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Common Knowledge: Analysis and Applications

one can hardly deny that mankind has a common store of thoughts which is
transmitted from one generation to another.

Gottlob Frege, "On Sense and Reference"

When a man loses his wife in a department store without any prior understanding
on where to meet if they get separated, the chances are good that they will find
each other. It is likely that each will think of some obvious place to meet, so
obvious that each will be sure that it is "obvious" to both of them. One does not
simply predict where the other will go, which is wherever the first predicts the
second to predict the first to go, and so ad infinitum. Not "What would I do if I
were she?*' but "What would I do if I were she wondering what she would do if
she were wondering what I would do if I were she . . . ?"

Thomas Schelling, The Strategy of Conflict

Frege (1892) took it to be obvious that we convey knowledge successfully via
language. But to achieve this, we evidently need some common understanding or common
knowledge of the language in use, which leads to questions Frege did not address: What does
it mean for a group of people to have common knowledge? Can we really attain common
knowledge, and if so, how does this happen?

Common knowledge is a phenomenon which underwrites much more of social
life than the successful transmission of knowledge via language. In order to communicate or
otherwise coordinate their behavior successfully, individuals typically require mutual or
common understandings or background knowledge. Indeed, if a particular interaction results
in "failure", the usual explanation for this is that the agents involved did not have the common
knowledge that would have resulted in success. In the department store problem Schelling
describes in the quoted passage, the spouses stand a good chance of finding one another
because their common knowledge of each others' tastes and experiences leads them each to
look for the other in a part of the store both know that both would tend to frequent. Since the
spouses both love cappuccino, each expects the other to go to the coffee bar, and they find one
another. But in a less happy case, if a pedestrian causes a minor traffic jam by crossing against
a red light, she explains her mistake as the result of her not noticing, and therefore not
knowing, the status of the traffic signal that all the motorists knew. The spouses coordinate
successfully given their common knowledge, while the pedestrian and the motorists
miscoordinate as the result of a breakdown in common knowledge.

Given the importance of common knowledge in social interactions, it is
remarkable that only quite recently have philosophers and social scientists attempted to
analyze the concept. David Hume (1740) was perhaps the first to make explicit reference to
the importance of mutual knowledge, a notion somewhat weaker than common knowledge, in
social coordination. In his account of convention in A Treatise of Human Nature, Hume
argued that a necessary condition for coordinated activity was that agents all know what
behavior to expect from one another. Without the requisite mutual knowledge, Hume
maintained, mutually beneficial social conventions would disappear. Much later, J. E.
Littlewood (1953) presented some examples of common-knowledge-type reasoning, and
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Thomas Schelling (1960) and John Harsanyi (1967-1968) argued that something like common
knowledge is needed to explain certain inferences people make about each other. Yet it was
David Lewis (1969) who first gave an explicit analysis of common knowledge in the
monograph Convention. Stephen Schiffer (1972) and Robert Aumann independently gave
alternate definitions of common knowledge which are in some contexts more convenient to
use than Lewis9 definition. Schiffer's definition of common knowledge as a hierarchy of
epistemic claims has become standard in the philosophical and social science literature. The
analysis of common knowledge as a hierarchy of epistemic claims that Lewis, Schiffer and
Aumann all adopt has become standard in the philosophical and social science literature.
More recently, Margaret Gilbert (1989) proposed a somewhat different account of common
knowledge which she argues is preferable to the standard account. Others have developed
accounts of mutual knowledge, approximate common knowledge and common belief which
require less stringent assumptions than the standard account, and which serve as more
plausible models of what agents know in cases where strict common knowledge seems
impossible (Brandenburger and Dekel 1987, Stinchcombe 1988, Monderer and Samet 1989,
Rubinstein 1992). The analysis and applications of common knowledge and related multi-
agent knowledge concepts has become a lively field of research.

The purpose of this essay is to overview of some of the most important results
stemming from this contemporary research. The topics reviewed in each section of this essay
arc as follows: §1: examples which illustrate a variety of ways in which the actions of agents
depend crucially upon their having, or lacking, certain common knowledge, §2: several
proposed analyses of common knowledge, and an analysis of the weaker common belief
concept which result from weakening the assumptions of Lewis' account of common
knowledge, §3: applications of common knowledge and the related multi-agent knowledge
concepts, particularly to game theory (von Neumann and Morgenstern 1944), in which
common knowledge assumptions have been found to have great importance in justifying
solution concepts for mathematical games.

§1. Motivating Examples
Many of the examples in this section are familiar in the common knowledge

literature, although some of the details and interpretations presented here are new. Readers
may want to ask themselves what, if any, distinctive aspects of mutual and common
knowledge reasoning each example illustrates.

Example 1.1. The Clumsy Waiter1

A waiter serving dinner slips, and spills gravy on a guest's white silk evening
gown. The guest glares at the waiter, and the waiter declares "I'm sorry. It was my fault."
Why did the waiter say that he was at fault? He knew that he was at fault, and he knew from
the guest's angry expression that she knew he was at fault. However, the sorry waiter wanted
assurance that the guest knew that he knew he was at fault. By saying openly that he was at
fault, the waiter knew that the guest knew what he wanted her to know, namely, that he knew
he was at fault. Note that the waiter's declaration established at least three levels of nested
knowledge.

lrThanks to Alan Hajek for this example, the only example in this section which does not appear
elsewhere in the literature.
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Certain assumptions are implicit in the preceding story. In particular, the waiter
must know that the guest knows he has spoken the truth, and that she can draw the desired
conclusion fiom what he says in this context More fundamentally, the waiter must know that
if he announces "It was my fault." to the guest, she will interpret his intended meaning
correctly and will infer what his making this announcement ordinarily implies in this context.
This in turn implies that the guest must know that if the waiter announces "It was my fault" in
this context, then the waiter indeed knows he is at fault Then on account of his
announcement, the waiter knows that the guest knows that he knows he was at fault So we
have a special case of Frege's truism that knowledge is transmitted via language, and an
unusual one, since the waiter's announcement was meant to generate higher-order levels of
knowledge of a fact each already knew.

Just a slight strengthening of the stated assumptions results in even higher levels
of nested knowledge. Suppose the waiter and the guest each know that the other can infer
what he infers fiom the waiter's announcement Can the guest now believe that the waiter does
not know that she knows that he knows he is at fault? If the guest considers this question, she
reasons that if the waiter falsely believes it is possible that she does not know that he knows he
is at fault, then the waiter must believe it to be possible that she cannot infer that he knows he
is at fault from his own declaration. Since she knows she can infer that the waiter knows he is
at fault from his declaration, she knows that the waiter knows she can infer this, as well.
Hence the waiter's announcement establishes the fourth-order knowledge claim: The guest
knows that the waiter knows that she knows that he knows he is at fault. By similar, albeit
lengthier, arguments, the agents can verify that corresponding knowledge claims of even
higher-order must also obtain under these assumptions. D

Example 1.2. The Barbecue Problem
This is a variation of an example first published by Littlewood (1953), although

he notes that his version of the example was already well-known at the time.2 n individuals
enjoy a picnic supper together which includes barbecued spareribs. At the end of the meal,
k > 1 of these diners have barbecue sauce on their faces. No one wants to continue the
evening with a messy face, but no one wants to wipe her face if it's not messy, for this would
make her appear neurotic. And no one wants to take the risk of being thought rude by telling
anyone else that he has barbecue sauce on his face. Since no one can see her own face, none
of the messy diners* makes a move to clean her face. Then the cook who served the spareribs
returns with a carton of ice cream. Amused by what he sees, the cook rings the dinner bell and
makes the following announcement: "At least one of you has barbecue sauce on her face. I
will ring the dinner bell over and over, until anyone who is messy ones has wiped her face.
Then I will serve dessert." For the first k — 1 rings, no one does anything. Then, at the fcth
ring, each of the messy individuals suddenly reaches for a napkin, and soon afterwards, the
diners are all enjoying their ice cream.

How did the messy diners finally realize that their faces needed cleaning? The
k = 1 case is easy, since in this case, the lone messy individual will realize he is messy
immediately, since he sees that everyone else is clean. Consider the k = 2 case next. At the
first ring, messy individual i\ knows that one other person, i<i, is messy, but does not yet know
about himself. At the second ring, i\ realizes that he must be messy, since had i2 been the only

2The version of the story Littlewood analyzes involves a group of cannibals, some of whom are
married to unfaithful wives, and a missionary who visits this group and makes a public announcement of the fact.



Common Knowledge page 4

messy one, t2 would have known this after the first ring when the cook made his
announcement, and would have cleaned her face then. By a symmetric argument, messy diner
t*2 also concludes that she is messy at the second ring, and both pick up a napkin at that time.

Let's next consider k = 3. Again at the first ring, each of the messy diners t"i, 12,
and is knows the status of the other diners, but not her own. The situation is apparently
unchanged after the second ring. But on the third ring, ti realizes that she is messy. For if i2
and t3 were the only messy ones, then they would have discovered this after the second ring by
the argument of the previous paragraph. Since i\ can see that all of the diners other than 1*2 and
t3 are clean, she concludes that she must be messy. 12 and 13 draw similar conclusions at the
third ring, and all clean their faces at that time.

The general case follows by induction. Suppose that if k = j9 then each of the j
messy diners can determine that he is messy after j rings. Then if k = j + 1, then at the
j + 1st ring, each of the j + 1 individuals will realize that he is messy. For if he were not
messy, then the other j messy ones would have all realized their messiness at the jth ring and
cleaned themselves then. Since no one cleaned herself after the jth ring, at the j + 1st ring
each messy person will conclude that someone besides the other j messy people must also be
messy, namely, himself.

The "paradox" of this argument is that for k > 1, like the case of the clumsy
waiter of Example 1.1, the cook's announcement told the diners something that each already
knew. Yet apparently the cook's announcement also gave the diners useful information. How
could this be? By announcing a fact already known to every diner, the cook made this fact
common knowledge among them, enabling each of them to eventually deduce the condition of
his own face after sufficiently many rings of the bell. Note that the inductive argument the
agents run through depends upon the conclusions they each draw from several counterfactual
conditionals. In general, the consequences of agents' common knowledge are intimately
related to how they evaluate subjunctive and counterfactual conditionals.3 •

Example 1.3. Backwards Induction
Does acting cooperatively with others serve one's self-interest? Plato and his

successors recognized that in certain cases, the answer seems to be "No.". Hobbes (1651, pp.
101-102), for instance, considers the challenge of a "Foole", who claims that it is irrational to
honor an agreement made with another who has already fulfilled his part of the agreement.
Noting that in this "situation one has gained all the benefit of the other's compliance, the Foole
contends that it would now be best for him to break the agreement, thereby saving himself the
costs of compliance. Of course, if the Foole's analysis of the situation is correct, then would
the other party to the agreement not anticipate the Foole's response to agreements honored, and
act accordingly?

Hume (1740, pp. 520-521) takes up this question, using an example: Two
neighboring farmers each expect a bumper crop of corn. Each will require his neighbor's help
in harvesting his corn when it ripens, or else a substantial portion will rot in the field. Since
their corn will ripen at different times, the two farmers can ensure full harvests for themselves

3Robert Vanderschraaf reminded me in conversation that a crucial assumption in this problem is
that the cook is telling the diners the truth, that is, the cook's announcement generates common knowledge and not
merely common belief thai there is at least one messy individual. For if the agents believe the cook's
announcements even if the cook does not reliably tell the truth, then should the cook mischievously announce that
there is at least one messy individual when in fact all are clean, all will wipe their faces at once.
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by helping each other when their crops ripen, and both know this. Yet the farmers do not help
each other. For the farmer whose com ripens later reasons that if she were to help the other
farmer, then when her com ripens he would be in the position of Hobbes' Fbole, having
already benefited from her help. He would no longer have anything to gain from her, so he
would not help her, sparing himself the hard labor of a second harvest Since she cannot
expect the other farmer to return her aid when the time comes, she will not help when his corn
ripens first, and of course the other farmer does not help her when her corn ripens later.

The structure of Hume's Farmers' Dilemma problem can be summarized using the
tree diagram of Figure 1.1 .a.

Figure 1.La. The Farmers'Dilemma

Cl

Fanner 1
(Fkma)

(1,1)
C{ = "cooperate", and help the other farmer

D{ = "defect", and leave the other farmer to work alone
This tree is an example of a game in the extensive form. At each stage i, the agent who moves
can either choose C{, which corresponds to helping or cooperating, or D\ which corresponds
to not helping or defecting. The relative preferences of the two agents over the various
outcomes are reflected by the ordered pairs of payoffs each receives at any particular outcome.
If, for instance, Fiona chooses C1 and Alan chooses Dl, then Fiona's payoff is 0, her worst
payoff, and Alan's is 4, his best payoff. In a game such as the Figure 1. La game, agents are
(Bayesian) rational if each chooses an act that maximizes her expected payoff, given what she
knows.

In the Farmers' Dilemma game, following the C1 , C2-path is strictly better for
both farmers than following the Dl, Z)2-path. However, Fiona chooses Dl, as the result of the
following simple argument: "If I were to choose C1, then Alan, who is rational and who
knows the payoff structure of the game, would choose D2. I am also rational and know the
payoff structure of the game. So I should choose D1 ." Since Fiona knows that Alan is
rational and knows the game's payoffs, she concludes that she need only analyze the reduced
game of Figure 1.1.6.
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Figure 1.1.6.

(4,0)

C1 = "cooperate", and help the other farmer
D% = "defect", and leave the other farmer to work alone

In this reduced game, Fiona is certain to gain a strictly higher payoff by choosing D1 than if
she chooses C1, so Dl is her unique best choice. Of course, when Fiona chooses Dl

9 Alan,
being rational, responds by choosing D2. If Fiona and Alan know: (i) that they are both
rational, (ii) that they both know the payoff structure of the game, and (Hi) that they both
know (i) and (ii)9 then they both can predict what the other will do at every node of the Figure
l.l.a game, and conclude that they can rule out the Z?1, C -̂branch of the Figure 1.1.6 game
and analyze just the reduced game of Figure l.l.c.

Figure l . l . c .

Farmer 1
(Fiona)

C = "cooperate", and help the other farmer
D = "defect", and leave the other farmer to work alone

On account of this mutual knowledge, both know that Fiona will choose D1, and that Alan will
respond with D2. Hence, the D1,jD2-outcome results if the Farmers' Dilemma game is played
by agents having this mutual knowledge, though it is suboptimal since both agents would fare
better at the C^C^.-branch.4 This argument, which in its essentials is Hume's argument, is an
example of a standard technique for solving sequential games known as backwards induction?
The basic idea behind backwards induction is that the agents engaged in a sequential game
deduce how each will act throughout the entire game by ruling out the acts that are not payoff-
maximizing for the agents who would move last, then ruling out the acts that are not payoff-
maximizing for the agents who would move next-to-last, and so on. Clearly, backwards

4The mutual knowledge characterized by (z), (ii) and (Hi) is sufficient both to account for the
agents' following the Dl, Z)2-outcome, and for their being able to predict each others' moves. However, weaker
knowledge assumptions imply that the agents will play Dl,D2, even if they might not both be able to predict this
outcome before the start of play. As Fiona's quoted argument implies, if both are rational, both know the game,
and Fiona knows that Alan is rational and knows the game, then the D 1 . D2-outcome is the result, even if Alan
does not know that Fiona is rational or knows the game.

5Hume's analysis of the Farmers' Dilemma is perhaps the earliest example of a backwards
induction argument applied to a sequential decision problem. See Skyrms (1996) and Vanderschraaf (1996) for
more extended discussions of this argument.
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induction arguments rely crucially upon what, if any, mutual knowledge the agents have
regarding their situation, and they typically require the agents to evaluate the truth values of
certain subjunctive conditionals, such as

If I (Fiona) were to choose C1 , then Alan would choose D2.
The mutual knowledge assumptions required to construct a backwards induction

solution to a game can become more complex as the number of stages in the game increases.
To see this, consider the sequential game depicted in Figure 1.2. At each stage t, the agent
who moves can either choose R\ which in the first three stages gives the other agent an
opportunity to move, or L\ which ends the game.

Figure 1.2.

• (1 .1 )

~ (0,2)

(3,3)

l ike the Farmers' Dilemma, this game is a commitment problem for the agents. If each agent
could trust the other to choose R{ at each stage, then they would each expect to receive a
payoff of 3. However, Alan chooses L1, leaving each with a payoff of only 1, as the result of
the following backwards induction argument: "If node n4 were to be reached, then Fiona,
(being rational) would choose L4. I, knowing this, would (being rational) choose I? if node
n3 were to be reached. Fiona, knowing this, would (being rational) choose L2 if node ri2 were
to be reached. Hence, I (being rational) should choose L1." To carry out this backwards
induction argument, Alan implicitly assumes that: (i) he knows that Fiona knows he is
rational, and (ii) he knows that Fiona knows that he knows she is rational. Put another way,
for Alan to carry out the backwards induction argument, at node n\ he must know what Fiona
must know at node n^ to make L2 her best response should ri2 be reached. While in the
Farmer's Dilemma Fiona needed only first-order knowledge of Alan's rationality and second-
order knowledge of Alan's knowledge of the game to derive the backwards induction solution,
in the Figure 1.2 game, for Alan to be able to derive the backwards induction solution, the
agents must have third-order mutual knowledge of the game and second-order mutual
knowledge of rationality, and Alan must have fourth-order knowledge of this mutual
knowledge of the game and third-order knowledge of their mutual knowledge of rationality.
This argument also involves several counterfactuals, since to construct it the agents must be
able to evaluate conditionals of the form
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If node nt were to be reached, Alan (Fiona) would choose U (R*).
which for i > 1 are counterfactual since third-order mutual knowledge of rationality implies
that nodes 712, rts and 714 are never reached.

The method of backwards induction can be applied to any sequential game of
perfect information, in which the agents can observe each others' moves in turn and can recall
the entire history of play. However, as the number of potential stages of play increases, the
backwards induction argument evidently becomes harder to construct. This raises certain
questions below: (1) What precisely are the mutual or common knowledge assumptions that
are required to justify the backwards induction argument for a particular sequential game? (2)
As a sequential game increases in complexity, would we expect the mutual knowledge that is
required for backwards induction to start to fail? •

Example 1.4. Coordination
The department store problem Schelling analyzes is an example of a pure

coordination problem, that is, an interaction problem in which the interests of the agents
coincide perfectly. Schelling (1960) and Lewis (1969), who were the first to make explicit the
role common knowledge plays in social coordination, were also among the first to argue that
coordination problems can be modeled using the analytic vocabulary of game theory. A very
simple example of such a coordination problem is given in Figure 1.3.

Figure 1.3. The Department Store Problem

Harold

Torrie

S\

S2

S3

s4

Si

(1,1)

(0,0)

(0,0)

(0.0)

52.

(0,0)

(1,1)

(0,0)

(0,0)

S3

(0,0)

(0,0)

(1,1)

(0.0)

s4

(0,0)

(0,0)

(0,0)

(1,1)

s, — search on floor 1. 1 < 1 < 4

The matrix of Figure 1.3 is an example of a game in normal or strategic form. At each
outcome of the game, which corresponds to a cell in the matrix, the row (column) agent
receives as payoff the first (second) element of the ordered pair in the corresponding cell.
However, in strategic form games, each agent chooses without first being able to observe the
choices of any other agent, so that all must choose as if they were choosing simultaneously.
The Figure 1.3 game is a game of pure coordination (Lewis 1969), that is, a game in which at
each outcome, each agent receives exactly the same payoff. One interpretation of this game is
that Schelling's spouses, Torrie and Harold, are searching for each other in the department
store, and there are four locations at which they might meet. Four outcomes at which the
spouses coordinate correspond to the strategy profiles (SJ, Sj), 1 < j < 4, of the Figure l.:j
game. These four profiles are strict Nash equilibria (Nash 1950, 1951) of the game, that is.
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each agent has a decisive reason to follow her end of one of these strategy profiles provided
that the other also follows this profile.6 The difficulty the agents face is trying to select an
equilibrium to follow. For suppose that Harold hopes to coordinate with Torrie on a particular
equilibrium of the game, say (s2) $2)- Harold reasons as follows: "Since there are several
strict equilibria we might follow, I should follow my end of (s2j s2) tf>and onty **»I h a v e

sufficiently high expectations that Torrie will follow her end of (s2, $2)- But I can only have
sufficiently high expectations that Torrie will follow (s2j s2) if she has sufficiently high
expectations that I will follow (s2, s2). For her to have such expectations, Torrie must have
sufficiently high (second-order) expectations that I have sufficiently high expectations that she
will follow (52, s2)9 for if Torrie doesn't have these (second-order) expectations, then she will
believe I dont have sufficient reason to follow (s2, $2) and may therefore deviate from (s2, s2)
herself. So I need to have sufficiently high (third-order) expectations that Torrie has
sufficiently high (second-order) expectations that I have sufficiently high expectations that she
will follow (52, s2). But this implies that Torrie must have sufficiently high (fourth-order)
expectations that I have sufficiently high (third-order) expectations that Torrie has sufficiently
high (second-order) expectations that I have sufficiently high expectations that she will follow
(*2) s2)9 for if she doesn't, then she will believe I don't have sufficient reason to follow (s2, s2)9

and then she wont, either. Which involves me in fifth-order expectations regarding Torrie,
which involves her in sixth-order expectations regarding me, and so on." What would suffice
for Harold, and Torrie, to have decisive reason to follow (52, s2) is that they each know that
the other knows that. . . that the other will follow (s2, s2) for any number of levels of
knowledge, which is to say that between Torrie and Harold it is common knowledge, as Lewis,
Schiffer and Aumann define it, that they will follow (s2, s2). ^ agents follow a strict
equilibrium in a pure coordination game as a consequence of their having common knowledge
of the game, their rationality and their intentions to follow this equilibrium, and no other, then
the agents are said to be following a Lewis-convention (Lewis 1969).

Lewis1 theory of convention applies to a more general class of games than pure
coordination games, but pure coordination games already model a variety of important social
interactions. In particular, Lewis models conventions of language as equilibrium points of a
pure coordination game. The role common knowledge plays in games of pure coordination
sketched above of course raises further questions: (1) Can people ever attain the common
knowledge which characterizes a Lewis-convention? (2) Would less stringent epistemic
assumptions suffice to justify Nash equilibrium behavior in a coordination problem? •

Example 1.5. Coordination via E-mail
This example, due to Rubinstein (1987, 1992)7, shows that a seemingly slight

departure from common knowledge can dramatically change agents' prospects for successful
coordination. Diane and Greta are faced with the coordination problem summarized by Figure
1.4. Note that their payoffs are dependent upon a pair of possible worlds. World LJ\ occurs
with probability fi(u>\) = .51, while U2 occurs with probability //(tc^) = .49. Hence, they
coordinate with complete success by both choosing A (B) only if the state of the world is u>i

6See §3 for a formal definition of the Nash equilibrium concept.
7The version of the example Ruben stein presents is more general than the version presented here.

Rubenstein notes that this game is closely related to the coordinated attack problem analyzed in Halpern (1986).
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" 1 ,

Diane A

B

Figure 1.4. '

fi(u>\) = .51

Greta

A B

(2,2)

(-4,0)

(0, - 4)

(0,0)

rhe E-mail Game

Diane A

B

Greta

A

(0,0)

(-4,0)

(0, - 4)

(2,2)

Suppose that Diane can observe the state of the world, but Greta cannot. We can interpret this
game as follows: Greta and Diane would like to have a dinner together prepared by Aldo, their
favorite chef. Aldo alternates between A and B, the two branches of Soniso, their favorite
restaurant. State a;, is Aldo's location that day. At state u)\ (o^), Aldo is at A (£ ) . Diane,
who is on Soniso's special mailing list, receives notice of a>t. Diane's and Greta's best
outcome occurs when they meet where Aldo is working, so they can have their planned dinner.
If they meet but miss Aldo, they are disappointed and do not have dinner after all. If either
goes to A and finds herself alone, then she is again disappointed and does not have dinner.
But what each really wants to avoid is going to B if the other goes to A. If either of them
arrives at B alone, she not only misses dinner but must pay the exorbitant parking fee of the
hotel which houses B, since the headwaiter of B refuses to validate the parking ticket of
anyone who asks for a table for two and then sits alone. This is what Harsanyi (1967) terms a
game of incomplete information, since the game's payoffs depend upon states which not all the
agents know.

A is a "play-it-safe" strategy for both Greta and Diane.8 By choosing A whatever
the state of the world happens to be, the agents run the risk that they will fail to get the positive
payoff of meeting where Aldo is, but each is also sure to avoid the really bad consequence of
choosing B if the other chooses A. And since only Diane knows the state of the world, neither
can use information regarding the state of the world to improve their prospects for
coordination. For Greta has no such information, and since Diane knows this, she knows that
Greta has to choose accordingly, so Diane must choose her best response to the move she
anticipates Greta to make regardless of the state of the world Diane observes. Apparently
Diane and Greta cannot achieve expected payoffs greater than 1.02 for each, their expected
payoffs if they choose (A, A) at either state of the world.

If the state w were common knowledge, then the conditional strategy profile
(A, A) if Lu = LJI and (B,B) if u = u2 would be a strict Nash equilibrium at which each
would achieve a payoff of 2. So the obvious remedy to their predicament would be for Diane
to tell Greta Aldo's location in a face-to-face or telephone conversation and for them to agree
to go where Aldo is, which would make the state u and their intentions to coordinate on the
best outcome given LJ common knowledge between them. Suppose for some reason they
cannot talk to each other, but they prearrange that Diane will send Greta an e-mail message if,
and only if, LJ2 occurs. Suppose further that Greta's and Diane's e-mail systems are set up to

8In the terminology of decision theory, A is each agents' maximin strategy.
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send a reply message automatically to the sender of any message received and viewed, and that
due to technical problems there is a small probability, e > 0, that any message can fail to
arrive at its destination. Then if Diane sends Greta a message, and receives an automatic
confirmation, then Diane knows that Greta knows that a^ has occurred. If Greta receives an
automatic confirmation of Diane's automatic confirmation, then Greta knows that Diane knows
that Greta knows that a^ occurred, and so on. That a^ has occurred would become common
knowledge if each agent received infinitely many automatic confirmations, assuming that all
the confirmations could be sent and received in a finite amount of time.9 However, because of
the probability c of transmission failure at every stage of communication, the sequence of
confirmations stops after finitely many stages with probability one. With probability one,
therefore, the agents fail to achieve full common knowledge. But they do at least achieve
something "close" to common knowledge. Does this imply that they have good prospects of
settling upon (B,J5)?

Rubinstein shows that if the number of automatically exchanged confirmation
messages is finite, then A is the only choice that maximizes expected utility for each agent,
given what she knows about what they both know. Let T2 denote the number of messages that
Greta's e-mail system sends, and T\ denote the number of messages that Diane's e-mail system
sends. We might suppose that I* appears on each agent's computer screen. If 2\ = 0, then
Diane sends no message, that is, u>i has occurred, in which case Diane's unique best response
is to choose A. If T2 = 0, then Greta did not receive a message. She knows that in this case,
either LJ\ has occurred and Diane did not send her a message, which occurs with probability
.51, or a>2 has occurred and Diane sent her a message which did not arrive, which occurs with
probability .49e. If u>\ has occurred, then Diane is sure to choose A, so Greta knows that
whatever Diane might do at o;2,

E(u2(A) I T2 = 0) > ^ i t y > -4(g£2f
49)e > E(MB) I T2 = 0)

so Greta is strictly better off choosing A no matter what Diane does at either state of the world.
Suppose next that for all T{ < £, each agents' unique best response given her

expectations regarding the other agent is A, so that the unique Nash equilibrium of the game is
(A, A). Assume that T\ = t. Diane is uncertain whether T2 = t, which is the case if Greta
received Diane's tth automatic confirmation and Greta's tth confirmation was lost, or if
To — t — 1, which is the case if Diane's tth confirmation was lost. Then
/i,1(r2 = t - 1 | Ti = t) = z = 6+(1

€_6)€ > i.1 0 Thus it is more likely that Diane's last

confirmation did not arrive them that Greta did receive this message. By the inductive
assumption, Diane assesses that Greta will choose A if T2 = t — 1. So

9This could be achieved if the e-mail systems were constructed so that each nth confirmation is
sent 2~n seconds after receipt of the nth message.

10If this does not look immediately obvious (and it did not to me!), consider that either
E = [To = t] = my tth confirmation was lost, or
F = [To = t] = my tth confirmation was received, and Greta's tth confirmation was lost

must occur, and that p\(T\ = t | E) = p\(T\ = t \ F) = 1 because Diane can see her own computer screen, so so
we can apply Bayes'Theorem as follows:

MTi=t\E)ME) __ ME) _
lE)MEHMTlF){F) - MH -MTl=tlE)MEHMTl=tlF)pi{F) - MEHMF) - e+(l-«)e
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E{ux{B) | Ti = t) < - 4z + 2(1 - z) = - 6z + 2 < - 3 + 2 = - 1, and

i?(ui(>l) | Ti = t) = 0 (since Diane knows that u^ is the case)

so Diane's unique best action is A. Similarly, one can show that A is Greta's best reply if
T2 = t. So by induction, (A, A) is the unique Nash equilibrium of the game for every t > 0.

So even if agents have "almost" common knowledge, in the sense that the
number of levels of knowledge in "Greta knows that Diane knows tha t . . . that Greta knows
that u>2 occurred." is very large, their behavior is quite different from their behavior given
common knowledge that û> has occurred. Indeed, as Rubinstein points out, given merely
"almost" common knowledge, the agents choose as if no communication had occurred at all!
Rubinstein also notes that this result violates our intuitions about what we would expect the
agents to do in this case. If Ti = 17, wouldn't we expect agent i to choose B (Rubinstein
1992, p. 324)? Indeed, in many actual situations we might think it plausible that the agents
would each expect the other to choose B even if T\ = T2 = 2, which is all that is needed for
Diane to know that Greta has received her original message and for Greta to know that Diane
knows this! D

§2. Alternative Accounts of Common Knowledge
Informally, a proposition A is mutually known among a set of agents if each agent

knows that A. Mutual knowledge by itself implies nothing about what, if any, knowledge
anyone attributes to anyone else. Suppose each student arrives for a class meeting knowing
that the instructor will be late. That the instructor will be late is mutual knowledge, but each
student might think only she knows the instructor will be late. However, if one of the students
says openly "Peter told me he will be late again.", then the mutually known fact is now
commonly known. Each student now knows that the instructor will be late, each student knows
that each student knows that the instructor will be late, and so on, ad infinitum. The agents
have common knowledge in the sense articulated informally by Schelling (1960), and more
precisely by Lewis (1969) and Schiffer (1972). Schiffer uses the formal vocabulary of
epistemic logic (Hintikka 1962) to state his definition of common knowledge. Schiffer's
general approach was to augment a system of sentential logic with a set of knowledge
operators corresponding to a set of agents, and then to define common knowledge as a
hierarchy of propositions in the augmented system. Bacharach (1992) and Bicchieri (1993)
adopt this approach, and develop logical theories of common knowledge which include
soundness and completeness theorems. One can also develop alternate formal accounts of
common knowledge set-theoretic terms, which is the approach taken in this essay.11

The Hierarchical Account
Monderer and Samet (1988) and Binmore and Brandenburger (1989) give a

particularly elegant set-theoretic definition of common knowledge. I will review this
definition here, and then show that it is logically equivalent to the vz knows that j knows that.

1 'Aumann (1976) himself gives a set-theoretic account of common knowledge, which has been
generalized in several articles in the literature, including Monderer and Samet (1988) and Binmore and
Brandenburger (1989). Vanderschraaf (1997) gives the set-theoretic formulation of Lewis'account of common
knowledge reviewed in this paper.
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.. k knows that A9 hierarchy that Lewis (1969) and Schiffer (1972) argue characterizes
common knowledge.12

Some preliminary notions must be stated first. Following C. L Lewis (1943-1944)
and Carnap (1947), propositions are formally subsets of a set Q of state descriptions or
possible worlds. One can think of the elements of i? as representing Leibniz's possible worlds
or Wittgenstein's possible states of affairs. Some results in the common knowledge literature
presuppose that ft is of finite cardinality. If this admittedly unrealistic assumption is needed
in any context, this will be explicitly stated in this essay, and otherwise one may assume that
Q may be either a finite or an infinite set. A proposition A C Q obtains (or is true) if the
actual world a; G 17 is contained by A, that is, u> e A. Hence we say that A obtains atuj G Q
ifueA. What an agent i knows about the possible worlds is stated formally in terms of a
knowledge operator K^ Given a proposition A C i?, Ki(A) denotes a new proposition,
corresponding to the set of possible worlds at which agent i knows that A obtains. K{{A) is
read as *t knows (that) A (is the case)'. The knowledge operator Ki satisfies certain axioms,
including:
(KI) Ki(A) C A
(K2) Q C Ki(Q)

(KA) Ki(A) C
In words, (KI) says that if i knows A, then A must be the case. (K2) says that i knows that
some possible world in Q occurs no matter which possible world a; occurs. (KZ) says that i
knows a conjunction if, and only if, i knows each conjunct. (KA) is a reflection axiom, which
says that if i knows A, then z knows that she knows A Note that by (K3), if A C B then
Ki(A) C Ki(B)9 by (KI) and (K2)9 K{(f2) = i?, and by (KI) and (KA),
Ki(A) = KiKi(A). Any system of knowledge satisfying (Kl)-(KA) corresponds to the
modal system S4 (Kripke 1963). If one were to relax the (KI) axiom and retain the others,
the resulting system would give a formal account of what an agent believes, but does not
necessarily know.

A useful notion in the formal analysis of knowledge is that of a possibility set. An
agent i's possibility set at a state of the world Q is the smallest set of possible worlds that i
thinks could be the-case if UJ is the actual world. More precisely,
Definition 2.1. Agent fs possibility set P(ui) at LJ G Q is defined as

Hi(u) = f]{E I u e Kt(E)}
The collection of sets Tit = |J Hi(u) is i's private information system. •

Since in words, 7ii(uj) is the intersection of all propositions which i knows at uy Hi(uj) is the
smallest proposition in i? that i knows at u. Put another way, Hi(u) is the most specific
information that i has about the possible world u. The intuition behind assigning agents
private information systems is that while an agent i may not be able to perceive or comprehend
every last detail of the world in which i lives, i does know certain facts about that world. The
elements of i's information system represent what i knows immediately at a possible world.
We also have the following

12This result appears in several articles in the literature, including Monderer's and Samet's and
Binmore's and Brandenburger's articles on common knowledge.

I3I abuse notation slightly, writing 'KiKjiAY for *Ki(Kj(A)).
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Proposition 2.2. K{(A) = {u \ Hi(u) C A} .
In many formal analyses of knowledge in the literature, possibility sets are taken as primitive
and Proposition 2.2 is given as the definition of knowledge. If one adopts this viewpoint, then
the axioms (K1)-(K4) follow as consequences of the definition of knowledge. In many
applications, the agents9 possibility sets are assumed to partition14 the set 1?, in which case Hi
is called i's private information partition.

To illustrate the idea of possibility sets, let us return to the Barbecue Problem
described in Example 1.2. Suppose there are three diners: Cathy, Jennifer and Mark. Then
there are 8 relevant states of the world, summarized by Table 2.1.

Table 2.1
Ml

clean
clean
clean

messy
clean
clean

clean
messy
clean

clean
clean
messy

messy
messy
clean

we
messy
clean
messy

clean
messy
messy

messy
messy
messy

Cathy
Jennifer

Mark

Each diner knows the condition of the other diners' faces, but not her own. Suppose the cook
makes no announcement, after all. Then none of the diners knows the true state of the world
whatever u G Q the actual world turns out to be, but they do know a priori that certain
propositions are true at various states of the world. For instance, Cathy's information system
before any announcement is made is depicted in Figure 2.1 .a.

Figure 2. La

1 |
i i

i i
1 ̂ 3 w^5 1

In this case, Cathy's information system is a partition H\ of Q defined by
Hi = {HCC,HCM,HMC,HMM}

where
Hoc = Wu ^2}, that is, Jennifer and Mark are both clean.

— {^4, u;6}, that is, Jennifer is clean and Mark is messy.
= {̂ 3? ^5}* that is, Jennifer is messy and Mark is clean.
= {^7, ^8}, that is, Jennifer and Mark are both messy.

Cathy knows immediately which cell H\ (LJ) in her partition is the case at any state of the
world, but does not know which is the true state at any u G Q.

If we add in the assumption stated in Example 1.2 that if there is at least one
messy diner, then the cook announces the fact, then Cathy's information partition is not
depicted by Figure 2.1.6.

14A partition of a set i? is a collection of sets H = {H\, H2, .. . } such that i/, n H3; = 0 for
7, and \JH{ = <?.
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In this case, Cathy's information system is a partition Hi of Q defined by

where
Hccc — {<*>i}> that is, Jennifer, Mark and I are all clean.
HMCC = {tt^}' that is, Jennifer and Mark are clean and I am messy.

= {<*?4, <*?6}, that is, Jennifer is clean and Mark is messy.
= {̂ 3> fc>5}» that is, Jennifer is messy and Mark is clean.
= {^7? ^s}9 that is, Jennifer and Mark are both messy.

In this case, Cathy's information partition is a refinement of the partition she has when there is
no announcement, for in this case, then Cathy knows a priori that if u\ is the case there will be
no announcement and will know immediately that she is clean, and Cathy knows a priori that
if o^ is the case, then she will know immediately from the cook's announcement that she is
messy.

A slightly more complex case occurs if we alter the Barbecue problem so that the
cook makes an announcement only if case he sees at least two messy diners. Cathy's
possibility set is now depicted by the diagram in Figure 2.1 .c.

Figurei

1

J.l.C

u;4
|

1

This time, Cathy's information system does not partition Q. For Cathy knows a priori that that
at u;5, the cook will make his announcement, and since at u;5 Jennifer is messy and Mark is
clean, Cathy will realize immediately that she is messy. However, Cathy also knows a priori
that at CJ3, either u^ or u>s could be the case, since at u^ she does not know in advance whether
or not the cook will make an announcement. Hence H\{UJS) = {^5}, but H\(us) = {a;3,u;5}.
Similarly, H\{uje) = {UJQ}, but HiicJi) = {^4, a;6}. Jennifer's and Mark's information
systems given any of the above three scenarios are derived similarly to Cathy's information
system, and the details of this are left as an exercise for the reader.

We can now define mutual and common knowledge as follows:
Definition 2.3. Let a set Q of possible worlds together with a set of agents N be given.
(1) The proposition that A is (first level or first order) mutual knowledge for the agents of

N, Kl
N{A), is the set defined by Kl

N(A) = f| Kt(A).

(2) The proposition that A is mth level (or mth order) mutual knowledge among the agents
ofNy K%(A)9 is defined recursively as the set K%(A) = f| I
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(3) The proposition that A is common knowledge among the agents of N9 Kpf{A)9 is

defined as the set K*N{A) = f\ K%(A). E
m=l

As a consequence of Proposition 2.2, the agents* private information systems determine an a
priori structure of propositions over the space of possible worlds regarding what they can
know, including what mutual and common knowledge they potentially have. The world
u) G Q which obtains determines a posteriori what individual, mutual and common knowledge
agents in fact have. Hence, one can read u G Ki(A) as 't knows A at (possible world) w\
u G Kj}(A) as 'A is mth level mutual knowledge for the agents of N at LJ\ and so on. If a;
obtains, then one can conclude that i does know A, that A is mth level mutual knowledge, and
so on. Common knowledge of a proposition E implies common knowledge of all that E
implies, as is shown in the following:
Proposition 2.3. If a; € Kp(E) and E C F, then u G K^(F).
PROOF. If E C F, then as we observed earlier Ki(E) C K{(F)9 so

K},(E) = f| Ki(E) C D Ki(F) = K&F).
ieN ieN

If we not set Ef = IC^{E) and F* = IC^{F)9 then by the argument just given we have

OO

so we have mth level mutual knowledge for every n > 1. Hence if u G f)

ue f)K%(F). n
Note that (Kp}(E))m>i is a decreasing sequence of events, in the sense that
K%+l(E) C K%(E) for all m > 1. It is also easy to check that if everyone knows E9 then £
must be true, that is, K]^{E) C £*. If 12 is assumed to be finite, then if E is common

OO

knowledge at LJ, this implies that there must be a finite m such that Kp}(E) = p | Kp}(E).
7 1 = 1

The following result relates the set-theoretic definition of common knowledge to
the hierarchy of H knows that j knows that - - - k knows A9 statements.
Theorem 2.4. LJ e K%(A) iff
(1) For all agents iu i2, . . . , im G TV, u> G ̂ ^ • • •
Hence, a; G iiT^(yl) iff (1) is the case for each m > 1. •
PROOF. Note first that

j ( n K^J n ^

= n
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By(2)9K^(A)CKilKi2' • • K^A) for iui2,... ,irn e N, so if u e ICR(A) then
condition (1) is satisfied. Condition (1) is equivalent to

( nK^J n J^W))))
\i2eN \inSN ))))

so by (2), if (1) is satisfied then u) e K%(A). •
The condition that u> e K^K^ • • • K^A) for all m > 1 and all iu i2,..., im € N is
Schiffer's definition of common knowledge, and is often used as the definition of common
knowledge in the literature.

Lewis9 Account
Lewis is credited with the idea of characterizing common knowledge as a

hierarchy of't knows that j knows that. . . k knows that A'propositions. However, it is far
less well recognized that in Convention, Lewis also gives an algorithm which generates such a
hierarchy from a finite set of assumptions regarding the agents' knowledge. These
assumptions taken together constitute Lewis9 official definition of common knowledge. Lewis9

presentation of this definition and the algorithm is informal, and occasionally lacking in detail.
It is probably for this reason that Aumann is often credited with presenting the first finitary
method of generating the common knowledge hierarchy (Aumann 1976). A mathematically
precise account of Lewis'analysis of common knowledge is given here, and it is shown that
Lewis' analysis does result in the common knowledge hierarchy following from a finite set of
axioms.

Lewis presents his account of common knowledge on pp. 52-57 of Convention.
Lewis does not specify what account of knowledge is needed for common knowledge. As it
turns out, Lewis' account is satisfactory for any formal account of knowledge in which the
knowledge operators Ki9 i e N, satisfy (Kl), (K2) and (^3) . A crucial assumption in
Lewis' analysis of common knowledge is that agents know they share the same "rationality,
inductive standards and background information (Lewis 1969, p. 53)" with respect to a state of
affairs A\ that is, if an agent can draw any conclusion from Af, she knows that all can do
likewise. This idea is made precise in the following
Definition 2.5. Given a set of agents N and a proposition A C j?, the agents of TV are
symmetric reasoners with respect to A ( o r A -symmetric reasoners) iff, f o r e a c h i , j € N a n d
for any proposition E C i?, if Kt{A) C K{(E) and K{(A) C KiK-(A')% then
Ki(A') C KiKj(E).

15Thanks to Chris Miller and Jarah Evslin for suggesting the term 'symmetric reasoner'to describe
the parity of reasoning powers that Lewis relies upon in his treatment of common knowledge. Lewis does not
explicitly include the notion of ̂ '-symmetric reasoning into his definition of common knowledge, but he makes
use of the notion implicitly in his argument for how his definition of common knowledge generates the mutual
knowledge hierarchy.
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The definiens says that for each agent t, if t can infer from A that E is the case and that
everyone knows that A! is the case, then i can also infer that everyone knows that E is the
case.
Definition 2.6. A proposition E is Lewis-common knowledge at LJ G Q among the agents of a
set N = {1, . . . , n} iff there is a proposition A* such that LJ € A*, the agents of N are A*-
symmetric reasoners, and for every t e N,
(LI) u> G Ki(A*)
(L2) Ki(A*) C JT«( PI «i(A*))

(L3) Ki(A*) C
A* is a &o?i£ for the agents' common knowledge. L*N(E) denotes the proposition defined by
(L1)-(L3) for a set N of A*-symmetric reasoners, so we can say that E is Lewis-common
knowledge for the agents of N iff LJ e L*N(E). D
In words, (LI) says that i knows A* at LJ. (L2) says that if i knows that A* obtains, then i
knows that everyone knows that A* obtains. This axiom is meant to capture the idea that
common knowledge is based upon a proposition A* that is publicly known, as is the case when
agents hear a public announcement. If the agents' knowledge is represented by partitions, then
a typical basis for the agents' common knowledge would be an element M(co) in the meet16 of
their partitions. (L3) says that i can infer from A* that E.

A human agent obviously cannot work her way mentally through an infinite
mutual knowledge hierarchy. Lewis argues that this is not a problem for his analysis of
common knowledge, since the mutual knowledge claims of a common knowledge hierarchy
for a chain of logical consequences, not a series of steps in anyone's actual reasoning. Lewis
uses an example to show how his definition of common knowledge generates the first few
levels of mutual knowledge. In fact, Lewis'definition implies the entire common knowledge
hierarchy, as is shown in the following result.
Proposition 2.7. L%(E) C K$f(E), that is, Lewis-common knowledge of E implies
common knowledge of E.
PROOF. Suppose that LJ G L*N{E). By definition, there is a basis proposition A* such that
LJ G A*. It suffices to show that for each m > 1 and for all agents zx, i2 , . . . , im € N9

ueK^Ki, • -Kim(E).
We prove the result by induction on m. The m = 1 case follows at once from (LI) and (L3).
Now if we assume that for m = A:, a; G L*N(E) implies LJ G KtlKl2 • • • Klk(E), then
L*N{E) C KixKi2 • • • Kik(E) because CJ is an arbitrary possible world, so
Kh{A*) C KixKi2 - • • Kik(E) by (L3). Since (L2) is the case and the agents of N are A*-
symmetric reasoners, Kix{A*) C KixKiMKi2 • • • Kik(E) for any ik+i G TV, so
LJ G KllKiMKl2 - - - Klk(E) by (LI), which completes the induction since i\,ik+u h,---,
ik are k + 1 arbitrary agents of N. •

Aumann's Account
Aumann (1976) gives a different characterization of common knowledge which

gives another simple algorithm for determining what information is commonly known.

16The meet M of a collection Hi, i € N, of partitions is the finest common coarsening of the
partitions. More specifically, for any UJ G 17, if M(u>) is the element of At containing u;, then

(t) «,-(a/) C M(LJ) for all i G AT, and
(ii) For any other A"f' satisfying (i), -M(a;) C A1'(a;) .
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Aumann's original account assumes that the each agent's possibility set forms a private
information partition of the space Q of possible worlds. Aumann shows that a proposition C
is common knowledge if, and only if, C contains a cell of the meet of the agents9 partitions.
One way to compute the meet M of the partitions Hi, i G N is to use the idea of
"reachability".
Definition 2.8. A state J 6 17 is reachable from u e Q iff there exists a sequence CJQ = a;,
LJi9 c^2,..., cjm = J such that for each k G {0,1, . . . , m — 1}, there exists an agent i* G N
such that Hik(wk) = Wfe(<iflb+i). •
In words, J is reachable from u if there exists a sequence or "chain" of states from u to u/
such that two consecutive states are in the same cell of some agent's information partition. To
illustrate the idea of reachability, let us return to the modified Barbecue Problem for in which
Cathy, Jennifer and Mark receive no announcement. Their information partitions are all
depicted in Figure 2.1.d.

Figure 2 . l .d . Information ^rtitions in the Barbecue Problem

Cathy Jennifer Mark

1 C^1^ C^7 1 ! {JO A. Cc^s 1

One can understand the importance of the notion of reachability in the following way: If a/ is
reachable from u, then if a; obtains then some agent can reason that some other agent thinks
that J is possible. Looking at the diagram, if u = u\ occurs, then Cathy (who knows only
that {o;i, U2} has occurred) knows that Jennifer thinks that 0*5 might have occurred (even
though Cathy knows that u;5 did not occur). So Cathy cannot rule out the possibility that
Jennifer thinks that Mark thinks that that cjg might have occurred. And Cathy cannot rule out
the possibility that Jennifer thinks that Mark thinks that Cathy believes that CJ7 is possible. In
this sense, u-j is reachable from uj\. Note that one can show similarly in this example that any
state is reachable from any other state.
Lemma 2.9. u/ G 'M(tu) iff u/ is reachable from UJ.
PROOF. Exercise. •
Lemma 2.10. Ai(u) is common knowledge for the agents of N at UJ.
PROOF. Since M is a coarsening of Hi for each i e N, Ki(M(u)). Hence, Kl

N(M(u)),
and since by definition Ki(M(u)) = {LJ \ Hi{u) C M(u)} = M(u) ,

Kl
N(M(u)) = 0

Applying the recursive definition of mutual knowledge, for any m > 1,

ieN
= M{u)

so, since u G M(UJ), by definition we have u G K^(M(u)). D
Theorem 2.11 (Aumann 1976). Let M be the meet of the agents' partitions Hi5 i G N. A
proposition E C i? is common knowledge for the agents of iV at a; iff M(UJ) C £;.
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In Aumann (1976), E is defined to be common knowledge at u iffM{uJ) C E.
PROOF. ( <= ) By Lemma 4, M(u) is common knowledge at a>, so E is common knowledge
at u; by Proposition 2.
( => ) We must show that K*N(E) implies that M(u) C E. Suppose that there exists
u/ e M{(J) such that u/ £ E. Since a/ G Af (a;), a/ is reachable from u, so there exists a
sequence 0,1, . . . , m — 1 with associated states o^, u ^ , . . . , a>m and information sets Hik(ujk)
such that u>o =u9vm=u/ and a;* € HtJk (^*+i)- But at information set Hu (o>m), agent i*
does not know event E. Working backwards on k, we see that event E cannot be common
knowledge, that is, agent t"i cannot rule out the possibility that agent i2 thinks that • • • that
agent im_i thinks that agent i™ does not know E. D
Note that the Proof of Theorem 2 required the use of only (K1)-(K3). If E = Kjf(E), then
E is a public event (Milgrom 1981) or a common truism (Binmore and Brandenburger 1989).
Clearly, a common truism is common knowledge whenever it occurs, since in this case
E = Kl

N{E) = Kjf{E) = • • •, so E = K*N{E). The proof of Theorem 5 shows that the
common truisms are precisely the elements of M and unions of elements of M9 so any
commonly known event is the consequence of a common truism.

Gilbert's Account
Gilbert (1989, Chapter 3) presents an alternative account of common knowledge,

which is meant to be more intuitively plausible than Lewis' and Aumann's accounts. Gilbert
gives a highly detailed description of the circumstances under which agents have common
knowledge.
Definition 2.13. A set of agents N are in a common knowledge situation S(A) with respect to
a proposition A if, and only if, u G A and for each ie N,

i is epistemically normal, in the sense that i "has normal perceptual organs which are
functioning normally and has normal reasoning capacity.17

G
G
G
G
G

i has the concepts needed to fulfill the other conditions.
i perceives the other agents of N.
i perceives that G\ and G<i are the case.
i perceives that the state of affairs described by A is the case.
i perceives that all the agents of N perceive that A is the case. •

There may appear^to be some redundancy in Gilbert's definition, since presumably an agent
would not perceive A unless A is the case. Gilbert is evidently trying to give a more explicit
account of single agent knowledge than Lewis and Aumann give. For Gilbert, agent i knows
that a proposition E is the case if, and only if, u G E9 that is, E is true, and either i perceives
that the state of affairs E describes obtains or i can infer E as a consequence of other
propositions i knows, given sufficient inferential capacity.

Like Lewis, Gilbert recognizes that human agents do not in fact have unlimited
inferential capacity. To generate the infinite hierarchy of mutual knowledge, Gilbert
introduces the device of an agent's smooth-reasoner counterpart. The smooth-reasoner
counterpart i1 of an agent i is an agent that draws every logical conclusion from every fact that
i knows. Gilbert stipulates that if does not have any of the constrains on time, memory, or
reasoning ability that i might have, so i' can literally think through the infinitely many levels of
a common knowledge hierarchy.

l7Gilbert does not elaborate further on what counts as epistemic normality.
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Definition 2.14. If a set of agents N are in a comnK>n knowledge situation^ (A) with
respect to A if, thai the corresponding set N' of their smooth-reasoner counterparts is in a
parallel situation S^iA) if, and only if, for each t' e N,
G[ : i can perceive anything that the counterpart i can perceive.
G'2 : G2-GG obtain for t' with respect to A and iV7, same as for the counterpart i with respect

to A and N.
G'3 : i' perceives that all the agents of N' are smooth-reasoners. •
From this definition we get the following immediate consequence:
Proposition 2.15. If asetiV'of smooth-reasoner counterparts to a set JV of agents are in a
situation <S^(A) parallel to a common knowledge situation S#(A) of N, then
(*) ForallmeNandforanyt7!, . . . , if

m,K^K^ • • jfiT^(A),
so consequently, K%,(A) for any m € N. D
Gilbert argues that, given S*N, (A), the smooth-reasoner counterparts of the agents of N
actually satisfy a much stronger condition, namely mutual knowledge K%, (A) to the level of
any ordinal number a, finite or infinite. When this stronger condition is satisfied, the
proposition A is said to be open* to the agents of N. With the concept of open*-ness, Gilbert
gives her definition of common knowledge.
Definition 2.16. A proposition E C i? is Gilbert-common knowledge among the agents of a
set N = {1, . . . , n} if, and only if,
G\ : Eis open* to the agents of N.
G\ : For every i e N, Ki(G\).
G*N(E) denotes the proposition defined by for a set N of A*-symmetric reasoners, so we can
say that E is Lewis-common knowledge for the agents of NiffuE G*N{E). •
One might think that an immediate corollary to Gilbert's definition is that Gilbert-common
knowledge implies the hierarchical common knowledge of Definition 2.3. However, this
claim follows only on the assumption that an agent knows all of the propositions that her
smooth-reasoner counterpart reasons through. Gilbert does not explicitly endorse this
position, although she correctly observes that Lewis and Aumann are committed to something
like it.18 Gilbert maintains that her account of common knowledge expresses our intuitions
with respect to common knowledge better than Lewis' and Aumann's accounts, since the
notion of open*-ne%ss presumably makes explicit that when a proposition is common
knowledge, it is "out in the open", so to speak.

Common p-Belief
In certain contexts, agents might not be able to achieve common knowledge.

Might they achieve something "close"? One weakening of common knowledge is of course
mth level mutual knowledge. For a high value of m, K^{A) might seem a good
approximation of K^(A). However, as the e-mail game of Example 1.5 shows, simply
truncating the common knowledge hierarchy at any finite level can lead agents to behave as if
they had no mutual knowledge at all. Brandenburger and Dekel (1987), Stinchcombe (1988)

l8Gilbert (1989, p. 193) also maintains that her account of common knowledge has the advantage
of not requiring that the agents reason through an infinite hierarchy of propositions. On her account, the agents'
smooth-reasoner counterparts do all the necessary reasoning for them. However, Gilbert fails to note that
Aumann's and Lewis'accounts of common knowledge do not imply that agents must reason through the infinite
mutual knowledge hierarchy, either.
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and Monderer and Samet (1989) explore another option, which is to weaken the properties of
the Ktf operator. Monderer and Samet motivate this approach by noting that even if a mutual
knowledge hierarchy stops at a certain level, agents might still have higher level mutual beliefs
about the proposition in question. So they replace the knowledge operator K\ with a belief
operator Bf:
Definition 2.17. If /*( •) is agent t's probability distribution over i?, then

Bf(A) = {u> | ^ | H , M ) > p} . D
Bf(A) is to be read 't believes A (given t's private information) with probability at least p at
u\ or *i p-believes A\ The belief operator Bf satisfies axioms (K2), (K3), and (K4) of the
knowledge operator. Bf does not satisfy (Kl). but does satisfy the weaker property
(Bf IMA\B?(A)) > P
that is, if one believes A with probability at least p, then the probability of A is indeed at least
P-

One can define mutual and common p-beliefs recursively in a manner similar to
the definition of mutual and common knowledge:
Definition 2.18. Let a set i? of possible worlds together with a set of agents N be given.
(1) The proposition that A is (first level ox first order) mutual p-belieffor the agents ofN,

l ) , is the set defined by Bp
N

l(A) = f| Bf (A).
iN

(2) The proposition that A is mth level (or mth order) mutual p-belief among the agents of
N, Bp

N
m(A\ is defined recursively as the set Bp

N
m{A) = f| Bf (Bp

N
m~l(A)).

ieN
(3) The proposition that A is common p-belief among the agents of N, Bpf*(A)9 is defined

as the set BP
N*(A) = f) Bp

N
m(A). •

m=l

If A is common (or mth level mutual) knowledge at world u, then A is common (mth level)
p-belief at u for every value of p. So mutual and common p-beliefs formally generalize the
mutual and common knowledge concepts. However, note that Bj^*(A) is not necessarily the
same proposition as Kj^(A), that is, even if A is common 1-belief, A can fail to be common
knowledge.

Common p-belief forms a hierarchy similar to a common knowledge hierarchy:
Theorem 2.19. o/e Bp

N
m(A) iff

(1 ) For all agents iui2, ...9imeN9ue BV
XB\2 • • • BfJA).

Hence, u e B^*(A) iff (1) is the case for each m > 1. •
PROOF. Similar to the proof of Theorem 2.//.

§3. Applications of Multi-Agent Knowledge Concepts

Convention
Schelling's Department Store problem of Example 1.4 is a very simple example in

which the agents "solve" their coordination problem appropriately by establishing a
convention. Using the vocabulary of game theory, Lewis (1969) defines a convention as a
strict coordination equilibrium of a game which agents follow on account of their common
knowledge that they all prefer to follow this coordination equilibrium. A coordination
equilibrium of a game is a strategy combination such that no agent is better off if any agent
unilaterally deviates from this combination. As with equilibria in general, a coordination
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equilibrium is stria if any agent who deviates unilaterally from the equilibrium is strictly
worse off. The strategic form game of Figure 3.2 summarizes Torrie's and Harold's situation.
The Department Store game has four Nash equilibrium outcomes in pure strategies: (si, si),
($2, ̂ 2)5 («3J 53) and (54, s4).19 These four equilibria are all strict coordination equilibria. If
the agents follow either of these equilibria, then they coordinate successfully. For agents to be
following a Lewis-convention in this situation, they must follow one of the game's
coordination equilibria. However, for Lewis to follow a coordination equilibrium is not a
sufficient condition for agents to be following a convention. For suppose that Torrie and
Harold fail to analyze their predicament properly at all, but Torrie chooses s2 and Harold
chooses 52, so that they coordinate at (s2, s2) by sheer luck. Lewis does not count accidental
coordination of this sort as a convention.

Suppose next that both agents are Bayesian rational, and that part of what each
agent knows is the payoff structure of the Intersection game. If the agents expect each other to
follow (s2, $2) ^d they consequently coordinate successfully, are they then following a
convention? Not necessarily, contends Lewis, in a subtle argument on p. 59 of Convention.
For while each knows the game and that she is rational, she might not attribute like knowledge
to the other agent. If each agent believes that the other agent will follow her end of the (s2, s2)
equilibrium mindlessly, then her best response is to follow her end of (s2j s2). But in this case
the agents coordinated as the result of their each falsely believing that the other acts like an
automaton, and Lewis thinks that any proper account of convention must require that agents
have correct beliefs about one another. In particular, Lewis requires that each agent involved
in a convention must have mutual expectations that each is acting with the aim of coordinating
with the other, that is, that each knows that:

A\: Both are rational. ,
A2: Both know the payoff structure of the game., and
A3: Both intend to follow (52,52), and not some other strategy combination.

Suppose that the agents'beliefs are appropriately augmented so that each agent knows that A\9

A2 and A3 are the case. Again they coordinate on (52,52). Are they following a convention
this time? Still not necessarily, says Lewis. For what if it turns out that Torrie thinks that
Harold does not know that they are both rational? Then Torrie has a false belief about Harold.
Beyond this, there,are two other points which Lewis does not himself raise in this argument,
but which clearly support his view. First, it would be counterintuitive, at the very least, to
suppose that any agent following a convention believes that he has reasoning abilities that the
other agents lack. If Torrie has determined that A\, A2 and A3 are the case, then if they are
following a convention she should expect that Harold has arrived at the same conclusion.
Second, what could explain Torrie's knowledge of A3? The most natural explanation for
Torrie's expectation that Harold will follow his end of (s2, s2) is that Torrie knows that Harold
knows that A\, A2 and A3 are the case. So convention evidently involves agents having at
least second-order mutual knowledge of A\, A2 and A3, that is, Harold (Torrie) must know
that Torrie (Harold) knows that A\9 A2 and A3 are the case. But this raises the question: Can

19An agent's pure strategies in a noncooperative game are simply the alternative acts this agent
might choose as defined by the game. An agent follows a mixed strategy by observing the outcome of a random
experiment and then choosing a pure strategy according to the outcome of this experiment. A strategy is
completely mixed if before the experiment is performed, each pure strategy has a positive probability of being
played.
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third-order mutual knowledge that A\9A2 and A$ obtain fail? No, argues Lewis. Fbrif
Harold thought that Tome did not know that Harold knew that Au A2 and As were the case,
then Harold would have a false belief about Torrie. The additional supporting points also kick
in again: If Harold has second-order mutual knowledge that A\9 A2 and A3 obtain, then he
should conclude that Torrie also has this second-order mutual knowledge. To conclude
otherwise would require Harold to assume, counterintuitively, that he has analyzed their
deliberations in this situation in a way that Torrie cannot And how did Harold get his second-
order mutual knowledge of A3? The most obvious way to account for Harold's second-order
mutual knowledge would be to attribute to Harold the knowledge that Torrie has second-order
mutual knowledge that A\9 A2 and A3 are the case. So convention requires third-order mutual
knowledge that A\9 A2 and Az are the case. And the argument can be continued for any higher
level of mutual knowledge.

Lewis concludes that a necessary condition for agents to be following a
convention is that their preferences to follow the corresponding coordination equilibrium be
common knowledge. So on Lewis9 account, a convention for a set of agents is a coordination
equilibrium which the agents follow on account of their common knowledge of their
rationality, the payoff structure of the relevant game and that each agent follows her part of the
equilibrium.

A regularity R in the behavior of members of a population P when they are
agents in a recurrent situation S is a convention if and only if it is true that, and it
is common knowledge in P that, in any instance of S among the members of P,
(1) everyone conforms to R\
(2) everyone expects everyone else to conform to R;
(3) everyone has approximately the same preferences regarding all possible

combinations of actions;
(4) everyone prefers that everyone conform to R, on condition that at least all

but one conform to R;
(5) everyone would prefer that everyone conform to R\ on condition that at

least all but one conform to R\
where Rf is some possible regularity in the behavior of members of P in 5, such
that no one m any instance of S among members of P could conform both to R'
and to R. (Cewis 1969, p. 76)20

Lewis includes the requirement that there be an alternate coordination equilibrium R1 besides
the equilibrium R that all follow in order to capture the fundamental intuition that how the
agents who follow a convention behave depends crucially upon how they expect the others to
behave. In the Department Store game, the (s2, $2) equilibrium is a Lewis-convention when
Torrie and Harold have common knowledge of A\9 A2 and A$. Had their expectations been
different, so either had believed that the other would not follow (s2, s2), then the outcome
might have been very different.

Sugden (1986) and Vanderschraaf (1997) argue that it is not crucial to the notion
of convention that the corresponding equilibrium be a coordination equilibrium. Lewis' key

20Lewis, (1969), p. 76. Lewis gives a further definition of agents following a convention to a
certain degree if only a certain percentage of the agents actually conform to the coordination equilibrium
corresponding to the convention. See Lewis (1969, pp. 78-79).
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insight is that a convention is a pattern of mutually beneficial behavior which depends on the
agents'common knowledge that all follow this pattern, and no other. Vanderschraaf gives a
more general definition of convention as a strict equilibrium together with common
knowledge that all will follow this equilibrium, together with common knowledge that all
might have followed a different equilibrium had their beliefs about each other been different.
An example of this more general kind of convention is given below in the discussion of the
Figure 3.1 example.

The "No Disagreement" Theorem
Aumann (1976) originally used his definition of common knowledge to prove a

celebrated result that says that in a certain sense, agents cannot "agree to disagree" about their
beliefs, formalized as probability distributions, if they start with common prior beliefs. Since
agents in a community often hold different opinions and know they do so, one might attribute
such differences to the agents* having different private information. Aumann's surprising
result is that even if agents condition their beliefs on private information, mere common
knowledge of their conditioned beliefs together with the common prior assumption (CPA)
implies that their beliefs cannot be different, after all!
Theorem 3.1. Let Q be a finite set of states of the world. Suppose that
(t) Agents i and j have a common prior probability distribution /x( •) over the events of Q

such that fj,(u;) > 0 for each LJ € 12, and
(it) It is common knowledge at u that t's posterior probability of event E is qi (E) and that

fs posterior probability of E is qj(E).

PROOF. Let M be the meet of all the agents' partitions, and let M(u) be the element of M
containing u. Since M(u) consists of cells common to every agents information partition, we
can write M(u) = \JHik, where each Ha £ Hi. Since i's posterior probability of event E is

k

common knowledge, it is constant on M{u)), and so
qi(E) = fji(E\Hik) for all k.

Hence,
ti(EDHik)=qi(E)fJ.(Hik)

and so
ii(E n M(u)) = fi(E n \jHik) = fjiQJE n Hlk)

k k

n Hit) =

k

Applying the same argument to j, we have

so we must have qn(E) = <ij(E). •
In a later article, Aumann (1987) argues that the assumptions that Q is finite and that
fi(u) > 0 for each u G Q reflect the idea that agents only regard as "really" possible a finite
collection of salient worlds to which they assign positive probability, so that one can drop the
states with probability 0 from the description of the state space. Aumann also notes that this
result implicitly assumes that the agents have common knowledge of their partitions, since a
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description of each possible world includes a description of the agents9 possibility sets. And of
course, this result depends crucially upon (i),the CPA.

Aumann's "no disagreement" theorem has been generalized in a number of ways
in the literature (McKelvey and Page 1986, Monderer and Samet 1989, Geanakoplos 1994).
However, all of these "no disagreement" results raise the same philosophical puzzle raised by
Aumann's original result: How are we to explain differences in belief? Aumann's result
leaves us with two options: (1) admit that at some level, common knowledge of the agents'
beliefs or how they form their beliefs fails, or (2) deny the CPA. For instance, agents in the
real world often do not express their opinions probabilistically. If one agent announces "I
believe that E is the case.1 while another announces NI doubt that E is the case.', then they
might attribute their divergent opinions to a lack of common knowledge of each other's true
posteriors for E. Even if agents do assign precise posterior probabilities to an event, Aumann
shows that if they have merely first-order mutual knowledge of the posteriors, they can "agree
to disagree". Suppose that Q = {uu u^, o;3, a;4}, that H\ = {{a>i, a^}, {<*>3, ̂ 4 }} and

;3}, {a;4}}, and that ufa) = \. Then if E = {a;i,a;4}, thenata;i,

qi(E) =

Moreover, at LJ = LJ\ agent 1 knows that 7l2{w) = {o/i, ô > u^}, so she knows that |
Agent 2 knows at LJ\ that either H\{LJ) = {o>i, o^} or H\{LJ) = {(J3, LJ4}9 so either way he
knows that q\ (E) = \. Hence the agents' posteriors are mutually known, and yet they are
unequal. The reason for this is that the posteriors are not common knowledge. For agent 2
does not know what agent 1 thinks 92 (E) is, since if LJ = u^ which is consistent with what
agent 2 knows, then agent 1 will believe that q2(E) = 5 with probability \ (if LJ = LJ3) and
q2(E) = 1 with probability 1 (if LJ = o;4). Aumann's result could fail if the agents' partitions
are not common knowledge. For suppose in the example just given, the agents do not know
each other's partitions. Then at u = w\, if their posteriors are common knowledge, then agent
1, who knows that LJ G {W\ , a^}, can explain agent 2's posterior as the result of agent 2 having
observed either {ui, u;2, o;3 }, {u\, CJ2, ̂ 4 } > {^1, CJ3, a;4 } or {^2, ^3 , CJ4 }. Still another way
Aumann's result might fail is if agents do not have common knowledge that they update their
beliefs by Bayesian conditionalization. Then clearly, agents can explain divergent opinions as
the result of others: having modified their beliefs in the "wrong" way. However, there are
cases in which none of these explanations will seem convincing. For instance, odds makers
sometimes publicly announce different probabilities for an event, such as a particular winner
of a prize at a forthcoming Academy Awards presentation, and they will know that none of
them have any private information regarding the event. In cases such as this, the agents have
common knowledge that they all have the same information structure and common knowledge
of their posteriors. And knowing that they are all competent odds makers, they have common
knowledge that they update by Bayesian conditionalization. Still, the odds makers' beliefs
violate the conclusion of Aumann's result. More generally, denying the requisite common
knowledge seems a rather ad hoc move. For instance, to deny that agents have common
knowledge of information structures is simply to deny that agents can all infer the same
conclusions regarding possible worlds as Aumann defines them. To deny that agents have
common knowledge that they update their beliefs by Bayesian conditionalization is to assert
that some believe that some might be updating their beliefs incoherently, in the sense that their
belief updating leaves them open to a Dutch book (Skyrms 1984). As just noted, these failures
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of agents'beliefs in each others9 competence do not fail in all cases. Why should one think that
such failures of common knowledge provide a general explanation for divergent beliefs?

Attributing diversity of beliefs in general to failures of common knowledge seems
a rather ad hoc move. For instance, to deny that agents have common knowledge of
information structures is simply to deny that agents can all infer the same conclusions
regarding the relevant possible worlds. To deny that agents have common knowledge that they
update their beliefs by Bayesian conditionalization is to assert that some believe that some
might be updating their beliefs incoherently, in the sense that their belief updating leaves them
open to a Dutch book (Skyrms 1984). Why should one think that divergent beliefs are
generally the result of agents doubting each others9 competence?

What of the second option, that is, denying the CPA?21 The main argument put
forward in favor of the CPA is that any differences in agents9 probabilities should be the result
of their having different information only, that is, there is no reason to think that the different
beliefs that agents have regarding the same event are the result of anything other than their
having different information. However, one can reply that this argument amounts simply to a
restatement of the Harsanyi Doctrine.22 And while defenders of the Harsanyi Doctrine may be
right in thinking that there is apparently no compelling reason to think that agents'priors can
be different, neither is there compelling reason to think they must be the same! In any event,
while the controversy over the Harsanyi Doctrine remains unresolved, we can conclude that
the "no disagreement" results have interesting implications for the viability of common
knowledge and the very nature of probability. Defenders of the CPA take an objectives view
of probability, and by virtue of the "no disagreement" results are evidently committed to the
view that common knowledge of agents beliefs and how they are formed is a rare phenomenon
in the world. Those who are prepared to deny the CPA allow for a genuinely subjectivist
conception of probability. They take the view that common knowledge of agents' beliefs and
how they come by them can be a commonplace phenomenon, and that differences in opinion
can stem from differences in (subjective) prior probabilities.

Strategic Form Games
Lewis formulated the notion of common knowledge as part of his general account

of conventions. In the years following the publication of Convention, game theorists have
recognized that any-explanation of a particular pattern of play in a game depends crucially on
mutual and common knowledge assumptions. More specifically, solution concepts in game
theory are both motivated and justified in large part by the mutual or common knowledge the
agents in the game have regarding their situation. A modest starting point is to assume that the
agents are sophisticated enough to have common knowledge of the full payoff structure of the
game they are engaged in and that they are all rational. Suppose further that no other
information is common knowledge. In other words, each agent knows that her opponents are
expected utility maximizers, but does not in general know exactly which strategies they will
choose or what their probabilities for her acts are. These common knowledge assumptions are
the motivational basis for the solution concept for noncooperative games known as
rationalizability, introduced independently by Bernheim (1984) and Pearce (1984). Roughly
speaking, a rationalizable strategy is any strategy an agent may choose without violating

21Harsanyi (1968) is the most famous defender of the CPA. Indeed, Aumann (1974, 1987) calls
the CPA the Harsanyi Doctrine in Harsanyi's honor.

22Alan Hajek first pointed this out to me in conversation.
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common knowledge of Bayesian rationality. Bernheim and Pearce argue that when only the
structure of the game and the agents' Bayesian rationality are common knowledge, the game
should be considered "solved" if every agent plays a rationalizable strategy. For instance, in
the "Chicken" game with payoff structure defined by Figure 3.1, if Kay and Amie have
common knowledge of all of the payoffs at every strategy combination, and they have common
knowledge that both are Bayesian rational, then any of the four pure strategy profiles is
rationalizable.

Figure 3.1. Chicken

Kay

si s2

(3,3)

(4,2)

(2,4)

(0,0)

Amie

sx = cooperate, 52 = defect

For if their beliefs about each other are defined by the probabilities
cti = /xx(Kay plays si), and a2 = /-^(Amie plays si)

then
E(ui(si)) = 3a, + 2(1 - a,-) = a{ + 1, and E(ui(s2)) = 4af + 0(1 - a{) = 4a*, i = 1,2

so each agent maximizes her expected utility by playing s\ if a* + 1 > 4a; or a; < | and
maximizes her expected utility by playing 52 if a; > |. If it so happens that a* > 5 for both
agents, then both conform with Bayesian rationality by playing their respective ends of the
strategy combination (S2,52) given their beliefs, even though each would want to defect from
this strategy combination were she to discover that the other is in fact going to play s2. Note
that the game's pure strategy Nash equilibria, (si, 52) and (52, si), are rationalizable, since it is
rational for Amie and Kay to conform with either equilibrium given appropriate distributions.
In general, the set of a game's rationalizable strategy combinations contains the set of the
game's pure strategy Nash equilibria, and this example shows that the containment can be
proper.

To show that rationalizability is a nontrivial notion, consider the 2-agent game
with payoff structure defined by Figure 3.2.a.
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Figure 3J2.a

Kay

(4,3)

(1.1)

(3,4)

(1,2)

(0,5)

(1,3)

(3,4)

(1,1)

(4,3)

Amie 52

In this game, sx and s3 strictly dominate 52 for Amie, so Amie cannot play s2 on pain of
violating Bayesian rationality. Kay knows this, so Kay knows that the only pure strategy
profiles which are possible outcomes of the game will be among the six profiles in which
Amie does not choose s2. In effect, the 3 x 3 game is reduced to the 2 x 3 game defined by
Figure 3.2.6.

Figure 3.2.6

Kay

s\ s2 53

Amie

53

(4,3)

(3,4)

(1,2)

(1,3)

(3,4)

(4,3)

In this reduced game, s2 is strictly dominated for Kay by s\9 and so Kay will rule out playing
52. Amie knows this, and so she rules out strategy combinations in which Kay plays 52. The
rationalizable strategy profiles are the four profiles that remain after deleting all of the strategy
combinations in which either Amie or Kay play 52. In effect, common knowledge of Bayesian
rationality reduces*the 3 x 3 game of Figure 3.2.a to the 2 x 2 game defined by Figure 3.2.c,
since Amie and Kay both know that the only possible outcomes of the game are (s1? s\),
(5i,53), (53,5^ and (s3,53).

Figure 3.2.c

Kay

Amie

S3

(4,3)

(3,4)

(3,4)

(4,3)
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Rationalizability can be defined formally in several ways. A variation of Bernheim's original
(1984) definition is given here. I first give the usual definitions of a game in strategic form,
expected utility and agents' distributions over their opponents' strategies to establish notation.
Definition 3.2. A game F is an ordered triple (N,S,u) consisting of the following elements:
(a) A finite set N = { 1 , 2 , . . . , n}, called the set of agents or players.
(6) For each agent ke N, there is a finite set 5* = {ski, sk2,..., sjbn*}, called the

alternative pure strategies for agent k. The Cartesian product S = S\ x • • • x Sn is
called the pure strategy set for the game F.

(c) A map u: S —• Rn, called the utility or payoff function on the pure strategy set. At each
strategy combination a = (sijl9..., snin) G 5, agent fc's particular payoff or utility is
given by the fcth component of the value of tx, that is, agent fc's utility uk at s is
determined by

uk(s) = Ik o uOsyj , . . . , snim),
where Ik(x) projects a? G Rn onto its fcth component •

The subscriptc — k9 indicates the result of removing the kth component of an n-tuple or an n-
fold Cartesian product. For instance,

<SL* = Si x • • • x Sk-i x 5*+i x • • • x Sn

denotes the pure strategy combinations that agent fc's opponents may play.
Now let us formally introduce a system of the agents'beliefs into this framework.

Ak(S-k) denotes the set of probability distributions over the measurable space (S_*, 3*),
where $k denotes the Boolean algebra generated by the strategy combinations £_*. Each
agent k has a probability distribution /z* € Zl* (£_*), and this distribution determines the
(Savage) expected utilities for each of fc's possible acts:

E(uk(skj)) = J2 uk(skj,s-k)fik(s-k), j = 1, 2, . . . , nk .

If i is an opponent of fc, then z's individual strategy st<7 may be characterized as a union of
strategy combinations \J{s-k \ Sij G s-k} G $k, and so fc's marginal probability for i's
strategy s^ may be calculated as follows:

Definition 3.3. Given that each agent k G N has a probability distribution yû  G Ak(S-k), the
system of beliefs •

// = (/ilr . . . ,/in) G Z\i(5_i) x • • • x zln(5_r i)
is Bayes concordant if, and only if,
(3.z) For i ^ k, /Jii(skj) > 0 => skj maximizes Ar's expected utility for some

ok G Ak\S—k),
and (3.i) is common knowledge. A pure strategy combination s = Oi7l, . . . , snjn) G 5 is
rationalizable if, and only if, the agents have a Bayes concordant system /i of beliefs and, for
each agent k G TV,
(3.u) E(uk(skjk)) > E(uk(skik)) for i* 7^ j* .D2 3

23In their original papers, Bernheim (1984) and Pearce (1984) included in their definitions of
rationalizability the requirement that the agents' probability distributions over their opponents satisfy probabilistic
independence, that is, for each agent A; and for each

S-k = (5 l i iJ • • • » sk-ljk-i* Sk+ljk+x' • • • » snjn) ^ ^-k

k's joint probability must equal the product of fc's marginal probabilities, that is,
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The following result shows that the common knowledge restriction on the distributions in
Definition 3.1 formalizes the assumption that the agents have common knowledge of Bayesian
rationality.
Proposition 3.4. In a game /\ common knowledge of Bayesian rationality is satisfied if, and
only if, (3.i) is common knowledge.
PROOF. Suppose first that common knowledge of Bayesian rationality is satisfied. Since it is
common knowledge that agent t knows that agent k is Bayesian rational, it is also common
knowledge that if m(skj) > 0, then stj must be optimal for k given some belief over £_*, so
(3.t) is common knowledge.

Suppose now that (3.t) is common knowledge. Then, by (3.t), agent i knows that
agent A: is Bayesian rational. Since (3.t) is common knowledge, all statements of the form Tor
t, j, . . . , k e N9 i knows that j knows that.. . A; is Bayesian rational9 follow by induction. D

When agents have common knowledge of the game ami their Bayesian rationality
only, one can predict that they will follow a rationalizable strategy profile. However,
rationalizability becomes an unstable solution concept if the agents come to know more about
one another. For instance, in the Chicken example above with a, > |, t = 1,2, if either agent
were to discover the other agent's beliefs about her, she would have good reason not to follow
the (s2, s2) profile and to revise her own beliefs regarding the other agent. If, in the otter
hand, it so happens that c*i = 1 and a2 = 0, so that the agents maximize expected payoff by
following the (s2, $i) profile, then should the agents discover their beliefs about each other,
they will still follow ($2> s\). Indeed, if their beliefs are common knowledge, then one can
predict with certainty that they will follow (s2, $i). The Nash equilibrium (s2, $i) is
characterized by the belief distributions defined by a\ = 1 and a2 = 0.

The Nash equilibrium is a special case of correlated equilibrium concepts, which
are defined in terms of the belief distributions of the agents in a game. In general, a correlated
equilibrium-in-beliefs is a system of agents' probability distributions which remains stable
given common knowledge of the game, rationality and the beliefs themselves. We will review
two alternative correlated equilibrium concepts (Aumann 1974, 1987; Vanderschraaf 1995),
and show how each generalizes the Nash equilibrium concept.
Definition 3.4. Given that each agent k G N has a probability distribution /i* G Ak(S-k), the
system of beliefs •

' V* = (ni . . . , AO e Ax(S-i) x . . . x An{S-n),
is an endogenous correlated equilibrium if, and only if,
(3.iii) For i / k, fA*(skj) > 0 => Skj maximizes fc's expected utility given /i]l. •
If fi* is an endogenous correlated equilibrium, a pure strategy combination s* = (s^ . . .,
s*) G S is an endogenous correlated equilibrium strategy combination given /i* if, and only if,
for each agent k G iV,

Pk(s-k) = Pk(slh) • • • Pkisk-i^) - pk(sk+ijk+l) - • pk(snjn).

Brandcnburger and Dekel (1987), Skyrms (1990) and Vanderschraaf (1995) all argue that the probabilistic
independence requirement is not well-motivated, and do not include this requirement in their presentations of
rationalizability.

Bemheim (1984) calls a Bayes concordant system of beliefs a "consistent" system of beliefs.
Since the term "consistent beliefs" is used in this paper to describe probability distributions that agree with
respect to a mutual opponent's strategies, I use the term "Bayes concordant system of beliefs" rather than
Bernheim's "consistent system of beliefs".
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(3.tt/) E(uk{sD) > E(uk(ski)) for Ski ± s\.
Hence, the endogenous correlated equilibrium /x* restricts the set of strategies that the agents
might follow, as do the Bayes concordant beliefs of rationalizability. However, the
endogenous correlated equilibrium concept is a proper refinement of rationalizability, because
the latter does not presuppose that condition (S.iii) holds with respect to the beliefs one's
opponents actually have. If exactly one pure strategy combination s* satisfies (3.it;) given /x*,
then fjf is a strict equilibrium, and in this case one can predict with certainty what the agents
will do given common knowledge of the game, rationality and their beliefs.

Note that Definition 3.4 says nothing about whether or not the agents regard their
opponents' strategy combinations as probabilistically independent. Also, this definition does
not require that the agents' probabilities are consistent, in the sense that agents' probabilities
for a mutual opponent's acts agree. A simple refinement of the endogenous correlated
equilibrium concept characterizes the Nash equilibrium concept.
Definition 3.5. A system of agents' beliefs /x* is a Nash equilibrium if, and only if,
(a) Condition (3.Hi) is satisfied,
(6) For each k G N,n\ satisfies probabilistic independence,

and
(c) For each skj eSk,ifi,l^k then fJLi(skj) = Hi(skj) . •
In other words, an endogenous correlated equilibrium is a Nash equilibrium-in-beliefs when
each agent regards the moves of his opponents as probabilistically independent and the agents'
probabilities are consistent. Note that in the 2-agent case, conditions (6) and (c) of the
Definition 3.5 are always satisfied, so for 2-agent games the endogenous correlated
equilibrium concept reduces to the Nash equilibrium concept. Conditions (6) and (c) are
traditionally assumed in game theory, but Skyrms (1991) and Vanderschraaf (1995) argue that
there may be good reasons to relax these assumptions in games with 3 or more agents.

Brandenburger and Dekel (1988) show that in 2-agent games, if the beliefs of the
agents are common knowledge, condition (3.Hi) characterizes a Nash equilibrium-in-beliefs.
As they note, condition (3.iii) characterizes a Nash equilibrium in beliefs for the n-agent case
if the probability distributions are consistent and satisfy probabilistic independence.
Proposition 3.6 extends Brandenburger and Dekel's result to the endogenous correlated
equilibrium concept by relaxing the consistency and probabilistic independence assumptions.
Proposition 3.6. Assume that the probabilities

fi = (/JLU . . . , fjLn) e Ai(S-i) x • • • x An(S-n)
are common knowledge. Then common knowledge of Bayesian rationality is satisfied if, and
only if, /x is an endogenous correlated equilibrium.
PROOF. Suppose first that common knowledge of Bayesian rationality is satisfied. Then, by
Proposition 3.4, for a given agent k G N, if ^i(skj) > 0 for each agent i ^ k, then skj must be
optimal for k given some distribution &k € Ak{S-k). Since the agents'distributions are
common knowledge, this distribution is precisely /x*, so (3.iii) is satisfied for k. (3.iii) is
similarly established for each other agent i / k, so /x is an endogenous correlated equilibrium.

Now suppose that /x is an endogenous correlated equilibrium. Then, since the
distributions are common knowledge, (3.i) is common knowledge, so common knowledge of
Bayesian rationality is satisfied by Proposition 3.4. •
Corollary 3.7. (Brandenburger and Dekel, 1988). Assume in a 2-agent game that the
probabilities
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Ax(S-i) x 42(SL2)
are common knowledge. Then common knowledge of Bayesian rationality is satisfied if, and
only if, /i is a Nash equilibrium.
PROOF. The endogenous correlated equilibrium concept reduces to the Nash equilibrium
concept in the 2-agent case, so the corollary follows by Proposition 3.6. D

If /i* is a strict equilibrium, then one can predict which pure strategy profile the
agents in a game will follow given common knowledge of the game, rationality and /z*. But if
fjf is such that several distinct pure strategy profiles satisfy (3.iv) with respect to /**, then one
can no longer predict with certainty what the agents will do. For instance, in the Chicken
game of Figure 3.1, the belief distributions defined by OL\ = a2 = 5 together are a Nash
equilibrium-in-beliefs. Given common knowledge of this equilibrium, either pure strategy is a
best reply for each agent, in the sense that either pure strategy maximizes expected utility.
Indeed, if agents can also adopt randomized or mixed strategies at which they follow one of
several pure strategies according to the outcome of a chance experiment, then any of the
infinitely mixed strategies an agent might adopt in Chicken is a best reply given /x*.24 So the
endogenous correlated equilibrium concept does not determine the exact outcome of a game in
all cases, even if one assumes probabilistic consistency and independence so that the
equilibrium is a Nash equilibrium.

An alternate correlated equilibrium concept formalized by Aumann (1974,1987)
does give a determinate prediction of what agents will do in a game given appropriate common
knowledge. To illustrate Aumann's correlated equilibrium concept, let us consider the Figure
3.1 game once more. If Kay and Amie can tie their strategies to their knowledge of the
possible worlds in a certain way, they can follow a system of correlated strategies which will
yield a payoff vector they both prefer to that of the mixed Nash equilibrium and which is itself
an equilibrium. One way they can achieve this is to have their friend Ron play a variation of
the familiar shell game by hiding a pea under one of three walnut shells, numbered 1, 2 and 3.
Kay and Amie both think that each of the three relevant possible worlds corresponding to
Uk = {the pea lies under shell A:} is equally likely. Ron then gives Amie and Kay each a
private recommendation, based upon the outcome of the game, which defines a system of
strategy combinations / as follows

{ if a;* = UJX ,

j>i,s2) if^* = ^ 2 ,
f is a correlated strategy system because the agents tie their strategies, by following their
recommendations, to the same set of states of the world Q. f is also a strict Aumann

24A mixed strategy <7̂ ( ) is a probability distribution defined over Ar's pure strategies by some
random experiment such as the toss of a coin or the spin of a roulette wheel, k plays each pure strategy s*> with
probability crk(skj) according to the outcome of the experiment, which is assumed to be probabilistically
independent of the others' experiments. A strategy is completely mixed when each pure strategy has a positive
probability of being the one selected by the mixing device.

Nash (1950, 1951) originally developed the Nash equilibrium concept in terms of mixed strategies.
In subsequent years, game theorists have realized that the Nash and more general correlated equilibrium concepts
can be defined entirely in terms of the agents' beliefs, without recourse to mixed strategies. See Aumann (1987),
Brandenburger and Dekel (1988), and Skyrms (1991) for an extended discussion of equilibrium-in-beliefs.
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correlated equilibrium, for if each agent knows how Ron makes his recommendations, but
knows only the recommendation he gives her, either would do strictly worse were she to
deviate from her recommendation.25 Since there are several strict equilibria of Chicken, /
corresponds to a convention as defined in Vanderschraaf (1997). The overall expected payoff
vector of / is (3,3), which lies outside the convex hull of the payoffs for the game's Nash
equilibria and which Pareto-dominates the expected payoff vector ( | , | ) of the mixed Nash
equilibrium defined by a, = ±, i = 1,2.26 The correlated equilibrium / is characterized by
the probability distribution of the agents9 play over the strategy profiles, given in Figure 3.3.

Figure 33. Correlated Equilibrium Distribution for Chicken
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Aumann (1987) proves a result relating his correlated equilibrium concept to
common knowledge. To review this result, we must give the formal definition of Aumann
correlated equilibrium.
Definition 3.8. Given a game F = (TV, 5, u) together with a finite set of possible worlds i?,
the vector valued function /: Q —• S is a correlated n-tuple. If f{u) = (/i(o;), . . . , fn{v))
denotes the components of / for the agents of N, then agent fc's recommended strategy at u is
fk (<*>) - / is an Aumann correlated equilibrium iff,
(0 E(ukof)>E(uk(f-k,gk))
for each k G N and for any function gk that is a function of /,-. •
The agents are at Aumann correlated equilibrium if at each possible world u G i?, no agent
will want to deviate from his recommended strategy, given that the others follow their

25Ron's private recommendations in effect partition Q as follows: Hi ="•'Kon s private recommenaauons in eneci parimon
to = {{uJijUs}, {^2}}. These partitions are diagrammed below:

, {^3}} and

Given their private information, at each possible world UJ to which an agent i assigns positive
probability, following / maximizes i's expected utility. For instance, at u = 1^2,

and
E(u2(A2) I W2)(w2) = 4 > 3 = ^)

26An outcome s\ of a game Pareto-dominates an outcome s2 if» and only if,
(i) E(uk(si)) > E(uk(a2)) for all k € N.
s\ strictly Pareto-dominates ^2 if the inequalities of (i) are all strict.
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recommended strategies. Hence, Aumann correlated equilibrium uniquely specifies the
strategy of each agent, by explicitly introducing a space of possible worlds to which agents can
correlate their acts. The deviations # are required to be functions of / , , that is, compositions
of some other function with/*, because i is informed of fi(u) only, and so can only distinguish
between the possible worlds of i? that are distinguished by /,. As noted already, the primary
difference between Aumann's notion of correlated equilibrium and the endogenous correlated
equilibrium is that in Aumann's correlated equilibrium, the agents correlate their strategies to
some event u G Q that is external to the game. One way to view this difference is that agents
who correlate their strategies exogenously can calculate their expected utilities conditional on
their own strategies.

In Aumann's model, a description of each possible world LJ includes descriptions
of the following: the game T, the agent's private information partitions, and the actions
chosen by each agent at a;, and each agent's prior probability distribution fMk( •) ova: Q. The
basic idea is that conditional on a;, everyone knows everything that can be the object of
uncertainty on the part of any agent, but in general, no agent necessarily knows which world u
is the actual world. The agents can use their priors to calculate the probabilities that the
various act combinations a € S are played. If the agents9 priors are such that for all i, j e N,
fii(ui) = 0 iff/JLj(tj) = 0, then the agents* priors are mutually absolutely continuous. If the
agents*priors all agree, that is, Hi(v) = • • • = A*n(a;) = A^) f°r eac*1 u e ^» t^en li ls sa*d
that the common prior assumption, or CPA, is satisfied. If agents are following an Aumann
correlated equilibrium / and the CPA is satisfied, then / is an objective Aumann correlated
equilibrium. An Aumann correlated equilibrium is a Nash equilibrium if the CPA is satisfied
and the agents' distributions satisfy probabilistic independence.27

Let Si(u) denote the strategy chosen by agent i at possible world LJ. Then
5: Q —> S defined by s(u) = ( s i (u ; ) , . . . , sn(u)) is a correlated n-tuple. Given that Hi is a
partition of i?28, the function Si'.fi^> Si defined by s is Hi-measurable if for each Hij G Hi,
Si(u/) is constant for each u/ G Hij. Ht-measurability is a formal way of saying that i knows
what she will do at each possible world, given her information.
Definition 3.9. Agent i is Bayes rational with respect tou G Q, or v-Bayes rational, iff Si is
Hrmeasurable and
(0 • E(Ui o s | Hi)(tj) > E(ui(vi, s-i) | Hi)(u)
for any Hx^-measurable function v\\ Q —> 5 r . •
Note that Aumann's definition of u;-Bayesian rationality implies that fii(Hi(uj)) > 0, so that
the conditional expectations are defined. Aumann's main result, given next, implicitly
assumes that fj,i(Hi(iv)) > 0 for every agent i G N and every possible world u G Q. This
poses no technical difficulties if the CPA is satisfied, or even if the priors are only mutually
absolutely continuous, since if this is the case then one can simply drop any u with zero prior
from consideration.

27While both the endogenous and the Aumann correlated equilibrium concepts generalize the Nash
equilibrium, neither correlated equilibrium concept contains the other. See Chapter 2 of Vanderschraaf (1995)
for examples which show this.

28Aumann (1987) notes that it is possible to extend the definitions of Aumann correlated
equilibrium and %-measurability to allow for cases in which Q is infinite and the W,-'s are not necessarily
partitions. However, he argues that there is nothing to be gained conceptually by doing so.
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Proposition 3.10 (Aumann 1987). If each agent t € N is u^Bayes rational at each possible
world wGf? , then the agents are following an Aumann correlated equilibrium. If the CPA is
satisfied, then the correlated equilibrium is objective.
PROOF. We must show that s: Q —• S as defined by the Hi-measurable s/s of the Bayesian
rational agents is an objective Aumann correlated equilibrium. Let t 6 N and a; G 17 be
given, and let &: i? —• 5* be any function that is a function of s<. Since st is constant over
each cell of Hi, (/, must be as well, that is, <ft is Tit-measurable. By Bayesian rationality,

E(tii o s | Hi){u) > E{ui{gu s_t) | M«)M
Since LJ was chosen arbitrarily, we can take iterated expectations to get

E(E(ui o s | Hi)(u)) > EiEMgi, «_,-) | H^LJ))
which implies that

E(uios)>E(ui(gi,s-i))
so 5 is an Aumann correlated equilibrium. D
Part of the uncertainty the agents might have about their situation is whether or not all agents
are rational. But if it is assumed that all agents are o^Bayesian rational at each LJ G 17, then a
description of this fact forms part of the description of each possible LJ and thus lies in the
meet of the agents' partitions. As noted already, descriptions of the agents9 priors, their
partitions and the game also form part of the description of each possible world, so
propositions corresponding to these facts also lie in the meet of the agents' partitions. So
another way of stating Aumann's main result is as follows: Common knowledge ofv-Bayesian
rationality at each possible world implies that the agents follow an Aumann correlated
equilibrium.

Propositions 3.6 and 3.10 are powerful results. They say that common knowledge
of rationality and of agents beliefs about each other, quantified as their probability
distributions over the strategy profiles they might follow, implies that the agents beliefs
characterize an equilibrium of the game. Then if the agents' beliefs are unconditional,
Proposition 3.6 says that the agents are rational to follow a strategy profile consistent with the
corresponding endogenous correlated equilibrium. If their beliefs are conditional on their
private information partitions, then Proposition 3.10 says they are rationed to follow the
strategies the corresponding Aumann correlated equilibrium recommends. However, we must
not overestimate tfce importance of these results, for they say nothing about the origins of the
common knowledge of rationality and beliefs. For instance, in the Chicken game of Figure
3.1, we considered an example of a correlated equilibrium in which it was assumed that Amie
and Kay had common knowledge of the system of recommended strategies defined by ( * ) .
Given this common knowledge, Kay and Amie indeed have decisive reason to follow the
Aumann correlated equilibrium /. But where did this common knowledge come from? How,
in general, do agents come to have the common knowledge which justifies their conforming to
an equilibrium? Philosophers and social scientists have made only limited progress in
addressing this question.

Games of Perfect Information
In extensive form games, the agents move in sequence. At each stage, the agent

who is to move must base her decisions upon what she knows about the preceding moves.
This part of the agent's knowledge is characterized by an information set, which is the set of
alternative moves that an agent knows her predecessor might have chosen. For instance, in the
extensive form game of Figure 3.3, when Kay moves she is at her information set
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I72 = {C1 , D1}, that is, she moves knowing that Amie might have chosen either C1 or Dl, so
this game is an extensive form representation of the Chicken game of Figure 3.4.29

Figure 3.4.

c1

C* = -cooperate", Z?f = "defect"

In a game of perfect information, each information set consists of a single node in the game
tree, since by definition at each state the agent who is to move knows exactly how her
predecessors have moved. In Example 1.3 it was noted that the method of backwards
induction can be applied to any game of perfect information.30 The backwards induction
solution is the unique Nash equilibrium of a game of perfect information. The following result
gives sufficient conditions to justify backwards induction play in a game of perfect
information:
Proposition 3.11 (Bicchieri 1993). In an extensive form game of perfect information, the
agents follow the backwards induction solution if the following conditions are satisfied for
each agent i at each information set Pk:
(a) i is rational, i knows this and i knows the game, and
((3) At any information set J # + 1 that immediately follows Pk, i knows at Ith what j knows

PROOF. The proof is by induction on m, the number of potential moves in the game. If
m = 1, then at Iil

9 by (a) agent i chooses a strategy which yields i her maximum payoff, and
this is the backwards induction solution for a game with one move.
Now suppose the proposition holds for games having at most m — r potential moves. Let F
be a game of perfect information with r + 1 potential moves, and suppose that (a) and (/3) are
satisfied at every node of F. Let Pl be the information set corresponding to the root of the
tree for F. At J l1, i knows that (a) and (/?) obtain for each of the subgames that start at the
information sets which immediately follow Pl. Then i knows that the outcome of play for
each of these subgames is the backwards induction solution for that subgame. Hence, at Pl z's
payoff maximizing strategy is a branch of the tree starting from Pl which leads to a subgame
whose backwards induction solution is best for z, and since i is rational, i chooses such a
branch at 7*1. But this is the backwards induction solution for the entire game F, so the
proposition is proved for m = r + 1. •
Proposition 3.11 says that far less than common knowledge of the game and of rationality
suffices for the backwards induction solution to obtain in a game of perfect information. All

29Note that in the extensive form game trees given in the figures, the agents' information sets are
depicted by boxes surrounding the relevant nodes.

30In general, the method of backwards induction is undefined for games of imperfect information,
although backwards induction reasoning can be applied to a limited extent in such games.
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that is needed is for each agent at each of her information sets to be rational, to know the game
and to know what the next agent to move knows! For instance, in the Figure 1.2 game, if Rx

(R2) stands for "Alan (Fiona) is rational" and K{(F) stands for "i knows the game JT\ then
the backwards induction solution is implied by the following:
(i) At I24, R2 and K2(F).
(it) At 713, Ru KX(F), KX(R2) and KXK2(F).
(Hi) At J22, K2(RX)9 K2KX(R2) andK2KXK2(F).
(iv) At J11, KiK2(Ri), KXK2KX(R2) and KXK2KXK2(F).31

One might think that a corollary to Proposition 3.11 is that in a game of perfect information,
common knowledge of the game and of rationality implies the backwards induction solution.
This is the classical argument for the backwards induction solution. Many game theorists
continue to accept the classical argument, but in recent years, the argument has come under
strong challenge, led by the woik of Reny (1987, 1992), Binmore (1987) and Bicchieri (1989,
1993). The basic idea underlying their criticisms of backwards induction can be illustrated
with the Figure 1.2 game. According to the classical argument, if Alan and Fiona have
common knowledge of rationality and the game, then each will predict that the other will
follow her end of the backwards induction solution, to which his end of the backwards
induction solution is his unique best response. However, what if Fiona reconsiders what to do
if she finds herself at the information set T22? If the information set I22 is reached, then Alan
has of course not followed the backwards induction solution. If we assume that at J22, Fiona
knows only what is stated in (in), then she can explain her being at I22 as a failure of either
KXK2KX(R2) or KXK2KXK2(F) at J11. In this case, Fiona's thinking that either
~ KXK2KX(R2) or ~ KXK2KXK2(F) at J11 is compatible with what Alan in fact does

know at J11, so Fiona should not necessarily be surprised to find herself at I22, and given that
what she knows there is characterized by (in), following the backwards induction solution is
her best strategy. But if rationality and the game are common knowledge, or even if Fiona and
Alan both have just have mutual knowledge of the statements characterized by (Hi) and (iv),
then at I22, Fiona knows that KxK2Ki(R2) or KXK2K\K2(F) at I11. Hence given this
much mutual knowledge, Fiona no longer can explain why Alan has deviated from the
backwards induction solution, since this deviation contradicts part of what is their mutual
knowledge. So if she finds herself at 722, Fiona does not necessarily have good reason to think
that Alan will follow the backwards induction solution of the subgame beginning at I22, and
hence she might not have good reason to follow the backwards induction solution, either.
Bicchieri (1993), who along with Binmore (1987) and Reny (1987, 1992) extends this
argument to games of perfect information with arbitrary length, draws a startling conclusion:
If agents have strictly too few or strictly too many levels of mutual knowledge of rationality
and the game relative to the number of potential moves, one cannot predict that they will
follow the backwards induction solution. This would undermine the central role backwards

31By the elementary properties of the knowledge operator, K2KiK2(r) C K2Ki(F) and
KlK2KlK2(r) C KiK2Ki(r), so we needn\ explicitly state that at J22, K2Ki(r) and at /", KlK2Kl{r).
By the same elementary properties, the knowledge assumptions at the latter two information sets imply that Fiona
and Alan have third-order mutual knowledge of the game and second-order mutual knowledge of rationality. For
instance, since K2KX{F) is given at Z22, we have K2K\Ki(r) because KX(F) C KiKi(r) and so
K2K\(r) C K2KiK\ (F). The other statements which characterize third order-mutual knowledge of the game
and second order mutual knowledge of rationality are similarly derived.
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induction has played in the analysis of extensive form games. For why should the number of
levels of mutual knowledge the agents have depend upon the length of the game?

The classical argument for backwards induction implicitly assumes that at each
stage of the game, the agents discount the preceding moves as strategically irrelevant.
Defenders of the classical argument can argue that this assumption makes sense, since by
definiticm at any agents'decision node, the previous moves that led to this node are now fixed.
Critics of the classical argument question this assumption, contending that at when reasoning
about how to move at any of his information sets, including those not on the backwards
induction equilibrium path, part of what an agent must consider is what conditions might have
led to his being at that information set. In other words, agents should incorporate reasoning
about the reasoning of the previous movers, or forward induction reasoning, into their
deliberations ova: how to move at a given information set Binmore (1987) and Bicchieri
(1993) contend that a backwards induction solution to a game should be consistent with the
solution a corresponding forward induction argument recommends. As we have seen, given
common knowledge of the game and of rationality, forward induction reasoning can lead the
agents to an apparent contradiction: The classical argument for backwards induction is
predicated on what agentspredict they would do at nodes in the tree that are never reached.
They make these predictions based upon their common knowledge of the game and of
rationality. But forward induction reasoning seems to imply that if any off-equilibrium node
had been reached, common knowledge of rationality and the game must have failed, so how
could the agents have predicted what would happen at these nodes?

This section has barely scratched the surface of this controversy over common
knowledge and backwards induction. The key unresolved issue is of course explaining what
happens at the off-equilibrium information sets. To date, there is not a generally accepted
theory of what agents having certain mutual or common knowledge will do at off-equilibrium
nodes. However, we can at least repeat one generally accepted conclusion: In a game of
perfect information, mutual knowledge of rationality and the game which falls far short of
common knowledge can suffice to explain why agents follow the game's Nash equilibrium, the
backwards induction solution. On the other hand, unlike other examples we have considered
in which agents have mutual and even common knowledge without having to reason through
levels of knowledge, backwards induction arguments in games of perfect information require
that at each information set, the agent who would move were the information set to be reached
must reason her way through at least as many levels of knowledge as there are remaining
potential moves in the game.

Games of Incomplete Information
One can draw several morals from the e-mail game of Example 1.5. Rubinstein

(1987) argues that his conclusion seems paradoxical for the same reason the backwards
induction solution of Alan's and Fiona's perfect information game might seem paradoxical:
Mathematical induction does not appear to be part of our "everyday" reasoning. This game
also shows that in order for A to be a common truism for a set of agents, they ordinarily must
perceive an event which implies A simultaneously in each others1 presence. A third moral is
that in some cases, it may make sense for the agents to employ some solution concept weaker
than Nash or correlated equilibrium. In their analysis of the e-mail game, Monderer and Samet
(1989) introduce the notions of ex ante and ex post c-equilibrium. An ex ante equilibrium h is
s system of strategy profiles such that no agent i expects to gain more than 6-utiles if i deviates
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from h. An ex post equilibrium hf is s system of strategy profiles such that no agent i expects
to gain more than 6-utiles by deviating from h! given t's private information. When £ = 0,
these concepts coincide, and h is a Nash equilibrium. Monderer and Samet show that, while
the agents in the e-mail game can never achieve common knowledge of the world a;, if they
have common p-belief of LJ for sufficiently high p, then there is an ex ante equilibrium at
which they follow (A, A) if UJ = u\ and (B>B) if a; = a^. This equilibrium turns out not to be
ex post. However, if the situation is changed so that there are no replies, then Diane and Greta
could have at most first order mutual knowledge that a; = o^. Monderer and Samet show that
in this situation, given sufficiently high common p-belief that u = u^, there is an ex post
equilibrium at which Greta and Diane choose (B, B) if u = u^! So another way one might
view this third moral of the e-mail game is that agents' prospects for coordination can
sometimes improve dramatically if they rely on their common beliefs as well as their mutual
knowledge.
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