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Pr ef ace

In recent years there has been devel oped a general thernodynam cs
of materials for which the stress, tenperature, and energy depend on the
hi stories of the strain and another variable, such as the entropy. Here
we discuss the conpatibility of that thernmpodynam cal theory with a special
theory of mechanical dissipation which has been successfully used in
physi cal gas dynamics: the theory of gases with vibrational relaxation.
Ganting, wthout detailed study, certain technical points involving the
uni queness and stability of solutions of a class of non-linear integral
equations, we observe that the theory of relaxing gases can be inbedded
in .the framewor k of the thernodynamics of materials with nmenory, provided
only that we identify"the tenperature" of the thernmodynam cal theory with

the "translational". or ("active-node") tenperature of the internal-relaxation

t heory.
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V% conclude our discussion with a report of a calculation we
have made of the isentropic, pressure-volune, relaxation function exhibited
by a gas with vibrational relaxation when regarded as a linearly viscoelastic

mat eri al .




!4 Materials with Menory

To place the theory of gases with vibrational relaxation within

the domain of the thermodynanics of materials with mermryl, we do not need

1B. D. Coleman, Arch. Rational Mech. Anal. 17, 1, 230 (1964).

the memory theory in its full generality. W may focu.s our attention on
materials for which the stress tensor reduces to pure hydrostatic pressure
and for which the pressure p(t), the tenperature d(t), and the specific
internal energy e(t) (per unit mass) at a material point X are given by
functionals of the histories up to time t of the specific volume x>+ 1/p

and specific entropy r\ at X

{t) = PO)"), (1.1)
0t) = torn*), (1.2)
gt) = g0M, ). (1.3)

Ina flowing material the specific volume and the specific entropy (per

unit mass) are functions of the material point X and the tine T:

X> » DX, T), T =th(XT). (1.4)




. . . . t t
The histories up to time t of x>and r\ at Xare the functions_X) and r\ -,

over [0,00), defined by
A(s) = u(Xt-s), rit(s) = T(Xt-s), 0<s <0 (1.5

W assune that the functionals £> £> ** £ obey the principle

23

of fading menory in the form proposed by Col enan and Nol | To state

2B. D. Coleman and W Nol |, Arch. Rational Mech. Anal. 6, 355 (1960).

®B. D. Coleman and W Nol |, Reviews Myd. Phys. 33, 239 (1961), erratum

ibid 36 1103 (1964).

this principle in our present context we let h denote an influence function,

i.e. a positive, rmnotonea, conti nuous function on [0,00) decaying to zero

4 5
Col eman and M zel have recently shown that conditions on h weaker than

nonotonicity suffice for nmost of the theory of fading menory.

5B. D. Colenman and V. J. Mzel, Arch. Rational Mech. Anal. 23, 87 (1966).

fast enough to be square integrable, and we define the norm |JArr| of a

pair of histories At: ("0 rf'l] I:) by

ITAT = A0) 241 (0)2+) (M(s)#T(s))h(s)%s. (1.6)

0




The common donein of the functionals p, {, and g is taken to be an open
subset J% in the cone Cof pairs A b positive-val ued functions V) I E
wth |Atl finite. The principle of fading menory is the assertion that
for sone influence function h(which we need not specify) the functionals
p L and e are continuously differentiable, in the sense of Fréchet,
t hr oughout % wi th respect to the norm |[|.

Let v¥ be an arbitrary history in £3 and let Qbe a nunber: the
function VAl defined by

(V(0) + fI, a - 0f

(57 (s) - I . - (1.7)
\WV4(S), 0 <S<m

is called the junp continuation o_t__x>t with jump SI.  An anal ogous equation

defines the hist ory TIF/\H given  and H Junp continuati ond may be used
to define the "D operators”, DD and DTI’ which play a central role in the
thermodynamics of materials with nemory. Let f be a functional standing
for p, t, or e. Cearly, for a given pair \) 5y fthe nunber f(x>/t\Q,T\t)

is determined by a function f of the junp Q
f(fl) - LOMARL, "), (1.8)

The assunption that f is differentiable over {P relative to the norm

(1.6) inplies that f(& is a differentiable function of fl; i.e. that

BE(CW = A(F]) (1.9




exists for each pair_X)t,rF infioand for an interval of values of ft

including 0. The operator Do is defined by

D.D,f,(ut:nt) - gﬁg(ut/\n,nt)'m, (1.10)
and simlarly

DEOT) = & £ AD] (LD

1 N H«O

Since they represent partial differentiation with respect to present

val ues holding the past history fixed, D,k and EHL are called the
lnstantanequs derivatives of f with respect to x> and T, respectively.
Wrking in a nore general theory for which the stress tensor is not
necessarily a pure pressure and which accounts for the presence of heat

conduction, C‘olenan6 has found the conplete set of restrictions which the

6Reference 1, Thm. 1 on p. 19 and Thm. 6 on p. 33.

constitutive functionals nust obey in order that the entropy production
never be negative in a thernodynam c process. Anong these restrictions

are the following: e nust determine p through the pressure-relation,

vm?

E - ‘uDe (1.12)

and t through the tenperature relation

£ = Dg | (1.13)




I'n other words, know edge of a single functional g suffices for the
determnation of the present values e(t), p(t), and 9(t), when the

histories X)t and T are gi ven:

ﬁt

€t) « etf,n), p(t) - -D*'V), o(t) - prorT,*). (114

Let Py be the pressure the fluid would exhibit had it always
been at rest with sone particular fixed specific volume u_ and fixed

speci fic entropy r\o. V& may wite
Po - E(OBT.,J) (1.15)
wher e x% and Tg are the constant histories defined by
ASS S Y AMs oy 0<s<co.’ (1.16)
If we now put
p' = pt,nl) | (1.17)

where x5 is arbitrary, then it follows fromthe principle of fading menory

t hat ’

7 . 3 1
Vid. Coleman and Noll and Coleman (pp. 245-249), who give the general
argument for the three-dimensional case; the present sinpler case is
)
(

di scussed by Coleman and Gurtin = (pp. 272 and 289).

8 5

B. D. Coleman and M E. Gurtin, Arch. Rational Mech. Anal. 4f£, 266 (196")"




> G(0)Au(t roo d
P - Py - SOy *+ ) o(t-sB] G(9)ds + 0(6) ,  (1.18)
0
where
Av>(t-s) - " (s) - x>q - Df(t-s) - x> (1.19)

may be called the volune increnent, and 6, given by

6 « AN (1. 20)

is small if Ao has always been small. The function G called the (isentropic)

pressure-vol une rel axation function correspondi ng to_x'>°and i\o’ is

det erm ned when the functional R is specified. For a given nmaterial
di fferent choices of ‘J]o and X3 give rise to different functions 6. The
equation (1.18) states that if the entropy is held fixed and the vol une
increment is kept small, the pressure increnent for a non-linear fluid
with fading menory is given, approxinmately, by a constitutive equation
of the type occurring in the linear theory of viscoelasticity.

It of course follows from (1.15) ‘that Py is given by a function

N
p of Do and T),o al one:

p, = p(0,n). (1.2L)

N
This function p determ nes the equilibrium pressure-vol une-entropy

relation for the gas. It turns out that

(=) = Lombl(s) = & Po_,n) (1.22)
. o}

§93®




whi | e
1.
G0 = B "m0l (1.23)
The inequality

&0) < &) (1.24)

follows fromrestrictions which the second |aw of thernodynam cs pl aces

) . . 9
on our constitutive functionals.

The inequality (1.24) is a corollary of a theoremgiven by Coleman in ref.
(p. 249). It is clear that Coleman's theoremrenains valid if his
"stress-rel axati on nodul us at constant tenperature" is replaced by a

stress-rel axation nodul us at constant entropy.
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2. Constitutive Equations for. Relaxing Gases

The principle source of dissipation of mechanical energy in
gases undergoing rapid conmpression is often the gradual transfer of mol ecul ar
motion fromtranslational nodes, where the notion contributes to the
pressure, to internal nodes, where it does not. For diatomc nolecules
one can usually assune that the vibrational and rotational nodes are in
equilibriumand that a single relaxation process accounts for the transfer

of energy fromthe translational node to the vibrational node. 1011

19Cf. K F- Herzfeld and F. 0. Rice, Phys. Rev. & 691 (1928).

o quantum statistical theories of this type of relaxation see

12 13 14 15
Rutgers , Knesser % Landau and Teller , Rubin and Shuler , and

Montrol | and Shuler.
12p. J. Rutgers, Ann. Physik I8 350 (1933).
13H. 0. Knesser, Ann. Physik '1%; 360 (1933).
L. Landau and E. Teller, Physik. Z. Sowetunion T0, 34 (1936).
R J. Rubin and K E. Shuler, J. Chem Phys. 25) 59 (1956).

1E. W Montroll and K. E. Shuler, J. Chem Phys. 26, 454 (1957).

When such is the case, one expresses the specific internal energy of the

gas as a sum

€ = ey te, (2.1)
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of the energy EV. associated with the vibrational rmdé and the conbined
ener gy €.A. of the translational and rotational nodes, which are called
active nodes. Simlarly, the specific entropy r\ of the gas may be
expressed as a sumof a vibrational contribution r\‘,r and an active

contributionrxé\: 17

1-"Insof ar as the researches of Rubin and Shul er5 and Montroll and Shul er6

justify the concept of a vibrational tenperature OV they al so j'ustify

the concept of a vibrational entropy. For, having 6‘;|r and ey We can

\0
define Cy by (2.JP and then define r\v, towthin a constant, as the

ol

—"0 .. Simlar remarks hold for 65 €5, and TIa
aV v A A A

integral of —

No= Ny, (2.2)

VWhen discussing the dynam cal behavior of gases with vibrational

rel axation one makes constitutive assunptions equivalent to the follow ng;

(1) € is given by a function £, of r\A and the specific vol ume

X>, whi | e €,‘; is given by a function €v0f T\v al one:
Y A L (2.3)
-The functions-gA and EV obey the inequalities
-_— — 2_ p
= de 0%e %
A A A A
FA > 9, oo <9 2 >0, 302 >0, <2 4>

Oy
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and

dey "%
dT]v, >0 N ||. >0 . (2_ 5)

for all T3, v> and T,
(2) The pressure is given by
- d -
P = p(o,m,) = —5§5€,(0m,) > 0. (2.6)

(3) The active-node tenperature (or translational tenperature) 6. and
A
the vibrational tenperature 6y are given by -

‘A

It is a consequence of (2.3), (2.4)s (2.5), and (2.7) that i", and e"

el

deternine functions €, and €y such that

€y = €,(v,6,), €y = Ev(ev). (2.8)

(4) The material tine-derivative of the vibrational energy obeys

an equation of the form

€g = K(9,8)1%,(ep) -6l (2.9)

with K always positive. 18




eg(t) =

13.

18The studi es of Rubin and Shul er, 15 and Montroll and Shul er16 i ndi cate
that since (2.77) holds precisely for their harnonic oscillator nodel,

it should hold near to equilibriumfor nore general nodels. Cf. Vincenti

it

and Kruger.

19
W G Vincenti and C H Kruger, --htroducton +o -Sasscat oS DyAsk-e5y

(John W1l ey, New York, 1965), Chapter VII.

The active node heat capacity (at constant volune) ca and the

A
vi brational heat capacity CV are defined by
~ d -~
C = _~ e (Wo) > 0 ¢ = =—, (6, > O. 2.10
A 5eN A >/1 v dey v"&/") (2.10)

The 'positivity of ca and ¢ _follows from (2.4) 3 (2.5),, and (2.7).

v

If the gas has al ways been at equilibriumthen € 0, and (2.8) N and

VS
(2.9) inply gy(OA) - gy(ov); this fact, when conbined with

(2.10)2, yields OA = Ov; i.e. at equilibriumthe tenperatures of the

active and vibrational nodes nust be equal .

G ven the histories of \) and % and the val ue €V(to) of evr at

sone arbitrary tine to‘ we can use (2.9) to find the val ue of %Z‘]r at any

time t; for, (2.9) has the solution

- >t ~ t
e £(t) ev(to) +f x(u(r),sA('r)) ev(BA(-r)>ef(T)d-r}, f(t) = f IC(D(T),GA(T))CIT.
¢ 1 (2.11)

Q
It follows from (2.7), that Knmay be expressed as a function K of r\,
-L A

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSE
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and "0

aer

E(U!HA) — '((U}EA(D’“A))‘ (2 12)

Therefore, |f we put & . t_£and use (2*2)/\ (2*3)9/\ and (2*7)i‘wemay

cast (2.11) into the form

- >t
() = e'f“’{Ev(nv(t—;)) + [ 7o, 1mmym),E,0m, n(T)-nv(T)))ef(T)dT},
£t

¢ (2.13
f(t) = f o), n(m ).
t-§
VW nake the reasonabl e assunption that the functions e and /¢

v

are such that, given TJv(t—E), the non-linear integral equation (2,13) has
a uni que solution for_ T‘]V( T), t-~<T<t, whenever O(T) and T] (T)

are prescribed for all T in [t-£,t]. [A careful study of this point would
i nvol ve sone difficult analysis.] |If vt and r\t describe histories of a

mat eri al which has been out of equilibriumonly for a tinme interval of

length £ i%e. if x¥ and r\t are such that for sone *oo,TJo, and £ > 0)
x>'(s) « D, t]'(s) « t|o for s_> g, (2.14)
then, since OA . Qvat equi librium ij(t-Q is a solution of
5,(o0r 1571y E-0) = Fylnge-0)). (2.15)

Let us now observe that the present theory is conpatible with

the assertion that the vibrational entropy T,(t) is determ ned when the
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histories of the volune o and total specific entropy r\ are specified:
TW(t) = HO*, 1)~*). (2.16)

I ndeed, for histories of the type (2.14), the equations (2.13) and (2.15)
give us a systemof equations which can be used, in principle, to calculate

I;J(Dt,Tlt ). Under the norm (1.6), functions of the type (2.14) are dense in

t itii
-

the cone C of pairs A of positive-valued functions for which |[f || < «

= =
Hence, if the functgonal His continuous over an open region Jj in G

know edge of ¥-I'_(\> ,I) ) for functions of the type (2.14) determ nes E
throughout & . W shall leave open the interesting problem of determ ning
the snoot hness properties given to :by the identity (2.13); instead we
shall nerely assune that :| is continuously Frechet-differentiable relative

to the norm (1.6).

=
It is clear that any functional H obeying (2.13) must be such that

t t def t t
p O 2 85 Hehea| - o
0=0
(2.17)
DH(nt.ntﬁ' def, 9-._-; H(nt_ntAE\l - o
b e )

It follows from (2.1)-(2.3) and (2.16) that
—_— t_t t ot ‘isf_ t ooty .
€(t) « €.r_‘(_u(t), Ti(t)-H\3", M7 )) + 73/1_—(\‘] i )') =S= (E(V»,TI ): (2.18)

i.e. €(t) is given by an equation which can be regarded as a particul ar

exanple of (1.3); the functions -€A and €, appearing here are those in

Z v
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(2.3). Sinilarly

def

p(t) = (o), n(0)-BO50%) == pofynt

), (2.19)

and

t

ext) = B,(o(e), n(e)-ge5n%) =L oreta®H. (220

where p and O_Aare the functions occurring in (2.6)..1 and (2.7)1.

Let us use (2.18), (1.10), and (2.17) to conpute Dug:
g0t = [5G a©-Eee0) + 3 Ev(gcu‘/.\n,n‘))]s

al t t.)-d .d_ <
_ {55 €, (0,M,) + D H(v 0 )[E €,(0,n,) + an ‘-‘v(“v)ﬂv 1)

My = E(Ut,"lt)
N, =0 (£)-HE5,05)

3 €
- % (0,1,)
) A5 woge)

N, =N (E)-BE50%) (2.21)

Hence, by (2.6), and (2.19), we here have
D% = -p(oe), n(®)-HE5H) = 5D (222

This equation has precisely the formof the general pressure relation

(1.12).
By an anal ogous argunent, again using (2.18), (1.10), and
(2.17), we get
t_t -

N, =n(E)-B0",4")
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and therefore (2.7)1 and (2.20) yield

(AA) L (2.24)

Dqg(ut,nt) = p (W(t), TKO-HOJ', ")) -
A

This relation has the formof the tenperature relation (1.13) provided
that we identify the tenperature 9 of (1.2) with our present active-node

t enper at ure Q'A.
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3.  The Pressure-Vol une Rel axati on Function

The pressure-volune relaxation function G corresponding to a
fixed vqune'W% and fixed entropy r&) was defined in equations (1.15)-(1.20).
Using the identity (2.13) for the functional H defined in (2.16) and
appearing in (2.19), one may calculate G for gases with vibrationa
rel axation. W here report the results of such a calcul ation.

Let T\I be the value taken by the active-node entropy when the
gas is inequilibriumwthX>«x> andt\ » T . C course, since % » Qv

at equilibrium T): is the solution of the equation

€l . 'é'A(uo,n:) - Ev(no-n:) - 6 (3.1)

W find that the initial value G 0) and initial slope G(0) of Gare

given by the formul ae

§0) = & Feomy , (3.2)
'D-'OO*
A 04
K*C *
G(0) = —z¥& = (0my) (3.3)
A e V=0
A=A

where p and O_Aar'e the functions occurring in (2. 6)-land (2.7),1, whi | e
*

Cy and /& are the values of the vibrational heat capacity cg and the
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rate coefficient Kin the equilibriumstate x> r\D

o
* d ~
v ~ WV(V‘g —g* > (3.4)
A Vo .
= k,8) = KO, (3.5)

The-nunbers G 0) and G (0) occur frequently in theories of wave
propagation in viscoelastic materials.
The conplete formula for G(s), s e [0,«), turns out nmore

conplicated than expected; to state our result let us put

o\ %% \
v/ OV _
]_> - — )
oK
R P
n,=t (3.6)
ATy f
* - * %
. - 2 B = e /Y
a EECRTR T ’ : o* on,
=Uo_ A vav,
Mp™a 11"1: !
Ve find that the Laplace transform
Fla) - J/ [G(0)-G(s)]e' *ds (3.7)
0
obeys the formula
2
Kt a - G(OQICqg - G(0g°
F(q) - 2. G(91C0 - 6 (09 (3.8)

al-(c*afy) + x"Ba + (/c*+3) g + q°]




G(s) * G(O) +if/ -

20.

Letting—/CQ,—KI, and-/C, be the three roots of the following cubic equation

in q,
3 2 * , *2
q° + (IC+B)q” + kK Bg~ (x aly) = o0, (3.9)

and putting

*I *2
r, = «%6'(©) - K'KG(0) - K2

. , £t =012, (3.10)

one may invert (3.7) and (3.8) to obtain

-Kgs -K18 “K28
r 0e I"le 1"2e

Thus al though the naterials we are considering obey the sinple relaxation
formula (2.9) for the energy, when viewed as linearly viscoelastic materials

their isentropic pressure-volume relations may be expected to exhibit three

rel axation tines, I/icl., I =0,1,2. It follows from(3.11), (3.2) and
(3.6); that
_ (3c/3v)38,, /v
G(@) = GO0) +¢ = [dp/ov + — ' (3.12)
Bic/BnA v=1y,
Ny=my

O course, fhe formulae (3.6)", (3.11), and (3.12) becone

meani ngl ess in the special and physically unlikely case

dic _ die
S = WA = 0. (3.13)

Kok = k) (=g}~ iy (eg =Ky ) (= 16) T~ Ky (g = K, ) (k) = £,)

(3.11)
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When (3.13) holds, in place of (3.11) and (3*12) we obtain the sinple

expressions

qs) = 6(0) +§-'-é9)-(1- e Psy (3.14)
and
G (0) - (BEA/E:U)Z
q«) = G0) + =" = [|op/Ov + ——— (3. 15)
08, fon,y v
LR

with G(0), G(0), and O still given by (3.2), (3.3), and (3.6)3,

W say that a relaxing gas is ideal if p» RG/x> i.e. if

vp(V,n,) = RS, (0,1,) (3.16)

where the constant Ris equal to the ratio of the universal gas constant

to the nol ceul ar weight of the gas. It is not difficult to show that for

an ideal gas €, nust be expressible as a function of d'a al one20:

20’The argunment to be used is that spelled out by R Courant and K 0.

Friedrichs, Supersonic Flow and Shock Waves, (I nterscience, New York,

1948), pp. 8 and 9; we assune, of course, that dp/di) <0 and that
3%p/av? > 0.

€, = €,(9,). - (3.17)
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Putting

R+ o
o * ~
A d_~¢ * - (3.18)

we find that when the material is an ideal gas the formulae (3.2) and

(3.3) yield
RO* 7
qo - -—-, (3.19)
X
sz*ck'
G(0) = =——7—5— (3. 20)
c*znz ’
A o
and the numbers ij/; a, ixxni p are given by
* l ’ % x
ROA (3K /v ROV 3k *x C
w — - (a_’ ) R o = _;RZVE 3 B = K _g .
e, v, ( :cfbrlA) - Y V=D, N
% Ca 0 In=n*
Lty A
For an i deal gas.}i n the special case (3.13) we have
re¥ | K e
N [
ds) =--1 1+(7*-|)exp(- = s)|. (3.22)
X c
] A
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