 1 = e'\k + 1, the inequality is strenghened to an equality by (iii.b) of the induction hypothesis,
yielding
(rc • [[e'|*]])(c") = ree{ , k+l}(e"). Subcase: e"(k) ? e'(k). Then by the induction hypothesis and (vii),
(rc » [[e'\k+ l]])(e") ='(r e • [[e'|*]])(e") + 1 > p(ec{e.,k),e») = ,(ec(c,,*+1),e") = rCe(e/k+l)(C"). Since
e"(*) ^ e'(*), e'|* + 1 ± e"\k + 1 so (iii.b) is trivial in this subcase.

Case * = *s,i- The argument is similar to the preceding one, except that the symmetry condition
(iii.a,b) can be strengthened to:
(iii) for each e' € Geven(c)> (rc * ftc'l*]]) = re' » which implies the success of (r, *) as before.31 (iii) is
immediate when k = 0.

In case 1, the induction hypothesis yields (vi) as well as
(vi') min{(r • [[c'l*]])^) : e" € dom(r • [[e'\k]]) MJ-[k, e'(*)]} = 0. Subcase c"(k) = e'(k), is as before,
with an equality replacing the inequality. In subcase e"(k) ^ e'(k), (vi, vi') yield:
(re * \[e'\k + l]])(e") = -0 + (re * [[e'|*]])(e") + 1 = ,(ec (e , , f c ) l e") + 1 = p(ee{e.,k+1), t") = re^, t+1)(e").

In case 2, the induction hypothesis yields (viii) as well as
(viiiO min{(r« [[c'l*]])^) : e" e dom(r • [[c'l*]]) n 17 — [ib, c^*)]} = 1. Subcase c"(k) = e'(ib) is as before,
with an equality replacing the inequality. In subcase e"(k) / e'(k), (viii, viii') yield:
(re * \[e'\k + l]])(c") = -1 + (re • [[e'|*]])(e") + 1 = p(ee{e.,k), e") = p{eeie,,k+1),e") = re^k+l)(e").

Proof of (2): Let * = *M. Suppose for reductio that there is an IA r such that (r, •) identifies
<7even(eo)- Then there exists a least n such that
(i) (r,*)(eo\n) = (r,*)(c0) = {c 0 } . Furthermore,
(ii) 3t >n,(r* [[cO|n]])((co $ i) \ i + 2) < (r * [[co|n]])((co } t + 1 ) $ t + 3), else, there would exist an infinite
descending chain of ordinals in the range of (r * [[cojn]]). Let e = (e0 11) $ t + 2, e' = (e0 J t + 1) } t + 3,

(0
Case 1: (r • [[eo|n]])(e") > (r • [[eo|n]])(c0. Then by (i,ii), e" is not propped up in (r • [[co|n]]),

contradicting the reductio hypothesis by proposition 22.
Case 2: (r • [[co|n]])(e") ^ (r * [ M * ] ] ) ^ ) . co|t = e'\i = e"\i, so by timidity and positive order-

invariance (proposition 7),
(iii) ( r • [[c'ltlKco) = 0 < ( r • De/|tQ)(elv) < (r * Qe/|tQ)(e/). So by timidity, stubbornness, (iii) and the fact
that e'\i -f 1 = eo|t + 1, we have:
(iv) b(r*[[e'\i+l}](e0) = {eo}. So e',e" $? 6(r«[[c'lt-hl]])(.|[i,e'(i)]). So by the definition of *M and (iii),
(r^e'li+llJJte'O = (r*[Mtl])(e-)+l < (r*[[e'|i]])(e0+l = (r*[Mi+l]])(e'). So since , + l | e ' = ,-+l|e",
positive order-invariance yields that for all k > i + 1, (r • [[ĉ ifeHX^O < (r • tt^l*]])^)* contradicting the
reductio hypothesis.

Proof of (3): Immdediate.
Proof of (4): Immediate consequence of propositions 9 and 11.
Proof of (5): The argument is identical to the one provided for proposition 30 except that the appeal

to proposition 25 is replaced with an appeal to proposition 27. H

31 Condition (iii) implies the hypercube rotation representation of the evolution of (*, r), as was mentioned in the informal
discussion of this proposition.
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