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Preface

In recent years there has been developed a general thermodynamics

of materials for which the stress, temperature, and energy depend on the

histories of the strain and another variable, such as the entropy. Here

we discuss the compatibility of that thermodynamical theory with a special

theory of mechanical dissipation which has been successfully used in

physical gas dynamics: the theory of gases with vibrational relaxation.

Granting, without detailed study, certain technical points involving the

uniqueness and stability of solutions of a class of non-linear integral

equations, we observe that the theory of relaxing gases can be imbedded

in the framework of the thermodynamics of materials with memory, provided

only that we identify "the temperature" of the thermodynamical theory with

the "translational" or ("active-mode") temperature of the internal-relaxation

theory.
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2.

We conclude our discussion with a report of a calculation we

have made of the isentropic, pressure-volume, relaxation function exhibited

by a gas with vibrational relaxation when regarded as a linearly viscoelastic

material.
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!• Materials with Memory

To place the theory of gases with vibrational relaxation within

the domain of the thermodynamics of materials with memory , we do not need

B. D. Coleman, Arch. Rational Mech. Anal. 17, 1, 230 (1964).

the memory theory in its full generality. We may focus our attention on

materials for which the stress tensor reduces to pure hydrostatic pressure

and for which the pressure p(t), the temperature d(t), and the specific

internal energy e(t) (per unit mass) at a material point X are given by

functionals of the histories up to time t of the specific volume x> • 1/p

and specific entropy r\ at X:

P(t) = P O ) ^ ) , (l.i)

0(t) = to^n*), (1.2)

€(t) = e O ^ , ^ ) . (1.3)

In a flowing material the specific volume and the specific entropy (per

unit mass) are functions of the material point X and the time T:

X> » D(X,T), T| = tl(X,T). (1.4)



The histories up to time t of x> and r\ at X are the functions X) and r\ ,

over [0,oo), defined by

^(s) = u(X,t-s), rit(s) = T)(X,t-s), 0 < s < 00. (1.5)

We assume that the functionals £> £> an<* £ obey the principle

2 3
of fading memory in the form proposed by Coleman and Noll ' . To state

B. D. Coleman and W. Noll, Arch. Rational Mech. Anal. 6, 355 (1960).

3B. D. Coleman and W. Noll, Reviews Mod. Phys. 33, 239 (1961), erratum:

ibid. 36, 1103 (1964).

this principle in our present context we let h denote an influence function,

i.e. a positive, monotone , continuous function on [0,oo) decaying to zero

4 5
Coleman and Mizel have recently shown that conditions on h weaker than

monotonicity suffice for most of the theory of fading memory.

B. D. Coleman and V. J. Mizel, Arch. Rational Mech. Anal. 23, 87 (1966).

fast enough to be square integrable, and we define the norm |JA || of a

pair of histories A = ("0 ,T] ) by

II A'I = A 0 ) 2 + ̂ ( O ) 2 +J (^t(s)2+T1
t(s)2)h(s)2ds. (1.6)



The common domain of the functionals p, t, and e is taken to be an open

subset Ju in the cone C of pairs A of positive-valued functions V) ,r\

with |A I finite. The principle of fading memory is the assertion that

for some influence function h(which we need not specify) the functionals

p, t, and e are continuously differentiable, in the sense of Frechet,

throughout &j with respect to the norm ||*||.

Let v> be an arbitrary history in £3 and let Q be a number; the

function V^Afl defined by

. (V(0) + fl, a - 0/
(t>7\fl)(s) - J (1.7)

\VZ(S), 0 < S < oo,

is called the jump continuation of x> with jump SI. An analogous equation

defines the history TJ /\H, given r\ and H. Jump continuations may be used

to define the "D-operators", D and D , which play a central role in the

thermodynamics of materials with memory. Let f be a functional standing

for p. t, or e. Clearly, for a given pair \) ,r\ y the number f (x> /\Q,T\ )

is determined by a function f of the jump Q:

f(fl) - fO^Afl,^). (1.8)

The assumption that f is differentiable over fj relative to the norm

(1.6) implies that f(&) is a differentiable function of fl; i.e. that

35 £ ( " W ^ = ^f(fl) (1.9)
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exists for each pair X) ,r\ in iO and for an interval of values of ft

including 0. The operator D is defined by

(1.10)

and similarly

(LID
1 ^ H«0

Since they represent partial differentiation with respect to present

values holding the past history fixed, D f and D f are called the

instantaneous derivatives of f with respect to x> and T|, respectively.

Working in a more general theory for which the stress tensor is not

necessarily a pure pressure and which accounts for the presence of heat

conduction, Coleman has found the complete set of restrictions which the

Reference 1, Thm. 1 on p. 19 and Thm. 6 on p. 33.

constitutive functionals must obey in order that the entropy production

never be negative in a thermodynamic process. Among these restrictions

are the following: e must determine p through the pressure-relation.

E - "D

and t through the temperature relation,

D^e. (1.13)
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In other words, knowledge of a single functional e suffices for the

determination of the present values e(t), p(t), and 9(t), when the

histories X) and T\ are given:

€(t) « etf,^), p(t) - - D ^ ' V ) , 0(t) - D ^ O ^ T , * ) . (1.14)

Let p be the pressure the fluid would exhibit had it always

been at rest with some particular fixed specific volume u and fixed

specific entropy r\ . We may write

Po - P(O+,T,+) (1.15)

where xy and TI are the constant histories defined byo 'o

^<s> s V ^lM s V 0 < s < c o . (1.16)

If we now put

where x> is arbitrary, then it follows from the principle of fading memory

that7

7 3 1
Vid. Coleman and Noll and Coleman (pp. 245-249), who give the general
argument for the three-dimensional case; the present simpler case is

o

discussed by Coleman and Gurtin (pp. 272 and 289).

8 5

B. D. Coleman and M. E. Gurtin, Arch. Rational Mech. Anal. 1£, 266 (196^)



8.

P - Po -
r 0 0 d
/ Ao( t - s ) - j G(s)ds + 0(6) , (1.18)
0

where

Av>(t-s) - ^ ( s ) - x>Q - D(t-s) - x> (1.19)

may be called the volume increment, and 6, given by

6 « lA^i (1.20)

is small if Ao has always been small. The function G, called the (isentropic)

pressure-volume relaxation function corresponding to x> and i\ , is

determined when the functional p is specified. For a given material

different choices of J] and x> give rise to different functions 6. The

equation (1.18) states that if the entropy is held fixed and the volume

increment is kept small, the pressure increment for a non-linear fluid

with fading memory is given, approximately, by a constitutive equation

of the type occurring in the linear theory of viscoelasticity.

It of course follows from (1.15) that p is given by a function

p of D and T) alone:r o "o

O KJ V

This function p determines the equilibrium pressure-volume-entropy

relation for the gas. It turns out that
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while

G(0) = ^ ^ o

The inequality

G(0) < G(~) (1.24)

follows from restrictions which the second law of thermodynamics places

9
on our constitutive functionals.

9
The inequality (1.24) is a corollary of a theorem given by Coleman in ref. 1

(p. 249). It is clear that Coleman's theorem remains valid if his

"stress-relaxation modulus at constant temperature" is replaced by a

stress-relaxation modulus at constant entropy.
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2. Constitutive Equations for Relaxing Gases

The principle source of dissipation of mechanical energy in

gases undergoing rapid compression is often the gradual transfer of molecular

motion from translational modes, where the motion contributes to the

pressure, to internal modes, where it does not. For diatomic molecules

one can usually assume that the vibrational and rotational modes are in

equilibrium and that a single relaxation process accounts for the transfer

of energy from the translational mode to the vibrational mode. *

10Cf. K. F- Herzfeld and F. 0. Rice, Phys. Rev. &, 691 (1928).

For quantum statistical theories of this type of relaxation see

12 13 14 15
Rutgers , Knesser , Landau and Teller , Rubin and Shuler , and

Montroll and Shuler

12A. J. Rutgers, Ann. Physik 16, 350 (1933).

13H. 0. Knesser, Ann. Physik .16, 360 (1933).

14L. Landau and E. Teller, Physik. Z. Sowjetunion 10, 34 (1936).

15R. J. Rubin and K. E. Shuler, J. Chem. Phys. 25, 59 (1956).

1 6E. W. Montroll and K. E. Shuler, J. Chem. Phys. 26, 454 (1957).

When such is the case, one expresses the specific internal energy of the

gas as a sum
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of the energy £ associated with the vibrational mode and the combined

energy €. of the translational and rotational modes, which are called

active modes. Similarly, the specific entropy r\ of the gas may be

expressed as a sum of a vibrational contribution r\ and an active

contribution r\A:

Insofar as the researches of Rubin and Shuler and Montroll and Shuler

justify the concept of a vibrational temperature 0 , they also justify

the concept of a vibrational entropy. For, having 6 and e , we can
\0

define c by (2.JP) and then define r\ , to within a constant, as the

integral of —r ^0 . Similar remarks hold for 6A, €A, and TJA.
cr V A A A

When discussing the dynamical behavior of gases with vibrational

relaxation one makes constitutive assumptions equivalent to the following;

(1) €. is given by a function €A of r\ and the specific volume

x>, while €.- is given by a function € of T\ alone:

€A " ^A^V^ €V

The functions € and e obey the inequalities

<2-4>
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and

d€v d %
>0' ^ " > 0 (2-5)

for all TJA, v>, and T^.

(2) The pressure is given by

€

(3) The active-mode temperature (or translational temperature) 6. and
A

the vibrational temperature 6 are given by

It is a consequence of (2.3), (2.4)3; (2.5)2, and (2.7) that i"A and e^

determine functions eA and e such that

(2.8)

(4) The material time-derivative of the vibrational energy obeys

an equation of the form

with K always positive.

A)l€v(eA)-€vI (2.9)

18
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The studies of Rubin and Shuler, and Montroll and Shuler indicate

9
that since (2.^7) holds precisely for their harmonic oscillator model,

it should hold near to equilibrium for more general models. Cf. Vincenti

lit
and Kruger.

19
W. G. Vincenti and C. H. Kruger, Introduction to Classical Gas Dynamics,

(John Wiley, New York, 1965), Chapter VII.

The active mode heat capacity (at constant volume) cA and the
A

vibrational heat capacity c are defined by

d ~ c d ~
A 5e^ A > A ' v de v v v

The positivity of cA and c follows from (2.4) , (2.5)2, and (2.7).

If the gas has always been at equilibrium then € s 0, and (2.8), and

(2.9) imply ey(0A) - €y(0v); this fact, when combined with

(2.10)2, yields 0 = 0 ; i.e. at equilibrium the temperatures of the

active and vibrational modes must be equal.

Given the histories of \) and 0 and the value €v(t ) of e at

some arbitrary time t , we can use (2.9) to find the value of € at any

time t; for, (2.9) has the solution

>t
f(t) =

_ to (2.11)

It follows from (2.7)n that K may be expressed as a function K of r\A
-L A

HUNT LIBRARY
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and "0:

(2.12)

Therefore, if we put t • t— £ a n d u s e (2*2)^ (2*3)o^ a n d (2*7)i we m ay

cast (2.11) into the form

>t

f(t)

We make the reasonable assumption that the functions e and /c

are such that, given TJ (t-£), the non-linear integral equation (2,13) has

a unique solution for TJ (T), t-^ < T < t, whenever O(T) and T](T)

are prescribed for all T in [t-£,t]. [A careful study of this point would

involve some difficult analysis.] If v> and r\ describe histories of a

material which has been out of equilibrium only for a time interval of

length £, i^e. if x> and r\ are such that for some *o ,TJ , and £ > 0

x>l(s) « DQ, t|t(s) « t|o for s > g, (2.14)

then, since 0. • Q at equilibrium, T] (t-Q is a solution of

Let us now observe that the present theory is compatible with

the assertion that the vibrational entropy Tv(t) is determined when the



15.

histories of the volume o and total specific entropy r\ are specified:

T|v(t) = HO*,!)*). (2.16)

Indeed, for histories of the type (2.14), the equations (2.13) and (2.15)

give us a system of equations which can be used, in principle, to calculate

H(D ,T| ). Under the norm (1.6), functions of the type (2.14) are dense in

t ii t ii

the cone C of pairs A of positive-valued functions for which ||A || < «>.

Hence, if the functional H is continuous over an open region Jj in G,

knowledge of ¥L(\> ,T) ) for functions of the type (2.14) determines H

throughout & . We shall leave open the interesting problem of determining

the smoothness properties given to H by the identity (2.13); instead we

shall merely assume that H is continuously Frechet-differentiable relative

to the norm (1.6).

It is clear that any functional H obeying (2.13) must be such that

— 55 0,
0=0

(2.17)
t tN def d

It follows from (2.1)-(2.3) and (2.16) that

€(t) « €.(u(t), Ti(t)-H(\3 ,TI )) + 7t/H(\J
t,Tit:)) =S= e(v»t,Tit): (2.18)

i.e. €(t) is given by an equation which can be regarded as a particular

example of (1.3); the functions €A and € appearing here are those in
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(2.3). Similarly

P(t)

and

eA(t)

(2.19)

(2.20)

where p and 0 are the functions occurring in (2.6).. and (2.7)..

Let us use (2.18), (1.10), and (2.17) to compute D e:

- [55 «

SH)

V - 13(t)

€

Hence, by (2.6)2 and (2.19), we here have

(2.22)

This equation has precisely the form of the general pressure relation

(1.12).

By an analogous argument, again using (2.18), (1.10), and

(2.17), we get

(2.23)

*!

(2.21)
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and therefore (2.7) and (2.20) yield

e
A
(v»(t), TKO-HOJ',^)) - t ^ , ^ ) . (2.24)

This relation has the form of the temperature relation (1.13) provided

that we identify the temperature 9 of (1.2) with our present active-mode

temperature Q .
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3. The Pressure-Volume Relaxation Function

The pressure-volume relaxation function G corresponding to a

fixed volume "0 and fixed entropy r\ was defined in equations (1.15)-(1.20)

Using the identity (2.13) for the functional H defined in (2.16) and

appearing in (2.19), one may calculate G for gases with vibrational

relaxation. We here report the results of such a calculation.

Let TJ. be the value taken by the active-mode entropy when the

gas is in equilibrium with X> « x> and t\ » T] . Of course, since 0 » Q

at equilibrium, T) is the solution of the equation

el - (3.1)

We find that the initial value G(0) and initial slope G'(0) of G are

given by the formulae

G(0) (3.2)

K c
G'(0) v a -

e6A

(3.3)

where p and 0 are the functions occurring in (2.6)- and (2.7),, while

c and /c are the values of the vibrational heat capacity c« and the
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rate coefficient K in the equilibrium state x> , r\ :

de, € v ( V * >9 =9
V V

K

(3.4)

(3.5)

The numbers G(0) and G'(0) occur frequently in theories of wave

propagation in viscoelastic materials.

The complete formula for G(s), s e [0,«>), turns out more

complicated than expected; to state our result let us put

1>

- I *

'A
(3.6)

a.
* * ..—

We find that the Laplace transform

F(q) - / [G(0)-G(s)]e'Sqds

0

obeys the formula

F(q) -

(3.7)

K* a - G'(O)lC*q - G'(O)q2

(/c*+3)q2 + q3]
(3.8)
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Letting-/CQ,-K-, and-/C2 be the three roots of the following cubic equation

in q,

* . *2
q3 + (/C*+ 0, (3.9)

and putting

* *2
- K^K G!(0) - K a, 0,1,2, (3.10)

one may invert (3.7) and (3.8) to obtain

G(s) * G(0) + if/ -
r o e

. (3.11)

Thus although the materials we are considering obey the simple relaxation

formula (2.9) for the energy, when viewed as linearly viscoelastic materials

their isentropic pressure-volume relations may be expected to exhibit three

relaxation times, l/ic., i = 0,1,2. It follows from (3.11), (3.2) and

(3.6)1 that

G(0) (3.12)

Of course, the formulae (3.6)^, (3.11), and (3.12) become

meaningless in the special and physically unlikely case

d/c die
0 . (3.13)
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When (3.13) holds, in place of (3.11) and (3*12) we obtain the simple

expressions

G(s) = 6(0) (3.14)

and

G(«o) = G(0)
G'(0

(3.15)

with G(0), G'(0), and 0 still given by (3.2), (3.3), and (3.6)3>

We say that a relaxing gas is ideal if p » RG./x>, i.e. if

(3.16)

where the constant R is equal to the ratio of the universal gas constant

to the molceular weight of the gas. It is not difficult to show that for

20an ideal gas €A must be expressible as a function of d. alone :

20,The argument to be used is that spelled out by R. Courant and K. 0.

Friedrichs, Supersonic Flow and Shock Waves,(Interscience, New York,

1948), pp. 8 and 9; we assume, of course, that dp/di) < 0 and that

> 0.

(3.17)
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Putting

R + c. d ~
(3.18)

we find that when the material is an ideal gas the formulae (3.2) and

(3.3) yield

R9*7
G(0) - -— f - ,

X)

k
G'(0)

(3.19)

(3.20)

and the numbers ij/f a, ixxni p are given by

R0A R 2V
* V
cA o

For an ideal gas.in the special case (3.13) we have

R6
G(s) = --f

X)

* *

1 + (7 -l)exp -

* C V
-£ . (3.21)

(3.22)

We thank Dr. James M. Greenberg for valuable discussions.
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