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results can be extended to more general fibred categories, but the special nature

of our fibres makes our theory much simpler and, we hope, more lucid.

The projection functors of our paper are essentially equivalent to the pull-

back stripping functors of |6], and the main results of |6] remain valid in our

theory. We also generalize and complement results of fio].

The organization of the paper is as follows. Section 2 deals with prelimin-

aries. In section 3, we define our categories and obtain some basic properties,

3

and section 4 provides examples. Sections 5 - 7 deal with coadjoint functors,

couniversal maps, and coreflective full subcategories, and section 8 brings point

separation axioms into our theory.

We use-the terminology of f8J for categories, with some modifications (see

section 2). The n item (theorem, lemma, etc.) of section m will be referred to

as m.n. The Halmos symbol | signals the end, or the abscence, of a proof.

2. Preliminaries

We shall use parentheses only when necessary. Thus we usually write fx

for f(x) . Morphisms of a category £ will also be called maps of £ . For

objects A and B of C , we denote by C,(A,B) the set of all maps of £ from

A to B . For a class IC of objects of £ , we denote by CJK] the full sub-

3. The prefix co- is due to the general principles followed in fs] (see the

preface, p. vi). Many authors do not use co- where f8J does, and vice versa.

4* Only parts of chapters I, II, V of f8] are used.



category of £ with K as its class of objects.

For every diagram scheme I , and each object A of a category £ , there

is a constant diagram A : I —$> £ , with vertices A and arrows 1. . A map

f : A —> B of C induces a map f * : A —> B of diagrams in an obvious way.

With this notation, a limit of a diagram A : I—> £ consists of an object A of

£ and a map A : A —> Z\ of diagrams such that, for every map O> : C —£> /S

of diagrams, there is a unique map f : C —^ A of £ for which & = A f .

A couniversal morphism for a functor T : A. —^ IJ and an object B of J3

consists of an object Stt of A and a map y6L : B ~» T S n of B such that,

for every map v : B *—^ T A of B , there is exactly one map u : S —^ A

of A for which v - (T u) P_ . If A is a subcategory of B and T the

embedding functor, then a couniversal morphism for T and an object B of B is

called a coreflection for B in A. .

A functor T : il *—> J3 has a coadjoint if and only if every object of J3

has a couniversal morphism for T • In particular, a subcategory A of a category

jB is coreflective if and only if its embedding functor has a coadjoint.

We call a monomorphism m of a category £ extremal if a factorization

m «=• mf e , with m1 monomorphic and e epimorphic, is only possible if e is

isomorphic. Every coretraction (f8J, 1,4) is an extremal monomorphism.

The category of complete ordered sets will be denoted by £ • Objects of £

2 6 / x
are ordered sets in which every family \X'/.^:T °^ elements has an infimum

5« By abuse of language, one often "forgets" either the map or the object.

6. This will almost always include the empty family.



j I x. and a supremum l^yx. • Maps of £ are order preserving mappings. A com-

plete ordered set has a greatest and a least element, the infimum and the supremum

of the empty family of elements. The dual ordered set X* of a complete ordered

set is complete. We say that a map f : X —-> Y of 0 preserves infima if

f((|x.) ~f\(f x.) for every family (x.). of elements of X .•

Lemma 2.1. A map f : X —> Y ôf £ preserves infima if and only if there

is a map g : Y —> X such that y <£ f x <£=£> gy <x , for all x £ X , y£Y f

3. Definition and properties

We assume that a category £ and a contravariant functor T : £ '—> £ are

given, and that all maps T f of JD , for maps f of C ,• preserve infima.

TAs a rule, we shall just write f* for T f . We shall study a new category £ f

constructed from these data and called the T-fibred category over £ .

T
Objects of £ are all pairs (A,x) such that A is an object of £ and

T
X € T A . Morphisms of JC are all triples (f,x,y) such that f is a map of £

and x ^ f * y f with x £ I A and y £ T B if f £jC(A-fB) . The composition of

T
two morphisms of £ is defined by putting

(&fy*z)(ffX,y) = (g f,x,z)

if g f is defined in £ • If g f is not defined in jC , orif y1 /y , then

(gtyf>z)(ffX,y) is not defined in £ . \

T
It is easily seen that £ is a category, with 1/A \ = (lA,x,x) for every

object (Afx) • The domain of a morphism (f,x,y) of £ , with f ££(AfB) ,



is (A,x) and the codomain (B,y) • We usually just write f : (Afx) —^ (Bfy)

if we want to state that (f,x,y) is a morphism of £ with f ££(A,B) .

T
Monomorphisms and epirnorphisms of £ are the morphisms (f,x,y) with f

T
monomorphic and epimorphic respectively in £ . Extremal raonomorphisms of £

are the morphisms of the form (m,m* y,y) , m an extremal monomorphism of £ .

T
Isomorphisms of £ are the morphisms (u,u* y,y) f u isomorphic in £ .

Putting P(A,x) - A and P(f,x,y) = f , for every object (A,x) and mor-

/ • \ T T

phism (f,x,y; of £ , clearly defines a functor P : £ —> £ . We call P
T

the projection functor of £ . V/e note that P is a faithful functor.

If the objects and maps of j) are considered as categories and functorst

then the "functor P : £ — > £ becomes a fibration, in the terminology of [4]

and f5], and the functors f* define a split cleavage of P • Since x ̂ y

in T A , for an object A of £ f if and only if 1. : (A,x) -—> (Afy) in £ ,

the fibre P (A) of A is isomorphic to T A , considered as a category.

In the terminology of f6]f P is a pullback stripping functor. Conversely,

a pullback stripping functor H : A~~~^IL ^s °** ^e form P Cj>, for a projection

functor P : £ •—>£ and an equivalence of categories CP : A.—>£ • In this

situation, it is easily seen that A. has products, as required in f6J, if and only

if £ has products and all maps f* , for maps f of £ , preserve infima.

Examples will be given in the next section.

For f in £(A,B) , we define f^ : T A —->T B by putting f^ x^ y «£=£•

x^ f* y , for all x £ T A , y £ T B . By 2.1, the maps f# are well defined.

Lemma 3*1« The maps f^ define a covariant functor from C to 0 .



Proof. For f - 1A , we have f x,< y ^^=> x ̂ f * y = y , for all x, y
———• A "*

in T A , and thus f# « 1 • If f £ £(AfB) and g£C(B,c) , then

(g f)* 3C<z «=4> x< (g f)* z = f* g* z
f^ X ^ g* Z <^=|> g^ f # X < 2 ,

for all x £ T A , Z £ T C , and (g f) # = g# f# follows |

We put T* A a (T A)* ', the dual ordered set, and T* f = f# : T* A —> T* B f

for an object A and a map f : A -—> B of £ ', and we call T* : £* — > £ the

dual functor of T J £ -—>JO . By 2.1 f the maps T* f preserve infima.

m* m m

Theorem 3.2. (£*) is isomorphic to the dual category ' •(£ )* .of JC .

Proof, y < f # x in T * B , for f in£(AfB) and x 6T A , y ^ T B ,

if and only if x ^ f * y in T A • Thus f : (B,y) —> (A,x) in (£*)T* if and

T
only if f : (A,x) —^(B,y) in £ • One sees easily thajb this establishes an

isomorphism between (£*) and (C )* [

This shows that our theory is completely self-dual, as long as £ is not

specialized; We usually do not state the duals of our definitions and results.

Por an object A of £ , we denote by oih the least element, and by UJ
A A

the greatest element, of T A f and we put <x A = (A, C* ) and OJA = (A, OJ ) ,

Por a map f in £(A,B) , we put <x f = (f,o(A,o( ) and CJf = (f,6JfAfWL) •

T
Since (Xk ̂ f*<X^ and OJ. « f*CcL , ocf and 6Jf are morphisms of C . This

A ̂  D A D ""
T

obviously defines functors <X and CO from £ to £ •

Theorem 3»3* With the notations .just defined, the functor o< is coad.joint,

and the functor U) .adjoint, to the projection functor P •



Proof. For objects A of £ and (Bfy) of £ , "nf=(f,c<,y) defines

a bisection rrj : jC(A, P(B,y)) —> £ {& A, (Bty)) f natural in A and in (Bfy) .

This proves one half of 3*3; the other half is proved dually j

T T
Theorem 3«4« A diagram ,A : I —^ £ has a limit in £ if and only if the

diagram P«A : I *~> £ has a limit in £ .

Proof. By 3.3 and fs], II.12.1, P A has a limit in £ if A has a limit

in £ • Conversely, let A i = (A.,x.) for each vertex i of I , and let A :

A —> I>/\ be a limit of P Z\ in £ , with maps A . • A —-*> A. . The morphi

(A. ,x,x.) of £ , with z = ( j W.*x.) in T A , clearly define a map A :

(Afx) )Z\» We want to show that this is the desired limit of Zi .

If (D : (C, z) — 5 / \ 9 with morphisms (cp. fz9x.) , then the maps <p. :

C — > A . define a map cp ~ V q> : C —^ PZl , and thus C5 = A f for a unique

isms

map f : C — > A of £ • Now

\

so that ^> = A (f,z,x) # As this equation implies a> = A f:-f- it determines f

and hence (f,z,x) f uniquely |

4. Examples

We simply state the ingredients for each example and name the result, leaving

to the reader the easy verificationsthat in each case the given ingredients define

T
a fibred category £ .
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Example 4*1* Let £ be any category. For an object A of JC , let A

be a singleton, and for f €.C(A,B) , let f : B — ^ A be the unique mapping.

For the fibred category £ thus defined, the projection functor P : J2 -—^ JC

is an isomorphism of categories.

Example 4.2« Let £ = Ŝ  , the category of sets. For filters JF and 3?1

on a set A , we write £f ̂  F, if F1 is finer than F, f i.e. JP C £* • Then

every non-empty family (F. ).^. of filters on <A has a supremum (̂ JF. , con-

sisting of all set unions ^Jx. with X. £• F. for all i £• I . For a mapping

f • A-—>B and a filter £ on A , we denote by f# F, the filter on B gener-

ated by the sets f(x) , X £ F . This preserves suprema.

A convergence structure q on a set A is a relation q from the set F A

of filters on A to the set A f subject to the two Frechet axioms.

L I . If P q x and F'^P , then P1 q x ,

L 2 . If x £A and if £ consists of all subsets X of A with x £ X ,

then P q x . We denote this filter by x •

We write q*^ q , for convergence structures q and q1 on a set A ,

if qf is finer than q , i.e. if always F q1 x ~ £ * P q x , With this defi-

nition, convergence structures on A form a complete ordered set Q A • For a

mapping f : A —> B and q 6 Q B , we denote by f* q the convergence structure

on A defined by F (q* f) x 4r=̂ > (f# f) q (fx) , for all filters T on A and

' Q

all xfcA . The fibred category i> thus defined is the_ category of convergence

spaces, with continuous mappings as morphisms.

Example 4«5« Let again £ = S . For a set A , let Tp A be the set of



1

all topologies of A , ordered by putting Tr'^T if XT is finer than ~c f

i.e. if all V -open sets are also ~c/~open. For a mapping f : A —^ B and a

topology cr of B , let f*O~ be the topology with the sets f (v) , V open
Tp

for cr f as open sets. The fibred category S thus defined is the category of

topological spaces, with continuous mappings as morphisms.

There are several examples similar to 4«2 and 4.3 in general topology.

Example 4»4• Let £ = (} , the category of groups. For a group A , let

Tpg A be the set of all topologies of A compatible with the group structure.

The order relation of Tpg A , and the maps f* : Tpg B —-> Tpg A for group homo-

morphisms f : A — > B , are defined as in 4»3« The resulting fibred category

Tpg
£ is. the category of topological groupst with continuous, but not necessarily

closed, group homomorphisms as morphisms.

This is a theme with many variations.

Example 4«5« Let £ = S , the category of sets. For a set A , let I

be the diagonal of A X A , and let R A be the set of all subsets U of A x A

which contain I. , ordered by set inclusion. For f : A^—>B in S and
A "~

V6.R B , let f* V «= (f x f)*1^) • An object p= (A,U) of the resulting

R
fibred category S^ may be considered as a reflexive relation p t A — > A , with

R
graph U . We call & the category of reflexive relations.

If we let B A be the set of all graphs of equivalence relations on A and

define f* V as before, we obtain a fibred category S , the category of equi-

B R
valence relations. S[ clearly is a subcategory of S #
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5. Fibred functors and coadjoints

T S
We consider in this section two fibred categories A. and JB • We use the

T S
notations of section 3 for Ji and for J3 since the context always will show

e.g. which functor P is meant, or whether f* is T f or S f ,

A\ T S
We say that a functor (u : A, —~$> B. is fibred over a functor P : A, —& B

if P <£>= F P . If this is the case, then F = P <p LO , so that (p determines F •

Putting (̂ )(A,x) = (F A, m x) for an object (A,x) of /L defines maps m \
m

T A —>S F A , one for each object A of A , If f : (A,x) —>(B,y) in A. ,

it follows that (£)(f,x,y) s (F f, cp. x, a> y) . Thus

(5.1) *<f*y

for f : A —> B in A and a l l x £ T A , y £ T B . For f s 1 , this implies

that ^ preserves order. For x = f* y, (5.1) becomes

(5.2) fk f*y ^ (F f)

for f : A — > B in A, and y £ T B .

Conversely, let a functor P : A •—> 13 and order preserving maps <£>. : T A

1 — ^ S F A f one for each object A of Jk , be given. If (5.2) is always satis-

fied, then (5.1) is always valid, and <p(f,x,y) = (F f, <p x, C> y) , for f :

(A,x) —^ (B,y) in ^ f defines a fibred functor Q) over F .

We call a functor ^: B! —^ A, a fibred coad.joint of a functor (n : A,

B^ if Cp and ^ are fibred functors, and ^ is coadjoint to

Theorem 5*3* For a fibred functor CD : A —^ B. over a functor F : /. —> JB ,
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with maps ^ : T A —> S F A , the following statements are logically equivalent.

(i) F has a coadjoint, all maps (jb preserve infima. and <pK f* = (F f)*#L
/ A — - j £ / 25

for every map f : A —;> B gX A .

(ii) For every object B of B , a couniveraal morphism /3_ : B —> F G_

for F and a map if : S B -~>T Gfi jof 0, exist such that A : (B,y) —^

9 (P y) is a cpuniyeraal morphism for ^Dt for all y £ S B ,

(iii) (t) has a coad.joint, and (f)LO~

(*v) (T) has a fibred coadjoint.

Proof. We prove (iv) ==£> (iii) =^> (i) ==^> (ii) =^> (iv), and we use the

symbol X —| Y to denote that X is coadjoint to Y •

If M^ — \ ( p and PS"'= G P , for G s JB —~> A , then G « P ̂ CK {

V'(Pu)= F • Thus P ^—\&U1, and G P — I CJF , so that 0u) and to F

are naturally equivalent. If u : (F Af G>IU>M) — ^ ( ^ ̂ >^VA) is an equivalence,

then u is isomorphic in JB , and &.U ~ U A * W P A S ^ F A * Tllus ^iv^ ===:^> ^iii

If Cp has a coad joint y^ $ then P^^oc —/F f as above, and Cp preserver

limits. For an object A of A and a family (X-).^T of elements of T A ,

the object (A,f )x ) of A^ is a limit of a diagram with one vertex (A, CO.) ,

and with arrows 1 : (Afx.) -—^(AfcU' ) . If 0 satisfies (iii), then 0 pre-

serves this situation, and thus (p (()x.) s [ jfo) x.) • Similarly, a diagram

(A,x) >(A,6J.)
1A A

i ' i
(B.y) ("B

m

in jl , with f in ^(A^) , is a pullback if and only if x = f• y . This is
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easily verified. If CD satisfies (iii), then 0 preserves this pullback situa-

tion, and <p f* y ~ (P f)* <p y follows. Thus (iii) =~^ (i).

If (i) is valid, let A : B — > F G be a couniversal morphism for F •

By 2.1, y/fl y ^ y 1 <==$> y < ( V T c yf • f o r a 1 1 y £-s B a n d y f£ T G B ,

defines a map C£L t S B —-> T G B of 0 . This map \L> satisfies

B

for f : G. '—;> A in ^ f y £ S B , x £ T A »' Thus a bijective correspondence

—> BU((B,y),(F A, ^ x))

G.

is defined by /ft(t9 Us y, x) « ((F f)/5 t y, ̂  x) . It follows immediately that

i§ : (Bty) —^^M^'y^-R
 y^ *̂s a couniversal morphism for (p • Thus (i) s=̂ > (ii).

Finally, if (ii) is valid, and if we use the conuniversal morphisms f£ and

fy^f y> 9*r ̂ R y^ to construct coadjoints G of F and ̂  of (t) in the usual

way,'then one obtains ̂ (g,yfz) •« (G g, ̂  y, l̂ , z) for any morphism g : (B,y)

—>(C,z) of 1 , so that S^ is fibred over G , and (ii) «^ (iv) |

Examples# The functor which assigns to every topological group the

lying topological space is fibred, over the forgetful functor F s £ •—> JJ • This

functor satisfies (i) of 5.3 and thus has a fibred coadjoint, over the functor G

which assigns to every set A the free group G A with A as set of generators*

T S
>AJ. T S A^

Fibred functors Cu x A. —>A. over the identity functor, with P<f>= P ,

are of special importance. In this case, we may put p^ » 1.. in 5«3, (ii)f and
I D D

then Uy is determined by C/> y^y f <£==> y ̂  01 y1 • The functor which assigns
IB ID /B

to every topological space the underlying convergence space is one of many examples,
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Theorem 5*3, (iii) raises a question. Is it possible that a fibred functor

has a coadjoint, but not a fibred coadjoint? The author has not been able either

to prove that this is impossible or to find an example.

6. Isocoreflective subcategories

T Tr i
We consider again a fibred category £ . We call a full subcategory £ JJCJ
T / \ ' T

of £ isocoreflective if every object (A,x; of £ has a coreflection y, \

in C*fcl with ^ ( A f X ) A

Tr 1 T

Theorem 6.1. A full subcategory £ JJCJ of £ is isocoreflective if and

only if K satisfies the following two conditions.

(i) If all objects (A,x.) , i Cl , are in K , for an object A of C

and a family (x.). ~T of elements of T A , then (Af P\x.) always is in K .

(ii) For f o^ £(AtB) .and (B,y) in K , (A,f* y) always is in K •

Proof. If K satisfies (i) and (ii)f let y, s = (l ,x,v x) , where

Y x is the infiraum of all x1 £ T A with x ̂ x 1 and (Afx
f)^-K • (kf Y x)

is in K by (i). If f : (A,x) —•*> (B#y) with (B,y) in K, then (A,f* y)

is in _K by (ii), and thus y_ x ̂ .f* y . But then

T Tr i
in C f and Y/A \ is indeed a coreflection in C JKJ •

— 0 \k%*) — —

Conversely, if C (*K] is isocoreflective, let ((A,x.)).^,. be a family of
— — i ifc1

objects in K. If (l , f)x ,xf) is a coreflection for (A, C\X.) in C TfK] f

mm LIBRARY
CARNEGIE-MELLON UNIVERSfTV
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then (l fx
f
fx.) is a morphism of £ , and thus [)x. ^x f ̂ x . , for all

i 6 l . But then xf « | jx. , and (A,j)x.) is in jC • This proves (i)f and

(ii) is easily verified by the same method.J

If K satisfies (i) and (ii), then the x 6 T A with (A,x) tfrJC form a com-

plete ordered set Tf A for every object A of £ • If T1 f is the restriction

of f* to T1 B and Tf A / for f<E:£(A,B) , then T1 f preserves infima,

T1 T1 Tr i

Thus a fibred category £ is defined, and one sees easily that £ ~ £ |jCJ •

The fibred functor J s £ •—? £ defined by the inclusion maps j : Tf A — > T A

is, of course, the inclusion functor, J has a fibred coadjoint by 5.3, (i)«
T

V/e call a family K of objects of £ productive if every family of objects

in K has a product in jC • If £ has products aid £ fjc] is coreflective, then

K is productive by 3A and f8J, V.5.1* If f ££(A,B) and y £-T B , then we

T
call the object (Af f* y) of £ the inverse intake of (Bfy) by f .

Proposition 6«2» If ,K is productive, and if L is the class of inverse

images of objects in JC by maps of £ f then £ fjj is isocoreflective.

Proof, ^ satisfies condition (ii) of 6,1 trivially; we must verify (i).

Let ((A,f.* y.)).^. be a family of objects of L , with f. <fr£(A,B.) and

(B ,y,)£K for i £ l • Let (Bty) in K be a product of the objects (B ,y.) t

with projections (p.fy,y.) • By 3.4, the maps p. i B — > B. are the projections

of a product, and y = {*] (p±* y±) . If f± = p± f for all i £l , then

and thus (Af fl(
fi* y±)) * (

A»f* y) is in Ii I
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Examples. A convergence space (see 4*2) (A,q) is called a limit space (7],

f3] if. F, q x and G q x , for x £• A and filters £ and £ on A f always

implies (FuC) qx , We call (A,q) a neighborhood space if (UP.) q x , for

X £ A and a non-empty family (P. ) . ^ T of filters on A , whenever P. q x for

all i £ l • If K is the class of all limit spaces or of all neighborhood spaces,

Qr 1 Q
then £> (jKJ is an isocoreflective subcategory of J3 # Several similar examples,

Q r i

in v> and in other categories, are discussed in |9j«

In the category S> of topological spaces, T.-spaces (i a 0, 1, 2) form

productive classes* If this is jC in 6.2, then JL is the class of R. -spaces

studied in [2], for i = 1, 2. For i = 0, L consists of all topological spaces,

7« Hereditary and epicoreflective subcategories

e e, v
We denote by JYI or VI [C) the class of all extremal monomorphisms of £ •

e

We say that £ is M -factored if every map f of £ has a factorization

f'= m e with e epimorphic and m^lJM • We call a class JC of objects of £

hereditary if, for a morphism m : (A,m* y) —^ (B,y) in JM (£ ) , with (B,y)<£ K
(and m £JM (£)) , there always is in K an object (A',xf) isomorphic to

(A,m* y) # We say that £ fjCJ is epicoreflective if every object (A,x) of £

has a coreflection V, x in £ [K] with P V/ v epimorphic in £ •

6 Tr i

Proposition 7«1« Jf £ ^s H -̂ factored and £ |KJ epicoreflective, then

K is hereditary»

Proof. If m : A —> B is in jf and (B,y) in K , let (e,m* y,xf)- be
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m

a coreflection for (A,m* y) in £ fjc] , with e : A —r>A' epimorphic in £ .

Then m = f e for a map f of C , and ( f ,x f ,y ) is a morphism of £ • If £

e e

is Vi -factored, it follows that e is isomorphic in £ and f in M , Now

x1 = f* y , and e* f* y - m* y ̂  e* x1 ̂  e* f*.y • Since e* is isomorphic,

xf » f* y and m* y ~ e* x1 follow. Thus e : (A,m* y) —> (Af,xf) is an iso-
T

morphism of £ , with (Af,x!)£K j

Theorem 7»2« JLf £ ijs K -factored, colo'cally small t and has products, then

£ fjC] is epicoreflective if and only if K is hereditary and productive*

Proof> 7.1 and the remark preceding 6*2 take care of the "only if11 part.

For the "if" part, let (A,x) be an object of £ . Let us call f t (A,x)

>(B,y) a K-quotient if f is epimorphic in £ and (Bfy)£jC* If £ is

colocally small, then there is a family (f. : (A,x)—^(B.,y.)).^ of K-

quotients such that every K-quotient is of the form (u f., x, u* y.) , for

some it I and an isomorphism u of £ « If £ h^s products and is K -

factored, let p. : (B ,y )—^(B.,y.) be the projections of a product in £ ,

0

and let f » p. m e for all i £ I , with m £ M and e : B —^>B epimorphic

in C • If y - m* y, , then e : (B,x)—> (B ,y ) in C .
"" o 1 o o ~~

If K is productive and hereditary, then we can carry out this construction

so that (B1,y1) and (B ,y ) are in K, If g : (A,x) — ^ > ( C , Z ) in £ f

with (C,z) in K , then we factor g s m. e in £ , with m in ^e and

ê^ : A — ^ C epimorphic in £ , so that (C ,z ) £ K for z = KL* Z . Then

(e fxf£ ) is a JK-quotient, and thus e = u f. , z » u* y. , for some i £ I

and an isomorphism u i C_ •—> B. of C • Now g, : (B ,y ) —$^(C, z) is a
1 1 — l o o
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T -1
morphism of £ , and g = g~ e in £ , for g « m u p. m • Since e is

epimorphic, g = g e determines g , and (e,x,y ) is a coreflection for

(A,x) in £ fjc] , with p(e,x,y ) = e epimorphic in £ |

T T
We call a class K of objects of £ replete if every object of £ which

is isomorphic to an object in K is itself in jC •

T«* -\ T
Theorem 7.3* If £ has products/ then a full subcategory £ JjCJ jof £

is isocoreflective if and only if K is productive, hereditary and replete. and

T
all objects (A, COk) of C are in K •^ -. —

Proof, The "only if" part follows directly from 6.1 and the remark preceding

6.2, using condition (i) for the. empty family, and (ii) only for f££2! •

By 6«2t we must only verify condition (ii) of 6.1 for the "if" part. Thus

let f : A —>.B in £ and (Bfy)£-K . Let (C,z) be a product of {k9to)

T
and (B,y) in £ , with projections p and p . Then (Cfz)£ K . By *5.4,

C is a product of A and B in £ f and z ~ p^* y • Now let p m a 1 f

p m s f in £ # Then m : A — ^ C is in 21 t a n d f* y « m* p2 y = m* z .

Since K is hereditary and replete, (A,f* y) « (A,m* z) is in K f

Examples and Remarks. For £ « S , the category of sets, the hypothesis

of 7.2 is satisfied. Regular and completely regular spaces (assumed to be T )

Tb
define epicoreflective subcategories of £> , the category of topological spaces.

Other examples are given in the next section, and in f9J* The class of normal

spaces is neither hereditary nor productive, and thus does not qualify.

Theorem 7#3 is an improved version of Theorem 2.8 (and Theorem B) of f6]f and
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7.2 generalizes Theorem C of J6J. The given proof of Theorem A of f6] is valid,

T

with minor adjustments, for any fibred category 23 over the category of sets*

Many interesting coreflections in general topology are not epicoreflections,

and thus not yet covered by our theory* Among these are the various completions
3

and compactifications with couniversal mapping properties.

8« Point separators

We assume in this section that £ is concrete, i.e. equipped with a faithful

functor P J £ —> j3 , where 23 is the category of sets. If £ = £> f then P

T
will be the identity functor. We call a class K of objects of £ infective if,

T
for a morphism m : (A,x) •—> (B,y) of £ with (B,y)£LIC and P m injective,

(A,x) always is in K .

We call a fibred functor u) i £ —>£> (see 4.5) over F a point separator

on £ . If Ly is a point separator, let (J9(A,x) = (P A, <p x) for objects

(A,x) of £ . We say that (A,x) is (^-separated if <p' x = 3_ , and we

denote by K(u)) the class of all (fi -separated objects of £ • We call a class

K of objects of £ point-separated if K ss K((D) for some point separator (j) o

Proposition 8.1* If (b is a point separator on £ , then %(0) is in.jec-

tive. If £ has products and P preserves products, then ][(©) is productive.

Proof. If m : (A,x) —^ (B,y) in £T , with (B,y)£K(0) and P m

injective, then (p x < (p m)* <L» y « (P m)* I__ « 1 , and (A,x)g K((f)) .

If ((A.,x,)) is a family of objects in jC(0) and (A,x) their
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product, with projections p. { A — > A . and x = / \(p.* x.) , then

?K
 x - n % v xi

) -
If P preserves products, then the mappings F p. are the projections of a pro-

duct, and P|((F p j * IFA ) = IpA follows. Thus (A,x)£ K(C))) I

Distinct point separators can have the same class IC(n)) • We compare point

separators on £ by saying that Cp is finer than (f), or Cp ̂ L 0f if Cf>* x

d<pk* for all objects (A,x) of 'j?.. Clearly K((|)) C. Lift) if C/)1 f£ 0 •

We call a point separator (p coarse if, conversely, jt(0) C! ̂ (d)f) always

implies Cp ̂  (p. A coarse point separator (7) is uniquely determined by jC(<}6) •

Theorem 8<2» jjf K is infective and ^ f^] coreflectivet then jC is points

separatedt and K = JC(<X>) for a unique coarse point separator (D.

T
Proof. If r : (A,x) —> (c,z) is a coreflection for (A,x) in £ [K] tr

we put Cf> x = (F r )• I . Since r is determined by (A,x) up to an iso-

morphic factor, this determines 0 x uniquely.

If f : (A,x) —>(B,y) in 6T , and if r and r : (B,y)—^>(C,zf) are
A 13

coreflections in £ [K] » then r f = g r for a morphism g : (C,z) —$>{o\z%) .

But then (P r A)* 1^ 4 (P r A)* (P g)* Ip(,, - (P f)* (P rfi) 1^, . Thus the maps

| A : I A - ^ R F A satisfy (5.l), and define a fibred functor

Por rA : (A,x) —^-(C.Z) as above, ^ x = (P r A)* ^ = ^ only if F; rA

is injective. But then (A,x) ̂  K since IC is injective. Conversely, if

(A,X)(^K , then r is isomorphic, and (P r )* L, = I . Thus K(0) = K .

The point separator yJ just constructed clearly is coarse, and hence uniquely
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determined by K(0) = K |

One interesting aspect of point separators is their connection with cofibra-

tions. We consider this only for £ = S , the category of sets, and a fibred

category j5 # We call a morphism (f,x,y) of S a quotient morphism if f is

surjective and y = f# x (see 3.l)« We say that a morphism f : (A,x) —> (B,y)

m fin

of S: is K-cofibred if, for every morphism g : (A,x) —> (C,z) of S. with

(Cf z)(̂ *jC , there is a unique morphism h t (B,y) —$> (C,z) such that g = hf •

Proposition 8.3» !£ (b is a point separator on £ and K = jc(̂ )) , then

a quotient morphism f : (A,x) —^ (B,y) jof £ which satisfies (p x s f*̂ > y

is jC-jcofibred. Converselyy jX ^ is coarse, then every K-cofibred morphism f :

(A,x) —^>(Bfy) satisfies

Proof. If <pk x = f*^fi y , and if g j (A,x) —> (c,z) with (Cfz) <£K f

then f* I ^ f * f B y ~ <fk
 x ̂  S* f> z = g* IQ in R A • If (ffx,y) is a quo-

tient morphism, it follows that g = h f for a unique mapping h 9 and that h# y

= h# f# x B g# x< z in T C , so that h : (B,y) —>(cfz) in S , ,

For the second part, let h : (B,y)—^> (C,z) be the coreflection for (Bty)

in STfK] . This exists by 8.1 and 7.2. If f : (A,X) —>(B,y) is K-cofibred,

then h f : (A,x)—>(c,z) clearly is a coreflection in S TK] . But then <p x

* (h f)* I = f* h* I = f* G> y by the construction of (f> in the Voof of 8.2 |

Examples and remarks. We may call a point separator (T) strict if all values

(fXkfx) are equivalence relations. For every point separator LP , there is a

finest strict point separator (D coarser than (f> , and JC(0 ) =jf(0) • Every
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coarse point separator is strict. Strict point separators for topological spaces

have been studied in fioj. 8*1 and the first part of 8.3 generalize results of flOJ,

We define tv/o point separators on S (4»3), by stating when (x,y)(£CP XT

for points x, y of a topological space (AfTr) •

T • (x,y)<£i <2> XT if x and y have the same TT-neighborhoods.

T • (x,y) £r<?^~ if x is in the ~ -closure of £ y } .

The first example defines a coarse point separator. Cp-separated, spaces are T -

spaces and T..-spaces respectively. Other examples may be found in flOJ.

T

For a fibred category S over the category of sets, a class K of objects

is point-separated if and only if K is injective and productive, by 7.2, 8.1 and

8.2, and then & fjKJ is epicoreflective. One example for jS P (for which we do

not have a convenient point separator) is the class of all. topological spaces in

which every compact set is closed. Many other examples, and references to yet more

point separation axioms, may be found in fl].

The classes of regular spaces and of completely regular spaces are not point-

separated, since these classes are not injective (see fioj).

Point separators, and the resulting epicoreflective subcategories, are of

interest not only for topological spaces, but also e.g. for limit spaces, uniform

limit spaces, and Cauchy spaces. See fs>]#
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9. A correction

We append to the present report a correction to fll]. We shall use the nota-

tions of fll] and of the present paper.

The uniform limit structures on a set B form a complete ordered set U ET ,

with J,f^J, if jJ1 is finer than £ , i.e. J f C J , For a mapping f : E

—->F and a uniform limit structure J, on F f let f* J, be the uniform limit

—1 —1 •
structure on E consisting of' all filters (j6 on EX E such that

U
This results in a fibred category S , the category of uniform limit spaces, with

uniformly continuous mappings as morphisms.

For a uniform limit space (B, j) , let JETT be the union of all filters

x X y in £ , for points x, y of B . This is a principal filter on B X B ,

and (B,j) is separated if and only if JETT = ^ • We call (Bfj) saturated if

^- is in ^J . Using 6.1, one verifies easily that £? fjc] is isocoreflective if

K is the class of all saturated uniform limit spaces.

Now comes the error in fllj* In order to construct the completion of (E,J[) 9

the construction sketched in fll] should be applied, not to (Ef,J) 9 but to the

saturated space (E, O^ £) t where (l E#£t6^£) is the coreflection for (E9f)
m

in the full subcategory S^ fjK] of saturated uniform limit spaces.

This correction does not affect the proof of Theorem 2 of fll] in any way,

since Theorem 2 of fll] is concerned with a uniform space, or principal uniform

limit space, (Bf<j) , and every principal uniform limit space is saturated.
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