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Thermodynamics with Internal State Variables

Bernard D, Coleman, Melion Institute, Pittsburgh, Pennsylvania 15213

Morton E. Gurtin, Department of Mathematics, Carnegie Institute of
Technology, Pittsburgh, Pennsylvania 15213

Abstract

This is a study of the thermodynamics of nonlinear materials

with internal state variables whose temporal evolution is governed by

ordinary differential equations. After employing a method developed by

Coleman and Noll to find the general restrictions which the Clausius-Duhem

inequality places on response functions, we analyze various types of

dynamical stability that can be exhibited by solutions of the internal

evolution equations. We also discuss integral dissipation inequalities,

conditions under which temperatures can be associated with internal states,

and the forms taken by response functions when the material is a fluid.
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1. INTRODUCTION

In phenomenological theories of the dynamical behavior of

continua there are several ways of accounting for the dissipative effects

which, in addition to heat conduction, accompany deformation. The oldest

and simplest way is to introduce a viscous stress which depends on the

rate of strain, as is done in the Navier-Stokes theory of linearly viscous

fluids. Another description of dissipation assumes that the entire past

history of the strain influences the stress in a manner compatible with

a principle of fading memory. A third approach is to postulate the

We here have in mind the fading memory postulate introduced by Coleman

2 3
and Noll y and recently developed from a set of elementary axioms by

4
Coleman and Mizel •

2B. D. Coleman and W. Noll, Arch. Rational Mech. Anal. 6, 355 (1960).

3B. D. Coleman and W. Noll, Reviews Mod. Phys. 33, 239 (1961); Erratum,

ibid. 36, 1103 (1964).

4B. D. Coleman and V. J. Mizel, Arch. Rational Mech. Anal. 23, 87 (1966).

existence of internal state variables which influence the free energy

and whose rate of change is governed by differential equations in which

the strain appears.

No one approach to dissipation is so general as to completely

include all the others, and each of the three classes of theories has
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its domain of usefulness. It has, for example, long appeared that the

Navier-Stokes equations can successfully describe the mechanical behavior

of water under ordinary conditions. On the other hand, when certain

5 6 7 8
polyatomic gases such as carbon dioxide are studied in shock tubes ' y '

H< A. Bethe and E. Teller, Aberdeen Proving Ground Rep, No. X-117 (1941).

Eo F. Greene, G. R. Cowan, and D. F. Hornig, J. Chem. Phys. .19, 427 (1951);

ibid, n, 617 (1953).

7F. J. Smiley, E. H Winkler, and T. K. Slawsky, J. Chem. Phys. 20, 923 (1952).

8W. Griffith, D. Brickl and V. Blackman, Phys. Rev. 102, 1209 (1956).

and in sonic absorption experiments, ' ' it is found that, in an

9G. W. Pierce, Proc. Acad. Sci. Amst. 60, 271 (1925).

10K. F. Herzfeld and F. 0. Rice, Phys. Rev. 31; 691 (1928).

A survey is given by K. F. Herzfeld and T. A. Litovitz, Absorption and

Dispersion o£ Ultrasonic Waves (Academic Press, New York, 1959).

appropriate range of density and temperature, attenuation effects occur

which can be well described, not by the introduction of a single and

constant bulk viscosity, but rather by assuming that the ideal gas law

pi) » R0 holds, with 0 the translational (or "active-mode") temperature,

while accounting, in the constitutive equations governing the heat

capacity, for the time required for the transfer of molecular motion from

the translational mode to one, two, or several internal modes. This is a
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classical example of a theory of dissipation involving a finite number of

internal state variables; the internal variables being the amounts

of energy associated with the various modes of molecular motion. At

elevated temperatures the ideal gas law may fail due to chemical dissociation

or ionization; the finite rates of the reactions of decomposition and

12
reassociation can then also give rise to pressure-volume relaxation phenomena,

12See, for example, the discussion of M. J. Lighthill, J. Fluid Mech, 2, 1 (1957).

Recent experience in high-polymer physics shows that the

mechanical behavior of many materials, including polymer melts and solutions,

is more easily described within the general theory of materials with fading

memory than by theories of the viscous-stress type, which do not account at

all for gradual stress relaxation, or by theories which rest on a finite

number of internal state variables and which, therefore, give rise to

discrete relaxation spectra when linearized.

Using an approach to the thermodynamics of continua proposed by

13 14
Coleman and Noll , Coleman and Mizel have found the restrictions the

13B. D. Coleman and W. Noll, Arch. Rational Mech. Anal. 13, 167 (1963).

14B. D. Coleman and V. J. Mizel, J. Chem. Phys. 40, 1116 (1964).

second law places on a class of theories of the viscous-stress type.

Later, Coleman developed a general theory of the thermodynamics of

15B. D. Coleman, Arch. Rational Mech. Anal. .17, 1 (1964); ibid. 17, 230 (1964),
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materials with fading memory. Here we discuss phenomenological theories

of dissipation which rest upon evolution equations for internal state

variables; we attempt to unify such theories by using the methods developed

in references 13 and 14 together with techniques from the stability theory

of nonlinear differential equations. We consider materials for which the

basic local mechanical and thermal variables, such as the stress tensor T,

the heat flux vector q, the specific Helmholtz free energy ty, and the

specific entropy T], are determined through constitutive equations when the

following "state variables" are known: the temperature 9, the deformation

gradient F (or the "strain"), the temperature gradient grad 9, and a set

of N internal or "hidden" state variables (Op ..*,0O • We allow the rate

of change of each of the a, to be governed by a (generally nonlinear)

function f. of 9, F, grad 9, and the complete internal state (OL,...,cO:

<X - £±(G, F, grad 9, 0^, ...,C^), i - 1,...,N. (1.1)

We first seek the general restrictions placed on theories of this type by

the second law, in the form of the Clausius-Duhem inequality. We then give

conditions, in terms of the thermodynamical functions, for dynamical stability

of equilibrium solutions of the evolution equations (1.1). After finding

logical relations between the various types of stability which can occur,

we discuss special aspects of the theory, such as integral dissipation

inequalities, the assignment of temperatures to internal states, and the

requirements of invariance. We conclude our study by illustrating the

general theory with its simplest nontrivial special case: ideal gases with

a single internal mode of molecular motion.
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2. THERMODYNAMIC PROCESSES

We consider a body V with material points X and assume that

the mechanical forces acting on {$ can always be resolved into a body

force field and a symmetric stress field. In particular, body couples,

couple stresses, and multipolar interactions of higher order are assumed

absent. We also assume there is no diffusion of mass in fi , but Q may

deform and conduct heat. Thus, a thermodynamic process for 66 is described

by nine functions, of X and the time t, whose values have the following

physical interpretations:

(1) The spatial position x - &(X,t) in the motion )£.

(2) The symmetric Cauchy stress tensor T « T(X, t).

(3) The specific body force b « b(X,t) per unit mass (exerted

on © at X by the external world, i.e. by other bodies

which do not intersect CO J%

(4) The specific internal energy € « e(X,t) per unit mass.

(5) The heat flux vector q • q(X, t).

(6) The heat supply r • r(X,t) per unit mass and unit time,

(absorbed by $ at X and furnished by radiation from

the external world).

(7) The specific entropy T) * T](X,t) per unit mass.
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(8) The absolute temperature G - 0(X,t) > 0.

(9) The Internal state vector Of - Of(X, t) * (0^,0^, .. *,0L.);

16
the numbers a. • a. (X.t) are the internal state variables*

i i ——————— - — — —-—-——-—

Our present pair (F,a) forms a vector which Truesdell and Toupin ,

pp. 615-647, call the thermodynamic substate.
1 7C. Truesdell and R. A. Toupin, "The Classical Field Theories", in

Encyclopedia of Physics, edited by S. FlUgge (Springer-Verlag, Berlin &

Heidelberg, 1960). Vol. HI/1.

Such a set of nine functions, defined for all X in & and all t, will

here be called a thermodynamic process in & if and only if it is

compatible with the law of balance of linear momentum and the law of

balance o£ energy. Under sufficient smoothness assumptions, the familiar

integral forms of these laws are equivalent to the field equations,

px -div T « pb (2.1)

and

p€ — T*L + div q • pr. (2.2)

Here p is the mass density, L - grad x is the velocity gradient, and T-L

T T
is the inner product of T and L; i.e. T*L - trace TL with L the transpose

of L. Since grad and div are the gradient and divergence with respect to

x keeping t fixed, these operators refer to spatial derivatives. A

superposed dot denotes the material time derivative, i.e. the derivative

with respect to t computed keeping X fixed.

To specify a thermodynamic process it suffices to prescribe the

seven functions £, T, €, q, TJ, 6, and Of. The remaining functions b and r

are then determined by (2.1) and (2.2).
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In continuum physics one usually identifies each material point

X with its position X in a fixed reference configuration fu and writes

x « X(X,t). The gradient F of £(X,t) with respect to X,

F » F(X,t) » GRAD£(X,t), (2.3)

is called the deformation gradient at X (or at X) relative to the

configuration ft • We consistently use the notation GRAD for the gradient

in ({,, *»e* the gradient with respect to X. For a scalar field over QQ,

such as Q} an elementary chain rule yields

GRAD G » FTgrad 6. (2.4)

Since grad 0 occurs frequently in thermodynamics it is convenient to have

a single symbol for this vector. We use the abbreviation

g » grad e. (2.5)

Because we assume that X(X,t) is smoothly invertible in its

Lable, the in\

L m grad x is given by

first variable, the inverse F of F exists, and the velocity gradient

L - FF"1. (2.6)
r*t ***** x '

Let us call the tensor S. defined by

^ 1 " 1 , (2.7)

Piola-Kirchoff stress tensor. Using this tensor we can write (2.2)

in the form

p€ - pS-F + div q - pr. (2.8)
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3. THE GLAUS IUS-DUHEM INEQUALITY

When q/e is regarded to be a flux of entropy due to heat flow

and r/6 a supply of entropy from radiation, the specific rate 7 of

production of entropy is given by

(^§) (3.1)

Clausius-Duhem inequality asserts that the rate of production of

entropy is not negative:

7 > 0. (3,2)

For each thermodynamic process the energy balance equation

(2.8) permits us to write (3.1) in the form

y - *-| + h-2--7S-s- <3-3)
Pt7

From this equation and the inequality (3.2) we read off the following

implications of the Clausius-Duhem inequality:

T) > 0 whenever F « 0 , € - 0, and g • 0; (3.4)

€ < 0 whenever F • 0, T| » 0; and g « 0. (3.5)

The specific free energy if/ (also called the "Helmholtz free

energy per unit mass") is defined by

f « € - 9r\. (3.6)
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Since

it = € - eti - eri , (3.7)

(3.3) can be written

67 « 4-ie + s.F-iS.fi, (3.8)

and hence (3.2) yields also

f < 0 whenever F » 0, 0 - 0 , and g « 0. (3.9)



4. CONSTITUTIVE ASSUMPTIONS

In the present theory the material at the point X is characterized

by five response functions, $, T\, S, q, and f, which give if/, T), S, q, and

a at X when F, B. g, and a are known at X:

,,g,

(A.I)

(4.2)

q - q(F,e,6,of), (4.4)

Sf -

The superposed in ^ T], £^ and q serves to distinguish these functions
for a given process

from their values. Since.the value of F depends on not only X and t, but

also on the choice of the reference configuration (ft , the form of each

of the response functions depends on ft. In a materially inhomogeneous

body the functions ty, r\, £, q, and f will also vary with the material

point X; although we do not render explicit this possible dependence of

response functions on X, all the arguments we give here are valid equally

for materially homogeneous and materially inhomogeneous bodies.

We say that a thermodynamic process is admissible if it is

compatible with the constitutive equations (4.1)-(4.5).
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Of course, in assuming (4.1)-(4.5) we are using Truesdellfs

principle of_ equipresence which asserts that a quantity present as an

independent variable in one constitutive equation of a material should be

so present in all, unless its presence contradicts some general law of

18 19
physics or the assumed symmetry of the material. * In the following

1 8C. Truesdell, U. S. Naval Res. Lab. Rep. No. P-3553 (1947) « J. Math.

Pures Appl. 30, 111 (1951).

1 9C. Truesdell, Appl. Mech. Rev. U , 75 (1959), reprinted with additions

in Applied Mechanics Surveys (Spartan, Washington, 1966), pp. 225-236;

see also C. Truesdell and R. A. Toupin , pp. 703-704.

section we shall follow the approach of Coleman and Mizel * who

20
B. D. Coleman and V. J. Mizel, Arch. Rational Mech. Anal. 13, 245 (1963).

regarded the Clausius-Duhem inequality as included among the laws of

physics which can cause a separation of effects, i.e. which can be used

to show that certain response functions must be independent of certain

variables. In fact, we shall show that the derivatives of ip} r|, and S

21
with respect to g must be zero.

21
A similar result holds in the general theory of materials with fading

memoryj cf. Goleman , Theorem 1, p. 19.
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5. CONSEQUENCES OF THE SECOND LAW

Within our present framework the second law of thermodynamics

is given a precise mathematical meaning by the following £2££ulate of

22
positive production of entropyt

22 2
Cf. Coleman and Noll .

Every admissible thermodynamic process in Q must obey the

inequality (3.2) a£ each time t and for all material points X in to *

We now seek the restrictions this postulate places on the

response functions in our basic constitutive equations (4.1)-(4.5).

It follows from (4.1) that in each admissible process

where

S\ As.

the components of 3 ^ and d_#, relative to an orthonormal basis

e-.eo,eo. are given by

,g,a)]
•* ••• j
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with g. and F the components of g and F; c ^ is the N-vector,

^ iby o ^/,..., o i//] 4 ( 5 . 4 )

and, of course,

Substituting (5.1) into (3.8) we obtain the following expression for the

specific rate of production of entropy in an admissible process:

Suppose that we are given an initial time t , an initial

internal state vector a (X) for each X in ft , a motion X of 66, and a

time-dependent temperature distribution 9 over ID . Suppose further that

a . F « GRAD X« 0t- and g « grad 6. as functions of X and t, are smooth

enough to insure the existence of a unique solution a » a(X,t) of (4.5)

for all t in some interval [t , t + T ] with «(X,to) - QJ Q(X). Then, with

the constitutive equations (4.1)-(4.4) we can compute ty, n, € • ty + 9r\,

S, and q at each X for all t in [tQ, tQ+T]. Thus to each sufficiently

smooth choice of a , X> a**d 6 there corresponds a unique admissible

thermodynamic process in © for some small time interval [t , t +r].

Now, let (F ,6 ,g ,a ) be an arbitrary point in the domain of

the response functions $, r\9 £, q, and £ for that material point X
f of CO

LIBRARY
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e
o

which occupies the place Xf in (R/. Choosing arbitrarily a time t , a

tensor A, a vector a, and a scalar aj we consider the motion X, and the

time-dependent temperature distribution 6 defined by

X ' + [FQ + ( t - o ) ,

( 5 . 7 )

for all X in ft and all t > t sufficiently close to t . It follows from
** — o o

the observation made in the previous paragraph that the fields shown in

(5.7) and the initial condition a(X, t ) * a determine an admissible

thermodynamic process in © for t in some time interval [t } t +rj.

Furthermore, this process has the following properties:

t o ) - FO , 0 (x - , t o ) = eo, g < r , t o ) - & , a (x; t o ) - a , , (5.8)

and

i^'^o) - £, 6(X%to) » a, g(Xf,to) - a. (5.9)

Hence, by (4.1)-(4.5), for this process at the point Xf and the time t

the equation (5.6) becomes

7 - JS (F ,e ,g ,a ) - hJj/(F ,e ,g ,a )] -A - |<3L$(F ,0 ,g ,a ) + TI(F ,e .g ,
L~N~o> o'£o^'^o/ Frv^o^ ô JSô ô̂ J * L 0 ~o' o^So '̂>^/ l x~o' o^So^

dj^(P ,e ,g ,a ) - f ( F , 0 , g . a ) ~ - q(F , 0 .g , a ) - g , (5.10)
cr v~o' o^So'^o7 ~v^o^ o^So^^o7 p G ~~o> o^So^^o7 So' v 7

^ 00
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where p is the mass density at X! corresponding to the deformation
o

gradient F . It clearly follows from (5olO) that in order to have 7 > 0F .

at Xf and t for every choice of A, a, and ja, we must have

<5-n>

(5#12)

2,

F,e,g,a).g < o, (5.14)

where, for convenience, we have dropped the subscript o in (F ,9 ;g , g ) ,

Since this point was arbitrarily chosen in the domain of our response

functions, we have the following four consequences of our postulate of

positive entropy production:

/V A, A.

(I) The response functions if/, r\, and £ are independent of

g; i.e. ^, TJ, and £ are given b£ functions of̂  F, 6, and a

alone,

®> 1 - i\<l>e>2£>> S » S(F,0,a). (5.15)

(II) if/ determines t) through the gntrog^ relation (5.12); i.e.
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(Ill) f determines S through the stress relation (5.13); i.e.

S = dF?(F,0,a). (5.17)

(IV) f, t9 and q obey the general dissipation inequality (5.14).

Conversely, using (5.6) it is easily verified that when the

conditions (I)-(IV) hold every admissible process in (B obeys (3.2).

It follows from (2.7) and (5.17) that the symmetric Cauchy

stress tensor T is given by the equation

T = pdF£(F,e,Of)F
T (5.18)

and hence is a function of F, 6, and a.

The general dissipation inequality (5.14) implies that when

g « 0 the internal dissipation inequality,

holds, and when d_#-f • 0 the heat-conduction inequality,

q(P,9,g,Qp.g < 0, (5.20)

holds.

If we define the internal dissipation 0 by

| ^ , s , a ) , (5.21)
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we can write the internal dissipation inequality (5.19) in the form

0(F,e,O,a) > 0. (5.22)

Further, we may conclude from (4.5), (5,1), and (5.13) that

1 • •
a * - -- ty whenever F « 0 and 0 « 0, (5.23)

and this result when combined with (3.8) yields

a = 7 whenever F - 0, 9 = 0, and g » 0 , (5.24)

One cannot generally resolve the inequality 7 > 0 into an

/\ .
internal dissipation inequality ojfs*® < 0 holding for nonzero g and a
heat conduction inequality q«g < 0 holding for nonzero a. Such a

f^ /N* *"" ^**

resolution is valid, however, when the following conditions are met:

that £(F, 9,g,0[) be independent of g and q(F,0,g,Of) be independent of a.

These conditions do not follow from our general assumptions. Yet, the

first condition does often follow from special assumptions of linearity

and material symmetry; therefore, it is worth noting that

d £(F,0,g,Of) s 0 = > a(F,6,g,a) > 0 for all F, e, g, and a. (5.25)

It will be observed that the role played by a in our present

theory is nearly identical to that played by the quantity which Coleman

in his articles on materials with fading memory also denotes by a and

calls the internal dissipation. For example, our equations (5.21) and
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(5.15)-(5.17) here yield the equation

if • S-F - 1)6 - 6o, (5.26)

which has the same form as Eq. (8.1) on page 22 of reference 15. However,

in our present theory, if d f is not identically zero, a may be negative

for certain values of g, albeit (5.22) tells us that a > 0 whenever g =» 0.

Using (3.6) we can write (5.26) in the form

€ = S-F + 0T) - do; (5.27)

therefore,

a » - £. whenever F » 0 and TJ - 0, (5.28)

and

a » T( whenever F - 0 and e - 0. (5.29)

Since (2.8) and (5.27) imply

i r ! i
(5.30)

we also have

a = T| whenever pr — div q = 0. (5.31)
***

Thus, we can assert that iri general a measures the rate TJ £t which the

entropy of a material point would change if the total rate pr — div q

of addition of heat were set equal to zero. In particular, a = TJ whenever

the strain and energy are held constant momentarily.
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6. STABILITY OF EQUILIBRIUM STATES

Throughout this section we focus our attention on one arbitrary

material point X in £> . A triplet (F*,6*,O*) with

f(F*,e*,O,2*) = 0 (6.1)

is called
equilibrium state for the material at X. The domain of attraction a£

* * *
constant strain and temperature of an equilibrium state (F ,0 ,<x ) is the

set &(F ,0 ,0f ) of all a such that the solution Of - a(t) of the

initial value problem,

2 - fCF*^e*,o,«> (6.2)

with

a(0) - a , (6.3)

exists for all t > 0 and tends to a :

a(t) -^a as t -»oo. (6.4)

An equilibrium state (F }G }OL ) is said to be (locally) asymptotically

stable at_ constant strain and temperature if &(F ,0 ,Gt ) contains a

"k

neighborhood of a ; i.e. if there exists a £ > 0 such that every internal

state vector a with |a - a | < t is In £)(F ,fi,a),
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* * *
Let (F ,Q }CL ) be an equilibrium state for the material at X,

and let 0^ be in J3(F ,6 ,0C ). It follows from the argument containing

Eqs. (5.7) that there exists at least one admissible thermodynamic process

with the property that at X

2(0) « aQ, while for all t > 0, F(t) - F*, 0(t) » 0*, and g(t) « 0. (6.5)

It follows from (3.9) that for this process f(t) < ^(0), or by (5.15),,

J * * ?*0*,Ofo). (6.6), ,

JL

But, since a is assumed to be in ^(F ,6 ,<X ), it follows from (6.4) and

the continuity of f that

,e ,a ). (6.7)

Combining (6.6) and (6.7) we obtain

^(F* 0* a*) < $(F*0*,a ). (6.8)

In words: I£ the internal state vector a is in the domain of attraction

of the equilibrium state (F ,0 ,a ) at, constant strain and temperature,

then the free energy corresponding t£ (F ,6 ,0C) cannot be less than that

corresponding to (F ,0 ,a ).
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The following theorem follows at once from (6.8) and the

definition of asymptotic stability: If (F*,e*,Of*) is, an equilibrium

state that is. asymptotically stable at. constant strain and temperature,

then

(6'9)

for all internal state vectors Of in some neighborhood of. Of , and,

consequently,

0. (6.10)

The equation (6.10) may be called the equation of internal

equilibrium. In deriving this equation we have, of course, assumed that

the variables QL,...,O^ have been chosen so as to be free from constraints

of the type h(a) • 0. Thus, when changes in the internal state are due to

chemical reactions, a. is not a concentration but rather the degree of

advancement of the ifth reactionf in the sense in which the term is used

23
by De Donder . In this case -d f is the affinity of the ifth reaction,

23
Th. De Donder, Lec^ons de Thermodynamique et de Chimie Physique (Edited

by F. H. van den Dungen and G. van Lerberghe, Paris, 1920) p. 117.

and the relation b f • 0, is just De Donder!s form of the equation of
i



22.

24 25
chemical equilibrium for that reaction. '

24
Th. De Donder, Bull. Ac. Roy. Belg. (Cl. Sc.) (5) 7, 197, 205 (1922).

25

See, for example, I. Prigogine and R. Defay, Chemical Thermodynamics

(Translated by D. H. Everett; Longmans, London, 1954) Chapters I-IV,

particularly Eq. (3.29) on p. 40 and Eq. (4.29) on p. 52.

•k Jc *k

We say that an equilibrium state (F ,0 ,Of ) is Lyapunov stable

jit constant strain and temperature if for each arbitrary € > 0 there

exists a 6 > 0 such that every solution a(t) of the differential equation
€ ~(6.2) with

has the property that

IfifCO) - g * | < 6 (6.11)

|a(t) -a*| < € (6.12)

for all t > 0.

* * if
Roughly speaking, (F ,0 ,0f ) is Lyapunov stable at constant

strain and temperature if holding F and 0 fixed for all t and initially

setting the internal state vector Of sufficiently near to Of guarantees

that Of will remain near to a for all t.

Since it follows from (5.19) that for all Of

<>.._* * . .._* e* Q g) < Q^ (6#13)
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ic ic 2 6
F ,6 ,0f), as a function of Of, can serve as a Lyapunov function for the

26

J. Wei, J. Chem. Phys. 36, 1578 (1962), has pointed out that thermodynamic

quantities, such as the free-energy, can yield Lyapunov functions for

investigation of stability properties of chemical reactions.

equation (6.2), and familiar results in the theory of ordinary differential

9 7 ic "k Vfc
equations yield the following theorem: Let (F ,0 ,Qf ) b£ an equilibrium

27
See, for example, P. Hartman, Ordinary Differential Equations (John

Wiley, New York, 1964), pp. 37-40, Particularly Theorem 8.1.

state and suppose thatt in some neighborhood o£ a , the following

strengthened form ojE (6,9) holds t

J(F*,e*,a) > J(F*,e*,a*) if a * a*. (6.14)

Then (F ,6 ,a ) i£ Lyapunov stable at, constant strain and temperature.

If

7 > 0 whenever F * 0, G » 0, g • 0, but Of ̂  0, (6.15)

then we say that the material under consideration is strictly dissipative.

It is not difficult to show that (4.5), (5.21), and (5.24) imply the

following proposition: A material jLs strictly dissipative if and only if

the internal dissipation inequality (5.19) iŝ  strict in the sense that

for every triplet (F ,6 ,0f) that i£ not an equilibrium state.



24.

* * *
Suppose that (F ,G ,Qf ) is an equilibrium state and that (6.16)

ic st 4^ ^ ^ ^

holds for all a ^ a in some neighborhood 7l(a ) of a ; if (F ,6 .a ) is

asymptotically stable at constant strain and temperature then the argument

which gave us (6.8) also gives us the stronger result (6.14) for all a in

*yt(j3? )• 0 n the other hand, it follows from Lyapunov1s theorem on asymptotic

stability that if (6.14) and (6.16) hold for all a 4 ct in a neighborhood

2ft
See ref. 27, Theorem 8.2.

ic ic ic ic

of a , then (F , 0 }a ) is asymptotically stable. Combining these

observations with the remark containing (6.14]Lwe obtain the following

theorem: Let (F ,0 ,a ) b£ an equilibrium state with the property that

(6.16) holds for all Of 4 Of in some neighborhood of Of . Then:
9c ic "k

(i) (F ,0 ,0L ) !£ asymptotically stable at constant strain and

temperature if and only If (6.14) holds in some neighborhood of Of .
ic ic it

(ii) If (F ,9 ,a ) JLs asymptotically stable at constant strain and
ic ic ic

temperature then (F ,6 70f ) iŝ  also Lyapunov stable under the same
29conditions.

29

Usually when one defines asymptotic stability one presupposes that the

singular point under consideration is Lyapunov stable. Here, however,

we have been considering a concept of asymptotic stability that is

separate from Lyapunov stability. Thus it is worthwhile for us to

observe that Lyapunov stability is actually implied by our weak

concept of asymptotic stability when (6.16) holds.
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"ic 9c "k

If (F ,0 ,0C ) is asymptotically stable, then^throughout some

neighborhood of a , the only triplet of the type (£*,£*, Of) that is an state is the
one for ^ *

.which a » a . [If this were not the case, then in each neighborhood of a

we could find an a such that a(t) s a satisfies (6.2) and (6.3) but not

(6.4).] Thus we have the following corollary of the preceding theorem:

Suppose that the material under consideration iŝ  strictly dissipative and

let (F ,6 ,0L ) b£ an equilibrium state that is, asymptotically stable ajt

constant strain and temperature. Then;

(*•) The inequality (6,14) holds in £ neighborhood of a .

(ii) (F ,0 ,0C ) i£ Lyapunov stable at̂  constant strain and temperature.

For the remainder of this section we assume that corresponding

to each strain-temperature pair (F ,Q ) there is exactly one internal

state vector a such that (6.1) holds, i.e. such that the triplet

(F ,6 ,CX ) forms an equilibrium state for the material at X. The

function

2f - a <£ ,e > (6.17)

determined by this correspondence may be called the equilibrium response

function for a. Using (5.15) and (4*4) we may construct equilibrium

- 7 * /v* /v* /Ofr

response functions y/ , r\ , S } and q . These functions give the equilibrium
* * * *

free energy y/ } entropy y\ , stress £ , and heat flux q as functions of
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* *
only F and 6 :

,*

(6.18)

Now,

(6.19)

and a similar formula holds for o ̂ . Therefore, the general entropy

relation (5.16) and stress relation (5.17), when combined with

the equation of internal equilibrium (6.10), yield the equations,

<6-20)

S* - dF*f(F*,0*), (6.21)

and since (6.10) holds at every asymptotically stable equilibrium state

we can assert the following proposition: I£ the equilibrium state

corresponding t£ (F ,0 ) ij3 asymptotically stable, then TJ (F ,6 ) is

given by the equilibrium entropy relation

by the equilibrium stress relation (6.21).

iven by the equilibrium entropy relation (6.20) and £ (F , 6 ) îs given
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It follows from the sentence containing (5.20) that whenever

(6.10) holds we have, for all g,

S«*>e*>£'2Vg < °- <6-22>
^c & "k

Hence this inequality holds for all g whenever (F ,0 ,a ) is asymptotically

stable. The tensor

K ( F > * ) = -dq<g,e,g,a) (6.23)

may be called the equilibrium thermal conductivity tensor corresponding

(F*,9*). Since (6.18)4and (6.23) yield

= g-q*(F,9*) - g-K(£*,0*)g + o(|g|2Y (6.24)

(6.22) holds for all g only if

q*(F*,e*) = 0 (6.25)30

30
This equation can also be obtained using either an argument given by

31 13
Pipkin and Rivlin or one given by Coleman and Noll (pp. 175 and 176).

31A. C. Pipkin and R. S. Rivlin, Tech. Rep. No. DA 4531/4, from Brown

University to the U. S. Army Ordnance Corps (1958).

and

g-K(F*,0*)g > 0 (6.26)



28.

for all g. This proves the following theorem: A£ an asymptotically

stable equilibrium state the equilibrium heat flux vanishes and the

thermal conductivity tensor jLs positive-semi-definite.

It is a corollary to this theorem that

ll) (6.27)

Thus, ajt an asymptotically stable equilibrium state Fourier's Law holds

t£ within an error
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7. ENTROPY AS AN INDEPENDENT VARIABLE

32
The heat capacity c is defined by

32
Since both F and a are held fixed in computing the derivative in (7.1),

the number c may also be called the instantaneous specific heat at

constant strain (and per unit mass).

c - de€<P,e,Op, (7.1)

where € is a response function giving internal energyt

£(F,e,a) = #<F,e,op + en(F,e,a). (7.2)

It follows from the entropy relation (5.16) that

c - eden(F,e,a). (7.3)

Henceforth we shall assume that c is > 0 for all (F,9,a). Since 9 is > 0,

this implies that t](F,@,g) is smoothly invertible in 9 for each choice

of F and 0C, and we may rewrite our basic constitutive equations

(4.1)-(4.5) in the forms,

(7.5)

,2P» (7.7)

2 s I(Ln,g,9!). (7.8)
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The function G(F,•,a) in (7.3) is just the inverse of the function

tj(F, «,0) in (5.15)2J the functions €, S, q, and f are given by

(F,i,,a), a ) - % e(F,T),a), a)

, a),

a), a),

It follows from (7.9). and familiar chain rules that

a e - 0J>) 0 e ) + e + ifie,

(7.10)

Hence^ the entropy relation (5.16) Implies that

0(F,r,,a)

(7.11)

Of course, the number 6 in (7.11)2&3 is J
ust the temperature

corresponding to F, i), and Of.

(7.9)
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Equation (7.11), is the expected temperature relation,

6 = ^e(F,Ti,a), (7.12)

while (7.11)_ may be combined with (5.17) to obtain the following form

of the stress relation,

S = dpe(F,e,a). (7.13)

It follows from (7.11)3 and (
7-9)3&/ that the general dissipation

inequality (5.14) may be written in the form

I g p g < 0, (7.14)

and, in particular, we have the implication

which is useful for materials which do not conduct heat. Of course we

also have the following counterpart of (5.19):

d e(F,Ti,a)-f(F,T],O,a) < 0. (7.16)

According to the definition laid down in Section 6, a triplet

ic "k ic

(F ,6 ,a ) is called an equilibrium state of the material at X if and

only if it obeys (6.1) at X. It follows, however, from (7.9) that this

ic ic "k

definition is equivalent to asserting that the triplet (F ,*n ,0f ) with

T) = Ti(p,e,a), e = 0(F ,n ,a ), (7.17)
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characterizes an equilibrium state if and only if_

*> - 2-

When (7.18) holds we define the domain of_ attraction of (F ,TI ,CC ) at

*** tie tie tie

constant strain and entropy to be the set $(F ,T) ,a ) of internal state

vectors a such that the solution (X • Ct(t) of the initial value problem

flf " I(£*^*^«)> «(°)-2o (7.19)

exists for all t > 0 and approaches Of as t -» »• We say that (F ,TJ ,<X )
^» Ju Ju Ju

is asymptotically stable ajb constant strain and entropy if ^(F ,TJ ,CX )

contains a neighborhood of Of •
f* ie ic

Since it follows from (7.16) that c(F ,TJ ,CC(t)) is a decreasing

function of t along all solutions of (7.19), the argument which gave us
<S/ ^L .ft JL

(6.8) here tells us that for each a in ft(F ,n .a )

€(F ,TI ,a) > €(F ,TJ ,a ) . (7.20)

In particular, i£ (F ,TJ ,01 ) characterizes an equilibrium state that is_

asymptotically ait constant strain and entropy, then (7.20) holds for all

Of in some neighborhood of Of , and
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It of course follows from (7.11K that (7.21) and (6.10) are

equivalent, i.e. are just different forms of the same equation for a .

This does not, however, imply that the concepts of stability at constant

strain and temperature and stability at constant strain and entropy are

logically equivalent: The equation (7.21), or (6.10), is a necessary,

but not a sufficient, condition for these two types of stability.

"k "k ie

We say that a triplet (F ,TJ ,a ) obeying (7.18) characterizes

a state that is Lyapunov stable at constant strain and entropy if for

each e > 0 there exists a 6 > 0 such that every solution a « a(t) of

(7.19)1 having |a(0) - Of | < d£ also has |of(t) - Of | < € for all t > 0.

The following proposition is an immediate consequence of (7.16) and the
97 *k "k ie

theory of Lyapunov functions: I£ (F ,r\ ,Q[ ) obeys (7.18) and has the
*

property that for all Ot In some neighborhood of OL

€(P ,T) •«) > e(F ,TJ ,a ) whenever a ^ a , (7.22)

* * *

then (F , T) ,Of ) characterizes £ state that is Lyapunov stable at constant

strain and entropy.

It follows from (7.11)3, (7.9),, and the proposition containing

(6.16) that <i material i£ strictly dissipative i£ and only ijE

whenever (F ,r\ ,Q) does not characterize an equilibrium state.
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The last proposition of this section follows from arguments

"k it it
completely analogous to arguments used in Section 6t If (F ,TJ ,a ) obeys

* ic

(7.18) and if (7.23) holds for all a f a in some neighborhood of a .

then the inequality (7.22) i£ £ necessary and sufficient condition for the

it it it

state characterized by (F ,T) ,Ct ) t£ tne asymptotically stable at̂  constant

strain and entropy.
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8. INTERNAL ENERGY AS AN INDEPENDENT VARIABLE

The temperature relation (7.12) and our assumption that 6 is

strictly positive imply that the function £ in (7.4) is smoothly invertible

in its second variable TJ. Hence there exists a function r\ such that

and putting

, T,(F,e,a), a)

q(F, ,a), a),

,a), a), J

we can write the constitutive equations (7.5)-(7.8) as follows:

(8.1)

(8.2)

S?

(8.3)

(8.4)

(8.5)

(8.6)
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The equations (7.4) and (8.1) imply that

0,

o.

(8.7)

It follows from the first two of these relations that (7.12) and (7.13)

can be written in the forms

-1 (8.8)

(8.9)

From (8.7)-, (8.9), and (7.11)3 we obtain

and hence (7.16) becomes

(8.10)

(8.11)

* * *.It follows from (8.2)4 that a triplet (F ,t\ ,a ) characterizes

an equilibrium state, i.e. obeys (7.18), if and only if the triplet

* * *v(F ,€ ,a ) with

- e(F ,n ,a ), J - -n(F ,€ ,a ) (8.12)
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obeys the relation

f(F*,€*,O,a*) = 0 . (8.13)

ic *k "k

When such is the case, the domain of attraction of (F .€ 90C ) at constant

strain and energy is the set Jft(F ,e }Ot ) of all internal state vectors

a with the property that the solution a = OC(t) of the initial value

problem

— * *
a = f(F ,e ,£,a), a(0) « a (8.14)

ft ft ft ft

exists for all t > 0 and converges to a as t -> <». We say that (F ,e ,0C )
mm ft ft ft

is asymptotically stable at constant strain and energy if #(F ,e ,(X )
ft

contains a neighborhood of (X . If for each e > 0 there exists a 6 > 0
*** €

- i f , ^

such that |a(0) - a | < 6 implies |a(t) - a | < € for all t > 0, then

we say that (F ,e ,0t ) is Lyapunov stable at constant strain and entropy.

The next two theorems follow from (8.11).

If ais in the domain of attraction of (F ,e ,a ) then

TI(F .€ .a) < TI(F .€ ,a )• (8.15)

* * *
Hencet if̂  (F ,e ,a ) i^ asymptotically stable at constant strain and

energy, (8.15) must hold throughout some neighborhood £f a and

ft - 0. (8.16)
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[It follows from (8.10) that the equations (6.10), (7.21), and (8.16),

giving necessary conditions for three distinct types of stability that

an equilibrium state may manifest, are equivalent.!

"k "k Jc

It (£ >€ >% ) 2kf*Z*L (8.13) and i £ fo£ 2JLL £f i l l some neighborhood

of a

T](F ,€ ,a) < T^(F ,€ ,a ) whenever a ̂  a , (8-17)

* *

then (F ,€ ,OJ) is_ Lyapunov stable at constant strain and energy.

We may conclude from (8.10), (8.2)., and the remark containing

(7.23) that the material under consideration iŝ  strictly dissipative if:

and only i£

S n(F*,€*,oO-?(P*.e* 0,a) > 0 (8.18)

whenever ?(F ,€ ,0,a) 4 0.

Using arguments given in Section 6 one can easily prove the

following proposition which is similar to the last assertion of Section 7:

If (F ,€ ,a ) obeys (8.13) and if (8.18) holds for all a 4 a in a

neighborhood of̂  a , then (8.17) supplies a necessary and sufficient

ic ic ic

condition for (F ,€ ,0L ) t£ b£ asymptotically stable at constant strain

and energy.
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9. RELATION OF ISOTHERMAL TO ISENTROPIC AND ISOENERGETIC STABILITY

* * *
Let (F ,Q ,OL ) be an equilibrium state for the material at X,

and let

T) = T)(F ,e ,a), (9.1)

* ~ * * * , ^

Assuming that the strong forms (6.16), (7.23), and (8.18) of the internal

dissipation inequality hold, we here show that asymptotic stability of

* * *

the state (F }Q }OL ) at constant strain and temperature implies asymptotic

stability of the same state at constant strain and entropy, and that this

latter type of stability is equivalent to stability at constant strain and

energy. To prove the first implication we make use of our assumption that

the heat capacity c of Eqs. (7.1) and (7.3) is positive, i.e. that

d^(F,0,Qf) > 0 (9.3)

for all F, 0, and a. Using the entropy relation (5.16), we can write

(9.3) in the form

which implies that for each pair (F,a), ^(F,0,a) must be a concave

function of 0:

< o, (9.5)(,e,) (ee)d f(F,e,a
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or, equlvalently,

J ^e>,a). (9.6)

Using (9.6) we now prove the following lemma: If. T; iŝ  given

by_ (9.1) then

~ * * v ~ * * * ~ * * ^ * * *

€(F ,T» ,a) - €(F ,r\ ,a ) > m ,6 ,£f) - m ,e ,gf )• (9.7)

It follows from (7.9)^^ that

a) - €(F ,n ,a ) = ^ ( F , e(F ,n ,a) , a) - ^(F ,e ,a ) + [e(F ,t» ,a) - e U . (9.8)

By (9.6),

^ >Sf>> flf) > *<£ ^ e >9 + te - e(F , n ,Q()]T,QP , e(F , n , a ) , a ) . (9.9)

But

F*, e(F*,T!*,a), a ) = x\*9 (9.10)

and, therefore, when (9.9) is added to (9.8) the resulting inequality

reduces to (9.7).
now ^ ^ ^

Using (9.7) we establish the following theorem: Let (F ,6 ,0L )

be an equilibrium state, let r\ b<e given by (9.1), and assume that the

strong forms (6.16) and (7.23) o£ the internal dissipation inequality
•k "k "k Jc "k

hold for all a ^ a in some neighborhood o£ a . I£ the state (F ,6 ,a )

is asymptotically stable at constant strain and temperature, then this

state i£ asymptotically stable at̂  constant strain and entropy.
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"$e "fc ik

Proof; Let (F ,0 ,0C ) be asymptotically stable at constant strain and

temperature. Since we here assume that (6.16) holds for all a, 4 OC in a

neighborhood of 3 it follows from conclusion (i) of the theorem on page 29

(Section 6) that for a in a neighborhood H(l>(a ) of a

a * a* =>• ?(F*,e*,a) > ?(P*,e*,a*). (9.11)

It is clear from our lemma (9.7), that (9.11) has the consequence that

for a in Tl(a*)

>v ^ * * ^ * *. *
a ^ a = > e(F ,t] ,a) > €<F ,TJ ,tt). (9.12)

But^ since we here also assume (7.23), we may observe that the last

sentence of Section 7 tells us that (9.12) is a sufficient condition for

asymptotic stability at constant strain and entropy of the state

}V $c "$c & ft ft

characterized by (F ,T] }a ), i.e. the state (F }B ,a ), and this completes

the proof.

To show the equivalence of isentropic and isoenergetic stability

* ~ * * *
we first show that if € = € (F ,r\ ,0L ), then

* ~ -k * — * * *
€ <€(F,n,£) <=> TJ(F ,e ,a) < x] . (9.13)

Indeed, it follows from (8.1) and the positivity of 0 that

Tj(F,€,a) is a strictly increasing function of € and hence

F*, S(F*,T)*,g), a). (9.14)
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But since the function J

we have, for each value of a,

*~he inverse of the function

,a), a) (9.15)

and therefore (9.14) implies (9.13).

Our desired result is now an immediate consequence of (9,13)

and the concluding sentences of Sections 7 and 8: When the strong forms

(7.23) and (8.18) o£ thê  internal dissipation inequality hold for all

"k ic

95 ̂  SE — ~ neighborhood o£ 2f f SB equilibrium state is asymptotically

stable at_ constant strain and entropy i£ and only rf it̂  i^ asymptotically

stable at constant strain and energy.
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10. INTEGRAL DISSIPATION INEQUALITIES

In a body undergoing an arbitrary thermodynamic process, we

may consider, at a given material point, the following general dissipation

33integrals, defined for any two times tfl < t-:

Our present p|, xQ > and Or differ only in the terms containing q from

the functionals which Coleman (on pp. 27, 35, & 39 of ref. 15) calls

"dissipation integrals".

fco

It follows immediately from the law (3.2) of positive production of

entropy and the expressions (3.3) and (3.8) for 7 that

> eC'i) -e(t 0), (10.4)
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The theory we have been developing here can be brought closer

2-4 15
to the theory of materials with fading memory ' by adding assumptions

about the stability of solutions of the differential equation governing

the evolution of the internal state vector Ot. For the remainder of this

section we shall assume the following stability postulate:

Corresponding to each pair (F ,9 ) there is an internal state
^ ^ ^ ^

vector a which makes (F ,9 ,Ct ) an equilibrium state that is asymptotically

stable in the large alt constant strain and temperature.

In other words, we assume that given (F ,9 ) there exists at

least one a such that (F ,6 }0C ) obeys (6.1) and also such that every

solution of (6.2) obeys (6.4).

This postulate has the following consequences:

ic &

(i) Corresponding to each pair (F ,9 ) there is exactly one
* * *

equilibrium state (F ,9 ,0L ).

(ii) Alt each equilibrium state (F ,Q ,0C ), the inequalities (6.9),

(7.20), and (8.15) hold for all Of with TJ* and e* given b£ (9.1) and (9.2).

To demonstrate conclusion (i) we need merely note that if

to a given pair (F ,9 ) there corresponded two equilibrium states

(F*,9*,0f* ) and (F*,9 ,a+), both obeying (6.1) with Of ^ 0f+ , then

a(t) s a would be a solution of (6.2), and, by our stability postulate,
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we would have Qf(t) -> a , which is impossible since a(t) s const. 4 OC .

Conclusion (ii) is an immediate consequence of (9.7), (9.13), and the

sentence following (6.8),

The stability postulate is not a consequence of the Clausius-Duhem

inequality but is rather an independent hypothesis expected to hold for

some materials but not all. Under this new postulate a single-valued

function Of relates (F }G ) to a , as in (6.17), and equilibrium response

functions if/ , r\ , etc., may be defined as in (6.18). Of course

(6.20)-(6.27) hold, and the remark following (6.8) here yields

for all a.

Consider now a material point X and a time t0, and suppose that

at X the triplet (F, 0, g) has the following sort of time-dependence:

v /'arbitrary values for t < tn,
, e(t), g(t)) = J U (10.6)

I(F ,0 ,0) for t > tQ.
V

At the time tQ, the internal state vector a will have a value QL,

determined, through the differential equation (4.5), by the histories of

F, By and g up to time tQ and some initial data for a. Although we may

not know the value of aQ, we do know that for t > tQ, a(t) will be the

solution of (6.2) corresponding to the initial condition OC(t^) » a .
~ N 0 ^o

Since, by our present stability hypothesis, all solutions of (6.2) must
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approach a » a (F ,6 ) we have

t->oo

Therefore, it follows from the (tacitly assumed) continuity of ̂ , r\, T,

q, and the equations (6.19) and (6.25), that at the point X

t-»oo t-»a>

88 n (F ,0 ),
t —»«> t —>oo

(10.8)

0.

When a history up to some time t̂  is extended beyond tft in the manner

illustrated in (10.7), we call the resulting extended history the

isothermal static continuation of the original history. Our proof of

(10.8) shows, in effect, that in any isothermal static continuation of

an arbitrary history, the free energy, entropy, stress, and heat flux

all approach their equilibrium values aŝ  t increases without limit.

Moreover, the first of these limits is approached monotonically, for

(3.9) here yields

< 0 for all t > tQ. (10-9)
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The relations (10.5) and (10.8)1 tell us that the theorem on minimum free

34
energy, originally proven for materials with memory , has the following

34
Ref. 15, Theorem 3, p. 26.

form in the present theory, provided we assume that equilibrium solutions

of (6.2) are stable in the largei Of all histories ending with given

values £f F and 0, the constant history with g held fixed at_ zero and F

and 6 held fixed at the given values gives rise to the least free energy.

Thus, our new stability postulate gives the present theory

many, but not all, the qualitative properties of Coleman's theory of

materials with memory.

Let us now return to the dissipation integrals defined in

(10.1)-(10.3) and consider processes which start from an equilibrium

state, i.e. processes for which we have at X,

£ < V - Z*> e^o> - 9*> flfV - £f* • <f<E*-e*>- (10

but for which F, 6, and g at X are given by arbitrary functions F(t),

8(fc) f°r fc > to* F o r eac'1 such process, at X

^(t0) = J(F*,e*,a*), (io.il)

£(t), e(t), a(t)) for t > t0, (10.12)
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where Qf(t) is to be obtained by solving the differential equation (4.5)

with the initial condition OC(tQ) « Of . If F and 6 return to their initial

values F and 0 at some time t, > tQ, then for ̂(t..) we have

(10.13)

and this equation, when set alongside of (10.11) and the consequence (ii)

of our stability postulate, implies that ^(t,) is greater than

F(t;L) - F*, e(tp = e* -> ^(t0) <Htx). (10.14)

Of course, (10.10) implies that

/v * * * def * ~ * * *
€(tQ) - €(p ,e , a ) -5£ € = €(F,Ti,Of), (10.15)

* * def * — * * *
,e ,a ) -SS TI « T](F,€,a). (10.16)

If it should happen that F(t,) •» F and ̂(t^^) • r\ , then

€<tl) " ^{I'^'&h)), (10.17)

and therefore,by (10,15) and the consequence (ii) of the stability

postulate,

Similarly,

F*, Tj(t1) » n * — > €(tQ) KeltJ. (10.18)

F*, e(t1) - €* — > n(t0) ̂ ^ ( t p . (10.19)
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Combining (10.13), (10.18), and (10.19) with the inequalities (10.4) we

obtain the following theorem on dissipation integrals;

35
For the corresponding theorem for materials with fading memory see

Remarks 17, 24, and 32 on pp. 27, 36, and 39 of ref. 15.

Under the stability postulate stated above each of the following

implications holds for processes which start at tn from an equilibrium

state o£ the type (10.10), but which are otherwise arbitrary:

= 0 ( t i ) a=s> p ^

^ 0) -nCtp => J(t pt 0)>0, (10.20)

F(tQ), e(tQ) = €(tx) «=> >|(tpt0) > 0.

We call a process isothermal at X if G s 0 at X, isentropic if

x\ s 0 at X, and isoenergetic if e s 0 at X. It is clear from (10.1)-(10.3),

that the theorem just proven has the following corollary yielding

inequalities for integrals of the stress power in special cyclic

processes! Consider â  process starting from an equilibrium state of

For materials with fading memory analogous results are given in

Theorem 4, Remark 2.5} and Remark 3.3 of ref. 15.

the type (10.10) and for which the temperature gradient g t^ zero for
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< t < t.. If the process is^ either isothermal or_ isentropic. then

£0^) = F(tQ) = > J S-Fdt > 0.
fc0

If the process Is isoenergetic, then

(10.21)

o &ldt * °- (10'22)
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11. TEMPERATURES ASSOCIATED WITH INTERNAL STATES

We here suppose that the first M of the N internal state

variables a. have the same dimension as the specific internal energy €•

Putting

M

€A - € - £a t, (11.1)

and

we call €A the specific internal energy of the active mode and a.,

i m 1,2,... ,M, the specific internal energy pjE the i! th internal (or

"hidden") mode. Defining the function r\ by

we put

for i * 1,2,...,M. We refer to G as the translational temperature (or

the temperature of the active mode) and to 0. as the temperature of the
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i'th mode. We may observe that the "temperature of the i'tlimode" need

not be positive. In fact, as there is at this point no reason to suppose

that ba r\ f 0, we must not rule out the possibility of 9. being infinite.

Since (11.3) yields

a6 t, - den, (n.6)

the temperature relation (8.8) implies that "the temperature" 6 i£ equal

to the translational temperature QK :

9 = eA.

Therefore, we shall henceforth use the same symbol, 9, for both 9 and 9 .
A

It also follows from (11.3) that for i • 1,2,...,M,

and hence we have the following expression for each 9.

This formula when combined with (8.16) implies the following theorem:

At an asymptotically stable equilibrium state the temperature 6 of each

37
internal mode is equal to the translational temperature 0.

This result should be compared with Truesdell's theorem about the

compatibility of total with partial caloric equations of state for

mixtures: C. Truesde11^ Rend. Lincei (8) 22, 33, 158 (1957), Theorem IV.
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Since 6 > 0, we conclude from the foregoing proposition that

each 0. is strictly positive when the material is close to a state of

stable equilibrium.

By (11.1),

M

4 = 0 <=> 4A+ Y <X = 0; (11.10)

hence (8.6), (8.11), and (11.9) imply that

M jL.

9~ + ) — > 0 whenever € • 0, g = 0, and £ - 0. (11.11)

i=l *

The inequality (11.11) appears to be in accord with intuitive prejudices

about properties to be expected of temperatures associated with internal

modes.

Suppose now that the function r| defined in (11.3) has the

special form

M

Then 9 « ©A is given by a function 6 of (F,e.,g), while each 0. is given

by a function 9± of only (£,0^); for (11.4), (11.5), and (11.12) yield

9 =
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Let us assume, in addition, that there exists a function a that assigns

to each pair (F ,6 ) a n a , as in (6.17)^ such that the triplet (F ,0 ,0f )

constitutes an equilibrium state for the material point under consideration.

As we saw in the conclusion (i) of the first theorem of Section 10, this

assumption is a consequence of the stability hypothesis of Section 10.

If we write (6.17) in the form

<\ - »*(£*,e*), i«l,2,...,N, (11.15)

then the fact that 6 « 6. at states of stable equilibrium implies

s e*> i = l,2,...,M. (11.16)

it "tic v ^t

Since (11.16) must hold for all (F ,0 ), 6±(F ,*) is a left inverse of

CX. (F , * ) • If w e assume, as we shall, that for every pair (F,OL,) we can

find a 6 such that (X • a4(£>^)^ then we have the following theorem: I£

the stability postulate oj[ Section 10 holds and If the caloric equation

of state (8.1) can b£ cast in the special form (11.12), then for each i,

i « 1,2, ...,M, and for each fixed F, the function 6̂. (F, •) i£ the inverse

of tjhe function ^(F, O.-

We may use the foregoing theorem to motivate an alternative

definition of internal mode temperatures which is free from the assumption

that the <Xfs have the same dimension as the specific internal energy.

To do this let us drop the assumption that the function r\ defined in
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(11.3) has the special form (11.12), but suppose that the first M of the

functions a* of (11.15) are such that, for each value of F, a(F,6) is

an invertible function of 0, i.e. that there exist M functions 0. such

that

0.(F, S*(P,e)) = 9 (H.17)

V

for all 6 > 0. When this condition is fulfilled the function 0. is

uniquely determined by the function a. and hence by the function f on

the right side of the constitutive equation (4.5). We call the value

0± - 0. (£,«.) (11.18)

of 0. at an arbitrary pair (F,a.) the temperature of the ifth mode

corresponding to (F,<X). We shall continue to refer to the number

entering the constitutive equations (5.15), (4.4), and (4.5) as the

translational temperature. As an immediate consequence of (11.17) we

have the following proposition: Each 0. shares with Q. the property of

being equal to the translational temperature 0 in states oif stable

equilibrium.

Unfortunately, the function 0. is not, in general, identical

to the function [d TJ]" : Although G = 0 . = 0 at equilibrium, we can

expect to have 0. j* 0. away from equilibrium, except, of course, when T)

has the special form (11.12). As a matter of fact if 0- were equal to



56.

[o T)J y then we could conclude from (11.18) that o r\ must be independent

of €A and QL,...,<X,, and hence that

Thus we have the following result: A necessary condition that

HI

is that the function T( have the special form (11.19). A similar result

holds for OL, OL, etc.

In view of the fact that temperatures of internal states are

often regarded as definable only in terms of statistical concepts, we

think it worthwhile to make the following observation. The results of

this section suggest that if we accept the general assumptions made here

and in Sections 4 and 5, then the question of whether we can associate a

temperature Q. with a particular internal state variable a. becomes one

that can be settled on purely phenomenological grounds, namely by

inspection of the caloric equation of state and the equation governing

the evolution of a. in a thermodynamic process.
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12. OBJECTIVITY

In Section 5 we found the restrictions placed on the response

functions ^, T], S, q, and f of (4.1)-(4,5) by the postulate of positive

38
production of entropy. The principle of material frame indifference ,

38W. Noll, Arch. Rational Mech. Anal. 2, 197 (1958), who called it the

principle of objectivity of material properties.

which states that an admissible process must remain admissible after a

change of frame, imposes further restrictions on response functions.

In our present theory a change of frame is characterized by a

time-dependent orthogonal tensor Q. The scalars 0, e, T), anc* ^ a r^

unaffected by a change of frame, but F, g, q, and T transform as follows:

F -> QF, "

g -> Qg,

~~ > (12.1)
q -» Qq,

T -> QTQT .

The manner in which the internal state vector a = (CL,..•,0') transforms

under a change of frame depends, of course, on the physical interpretation

given to the components a. of a, and therefore varies with the application
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in mind. For definiteness we shall here assume that (X is an ordered

N-tuple of scalars, each of which remains invariant upon a change of

framej i.e. we assume that simultaneously with (12.1) we have

a. (12.2)

[This is the case, for example, when each a. represents the degree of

advancement of a chemical reaction, the fraction of the total energy in

a certain internal mode of molecular motion, or the probability that an

internal degree of freedom is in a particular quantum state.] It follows

from (12.2) that the response functions of the present theory are

compatible with material frame-indifference if and only if they obey,

for each orthogonal tensor Q, the following identities in F, 0, a, and g:

E>0>2f>ST - T(QF,e,a), (12.3)

These identities can be used to derive the following reduced forms of our
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constitutive equations:

n(c,e,Q?),

T = FT(C,6>,a)FT, (12.4)

2f "

where

C = FTF (12.5)

T
is the right Cauchy-Green tensor; of course, by (2.4) and (2.5), F g is

just GRAD Q. In terms of the response functions introduced here, the

entropy relation (5,16) may be written

n - -*J( (12.6)

and the stress relation (5.18) becomes

T = 2pdc?. (12.7)

One might imagine that in some applications a could represent

a vector of dimension three transforming as a spatial position vector

under a change of frame, but such an interpretation for OC is not
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compatible with our constitutive equation (4.5). For, if

a -* Qa (12.8)

then for each time dependent orthogonal tensor Q , £ must obey the

identity

Qa - f(QF,fl,Qg,Qa) (12.9)

where a is given by (4.5). Since

Qa - Qa + Qa « Qf(F,e,g,a) + qa, (12.10)

when §(t) » 1, (11.8) and (11.9) yield

Oa - 0, (12.11)

which equation must hold for all choices of Q. But, when Q(t) • 1., the

only restriction on Q(t) is that this tensor be skew. Hence (12.10)

states that Wa * 0 for all skew tensors W, which implies that a - 0.

In other words, i£ a behaves as â  spatial three-vector under changes of

frame, then (4.5) must be replaced by the trivial equations £ s 0, a = 0.
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13. MATERIAL SYMMETRY, FLUIDS

The symmetry group li of a material is the set of all non-singular

changes of local reference configuration that leave the response functions

39of the material unaltered.

39 38

This is essentially a definition due to Noll who defined the local

isotropy group G of a material to be the set of density-preserving

changes of local reference configuration which leave the response
40 Q

unaltered. It has recently been shown that our present JO must
reduce to Noll's G.]

40M. E. Gurtin and W. 0. Williams, Arch. Rational Mech. Anal. 23,

If we assume that the internal state variables a. are quantities

unaffected by the choice of reference configuration, then in our present

theory the symmetry group 0 may be identified with the group of all

invertible tensors H for which the identities

(13.1)
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hold for all F, 9, a and g. This group J6» depends on the choice of

reference configuration, but the symmetry group corresponding to two

different reference configurations of the same material are conjugate

and hence isomorphic. A theorem of Gurtin and Williams tells us that

the postulate of positive production of entropy requires that j$ must be

a subgroup of the unimodular group; i.e. that each H in \0 must have

|det H| - 1.

The similarity between the equations (13.1) and the identities

used to define the symmetry group of an elastic material with heat

41
conduction is striking, and one can immediately apply here many results

41
See, for example, ref. 13, Eq. (3.2).

originally obtained within the framework of the theory of elastic

materials. For example, using an argument given by Coleman and Noll

one can easily show that if the inversion transformation -1 is in $£ then

for all F, 0, and a. Thus, even if ($,&,&) is not an equilibrium state,

the presence of -1 in j0 implies that the heat flux q vanishes when

grad 0 vanishes.

We shall not discuss here the symmetry groups appropriate to

the various types of solids. The interested reader will have little
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difficulty in extending to our present subject the known theory of

42symmetry in finite elastic deformations. However, since the theory of

42
For some pertinent results in that theory see the articles of Smith

43 44
and Rivlin and Coleman and Noll

43G. F. Smith and R. S. Rivlin, Trans. Am. Math. Soc. 88, 175 (1958).

44
B. D. Coleman and W. Noll, Arch. Rational Mech. Anal. 15, 87 (1964).

gases with internal molecular relaxation forms an important special case

of our present theory, we shall give the reduced forms taken by our

general constitutive equations when the material under consideration is

a fluid.

We say that a material is a fluid if its symmetry group j£> is

the group vJLof all unimodular tensors. The property of being a fluid

is intrinsic to the material in the sense that fO • vJL for one reference

configuration only if )0 « IL for all reference configurations. Assuming

that the internal state variables a. obey the "scalar-transformation rule"

(12.2) under changes of frame, and using arguments now familiar in

continuum mechanics, one can easily show that for £ fluid the following

representat ion formulae must hold for the response functions occurring
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tn the Identities (12.3) and (13.1):

t

q = -/eg,

fif -

(13.3)

(13.4)

(13.5)

(13.6)

(13.7)

Here X> - 1/p is the specific volume t g = -/g.g is the magnitude of grad 6;
y\ A y\ ^
^\ ^\ k̂ ^\ ^S Ŝ

T//, T\, p, K, and the components f, of f are all scalar-valued response

functions; p and K are called, respectively, the pressure and the thermal

conductivity. It follows from (13.3)-(13.5) that for fluids the entropy

relation (5.16) and the stress relation (5.18) become

(13.8)

When it is more convenient to take specific entropy of the fluid, rather

than the temperature, as an independent variable,we have

€ - €(v>,Ti,a),

9 = e(x>,T\,a) (13.9)
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and when the specific internal energy is the preferred independent variable

nO>,e,a),

s -1
e = 0(u,c,a) = tô T\("o,e,a)] , \ (13.10)

It is clear that for fluids all the remarks we made about

stability in Sections 6-10, remain valid if the modifier "at constant

strain" is replaced by "at constant volume"; i.e. if the condition that F be

constant is replaced by the weaker condition that X) be constant.

Equation (13.5)- asserts that, under the assumption that each
a

a. transforms as scalar upon changes of frame, for a fluid the stress is

always a hydrostatic pressure. This observation, when combined with the

comments made at the end of Section 12, suggests that; the present theory

lacks the breadth of applications enjoyed by the theory of the thermodynamics

of materials with fading memory . In that theory a fluid out of equilibrium

can exhibit shearing stresses. It should not, hpwever, be concluded that

the present theory is a trivial special case of the theory of reference 15.

Three reasons for this are the following: (a) The materials we consider

here need not obey the principle of fading memory; in fact, that principle

follows from our present assumptions only after the addition of very strong

stability assumptions for the differential equation (4.5). (b) Since g
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appears in (4.5), for the materials we consider here the past history

of g may influence the stress. (c) Those special materials which are

covered by both the present theory and the fading memory theory can be

described in the present theory with a mathematical language that is

somewhat simpler and which, at the present time, appears closer to kinetic

theory interpretations; (a good example of such a special case is given in

our concluding section).

It is clear that by adding F to the set (F, 0,g,a) of independent

variables used in (4.1)-(4.5), pne can generalize our present development

so as to obtain a theory in which fluids exhibit shearing stresses and in

which a can be a string of tensors of arbitrary tensorial rank under

45
changes of frame. However, such a theory, since it would mix two

45

A simple and particularly elegant special case of a fluid of this type,

with the internal state vector a transforming as a spatial position

vector, has been studied by J. L. Ericksen. Kolloid-Zeitschrift 173.

117 (1960).

distinct but specialized concepts of internal dissipation, would lack

the
botlr simplicity of the present theory and the breadth of the general

theory of materials with fading memory.
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14. IDEAL GASES WITH VIBRATIONAL RELAXATION

We here illustrate our theory with a simple special case: a

dilute non-dissociating diatomic gas which, although it does not conduct

heat and obeys the ideal gas law in the form

po - R6, (14,1)

with R a constant, can, nonetheless, exhibit dissipative phenomena due

to the finite time required for the transfer of molecular motion from

the translational mode, where it contributes to the pressure, to the

vibrational mode, where it does not. To place this familiar theory in our present

framework, we first assume that the entropy of the gas can be written in the form

TJ = nA(u,€A) + nv(a)
 s nO>,e,a) (14.2)

with

€ - € A + OCy (14.3)

a is called the vibrational energy, €. is called the active mode

46 =

energy, the value r\ of i\ is called the vibrational entropy, and the

Or, at length, "the specific internal energy of the active mode",

value TJA of T] is called the active mode entropy. The number
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is the translational (or active mode) temperature, while

6> =» [dr\V Ctf

is the vibrational temperature. We now add the usual assumption

that a obeys a scalar differential equation of the type (13.7) with f

47independent of g and linear in a:

47
This hypothesis, which differs only slightly from a postulate studied

by Herzfeld and Rice in 1928 , has been discussed by Rutgers ,

49 50 5 51
Knesser , Landau and Teller , Bethe and Teller , Rubin and Shuler ,

52 51
Montroll and Shuler , and others. The studies of Rubin and Shuler

52and Montroll and Shuler indicate that since (14.6) holds precisely

for a harmonic oscillator model, it should hold near to equilibrium for

more general models. Cf. Vincenti and Kruger

48A. J. Rutgers, Ann. Physik Ij6, 350 (1933).

4 9H. 0. Knesser, Ann. Physik 16, 360 (1933).

L. Landau and E. Teller, Physik. Z. Sowjetunion 10, 34 (1936).

51R. J. Rubin and K. E. Shuler, J. Chem. Phys. 25, 59 (1956).

5 2E. W. Montroll and K. E. Shuler, J. Chem. Phys. 26, 454 (1956).

W. G. Vincenti and C. H. Kruger, Introduction to Classical Gas Dynamics

(John Wiley, New York, 1965), Chapter VII.

a - A(x>,e) - B(u,e)a. (14.6)
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If we assume that the temperature 0 obeys a constitutive equation

of the form 6 • 0(u,€,a), then the present theory based on the constitutive

relations (14.1), (14.2), (14.3), and (14.6) clearly falls as a special

case of the theory of fluids obeying (13.3)-(13.10). [Of course, here the

internal state vector a has just the one component a.] We may therefore

conclude from (13.10)2&3, (14.2), (14.3), and (14.4) that

P - ^ A 0 > , e A ) , (14.7)

e - eA. (14.8)

Thus in this theory "the temperature" 0 must be identified with the

translational temperature 9A. This fact has already b$en established in
A.

a much more general context; indeed, (14.8) is an immediate consequence

of the remark containing (11.7). We may conclude from the theorem

following (11.9) that in a stable equilibrium state the vibrational

temperature 6 is equal to the translational temperature 6.

Noting that (14.1) and (14.7) imply the partial differential

equation

(14.9)

we see that TJ must have the special form

(14.10)
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Assuming that h is smoothly invertible, we can write (14.10) in the form

def »
e. - a), (ue 1A ) = co.fuexp* £ } \ « €(u,rj,a) - a. (14.11)

It follows from (13.9)2 and (14.11) that

(14.12)

with the prime indicating the derivative; hence G is a function of only

-TjA/R
oe . Assuming that this function is invertible, we may solve (14.12)

-T]A/R
for ue A in terms of G and write (14.11) in the form

€A " *A(6^# (14.13)

Thus, the active-mode energy is here a function of the translational

temperature alone.

We now add the natural assumptions that a is always positive

and that the differential equation (14.6) obeys the stability postulate

discussed in Section 10. These assumptions imply that (14.6) can be

written in the form

a - k(o,e)(>0(D,e) - a), (14.14)

with the functions k and & positive. Furthermore, the function & in

(14.14) here plays the role of the equilibrium response function Of in

(6.17): For each pair (X> ,G ) the vibrational energy a given by

a* = i(D ,6 ) (14.15)

makes ("0 }Q }OL ) an equilibrium state.



71.

Let us now assume that for each a and *o we can find a 0 such

that a « Z(x>,9). It is then a direct consequence of the theorem following

(11.16) that for each fixed x> the function l v defined in (14.5) is the

inverse of the function A(X), • ) • Hence 4(t>,6) must be. independent of V>,

Z(X),G) - 4(9), (14.16)

and

ev - I1 (a), i.e. e v s 7 \ (14.17)

with the function 4 the inverse £f I.

Equations (14.3), (14.13), (14.15), and (14.16) imply that the

value € of the specific internal energy of the gas when it is in

equilibrium with temperature 0 and specific volume D is independent of

x> ; in fact,

€* - ^A<
e*> + ^< e*)- (14.18)54

54 * * * *

Since the equilibrium pressure p is just R© /V> , to prove that € is

a function of 6 alone we could have used an argument similar to that

giving us (4.13). In this instance the proof would proceed exactly as

it does for an ideal gas without relaxation effects, in which context

the proof is spelled out in detail by R. Courant and K. 0. Friedrichs,

Supersonic Flow and Shock Waves (Interscieace, New York, 1948) pp. 8 and 9,
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In view of (14.16)^we. can write (14.14) in the form

a - k(o,e)(l(6) ~ a), (14.19)

where

,e) > 0, i(0) > 0. (14.20)

Since there is a one-to-one relation between 9 and a, the

differential equation (14.19) may be regarded as an evolution equation

for 0 . In fact if we put

def d i ( V
W ^ 60^- > <14'21>

then (14.17) and (14.19) yield

C) (14'22)

The value of the function c is called the vibrational heat capacity,

for, by (14.17) and (4.21), c (6 ) is the rate of change of the vibrational

energy a with the vibrational temperature 0 .
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