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results can be extended to nore general fibred categories, but the special nature
of our fibres makes our theory much sinpler and, we hope, nore |ucid.

The projection functors of our paper are essentially eqﬁivalent to the pul |-
back stripping functors of | 6], and the main results of [6] remain valid in our
theory. W also generalize and conplenent results of fio].

The organi zation of the paper is as follows. Section 2 deals with prelimn-

aries. Insection 3, we define our categories and obtain sone basic properties,
‘ 3
and sections4 provides exanples. Sgctions 5- 7 deal with coadjoint functors,
couniversal maps, and coreflective full subcategories, and section 8 brings point
separation axions into our theory. 4
W use-the tegmnology of f8] for catégories, with sone modifications (see

section 2). Then item(theorem lenm, etc.) of section mwll be referred to

as mn. The Halnos symbol | signals the end, or the abscence, of a proof.

2. Prelimnaries

Vi shal | use parentheses only when necessary. Thus we usually wite fx
for f(x) . Morphisnms of a category £ wll also be called maps of £ . For
objects A and B of C, we denote by C (AB) the set of all maps of £ from

A to B. For aclass |C of objects of £, we denote by CIK] the full sub-

3. The prefix co- is due to the general principles fol l owed in fs] (see the
preface, p. vi). Many authors do not use co- where f8] does, and vice versa.

4* (Only parts of chapters I, 11, Vof f8] are used.




category of £ with K as its class of objects.

For every diagramscheme 1| , and.each object A of a category £, there
is a conétant di agram AI: | $>£, wthvertices A and arrows 1'&' A map
f . _A—>B of C induces a map fj’; X 3\ —>BI of diagrans i n an obvi ous way.
Wth this notati‘on, alimt of adiagramA: | — £ consists of an object A of
£ and5a nap A AI—> Z\ of diagrans such that, for every nap O/>: CI —£>/S
of diagrans, there is a unique map f : C—"A‘ of £ f.or V\hiCh{&ZAfI :

A couni versal3rmr.ghi smfor éfunctor T: A 21J and an.obj ect B of J3
consi sts of an ébj ect S; of A anc? amp yéL : B~»TS, of B such that,
for every nap v : B*—’\ TA of B, thereis exactlyonemp u: S LA
of A for which v ~ (T u) ﬁ__. If Ais a. subcategory of B and T the
~enbeddi ng functor, tHen a couni ver sal rmrphi'smfor T and an object B of B is
calledacoreflection3for B in A .

Afunctor T : il *—=>J3 has a coadj oi nt3 if and only if every object of J3
has a couniversal norphismfor T e Inparticular, a subcategory A of a category
jB is corefl ective3 if and only if its enbeddi ng functor has a coadj oi nt.

V¢ call a nononorphism m of a category £ extrenal if a factorization
me m e, wth nt nononorphic and e epinorphic, is only possible if e is

i sonorphic. Every coretraction (f8J, 1,4) is an extrenal nononorphi sm

The category of conplete ordered sets will be denoted by £+ jects of £

2 6 / X
are ordered sets in which every famly \'x'zlla’.\..;x °~N elenents has an infinmm

5« By abuse of |anguage, one often "forget s" ei ther the map or the object.

6. This wll alnost always include the enpty famly.




jdl X. and a suprenum_II’lyxl. « Mps of £ are order preserving mappings. A com
plete ordered set has a greatest and a | east el ement, the infinumand the suprenmum
of the enpty famly of elenents. 1.'he dual ordered set X* of a conplete ordered

set is conplete. W say that amp f @ X—>Y of O preserves infim if

™\
X,

F((

) -f\?f x.) for every famly (x.).. of elements of X .e

Pl o

lemma 2.1 Amp f @ X—>Y "o £ preserves infima if and only if there

isampg: Y — Xsuchthat v <E f x <E=£> gy <x , for all xX£X ,  yEY f
3. Definition and 'properties

W assume that a category £ and a contravariant functor T : £'—f£ are

given, and that all maps Tf of JD, for maps f of C,e preserve infim.

As a rule, we shall just wite f* for Tf . W shall 'studyanewcategory £Tf

constructed from these data and called the T-fibred category over £

04]] ecfs of £T are all pairs (AXx) such that A is an object of £ and
X€TA . Mrphisnms of J_g are all triples (f,x,y) such that f is a mp of £
and x " f *'.yf wth xX£1 A and yETB if f £CA:B) . The conposition of

two morphi sns of £T I's defined‘by putting
(&y*z) (FfXy) = (9f,x2)

if gf is definedin £+ |If gf is not definedin jC, orif y'/y, then
(gtyf>z)(ff?(,y) is not defined in ET. \
It is easily seen that £T is acategory, with 1/, \ = (lnXx,x) for every

object (Ax) ¢ The domain of a morphism (f,x,y) of ET, wth f ££(A:B) ,




is (AXx) and the codomain (B/y) « W usually just wite f : (AX) —’\.(ny)
if we want to state that (f,x,y) is a norphismof £ with f ££(A, B)
Mbnonor phi sns and epirn(_)rphi-sns of £T are the norphisns (f,x,y) wth f
nononor phi ¢ ar_md epi nor phi ¢ respectively ih £ . Extremal raononor phi sns of £T
are the norphisns of the form (mmf y,y)l, m an extrenal nononor phismof £ .

| sonor phi sns  of £T are the norphisns (u,u* y,y) + u isomorphic in £ .

'-Putting P(AX) ~ A and P(f,x,y) =f , for every object (A x) and nor-

1

/D \ T T
phism (f,x,y; of £ , <clearly defines a functor P: £ —£ . W cal P
the projection functor of £T. Ve note that P is a faithful functor.

If the objects and maps of j) are considered as categories and functors;
then the "functor P : ET —> £ becones a fibration, in the terrr'nnollogy of [4]
and f5], and the funétors f* define a split cleavage of P+ Snce x "y'
in TA, for anobject A of £ if and only if 1.A: (AX) -— (Ay) in ET,
the fibre P-l( A) of A is isomorphic to TA, considered as a category.

In the terninology of f6]f P is a pullback stripping functor. GConversely,
a pul | back strippi né functor H: A—~AIL 7S o A® form PG> for a projection
functor P : £ «—£ and an equi val ence of categories CP: A. —£ « In-this
situation,_ it is easily seen that A has productls, as required inf6J, if and only
if £ has products and all naps f* , for maps f of"£, preserve infinma. |

Exanples will be given in the next section. -

For f in £(AB) , we define f~ : TA—>TB by putting f* X y «E=fe

xrf*y, foral xE£TA, y£TB. By 21 the maps f; are well defined.

Lemma 3*1« The Imps fr define a covariant functor from C to O .




Proof. For f =1, , we have f_ x,sy "M=>x~"f*y=y , for all  x, y

. A "
Co TA - o,
in TA, adthus fo«1 =« If fTEEAB) ad g£C(B,c) , then

(gf* 3C<z «4> x< (gf)y* z = f* g* z
E==> fAy A gr Z <> gAf#X<2

forall X£ETA, z£T1c, and (gf)s=gxf 4 follows |

-Wepu T Aa(TA)*', the dual ordered set, and T* f
for an object A andamp f : A-—=B of £', andw call T : £ —> £ the

dual functor of T J £ -—=JO. By 21 the maps T* f preserve infina

Ny | M A
Theorem3. 2. (£*) is.isomorphic tothe dual category' «(£)* .o JC .

Proof, y<fusx in T*B, for f inf(AB) and x 6TA, y~TB,
'if and only if x~f*y in TAe Thus f : (By) = (AXx) in (£*)™ if and
only if f : (Ax) —2(B,y) in £T- e sees easily thgb this establishes an
. . T T :
i sonor phi sm bet ween (£*%) and (C)* [
This shows that our theory is conpletely self-dual, as long as £ is not
speci alized; Ve usually do not state the duals of our definitions and results.
Por an object A of £, we denote by oi, the least element, and by W,
' A A

the greatest elenent, of TA; and we put <x A= (A C*) and QJA= (A O]& ,

Por amap f in £(AB) , we put <xf = (f,0(a O and CJf =(f,6JfNWQ .

B
Since (X MM*<X" and Q). « f*@L , ocf and 6Jf are norphisns of CT. Thi s
AN D A D

obvi ously defines functors <X and QO from £ to £T .

Theorem 3»3* Wth the notations .just defined, the functor o< is coad.joint,

and the functor U .adioint, to the projection functor P e

feo: T" A>T By
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Proof. For objects A of £ and (By) of £ "_pf=(f,c<Ay) defi nes
a bisectionrrj jGA P(BYy)) — £ {&A (B[y-))f natural in A and in (By)

This proves one half of 3*3; the other half is proved dually J'

T T
Fhegrem3«4« Adragram A | L £ meas-aHmt—+1 £ iF—and-orty——the
diagram P«A: | *Z>£ has alimt in £ .

'Proof. By 3.3 and fs], Il1.12.1, PA has alimt in £ if A has alimt
in £T° Qonversely, let A i(Aix.]? for each vertex i of | , and let A:

AI—>I>/\ bealimt of P2\ in £, wth maps A.l-'A—*zAl. The nor phii s

(Al,x,>§.) of ET W th z=(\j V\:l'*xi) in TA, clegrly define a map A :
(A;x)I_) Z\'» V¢ want to showthat this is the desired limt of zZi

| f TD: (G z} —5(\9 W t h nor phi sns (c?lfzgx.g , then the nmaps <'p.1:_
C—>A.1 define a map cp-V'qg: E:—’\ Pzl , and thus 535 =AfI for a uni que

mp f : C—A of £ NDVV
’ |
e & Qe - ot(l0e ) - ey

so that A =A (f,z,x)" 4 As this equation inplies ;;1> = Af-4- it determnes f ,

and hence (f,z,x) ; uniquely [
4. Exanples

W sinply state the ingredients for each exanple and nane the result, |eaving

to the reader the easy verificationsthat in each case the given ingredients define

a fibred category ET' :




Exanple 4*1* Let £ be any category. For an object A of JC, let A°

be a singleton, and for f €.C(A B) , let £ . B~ pe the uni que nappi ng.
For the fibred category £ ©thus defi ned, the projection functor P : J2_°-—’\ JC

i s an i sonorphi smof categories.

Exanple 4.2« Let £=8 , the category of sets. For filters JE and 3P
onaset A, we wite £rF_if F is finer “than F.¢ i.e. JPCE* « Then
) t
_ i : N , A )
every non-enpty famly (E;l)i‘._I | of filters on <A has a suprenum ( J_E._1 , coh
sisting of all set unions A‘JX':. wth X.1£- 'F—:. for all i £.1 . For a napping
f ¢ A-—B and a filter £ on A, we denote by f4;F, the filter on B gener-

ated by the sets f(x) , X£E . This preserves suprena.

A convergence structure g onaset A is arelation g fromthe set F A

of filters on A to the set Aj; 'subject to the two Frethet axi ons.

LI. If Pgx and E'~P_, then P! qx ,

L2. If x£A and if £ consists of all subsets X of A with Xx£X,
then Pqx . We denote this filter by X e

Ve wite q'*’\q, for convergence structures q and g' on a set A,

f

if q isfinerlthan q, i.e. if always Fq' x —£* Pgx , Wth this defi-

nition, convergence structures on A forma conpl ete ordered set QA -« For a
mapping f : A—=B and q6QB ;o we denote by f* g the convergence structure

on A'defined by E.(g* f) x 4r="> (fxf) g (fx) , for all filters T on A and
I’- "Q

all xfcA. The fibred category i> thus defined is the category of convergence

Spaces, wi th conti nuous mappi ngs as nor phi sns.

Exanpl e 4«5« Let again £=S . For aset A, let Tp A be the set of




’ 1
all topol ogi es of A ordered by putting Tr' ~T if XT is finer than ~c;
i.e. if al V-open sets are al so.~c/~open. For a mapping f :«A 2B and a

topology cr of B, let f*O~ be the topology with the sets f (v) , V -open

for cry as open sets. The fibred category §Tp thus defined is the category of
t opol ogi cal_spaces, W th continuous nappi ngs as nor phi sis.

There are several exanples sinmlar to 4«2 and 4.3 in general topol ogy.

Exanpl e 4»4. Let £=(} , the category of groups. F_or agroup A, let
Tpg A be the set of all topol ogi .es of A conpatible with the group structure.
The order _rei ation of  Tpg A, and the n‘apé f* . Tpg B—>Tpg A for group hono-
nmorphisns f : A—> B, are defined as in 4»3« The resul ti ng fibred category

£Tpg is. the category of topological groups; wth continuous, but not necessarily

cl osed, group horonor phi sns as nor phi sis.

Thisis athene with rfany vari ations.

Exanpl e 4«5« Let £=8, the category of sets. For a set A, let IA

be the diagonal of AXA, andlet RA be the set of all subsets U of Ax A
whi ch contain. |

A ordered by set inclusion. For f : A*—B in S and

V6.RB, let f* V«= (f x f)*!") ¢ Anobject p= (A,'U) of the resulting

fibred category _S_B nay be considered as a reflexive rel ation ptA—A, wth

graph U. Ve call _8_LR the category of reflexive relations.
If welet BA be the set of all graphs of equival ence relations on A and

define f* V as before, we obtain a fibred category _S_E, the category of equi -

B R
~atence—retattons. 5§ clearly is a subcategory of € 4
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5 Fibred functors and coadjoints

T S '
V¢ consider in this section two fibred categories A~ and JB + VW& use the
' T S
notations of section 3 for Jr and for J8 since the context always wll show

e.g. which functor P is neant, or whether f* is Tf or Sf

V¢ say that a functor ('?.3\ ; AT —=$>_|_3.S

is_fibred over a functor P : A —&B
if P<£E=FP. |If thisis the case, then F=P<pLO, so that ('p'determ'nes F e

Putting (M)(AX) = FA,}n for an object (A x) of [L defines rrapsrnk\
- ' T

TA—->SFA, one for.each object A of A, If f : (Ax) —(B,y) in A
it follows that (£)(f,x,y) s (Ff, cpt x, 43 y) . Thus

(5.1) x<fry => @ xLFQy

for f : A—>B. in A andal I'xXETA, y£TB. For fs1l1,, this inplies

t hat AA preserves order. For x =f*y, (5.1) becones

(5.2 | fofry ~ (FD*pyy

for f: A—B in A and y£TB.

Conversely, let a functor P: Ae«—13 and order preserving maps < £, TA

!_ASFA; one for each object A of Jk_ -be given. If (5.2) is always satis-
fied, then (5.1) is always valid, and <p(f X,y) = <RX S y) , for f :

(AX) 2 (By) in "Tf defines a fibred functor @Jover F.

W call a functor *: B!__S—" AL_T a fibred coad.joint of a functor (pf‘: A_IT

-—}_B§ if Gopand ~ are fibred functors, and " is coadjoint 'to_@.

Theorem 5*3* For a fibred functor CO: A -2 B_ over a functor F: /. —JB,
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W th naps "‘A: TA— SFA, the followng statenents are |ogically equi val ent .

E]

(i) F has_ a coadjoi nf,_all maps (j.b preserve infima. and <px f* = (F f)*#L
: I A — j £ / 25

for every map f : A—=>B gX A.

(ii) Tor every object B of B, a couniveraal norphism/3_ : B—>FG_

Tor F and a nap ifB . SB-->TG; J 0, ,exist such That B - (By -2

G
_Bg’(lB y) 1's a cpuniyeraal m)rphl_srpf_or ‘AD, for all y£SB,

- ¥,
(iii) ({i) has acoad.joint, and (f)LO-

(*) () has a fibred coadjoint.

Proof. W prove (iv) ==£> (iii) ="> (i) ::’\>\(ii) ="> (iv), ahdv\e use the
synbol- X—+ Y todenote that X is coadjoint to Y e

If M A(pand PS'"=GP, for Gs JB—;—.‘>_A, then G« P "CK—{
V' (Pu)=F -« 'I;hus P~r&UL, and G P-4 CIF, so that Ou) and toF
are naturally equivalent. If us : (FA slusm — (A ~>»vA) s an equival ence,
then up is isomorphic in B, and, & | =UVa*"RAS~FA * THUS AlVA ==n> ATl ).

I_f___qi\ has a coadj oi nt ly;‘$ then P*oc — F g .as above, ;and Cp pr eser ver
limts. For an object A of # and a famly (Xl)l.\f_l of elements of TA,

t -\ m

t he obj ect (Af )Xy of A isalimt of adiagramwi th one vertex (A COp ,

and with arrows 1- : (Ax) --2(AcU ) . If O satisfies (iii), then 0 pre-
: A .
serves this situation, and thus (p (()x-) s [ jf@s x-) « Smlarly, a diagram

(AX)—— >(A6J.)
i " iA

1( .B! )
(By) __ig 2(*“%

"
injt , wth f in ~(A") , isapullback if and only if x =fey . Thisis
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easily verified. |If (j) satisfies (iii), then O preserves this pullback situa-
tion, and <|3x fry=~(Pf)* <§)y follows. Thus (iii) ==* (i).
If (i) is valid, IetrAﬁ : B—.>F§3 be a couni ver sal @rphlsmfor F e
Ayl f forall sB and f
By 2.1, ylh y"y <% y<(VTc y = y £- yETGB,
B

defi nes a nap GELt SB—>TGg of 0. Thismp \Lx> satisfies

Yo ¥ £ f*x <u——->_ y@ﬁB*%B f*x = ,BB*'(F f)*%x ,
_for f @ "> A in Mg y£'SB.', -x£TA.>'>‘ Thus abij(_active cor r espondence
75 £ (g yp V2 (00) = B(BY.(F A " )
I s defined by /f,t(t?lﬁls Yy, X) « ((Ff)/gt y, *x) . It follows inmediately that
J§ : (By) —"’\'M"-y’_\-_Ry" _(\*?-?_Couniversal nor phi smf or (p: Thus (i) s="> (ii).»
F_i nally, if (ii) is v.alid-, and i f we use the conuni versal norphi sns f£B and
fyrfy>grp A RIA Toconstruet coadjoints G of F and ~ of (t),j'n the usual

f"B -
way, ' then one obtains (g, yfz) o (Gg, "y, I~ z) for any norphism g : (B,y)

L)

5 _
—(C,z) of 1 , sothat S"i°® fibred over G, and (ii) «* (iv) |

Exaggl_ga__g# The functor which assigns to every topol ogi cal gr oup the under-
l'ying topol ogi cal space is fibred, over the forgetful functor Fs£e+e—>J] ¢ This
functor satisfies (i) of 5.3 and thus has a fibred coadjoint, over the functor G

whi ch assigns to every set A the free group GA with A as set of generators*
» T _,8 : An
Fibred functors du x ® —>A. over the identity functor, with P<f>= P,

are of special inportance. In this case, we nay put 63 » L. inb«3, (ii)f and
' | D D

t hen Hé is determned by % yry' o <E = y’\()]Byl * The functor whi ch assigns

to every topol ogi cal space the underlying convergence space is one of nany exanpl es,,
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Theorem5*3, (iii) raises a question. Is it possible that a fibred functor
has a coadjoint, but not a fibred coadjoint? The author has not been able either

to prove that this is inpossible or to find an exanpl e.

6. Isocoreflective subcategories

T Tr i
W consider again a fibred category £ . W call a full subcategory £ J&
T / \ T
of £ tsoeoreftecttve-if every object (A Xx; of £ has a coreflection y,(4,xV

in Cfc wWth B ar xyla -

T 1 T

Theorem6.1. A full subcategory £ JQ of £ is isocoreflective if and

only if K satisfies the follow ng two conditions.

— T —

1
(i) If all objects (Ax.) , i d , arein K, for an object A of C

11&- 1 [V ————
and a famly (x.). ~r of elements of TA, then (A P\x.) always isin K.

— -— — Bt — A ——— e e n et

(iit) For f o E£(AB) .and (B,y) in K, (Af*y) always isin Ke
ook If & satisfies (i) and (ii)r let yup,x9 = (14, X, XpX) , ~where

Y%-x is the infiraumof all x*£T A with x~x' and (Ax')*-Ke (ki Y- x)

i;in « by (i). If f: (A,x) —*>(By) wth (By) in=K then (ATf*y)
isin K by (ii), and thus yg x~.f*y . But then

(fxy) = (81, %9 Y )

T Tr
in C i and 6/ is indeed a coreflection in CJK -

td) 3
Conversely, if C(* is isocoreflective, |et ((A,xi))i.f"cI be a famly of

objects in K If (I . f)x.x") is acoreflection for (A QX) in CTfK];

m  LIBRRY
CARNEGIE-MELLON  UNIVERS{TV
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then (l,¢x'tx.) is anorphismof £%, and thus [§x._~x"~x. , for all
i 61 . But then x' « | ?x.l, and (A,jrx.l isin jCe This proves (i)¢ and

(ii) is easily verified by the sane nethod. J
If K satisfies (i) and (ii), then the x6TA wth (A,x)- tfrdC forma com
plete ordered set T A for every object A of £ |If T f is the restri.ction '
of f* to ™ B and T A/ for f<E£(A,B) , then T f preserves infim,
T! L [
Thus a fibred category £ is defined, and one' sees easily that £ ~£ |th:.1 .

The fibred functor J s £ «—2 £ defined by the inclusionmaps j : TV A—TA

is, of course, the inclusion funbtor, J has a fibred coadjoint by 5.3, (i)«'
Ve call a fanmly "K of objects of £T proauctive if every family-of objects
in. K has a product in jCe |If £ has products aid £ Tjc is coreflective, then

K is productive by 3A and f8J, V.5.1* If f ££(A B) and y£-TB, thenwe

call the object (A f*y) of £T the inyerse inake of (By) by f

Proposi tion 6«2» |f

K is productive, and if L is the class of inverse

i mages of objects in JC by maps of £; then E'If‘jj is isocoreflective.

Proof, ~ satisfies condition (ii) of 61 trivially; we nust verify (i).
. A . . .
Let ((A,f.1 yi))i_’I be a famly of objects of L, wth f.1<fr£(ABi) .and
(Bi,')é,)E_lg for i £1 « Let (By) in K_be a product of the objects (B_fy.l) t
with projections (p.lfy,y.l) e By 3.4, the naps P i B— .B':. are the projecti ons

of a product, and y = {*] (ps* ys) . If f.=p.f foral i £ , then
Mers) = Nerpry) = o(Upxv)) = oy,
and thus (AFI(Ti*y.)) * (H*y) 10|




Exanpl es. A convergence space (see 4*2) (A q) is called alimt space (.—7] ,

f'3] if. F, gx and_Gqx, for x£« A and filters £ and £ on A; always

inplies (FuC) gx , We call (AQqg) a neiaghborhood space i f (UIE’.__} gx, for

_ : A ,
X £ A and a non-enpty famly (&1)1. T of filters on A, whenever 'En. gx for

—

all i £1 « If K is the class of all limt spaces or of all nei ghborhood spaces, '
Q1 Q '
then £ (K is an isocoreflective subcategory of J8 » Several sinmlar exanples,

~Q roi

in v> andin other cat®@gories, ére di scussed in | 9 «
- 1
Inthe category S>  of topol ogical spaces, T.-spaces (i a0, 1, 2) form
. 1=}
productive classes* If thisis jC in6.2, then JL is the class of R -spaces

studied in[2], for i =1, 2. For i =0, L consists of all topological spaces,

T« Heredi t'ary' and epicoreflective subcategories

e e, Vv
V¢ denote by N or W% [C) .the class of all extremal nononorphisns of £
e .

W say that £ is M-factored if every map f of £ has a factorization:
f'=me wth e epirmrphic and nfMlJM e« Ve call a‘class JC of objects of £

hereditary pf, for a norphism m:-(Anfy) -2 (By) in JM(E£) , wth (By)<EK
(and mEIM(£)) , there always is in K an object (A ,x") isonorphic to

T

(Anfy) » Ve say that £Tfj(_J is epicoreflective if every object (AXx) of £

. . T . , o
has a coreflection ‘\,/\A';j in £7TK] wth P;/lm’x\j epinmorphic in £ ¢

6 Tr i

Proposition 7«1« Jf £ s H-"actored and £ |KJI epicoreflective, then

K is hereditary»

Proof, If m: A—B isin jf and (By) in K, let (entyx')- be
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a coreflection for (Am* y) in E%c], , with e : A —r>A" epimorphic in £ .

Then m=fe foramp f of _C, ad (f,x",y) isamophismof £+ If £

e C ) e
is MV -factored, it follows that e-is isonmorphicin £ and f in M, MNow
x! =f*ry , and e* f*y- m y~rer x!rex fx.y e Snce e* is isonorphic,

x''»f*y and nty~e*x* follow ,Thus e : (Amty) — (A, x") is aniso-

nor phi sm of £T, with (A", x')£Rj

Theorem 7»2« Jf £ ijs K-factored, coocaly small; and has products, then

E'I;‘jg is epicoreflective if and only if K is hereditary and productive*

Proof> 7.1 and the remark preceding 6*2 take care of the "only if* part.

For the "if" part, let (A X) be an obj ect of ET. Let us call f t (AX)
—>(B,y) a Kquotient if f is epinorphic in £ and (Biy)EjC* If £ is
colocally snall, then there is a famly (f.l: (A’X)_A(B'J.’yi)l;AI of K-
quotients such that every K-quotient is of the form (u-lf.i X, U* y.l) , for
sone it”l and an isonorphism u of £« If £ hns products and is K-

- : : . T
. N
factored, |et pi : (? i/ ) (B'1’ yi) be the projections of a product in £ ,

0
and let f4» pp me for all i £1 , with mEd and e : B-—-2L>B epinorphic

in G+ If y =ty then e: (B,x)—>(B,y) in C .

If K is productive and hereditary, then we can carry out this construction
so that (By,y:)) and (Bgyy are_in K. If g: (Ax) —2>(C,Z) in £Tf
with (Cz) in X, thenwefactbr gsril £ in £, wth m in ¢ and
e A" Qg epinorphic in £, so that (Cl,zl)EK_for z 4= Kl_l* Z . Then

-1

(e1rx1£q) is a JK-quotient, and thus € =u f.l, zy » u* Yy o ~for some i £ 1

andanisom)rphismu.i Ce+—B of Ce Nwg, : (B,y)—3$2(C,2z) isa
1 1 — l oo
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T -1
norphismof £ , and g=gxr e in £, for gl«nu parme Snce e is

epi nor phi c, g:gl e deternines gl, and (e,x,yo) is-acoreflection for

(AXx) in £Tfj(_:] , Wth p(e,x,yo) =e epinorphicin £ |

: T T
Ve call a class K of objects of £ -+eptete if every object of £ which

is isomorphic to an object in K isitself in jCe

R

Theorem7.3* |If £ has_pr'bdu-'ét s/ then a full subcategory £-Rjg'\j_o_‘ £

is isocoreflective if and only if '_I§_ is productive, hereditary and repl ete. and

all objects (A C®) _of 8’ are in Ko

Proof, The "onl-y if" part follows directly from6.1 and the rémﬂrk precedi ng
6.2, using condition (i) for_._'tl_he. ‘errptyfarrily, and (ii) onnyo’r fE£21% o

By 6«2; we nust onIyVerify condition (ii) of 6.1 for the. "if" part. Thus
let f : A—.B in £ and (By)£-K. Let ' (Cz)l beapr.oduct of {kotQ)
and (B;y) in £T, wth project‘ions Py and Py Then (Gz)E K. By *5.4
- C .is a product of A and_ B in £ and z ~ptr* y o MWIet p. ma 1, ;
p'zmsf in £y Then-m: A—C isin 21 t 2and f*y.«m* pz_yzm* z .
Snce Kis hereditary and replete, (Af*y) « (Anf z) isin Kf

Exanpl es_and Remarks. For £ « S, the category of sets, the hypothesis

of 7.2is satisfied. Regular and conpletely regul ar spaces (assuned to be Tl)
define epicoreflective subcategories of £_>Tb , the category of topol. ogi cal spaces.
Q her exanples are given in the next section, and in f9J* The class of nornal
spaces is neit_her hereditary nor productive, and thus does not qualify.

Theorem7#3 is an i nproved version of Theorem?2.8 (and TheoremB) of f6]; and
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7.2 general i zes TheoremC of Je3. The gi ven proof of TheoremA of f6] is valid,
T

with mnor adjustnents, for any fibred category 23 over the category of sets*
Many interesting coreflections in general topol ogy are not epicoreflections,
and thus not yet cover ed by our theory* Among these are the various conpl etions

3
and conpactifications w th couniversal mnapping properties.

8« Pqi nt separat ors

V¢ assune in this section that £ is concrete, i-.e. equi pped wi th a.faithf ul
functor P J £—>j3_,' wher e .2.3_ is the category of sets. If £=£>; then P
wll be the identity functh._'__ V% céll a class K of objects of ET__ infective if,
for a norphism m: (AX) ~—>(By) of g with (By)ELIC and P m injective;

(AXx) alwaysisin K.

. , R , -
Ve call a fibred functor- $ i E—>£_>‘_’ (see 4.5) over F a point_separator

on ET. | f L?\Ts a point separator, |et (Jé(A,x) =(PA <|?& x) for objects
(Ax) of £ . W say that (AX) is ("-separatedif <p:& X = 31'1 , and we
f

denot e by L(jd;)') the class of all (f-i -separat ed objects of g VW call aclass

' ¥ 'l
K of objects of £Tpoi nt-separated if Kss KL(P) for sonme point separator (l)"

Proposition 8.1* |

gb is apoint separator on £ , then %0) is _injec-

tive. 1f £ has_products and P preserves products, then ][(‘Q':)) i S producti ve.

CProof. If m: (Ax) 2 (By) in £, wth (B‘,y)£_I§(0) and P m
injective, then (p x<(pm*<l» y« (Pm* | «1., and (A X)gK((f)) .

Af ((A:L’Xi))ieI is afamly of quects in jC(0) and (AXx) their
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product, w th projections Py { A—>A.1 and-xz/f\\(p.l* x.l) , then

KNS - < N@rg, %) = s, .

If P preserves products, then the nappings F p.:t are the projections of a pro-

duct, and P| ((F pi *1ea) =1pa follows. Thus (A Xx)£ KQ)) |
i
D stinct point separators can have the sane cl ass I__C(rj;) * V¢ conpare point

‘ . P £ . g L o
separators on ET by saying that Qo is finer than (f), or Q "LO; if Cf>1x

d<pi* for all objects (Ax) of 'j2.. dearly K(|])) C Lift) if Q)'f£0+

Ve cal | épdi nt separator (5 coarse if, conversely, jL(O)IO A(g)f) al ways

'irrpl i es QB"" (p‘.‘ A coarse poi nt separator (7)' is uniquely determined by jG<36) -

Theorem82» jjf. K is_infective and ’\‘If|’\] corefl ective then JC is points

separ at edt and K= J(_I(<$>) for ‘a uni que coarse poi nt separat or (,b.

Proof. |If (AX) = (c,z) is acoreflection for (AX) in EI}QI

fa -
we put CfA>' X=(Fg)*# . Snce  is determned by'(A,x) up to aniso-
norphic factor, this determnes ,Q X uniquely.

If f: (Ax) —=(B,y) in%", andif + and r-: (B,y)Q‘>(C,zf) are

T. A 13
coreflections in £[K] » then + f =gr- for anorphism g : (Gz) —$>{o\z"

But then (Pra)* 14 (Pra)* (Pg)* Ip(,', - (Pf)* (Prg) 170, . Thus the naps
| a: 1 A-"RFA satisfy (5.1), and define a fibred functoer.

Por ran: (Ax) —2-(C.Z) as above, " x = (Pra)* =" onlyif F; ra
is injecztive. But then (Ax) ~K since IC is injective. Gonversely, if
(A.,X)(A_r_g, t hen rA i s isonorphic, and (PrA)* Lﬁc = IFA' Thus K(0) =K.

The poi nt separat or ﬁ just constructed clearly is coarse, and hence uni quely




20

determned by K(0) =K |
ne interesting aspect of point separators is their connection wth cofibra-
tions.- W consider this only for £=S, the category of sets, and a fibred

category j5 4 Ve call anorphism (f,x,y) of $ a guotient norphismif f is

surjective and y = fu x (see 3.1)« W say that a norphism f : (Ax) = (BY)
m fin

of S is Kcofibredif, for every norphism g : (A,x) — (Gz) of S. with
(G z)("*jt:, there is a unique norphism ht (By) —$>(Cz) such that g =hf e

Proposition 8.3» £ (!b is a point separator on £T and_ K=jc(®) , then

a quotient norphism f : (AXx) 2 (By) jod £ which satisfies (p xs f*'> vy

is jGjcofibred _Converselyy j X "'is coarse, then every K-cofibred norphism f

(Ax) 2>(Bry) satisfies Py X =f*503y .

Proof. If <pyx=f*;y, andif gj (Ax) = (c,z) wth (Gz) <EK;
then f* IB"f*_fo*<.ka’\S*f>:z=g* l o ih RA+ |If (_ffx;y) is a quo-
tient norphism it follows that g=hf for a unique mapping h o andthat. hy, y
=hsfaxBgegx<z in TC, so that .h: (By) _—>('cfz) in §_T,

For the second part, let h: (B,'y)—’“>(c;z) be the coreflection for (By)
in SfK] . Thisexistsby81land7.2. If f: (A X) —=(B,y) is _ig-cofibred‘,
then hf : (A x)—(c,z) clearlyis a coreflectionin §_TI"I_<j . But then <&x

’

*(hf)* Ic =f* h* Ic =f*{C§ y by the constructioh of ({I> inthe_Voof of 8.2 |

Exanpl es and remarks. W& nmay call a poi nt separ at or (_"I') strict if all values

(f Xk¢x) are equival ence rel ations. For every poi nt separat or L:I5, there is a

finest strict point separatdr (Pl coar ser than (f;, and J_C(Ol) =jf(0) - Every
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coarse point separator is strict. Strict point separators for topol ogical spaces
have been studied in fioj. 81 and the first part of 8 3 generalize results of flQJ,

Ve definé_ tvio point separators on S* (4»3), by statiné when (x,y)(£Cf‘|1XT
for points x, y of a topological space (ATr) -

T0 o (XY)<E % XT if x and y have the sane TT-nei ghborhoods.

T1 o (Xx,Y) £r’§?&~ if x isinthew-closure of £y} .

The first exanple defines a coarse point separator. Cﬁ-separat ed, spaces are To- :

spaces and T.l.-spaces respectively. Qther exanples may be found in flQl.
T )

For a fibred category -S_ over the category of sets, a class _K of objects
I's point-separatgd if and only if -K. I's injective and pr'oduct-n've, by 7.2, 8.1 and
8.2, and then .:?:fj-K] is epicoreflective. (One exanple for j“SP (for which we do
not have a conven.i ent point separator) is the class of all. topol ogical spaces in
whi ch every conpact set is closed. Many other exanples, and references to yet nore
poi nt separation axions, nmay be found in fl].

The classés of regular spaces and of conpletely fegul ar spaces are not poi-nt-
separated, since these classes are not injective (see fioj).

‘Point separators, and the resulting epicoreflective subcategories, are of

interest not only for topological spaces, but also e.g. for [imt spaces, uniform

Iimit spaces, and Cauchy spaces. See fs>]y
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9. A correction

V¥ append to the present report a correction to fll]. W shall use the nota-
tions of fll] and of the present paper.

The uniformlim’t structures on a set B forma conplete ordered set UET,
with J, A3 if jJ' is finer than £, i.e. J'CJ, For ampping f : E
—>F and a uniformlimt structure J, on F¢ let f*J, be the uniformlimt

1 ‘ 1. | |
structure on E consisting of' all filters (j6 on EX E such that (rx ), pe_ -«

This results in a fibred category .S_U, the category of uniformlimt spaces, wth
uni formy continuous ﬁappi ngs as mor phi sms. -

For auniformlimt space (B, j) , let JET; be the union of all filters
XXy in £, for poi.n-ts X, Y 6f B. Thisis aprincipal filter on BXB,
and (B,]) 1is separated if and only if JETy ="+ W call (By) saturated if

A

’\-J isin ~J_. Using 6.1, one verifies easily that £ZUfj_c] is isocoreflective if

—

K is the class of all saturated uniformlimt spaces.
Now comes the error in fllj* 1In order to construct the conpletion of (EJ[) o
the construction sketched in fll] should be applied, not to (E,J) ¢ but to the

saturated space (E O'£) t where (le#E£t6"E£) is the coreflection for (Egf)
7 -
in the full subcategory S} fj-lq of saturated uniformlimt spaces.
‘This correction does not affect the proof of Theorem2 of fIl] in any way,

since Theorem2 of fll] is concerned with a uniformspace, or principal uniform

limt space, (Bf:j—) , and every principal uniformlinit space is saturated:
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