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1. | ntroducti on

Si ngul ar surfaces, such as shock waves and accel eration waves,
can propagate in materials for which the present stress depends on the
histories of the strain and entropy in a manner conpatible with a
snoot hness postul ate called the "principle of fading nenory”, and a

1-5

theory of such waves of discontinuity exists. In that theory explicit

expressi ons have been derived for the velocity and time-dependence of the
2 5

anpl i tude of accel eration waves and hi gher-order waves . 6

Recently B. S. H Rarity has shown us a manuscript in which
he di scusses the propagation of acceleration waves in an ideal gas having
a single, finite, relaxation tine for the exchange of energy between
transl ationaty and vibrational nodes of nolecular notion. Using
Johannesen's "heat-sink anal ogy" for the flow of such a gas, Rarity
shows that the anplitude of a plane-conpressive accel eration wave

whi ch has been propagating since tinet = 0 into a region at rest wll




become infinite at a finite tine t provided the initial anplitude exceeds
C

a critical value which depends on the relaxation tine of the gas. Although
the nmethod used by Rarity does not yield an expression for the
ti me- dependence of the anplitude, he does obtain a formuila for t % The

existence of a critical anplitude for acceleration waves and the forg1of
Rarity's expression for te are conpletely anal ogous to known results“ in

the theory of waves in materials with memory. This observation has
suggested to us the possibility of developing the theory of materials
with internal variables.along lines which have been explored in the
general theory of materials with fading nenory. El sewhere we have

attenpted a unified treatnent of the t hermodynami cs of nmaterials with
0
Q

relaxing internal state variables. Here we report calculations of the
growth and attenuation of waves in such materials. The enphasis is laid
on plane-longitudinal waves advancing into honogeneous regions at
equilibrium The materials considered are fluids for which the specific
internal energy € (per unit mass), the pressure p, and the tenperature 9
are determned through constitutive equations when the specific vol ume
x> « 1/p, the specific entropy r\ (per unit mass), and Ninternal (or

"hi dden") state variables C)f,...,QN are specified at the point. W
assume that the material time-derivative of each of the a* is given by

a functionh %f x>, r\, and the conplete internal state {O,% .., QM:

r:!i = b, (9,m,0,...,0%), i-1,..., N (1.1)




No assunptions of linearity are nade for either the functions hi or for

the dependence of €, p, and 8 on T]. X), or the CIj.
Qur constitutive equations appear sufficiently general to

i nclude as special cases those9 of theories which explain pressure-vol une

rel axati on phenonena by postul ating reactions of deconposition and

associ ation; in such applications each a, becones the degree of advancement

1
of a chemical reaction. \Wen our theory is applied to gases with finite
rates of exchange of energy between translational and internal nodes of

nmol ecul ar m)tion,10 the nunber ay should be interpreted as the fraction

of energy in the ifLu internal nmode, and 0 should be identified with the

transl ational temperature (i.e. the "active-node" tenperature).




2. Basic Assunptions

In the present theory a material is characterized by the

following constitutive equations:

€ = E(D,H:Q‘):
P - POrst), > <>

6 = E(D,ﬂ:g),

4 - hora), (2.2)

wher e éis the material tine-derivative of the internal state vector

a«{a,

L

.. ..Q.}. Shearing stresses are absent, and it is assumed that

the material does not conduct heat. The response functions € p, 6 in

(2.1) are not independent, for the second |aw of thernodynanm cs requi resu
that € determine P and ® through the pressure relation,

P - -dj, (23
and the tenperature relation,

B « bne",‘ (2. 4)

with dD and ATI denoting ordinary partial derivatives. The second |aw

also requires that £ and h obey the following internal dissipation inequality:

aaz(uyn:g)'ﬁ(uyﬂ:g,) = 0 (2.5)




for all triplets (x>,t\40‘). Hereéime(u,tida) is the N-vector with conponents

(ng(u,q,g))i = Bai'é'(u,n,al,...,anj, (2.6)

and "+" has its usual meanings for any two N-vectors <£ and $

By an equilibriumstate we nean a triplet (x> ,r\ ,a) such that (i)
h(v> ,m ,a) - 0, (2.8)

and (ii) the solution g(t) = o of the autononous differential equation

at) = ko ,m_,a(0) (2.9)
is (locally) asynptotically stable. It follows that
Bge(uo,no,go) = 0 {2.10)
3

at every equilibrium state.

W here consider plane longitudinal nmotions of the type usually
studi ed in shock tubes. Each such one-di nensional notion is described
by a scalar function x * x(X,t) giving the location at time t of the
mat eri al point which has_,;he position X when the body is in a fixed
reference configuration (j\j with uniformmass density p°. It is convenient

to identify each material point of the flowing material with its position




in HPL The velocity v and the specific volume u of X at time t are

gi ven by

v o= c>x(Xt), \> - Aadyx (X, t), (2.11)
[0}

In the absence of body forces and heat transfer by radiation or conduction

the laws of bal ance of nonmentum and energy becone

“dyp + PV = 0, (2.12)

€+p> = O (2.13)

It follows from (2.1)-(2.4) and (2.13) that

0T + <dc). L - 0. (2.14).
By * wave we nmean a propagating singularity, i.e. a singularity
that noves relative to the naterial. Let Y£ be the material point,

| abel ed by its position in the reference configuration, at which the
wave is to be found at tinme t. The location in space of the wave at

tinet is the place

Yo o - X(Yi, t). (2.15)

Th® wave velocity u is just the rate of advance of the wave as seen by an

observer at rest:

LN | I (ISR <2.16)




If the material velocity v happens to be continuous across the wave, then

we can define a speed pJE propagation ¢ for the wave by the formula

c(t) = Ju(t)-v(Y,t)],. (2.17)

c is the speed of the wave relative to the material point instantaneously
situated upon it. If f(X,t) is continuous in X except for a junp

discontinuity at X e Yt’ we define the junp in f across the wave to be

- Mct) SBEE(YL ) -E(Y4). (2.18)

For definiteness we assune that u(t) —v(Y:t) is positive, so that the
wave noves faster than the material immediately ahead of it, and [L]": is
the increase in f experienced at a given point X at the nonment that the
wave passes through X

W shall here assume that x(X, t) is a continuous function of
(X t) for all (X,t) and that all the derivatives of x(X t), T (X t), and
g(X t) are continuous at all points away from(Yt, t) and suffer nothing
worse than junp discontinuities across the wave.

W say that a wave is of order Nif the Nth-order derivatives
of x(X, t) suffer non-zero junps across the wave, while all the derivatives
of x(X t) of order Iess than Nand all derivatives of TJ(X t) and a(X t) of
order less than N-1 are continuous across the wave. Shock waves are of

order 1. Waves of order 2 are called accelerati on waves, while waves of

order 3 or higher are called nmld discontinuities.




3. Elenentary Properties of Acceleration \Wves

Across a wave of order 2 we have

1*1" M- Me M- M- °> 3.1)
but
vl 40, Io] # 0, [oyvl # 0. (3.2)

For the theory of acceleration waves it suffices to assune that
~ 3

the response function € of (2.1) is of class Q (i.e. 3-tines continuously
differentiable) while~h in £2.2) is of clasg C; it then follows from
(2.3) and (2.4) that p and 0 are of class C. Thus (2.1) and (3.1) inply

Mo=lo =M =% <
while (2.2) yields

M- 2 <3. 4)

Further, (2.14), (3.3), and (3.4) inply that i™ is continuous across the

wave 13:

Iil = o. (3.5)

Basic to our present subject is Mxwell's theorem? |t f(Xt),

dyf (X, t), and f(X t) = S f(Xt) suffer at worst, junp discontinuities




acr oss (Yt’t) and are continuous functions of (X 1t) everywhere else, then

Lg] =0 => [f] = <UL\ f (3.6)

wher e
wt) = ~Y,. (3.7)
Inviewof this theorem (3.1)4s5, (3.4), and (3.5) yield,for U4 0,
Nd-2>  Ffil-0 38
It follows from(2.1) that
dp = (BUE)BXU + (ans)axq + (ag“p‘)-axg. (3.9)

Therefore, by (3.1), (3.8), and the fact that the functions, ¢p and d.p

are continuous, we have

If in Maxwell's theoremwe put, successively, f(Xt) » v(Xt)

and f(Xt) o Sxx(X,t), and use (2.11),, we obtain the follow ng conpatibility

conditions for an acceleration wave:

[V] » -Uldw] = -pUi> * pU?M, .(3.11)

To relate U to the speed of propagation ¢ we need merely note that (2.11),
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(2.15), (2.16), and (3.7) yield
u(t) = Wt)poV>(Yi,t) +v(Y, t), (3.12)

and, therefore, by (2.17)

e = —<=B) (3.13)

Thus; by (2.13), (3.10), (3.11), and (3.13), _the_speed of propagation of

an accel eration wave |s given gylls

c(t)? = -Up(~ 0 a), (3.14)

withx> r\, and aevaluated & _the wave at tinet.

Ve assume, of course, that bup is always negative.
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4. The Anmplitude of Acceleration Waves

Here we consider an acceleration wave advancing into an infinite
honmbgeneous region at rest in an equilibriumstate (Dd'l) o,go). Assum ng
U>0 and taking the reference configuration to be that of the material

ahead of the wave, at each time t we have
\>(Xt) «\)q- I/pe n(Xt) - Tlo _G(Xt) «C, for all X> Y, (4.1)

wher e Po Is the mass density in the reference configuration. For such a

wave, (3.13) and (3.14) yield

5 iy oo w2

It follows from(Aol)g&A_A' (3.4), (3.5, and (3.8) that r\ and a

are not only continuous across the wave but in addition satisfy
n- V-0 gt - 12> O)- <t
Differentiating (2.14) we obtain
¢ + $h + <EDM+ 0]8)a - 0, (4.4)
and, therefore, by (4.3),

Thl+ QUlzl G e 49

Since 0 >0, and since in the present case (4.1) and (2.10) inply that
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dS:« 0_at the wave, (4.5) yields
Inl =o, (4.6)
and, fron1this] (3.5), (3.8L~, and Maxwel |"s theoremwe obtain
Byl = ..[3,2['1..1, = 0. | 4.7)

A convenient measure of the anplitude of a wave of order two is

the junp

a « £>5,pf (4.8)

in the gradient of the density. Since we here assume that the materia
ahead of the wave is in its reference configuration and since dx/dx is
continuous across the wave, at the wave a naterial derivative may be

replaced by a spatial derivative, and (4.8) may be witten

a = [3.0l = Lemwd p(x,t); (4.9)
' X-Ye
i.e. the anplitude is just the spatial gradient of the density, eval uated
i medi ately behind the wave. O course, in general, the anplitude varies

intime. Elsewhere, we have derived a general relation*’ for da/dt which

reduces to

da . .
2.3 = Polog0l + .17.@xpl. (4.10).
c
when dU/dt = 0 and P =» ¢ , as is the case here. To calculate [d,p] we
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first differentiate (3.9):

dyp = (P30 + (af)i;'){;axu + (3 POy + (agaUB‘) 3D v + (ans)axﬁ + (3,3, PYym

+ 2D+ R F Wy + QP A+ O B+ @) i 4 3 (<F)2y),
(4.11)

wher e (7‘-7:];) stands for the linear transformation with conponents d_ d, p.
o ~ e, O

Since "0, T and a are continuous across the wave and pis of class
C, each of the coefficients oup" oup, etc. in parenthesis in (4.11) is
continuous at Yt,t. Hence (4.11), (4.3), and (4.7) yield

Byl = OPPEL+ @Ryl + @) Bydl. @12

By (2.2),
axg = O W+ (ang)axq + (agg).axg ; (4.13)
therefore, since h is of class d we conclude from (3.8) that
Laxgl = (@ o) laxul. (4.14)
It follows from(4.1) and (2.18) that here
[03y0] = (0] (3, v]. (4.15)

Sincet) - Up, (4.8) and (4.1), inply

Dyl - -pa (4. 16)

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSITY
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and by (3.11) and (4.2)
$1 - cpsla. (4.17)

Substituting (4.12) and (4.14)-(4.17) into (4.11), we obtain the follow ng

differential equation for a(t):

I = waes oz - (~18)
Wi th
v2(3,5)- O 1) CRIHCRY
a = -5 , X i . (4.19)
2c? »2c* P

Integration of (4.18) yields the follow ng theoremlg: The anplitude a(t)

of an acceleration wave which since tine t » 0 has been advancing into a

homogeneous region &t rest inan equilibriumstate (D rf sOL ) obeys the

f or mul a2°
(1) (~T (4.20)
a t = £ ™ ’ '

(A.*&(O))EM + a( 0)
here X and_p. are constants given br (4.18) with da"p' 5;'5 and d h
eval uated a _ (_><>0,'I]O ,30).
In applications we expect to have
\i> 0. (4.21)

Inthis case |X plays the role of a critical anplitude: If |a(0)| < [X




or if sgn a(0) «* -sgn X then a(t) -» 0 monotonically. If a(0)

a(t) s a(0). On the other hand, if both |a(0)] > |X and sgn a(0)

then |a(t)| -»o00 monotonically ina finite time tc-given by

A
tc = - ':'T ln(ll— m’) .

For gases we generally have
2~
dbp(x® ,T0 &% ) > 0,

and hence, by (4.19) and (4.21)

X < 0.

15.

= X, then

= sgn X

(4.22)

(4. 23)

(4. 24)

Thu§j for a gas, in order to have \[d EJA‘)I -» °° it is necessary that

Ld.p](0) be negative, i.e. that the acceleration wave be "compressive"
XM

One is tempted to suppose that the approach of | [d p](t)]

*k*x"*

to oo

as t ->tC indicates the formation of a shock wave at time tc> but a

rigorous proof is lacking. In any event, we see that an acceleration

wave moving into a homogeneous equilibrium state in a shock tube can

| _
grow into a shock wave aoly if_it is compressive, and this is, of course,

just what is observed in practice. Our theory states further

shock wave should not formunless -[d p] is initially greater than

Fokk XE>*

a

- X

We do not know whether this critical jump -X has ever been measured with

precision, but surely it exists in experience; otherwise the feeblest

bursts of sound could grow into shock waves.
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5. MI1d D scontinuities

The nethods we have used to calculate the velocity and anplitude
of acceleration waves can be applied without difficulty to waves of
order 3 and higher. Here we give results of such cal cul ati ons.
For the theory of waves of order N we assune that the response
. o o erh N-1 .
functions € and h are of class Cc%" and C 7, respectively.
It turns out that, since the naterials we consider here do not

conduct heat, all waves of order N> 2 share the comon formula (3.14)

for their speeds of propagation. 23

A fundanental distinction between accel erati on waves and mld
discontinuities arises, however, as soon as we consider reinforcenent
and attenuation. W may define the anplitude of a wave of order N> 2

by the formula

a«)\§'pE, (5. 1)

whi ch reduces, when the wave is propagating into a honobgeneous region
with the properties (4.1), to

a = Lomsd"

—
Lind
Qur main result for such waves is summarized in the follow ng theorem

For the anplitude a(t) of a wave £f order 3 or greater propagating into

£ honpbgeneous_region at rest injin equilibriumstate (x 0,r|0,"£‘i0) MWe have
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the sinple formul a24

a(t) =a(Qe"""; (5.3)

the constant p, is._again_given bf (4.19),; with djp and 'clM, evaluated at.

(Uo’no’go)'

Thus, if we assume (4.21), then for a mld discontinuity
propagating into a honogeneous region at equilibrium a(t) -»0 exponentially

ast -*a
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6. ldeal Gases with Vibrati onal Rel axation

Qur general theory -covers, as special cases, ideal gases wth

vibrational relaxation, that is nmaterials for which the constitutive

equations (2.1)-_, and (2.2) assune the special forns 19 25

€ = eA(B) + a,
p - RGEX (6.1)
a » /c(o,e)Ue)-a], K>0
with
0 =00\),T,a); (6.2)

here R is the universal gas constant divided by the nol ecul ar wei ght of
the gas, 0 and €,(0) are called the active-node tenperature and active-node

ener gy, while a is called the vibrational energy. It can be shown that

for such a material our forrmulae (4.2) and (4.19) reduce to

c2 - 7RO, (6.3)

kC.. |- -1

e ¥ YOY+HD dy
A uCAc[T—l +9d8] . (6.4)
(7-1)/¢C,
Moo= TS, (6.5)
2¢,Y
wher e
CA - B5«ANS O v - hw (@0
A

O course, all the quantities on the right in (6.3)-(6.5) are to be
evaluated at the equilibrium state ahead of the wave.
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