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1. Introduction

Singular surfaces, such as shock waves and acceleration waves,

can propagate in materials for which the present stress depends on the

histories of the strain and entropy in a manner compatible with a

smoothness postulate called the "principle of fading memory", and a

theory of such waves of discontinuity exists. In that theory explicit

expressions have been derived for the velocity and time-dependence of the

2 5

amplitude of acceleration waves and higher-order waves .

Recently B. S. H. Rarity has shown us a manuscript in which

he discusses the propagation of acceleration waves in an ideal gas having

a single, finite, relaxation time for the exchange of energy between

translational and vibrational modes of molecular motion. Using

Johannesen's "heat-sink analogy" for the flow of such a gas, Rarity

shows that the amplitude of a plane-compressive acceleration wave

which has been propagating since time t = 0 into a region at rest will
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become infinite at a finite time t provided the initial amplitude exceeds
c

a critical value which depends on the relaxation time of the gas. Although

the method used by Rarity does not yield an expression for the

time-dependence of the amplitude, he does obtain a formula for t . The

existence of a critical amplitude for acceleration waves and the form of
2Rarityfs expression for t are completely analogous to known results in

the theory of waves in materials with memory. This observation has

suggested to us the possibility of developing the theory of materials

with internal variables along lines which have been explored in the

general theory of materials with fading memory. Elsewhere we have

attempted a unified treatment of the thermodynamics of materials with
o

relaxing internal state variables. Here we report calculations of the

growth and attenuation of waves in such materials. The emphasis is laid

on plane-longitudinal waves advancing into homogeneous regions at

equilibrium. The materials considered are fluids for which the specific

internal energy € (per unit mass), the pressure p, and the temperature 9

are determined through constitutive equations when the specific volume

x> « 1/p, the specific entropy r\ (per unit mass), and N internal (or

"hidden") state variables OL,...,Q' are specified at the point. We

assume that the material time-derivative of each of the a. is given by

a function h of x>, r\, and the complete internal state {OL , .. .,QLJ :

i-l,...,N. (1.1)
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No assumptions of linearity are made for either the functions h. or for

the dependence of €, p, and 8 on T]; X), or the Ot .

Our constitutive equations appear sufficiently general to

9
include as special cases those of theories which explain pressure-volume

relaxation phenomena by postulating reactions of decomposition and

association; in such applications each a, becomes the degree of advancement

of a chemical reaction. When our theory is applied to gases with finite

rates of exchange of energy between translational and internal modes of

molecular motion, the number a, should be interpreted as the fraction

of energy in the ifth internal mode, and 0 should be identified with the

translational temperature (i.e. the "active-mode" temperature).
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2. Basic Assumptions

In the present theory a material is characterized by the

following constitutive equations:

P - PO^Sf), > <2a>

a - hO^a), (2.2)

where a is the material time-derivative of the internal state vector

a « {a, . .. ..OL.}. Shearing stresses are absent, and it is assumed that

the material does not conduct heat. The response functions e, p, 6 in

(2.1) are not independent, for the second law of thermodynamics requires

that € determine p and 6 through the pressure relation,

P - -dj, (2-3)

and the temperature relation,

6 « be, (2.4)

with d and ^ denoting ordinary partial derivatives. The second law

also requires that £ and h obey the following internal dissipation inequality:
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for all triplets (x>,t\,Of). Here d e(u,ti,a) is the N-vector with components

(2.6)

and "•" has its usual meanings for any two N-vectors <£ and $

By an equilibrium state we mean a triplet (x> ,r\ ,a ) such that (i)

h(v> ,TJ ,a ) - 0, (2.8)

and (ii) the solution Ct(t) = o^ of the autonomous differential equation

(2.9)

is (locally) asymptotically stable. It follows that

Q

at every equilibrium state.

We here consider plane longitudinal motions of the type usually

studied in shock tubes. Each such one-dimensional motion is described

by a scalar function x * x(X,t) giving the location at time t of the

material point which has the position X when the body is in a fixed

reference configuration (j\j with uniform mass density p . It is convenient

to identify each material point of the flowing material with its position
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in tfL. The velocity v and the specific volume u of X at time t are

given by

v = c>tx(X,t), \> - ^-d xx(X,t), (2.11)

o

In the absence of body forces and heat transfer by radiation or conduction,

the laws of balance of momentum and energy become

dxp + Pov = 0, (2.12)

€ + pv> = 0. (2.13)

It follows from (2.1)-(2.4) and (2.13) that

0T + <dac).Of - 0. (2.14).

By a wave we mean a propagating singularity, i.e. a singularity

that moves relative to the material. Let Y be the material point,

labeled by its position in the reference configuration, at which the

wave is to be found at time t. The location in space of the wave at

time t is the place

yt - x(Yt,t). (2.15)

The wave velocity u is just the rate of advance of the wave as seen by an

observer at rest:

u(t> - dT^t - dV^t'^- <2
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If the material velocity v happens to be continuous across the wave, then

we can define a speed pJE propagation c for the wave by the formula

c(t) = |u(t)-v(Yt,t)|,. (2.17)

c is the speed of the wave relative to the material point instantaneously

situated upon it. If f(X,t) is continuous in X except for a jump

discontinuity at X • Y , we define the jump in f across the wave to be

ifl - M < t ) — £(Y;,t) -£(Y+,t). (2.18)

For definiteness we assume that u(t) — v(Y ,t) is positive, so that the

wave moves faster than the material immediately ahead of it, and [f]^ is

the increase in f experienced at a given point X at the moment that the

wave passes through X.

We shall here assume that x(X, t) is a continuous function of

(X, t) for all (X,t) and that all the derivatives of x(X, t), T^ (X, t), and

Qf(X, t) are continuous at all points away from (Y , t) and suffer nothing

worse than jump discontinuities across the wave.

We say that a wave is of order N if the Nfth-order derivatives

of x(X, t) suffer non-zero jumps across the wave, while all the derivatives

of x(X, t) of order less than N and all derivatives of TJ(X, t) and a(X, t) of

order less than N-l are continuous across the wave. Shock waves are of

order 1. Waves of order 2 are called acceleration waves, while waves of

order 3 or higher are called mild discontinuities.



3. Elementary Properties of Acceleration Waves

Across a wave of order 2 we have

1*1" M - M • M - M - °>
but

For the theory of acceleration waves it suffices to assume that

~ 3

the response function € of (2.1) is of class C (i.e. 3-times continuously

differentiable) while h in (2.2) is of class C ; it then follows from

(2.3) and (2.4) that p and 0 are of class C . Thus (2.1) and (3.1) imply

M Ii M °> <3-3>

while (2.2) yields

M - 2- <3-4>

Further, (2.14), (3.3)2> and (3.4) imply that i^ is continuous across the

13wave :

14Basic to our present subject is Maxwell's theorem : If f(X,t),

dxf(X,t), and f(X,t) = Sfcf(X>t) suffer at worst, jump discontinuities
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across (Y ,t) and are continuous functions of (X,t) everywhere else, then

l \l, (3.6)

where

U(t) = ^ Y t . (3.7)

In view of this theorem, (3.1)4&5, (3.4), and (3.5) yield,for U 4 0,

I\«l-2> Ffil-0- <3-8>

It follows from (2.1) that

Therefore, by (3.1) , (3 .8) , and the fact that the functions, dp and da

are continuous, we have

If in Maxwell's theorem we put, successively, f(X,t) » v(X,t)

and f(X,t) • S x(X,t), and use (2.11)2, we obtain the following compatibility

conditions for an acceleration wave:

[v] » -U[dvv] = -p U[i>] * p U 2 M , (3.11)

To relate U to the speed of propagation c we need merely note that (2.11),



10.

(2.15), (2.16), and (3.7) yield

u(t) = U(t)poV>(Yt,t) + v(Yt,t), (3.12)

and, therefore, by (2.17)

Thus, by (2.13), (3.10), (3.11), and (3.13), the speed of propagation of

an acceleration wave Is given by

c(t)2 = -U 2^p(^, n,a), (3.14)

with x>, r\, and a evaluated &t_ the wave a_t time t.

We assume, of course, that o p is always negative.



11.

4. The Amplitude of Acceleration Waves

Here we consider an acceleration wave advancing into an infinite

homogeneous region at rest in an equilibrium state (D ,T) ,a ). Assuming

U > 0 and taking the reference configuration to be that of the material

ahead of the wave, at each time t we have

\>(X,t) « \) Q - l/pQ, n(X,t) - TIO, Qf(X,t) « G^, for all X > Yt, (4.1)

where p is the mass density in the reference configuration. For such a

wave, (3.13) and (3.14) yield

0 0 0

U = c = "Vv?(VTlo'So) " COnSt* (4*2)

It follows from (^•1)3&A^ (3.4), (3.5), and (3.8) that r\ and a

are not only continuous across the wave but in addition satisfy

n - \*\ - o, gf - \2 m <l> at Oft*')- <4-3)

Differentiating (2.14) we obtain

erf + $n + <da€)«Of+ 0 je ) -a - 0, (4.4)

and, therefore, by (4.3),

einl+ Q^'lzl = °- (4-5)

Since 0 > 0, and since in the present case (4.1) and (2.10) imply that
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de « 0 at the wave, (4.5) yields

and, from this, (3.5), (3.8)~, and Maxwell's theorem we obtain

A convenient measure of the amplitude of a wave of order two is

the jump

a « £>xp£ (4.8)

in the gradient of the density. Since we here assume that the material

ahead of the wave is in its reference configuration and since dx/dx is

continuous across the wave, at the wave a material derivative may be

replaced by a spatial derivative, and (4.8) may be written

x - y

i.e. the amplitude is just the spatial gradient of the density, evaluated

immediately behind the wave. Of course, in general, the amplitude varies

in time. Elsewhere, we have derived a general relation for da/dt which

reduces to

-7
c

2 2when dU/dt = 0 and U =» c , as is the case here. To calculate [dvp] we
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first differentiate (3.9):

where (̂ -J>) stands for the linear transformation with components d d p.
or ex, o».

Since "0, TĴ  and a are continuous across the wave and p is of class

C , each of the coefficients o p^ o p, etc. in parenthesis in (4.11) is

continuous at Y ,t. Hence (4.11), (4.3), and (4.7) yield

By (2.2),

therefore, since h is of class C we conclude from (3.8) that

It follows from (4.1) and (2.18) that here

Since t) - 1/p, (4.8) and (4.1)1 imply

- -p'2a. (4.16)

4- a-(<^p)

(4.11)

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSITY
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and by (3.11) and (4.2)

$1 - cp~2a. (4.17)

Substituting (4.12) and (4.14)-(4.17) into (4.11), we obtain the following

differential equation for a(t):

j| = "̂ a + x &Z* (̂ -18)

with

a = 5 , X ——; . (4.19)
2c2 »2c*2p

19Integration of (4.18) yields the following theorem : The amplitude a(t)

of an acceleration wave which since time t » 0 has been advancing into a

homogeneous region ât rest in an equilibrium state (D ,r| 90L ) obeys the

formula

a(t) = f^f ; (4.20)
M + a(0)

here X and p. are constants given bjr (4.18) with d p, 5 p, and d h

evaluated at_ (x> ,T] ,a ).

In applications we expect to have

\i> 0. (4.21)

In this case |X| plays the role of a critical amplitude: If |a(0)| < |X|
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or if sgn a(0) •* -sgn X then a(t) -» 0 monotonically. If a(0) = X, then

a(t) s a(0). On the other hand, if both |a(0)| > |X| and sgn a(0) = sgn X

then |a(t)| -» oo monotonically in a finite time t given by

(4.22)
v °v«//

For gases we generally have

d p(x> ,TJ ,0f ) > 0, (4.23)

and hence, by (4.19) and (4.21)

X < 0. (4.24)

Sj for a gas, in order to have \[d PJ/(
t) I -» °° it is necessary that

[d p](0) be negative, i.e. that the acceleration wave be "compressive".
x ̂**

One is tempted to suppose that the approach of | [d p](t)| to oo
*** x "*

as t -> t indicates the formation of a shock wave at time t , but a
c c>

rigorous proof is lacking. In any event, we see that an acceleration

wave moving into a homogeneous equilibrium state in a shock tube can

grow into a shock wave only if it is compressive, and this is, of course,

just what is observed in practice. Our theory states further that a

shock wave should not form unless -[d p] is initially greater than -X.
*** x e>*

We do not know whether this critical jump -X has ever been measured with

precision, but surely it exists in experience; otherwise the feeblest

bursts of sound could grow into shock waves.
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5. Mild Discontinuities

The methods we have used to calculate the velocity and amplitude

of acceleration waves can be applied without difficulty to waves of

order 3 and higher. Here we give results of such calculations.

For the theory of waves of order N we assume that the response

functions € and h are of class COTJ" and C , respectively.

It turns out that, since the materials we consider here do not

conduct heat, all waves of order N > 2 share the common formula (3.14)

23
for their speeds of propagation.

A fundamental distinction between acceleration waves and mild

discontinuities arises, however, as soon as we consider reinforcement

and attenuation. We may define the amplitude of a wave of order N > 2

by the formula

a « \$ p£, (5.1)

which reduces, when the wave is propagating into a homogeneous region

with the properties (4.1), to

Our main result for such waves is summarized in the following theorem.

For the amplitude a(t) of a wave £f order 3 or greater propagating into

£ homogeneous region ait rest in jin equilibrium state (x> ,r| ,a ) we have
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24
the simple formula

a(t) = a(O)e""Mt; (5.3)

the constant p, is. again given b£ (4.19)1 with djp and cMi evaluated at

O O *N'O

Thus, if we assume (4.21), then for a mild discontinuity

propagating into a homogeneous region at equilibrium, a(t) -»0 exponentially

as t -* a>.
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6. Ideal Gases with Vibrational Relaxation

Our general theory covers, as special cases, ideal gases with

vibrational relaxation, that is materials for which the constitutive

equations (2.1)- o and (2.2) assume the special forms *

a,

p - RG/X) (6.1)

a » /c(o,e)U(e)-a], K > 0

with

0 = 0(\),Ti,a); (6.2)

here R is the universal gas constant divided by the molecular weight of

the gas, 0 and €A(0) are called the active-mode temperature and active-mode

energy, while a is called the vibrational energy. It can be shown that

for such a material our formulae (4.2) and (4.19) reduce to

c2 - 7R0, (6.3)

(7-l)/cCv

where

GA - 55«A^>' 7 = 7(0) = - T ^ ' cv - h'W- (6'6)

A

Of course, all the quantities on the right in (6.3)-(6.5) are to be
evaluated at the equilibrium state ahead of the wave.
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