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Representation of Additive and Biadditive Functionals

V. J. M zel?! and K. Sundaresan

This paper is concerned with obtaining integral representations
of a class of nonlinear functionals on function.spaces of measurabl e
functions. These functionals are known as additive functionals and
their représentation has been studied in recent papers of Martin and
M zel [1], Chacon and Friedman [2] and Friedman and Katz [3]. The
class of additive functionals studied in this paper is the same as
in [1 and has been found to be useful in the theory of fading nenory
in Continuumnechani cs, (Col eman and M zel [4]) . Such functionals
al so occur in the functionél anal ytic study of ordfnary differential
equations. These and other applications will be dealt with el sewhere

Apart from these applications the representation theorens obtained
here are of intrinsic interest and provide generalizations of results
established in Halnbs [5] and Bartle and Joichi [7] concerning certain
nonl i near operators on function spaces.

In this paper we propose to make a systematic study of the repre-
sentation of additive functionals under varied_continuity constraints.
In addition since the applications to fading nenory and nonli near
differential equations often require functionals of several variables,
we define nultiadditive functionals and study their representation.

We mention in this connection that bilinear functionals over the
Cartesian products of sone inportant Banach spaces have been studied
by Morse and Transue [9] and ot hers.

« .After stating below the basic definitions and notations, we anal yze
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in Sections 1 and 2 the representation of additive functionals over
subspaces of the space of neasurable functions on finite nonatomc
and cx-fi ni_te nonat om c nmeasure spaces . In Sections 3 and
4 these results are generalized to the case of rrultiaddi'tive functi.on-
al s.

Thr oughout the paper (T\"i) vvith.or without a suffix i is a
nonatom ¢ neasure space with E a cx-algebra of subsets of the set
T and pi a non-zero nmeasure. M denotes the vector space of real
val ued neasurabl e functions on (TSYx) with the usual identification
of two functions which are equal a.e,; R denotes the real line and

and R" the n-dinensional space.

Definition 1. ££ L IJB a _subspace of M then a* function F cm L

A

is called an additive functional if (1) P(f +g) = F(f) + F(g

whenever f, g are tw functions in L such that f (x)g(x) =0
a.e.j and (20 F(f) =F(g if. f,g are eauineasurable functions,

le.jLf for every Borel set B iLR /i (f "e'B)) = fi (g~1(B)) .

Functional s that sati sfy condition (2) are called statistic-

al in [1] .

Definition 2. Let (T':.’ £.ap;) 1 = 1,2 be two measure spaces and | et
M be the space of measurable functions on T. . If L. is a vector

. : : A .
subspace of M, for i = 1,2 then ci functional F _on L"X Ly is

iy

said to be biadditive provided F(*,zy). and Fix,*) are additive for

every' function yel, and XG&.. . More generally one defines n-addi_tive_

f'_un_ct ionals for n > 2.

Bef ore proceeding to the representation theoremwe restate for
conveni ence of reference a useful theoremestablished in [1].
Theorem 1. Let (T.L.u) be a finite nonatom c neasure space

such that - MT) ~ 0. Let p be an addi tive functional on L_ (n)




in L (i)

mnrch is continuous in the sense that whenever { Xn}nai

is a sequence converging boundedly a.e., to the function x in L (/i)

then F(k )= F(x) . Then there exists a unrque conti nuous functlon
o W
f:R->R such that f(0) =0 and for all xeL
S £(x)ap.

F(x) = 7T

1. Representation of Additive functionals in the Case of Finite

Nonat om ¢ Measure Space.

The theorens established in this section are simlar to Theorem
1 except that different continuity conditions are'inposed on the
additive functional. W state first a proposition which is a gener-
alization of the above theorem and states that the above theoremis
true even if xn—A X boundedly in nmeasure.

Proposition 1. Let (TEYi) be* a* in Theorem1 and let F be. an
P N ——— —— — — -

additive functional on L _(jy . Then F(x ) - "F(X) whenever the

sequence. of functlons X in L (v converges boundedly in nmeasure

n womn_ GO

to~the Furetton X HQ-QHG-GHH%+4- F adn%%e-anr4%£@+ak-reppeyyﬁék
tHon o the form F(x) = J f(x)d(i for some continuous +eheii-0n oA |
R->R such that. f (0) =0. Such <a-—tepresenting-function f is unigue-
Proof: Since a.e. convergence on a finite neasure space inpliesj
convergence in neasure it follows from Theorem1l that F admts a

uni que integral representation satisfying the conditions in Theorem 1.
Conversely suppose f is a continuous function on R-> R such that

f(o) =0. Let F be defined on L (ju by the formula F(x)™-Jt (x)d“'

ao T
Since the additivity of F is obvious it suffices to show that
_ n
Xnp-» X boundedly in measure inplies P(x]-f F(x). Srnce' f is

n . .
continuous and x ,x are totally neasurable functions it follows by




TheoremI1. 2.12 in Dunford and Schwartz [6] that f(x [)l -N f (x) bound-
edly in neasure. Thus f (xrp' and f(x) arein L-.l(/L>§ and
F(xa) ->F(X) . |

Next we proceed to the case of not necessarily bounded a.e.
convergence and convergence in measure.

Theorem 2. Suppose (TsLsl1) ifs as™ iri Theorem1 and let FM" R

be an additive functional on M Then F()&)" F(x) whenever X4

, A , A , , ,
Is a"_sequence in M. _such that x -"x il Ma.e. iJl _and only if

there exists a” continuous function f on R>R such that f (0) =0

and range f i .a bounded set in R 3 for which F(x) =J f‘(x) di

for all xeM Such ci representation is unique.
Proof: Let f be a function having the properties stated in the

theorem Consider the functional F M3 R defined by F(Xx) ‘:J’f (x)d/i,.

T
Since range f is bounded and f is continuous the functional F

is well defined and.it is clear that F is additive. Now consider
a sequence {x,] in M which converges to the measur abl e function
X a.e. Since f is continuous f(xa- N f(x) a.e. Since range f
I's bounded it follows by the t.heorem on dom nated convergence that
F(xn) =F(x). Conversely suppose that F is an additive functional
on M satisfying the given continuity conditioh. Then clearly

Fr = F Lcé verifies the hypothesis in Theorem 1. Thus there exists
a unique continuous function f on R into R such that f(o) =0
and for all x in Lm(/i)3 F(x) = j{f(x)djiz. Suppose that range f

T
I s unbounded. Then there exists a sequence of reals rp such that

|rp |- 00 and 1°< [f(r,) |"o0. Since the neasure space is nonatonic
there exists a decreasing sequence of measurable sets En such that
H(E) =|§%A %—r - et Xn='nnrE' Cdearly x,€M and x* 0

a.e. However since x"L" (n), P(xn). =ff(x,)dfi =+ /J(T) is
ll‘




a contradiction. Thus range f s bounded.

Next let x be a nonnegat.ive function in M There exists a
sequence Sn of sinple functions such that s n"f X a.e. Since f
Is continuous f(s l)1 ->f (x) boundedly a.e. Thus e« f (X) €L,-L (/- and
Jflf(x)d/i = IimJTf_{s r)md“ = IimF(sr) = F(x) . Thus the representation

of F is valid.

The uni quehess of F is clear by applying Theorem 1l to the
functional Fg. |

As a corollary we obtain the follow ng representation theorem
for additive functionals on the topol ogical vector space M wth the
tdpol ogy of convérgenée in rreaéure._
Corollary. F is an additive functional on M for which F(x )->F(x)
whenever Xp-> X in neasure if and only if there .exi sts a continuous
function f: R->R with range f bounded and f (0) =0 such that

for all x€M F(x) =Jf(x)djuU Such a representation is unique.
T

The proof is simlar to that of Proposition 1 and will thus be
om tted.

‘Remark ‘1:  Theorem 2 is valid even if the continuity condition is
repl aced by: X > X al nost uniformy d£> F(xn)-’\F(x) . The exi stence

of a representation for this case follows fromthe proof of '_Theoréml
(see [1]). The necessity and sufficiency of boundedness of. range f
follow respectively fromargunents in Theorem 2 and the observation
t hat al nost - uni form convergence | mjl | es convergence in measure.

Next we turn our attention to the vector subspaces LP(ju) (1 £p < 00)
of the vector space M W equip the vector spaces L EgJLI) with the
usual L_-norm

P
Theorem 3o If (TZ,]L) is a finite nonatomic neasure space and if

+y*vws\rt*f\ 9% — — : —-
F is an additive functional on L (/i) then F(x )-2F(x) whenever
" m :_ 1 P n ' : , * .




Xx -Vx a.e. if and only if there exists a continuous function
n * P . —_

f: R"R such-that— (1) f(0) =0, (2) range-f %- <* bounded set in
R and, (93 ior ever‘y xeLp jgu , F(x) :/Jf(x)d/i. Such a representation

of F is. unigue.

Pr oof : “Let F be an additive functional on LP(/i) satisfying the
convergence condition in the theorem Considering the additive function-
al F, = FL_(i and noting t hat F (x) -> F (0 if a sequence

xneLoo (ju converges boundedly_ a.e. to xeLoo (/i) we see by Theorem 1
.that there exists a unique continuous function f: R >R wth

f'(O) =0 and su_ch that for all xeL (M, H_(x) =ff(x)d*i. Nowit

is clai m;_d that f nust satisfy condition (2). Suipose that f

does not. satisfy condition (2). Then there exists a sequence {rn}

in R such that |_rn|-> oo and 1 < |f(ry,) | .f oo. Let {7~} be a decreasing

sequence of measurable sets in T such that M(B ), ~|4 f——l(—f‘r + MT)
' . R
Since /i( B)) -0 the sequence of functions rr:)_tgp 0 ae Cearly
n
erBnGLP(#) and 'F(rnABil :AfII(lrnAé}%i =+ A(T) Thus £ has a
bounded range.

Since the verification of the remaining assertion is routine the
proof of the theoremis conpl ete.

Corollary. The above theoremis true even if convergence a.e. |s

repl aced by convergence in neasure.

The proof of this is simlar to that for the Corollary of Theorem 2.

Theorem 4. |j[ F is. an additive functional on L (/¥ where jU is

nonat om ¢ and O< \L(T) <oo _then F _i” _continuous on the Banach space

- ko(M ij._and only if there exists a continuous function f: R >R

such that_. (1) f(0) =0 (2. lim -f;("1-|- <00 and (3) for xelL_{(#),
g | [r 2o \ XA P
F() = 3T (xau




Proof: Let F be a continuous additive functional on the Banach space
LP(/i) e Passing on to the restriction F_,L = PJLm (/i) and appealing

to Theorem1 it is at once verified that there exists a unique contin-
uous function f: R* R such that f(0) =0 and for all xeLoo (L),

F(x) = Fj_ (x) :_Iff(x)dju. W claimthat f satisfies ~ condition (2 .
For if not there exists a sequence [rl}l in R such that 1 <_|f(r Ll =
n|rn
B(EH = Tf-hr:J TH(T) . since Hﬁﬁ; "B = £ I\/I<TND, rA™0in
Lp-norm However singe F(r An“)’\ :JE (r hAE,\) di =t/i(T) / 0.

|~ Let {En} be a sequence of measurable sets in T such that

IF('rn ﬁn)'-'/}- O contradicting the continuity of F. Hence f satisfies
condition (2) of the theorem
We proceed next to veri'fy that the function f ~represents F
as in (3) of the_theorem Ve note that if xeLp(/i) t hen .ffoeL-j_f/‘i) .
For condition (2) inplies there exist constants ¢ and k such that
| t] _>.c inplies |f(t) |_<Kk|t]|P. Thus if E. ={t| |x(t) ] <c} and
E, = T~E, then |[f(x) [ is bounded on E“ and |f(xXE2 I 530|xXE2|P.
Si nce xc_L Gu) inplies [ x~ | G (M it follows that f(x)eL,_Eji).
_Nowlet xeLp(fi) . Since I‘:0 (/i) is a dense subset df t he
Banach space LP(/i) t here e_xists a sequence anLc‘:J (/i)  such that
||xn-x| | p"~0. As already observed in the first paragraph of the proof,
F(xn) :/Ili(x_n) dU and since F is continuous F(Xx) :IimF(xr? =
Iimlng (xn)d/io Thus it is sufficient to show that f(Xr’? ->f(x) in
t he ;pace L, (ii)# This will be acconplished by applying \ﬁtali* S
Convergence theorem for a statenent of which we refer to Theorem 7. 13,

Bartle [8]. First note that according to that theoremthe condition
||>%-x| |p -~ 0 is equivalent on the finite neasure space (T,2,/i) to
the assertions (i) Xq~> X in measure, (it) for each e > 0 there

isa 6(e) >0 suchthat if EeS and .julB < &e), then JM[x,|PdjU< €




for all n >/1I.

Now by the continuity of _'f we deduce from (i) the assertion
(i') f(x,) -£ f(x) inneasure. Mreover since f satisfies condition
(2, there exist constants, ¢ and K such that [f(t) | <K[t]”" when-
ever |t|] > c. Let Kl = sup |f(t) | . Then we deduce from (ii) the

|t|l<c
assertion (ii") for each e >0 there is a 6'(e) > 0 such that

if M(E) < <5 (6 ; then "|f(xl_) |du < e for all n >. 1. This state-
ment is clearly valid if we define 6 () =min{5(el2K), -zrf‘l—} ‘
Finally we note that by the case p =1 of Vitali*s theorem
(i') and (ii') suffice on the finite neasure space (T,L, /i) to inply
t hat f(xﬁ) ->f(x) in L,J_(AO. Thus we obtain
F(x) = limF(x, =1li m/Tf (X)) d/ i ::/Tf (x)d/i,

which is the desired representation.

Conversely if f is a continuous function on R-VR satisfy-
ing conditions (1) and (2) then the functional F(x) =J(X)djL4 is
wel | defined on Lp(p') and is clearly additive. By ar-glg-ui ng as in
the precedi ng paragraph it is seen that F is continuous as well”

and the proof is conplete.

2. Representation of Additive Functionals in the a-finite
Nonat omi ¢ Case. '

W proceed next to the case in which (Tpt) is a a-finite
nonat om c nmeasure space with /i(T) = <.
Remark 2. We note that there exist no nontrivial additive function-
i e T T

als on M For if X,GEf£ is such that 0 < UX*) < oo we can find
-L -A '

a sequence MA-j> 1 ° pariw se disjoint measurable sets such that

M(X) = JJ-(X). If F is any additive functional on M then because of
condition (2) in Definition 1 for any constant K, F( K¥--) is

*i




i ndependent of i. Thus if F(Klv: ) £0 then (F(Kxy.~ | '°
i PN
izl
infinite. Since F is real valued function this is a contradiction.
Thus F(S) =0 for sinple functions S. Wth any reasonabl e continu-
ity condition the last equation in turn inplies F(x) =0 for all

measurabl e functions x. The sanme argunment applies to functions

xeL 20 . For'this reason we confine our attention to the case of

o (
addi tive functionals on Lp(p)3 1 <p<oo.

Iheoremkg. Let F be ai_additive functional on_ LP(M Then

F(x.) = F(x) whenever the sequence {x.} in L_(/i) is such that

Xqg=> X a.e. for sonme function 'xeLP(I\/) ijf and only. if there

exists a_ continuous function f: R->R such that (1) f(0) =0 and

ange f s _a bounded set_in R* (2) _for_sonme_constant k and for

all real numbers |f(r)| <k|r]|P,i.e. Tlm"-f‘-"ﬂ'

< 00 invi_g\_/'vf

“V - condition (1), and (3) for all xEL (p), F(x) =/f(x)d/i. Such
p I~ S

fLTepresent ety 9"°5f The Tunctional F is® 4ni que.
Pr oof : Let f be a real valued continuous function on R satisfy-
ing conditions (1) and (2) in the above statement. Since f satis-

fies condition (2) it follows by Theorem1 in Halnos [5] that
xeLﬂ(jit) inplies f(x)€L, (jU. Since f is continuous f(xn)-v.f(x)

a.e. whenever xn-'> X a.e. Thus since range f is bounded it follows
by Lebesgue’s theoremon doninated convergence that j f(x )n djti-"/f (x) dx
v_\/nenever XnJ, X eLp(ji) and X,->x a.e. Hence if F isTt he functTonaI
defined by F(x) :)'f (x) dii ‘then F has the convergence property in

t he theorem and furtTher it is verified that F is additive on L Lgp)
Thus the proof of the if part is conplete.

Conversely, suppose F is an additive functional on LP(/i)
satisfying the continuity condition in the theorem If B 1is any

measurable set in T with 0 < /i(B < O consider the space
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LP(T,£,/|B) wher e I—h is the contraction of /i to B. Let us

define a functional F_. on L (/O by setting F {y) = F(y') where
D *p JD 5 '

yf is the function in LP (/i) such that y |B=y|/B and y' |T-B = 0.
It is easily seen that Fgis a well defined functional on Ly(Ms)g SO
that as a consequence of Theorem 3 the addi},i ve functional' Fr admts
a unique integral representation Fg(y) = J*M(y)dM where f is a
continuous function on Re> R such that f(0) =0 and f has bound-
ed range. Further we note that the function f determ ned by FB
S independeht of Bj for if Cis another set in £ such that

0 </x(Q ® MB) then by the nonatomcity of the neasure space there
.exi sts a neasur abl e. set B~B such that MB.}» = MO . Now sj nce
for.‘any real number r, *)EB, and r)G are equineasurable, F(rXgjy =
F(r/L) . Thus if f,g are the functions de'term' ned by Fp and F*
t_hen'F'(rXB). = P(rK;) i.e. Fg(r)G1) =* Fo(r*;) . Thus if f,g are

functions representing Fg and FC the preceding equation inplies
fMIiBJ =g9g(r)»(C . Since MBy) =/x(Q it follows_that f = 0.

Wth f chosen as above let us consider any sinple function S.
Denoting the support of S by N(S) it follows that F(S) = Fy x}(S) =

JI(S)dju. Next we verify that f satisfies condition (2) . "For’
T - '
if not there exists a sequence of real nunbers rp-> 0 such that

p
|f(rn) |™- nlp'l . Let {B } be a sequence of neasurable sets such

1
that MB,) = "',If',(rﬁ",')_."l * Then the sequence of functions {i X}
are in L (/) and ||r ?_J( |L->0. Thus F(r X ) ~» 0. However
. P . n n P . n AR
F(r'K..) =jf(r Y )dfl = %1 which is a contradiction. Thus f
" Bp T  ™mp
satisfies the condition (2).

Now | et us consider an arbitrary function xeL (u) and let x and
° P P

x\. be its positive and negative parts. Since F is additive F(x) =

"(*p) TF(*nx)e+ Let {T.} be an increasing sequence of sets in S
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such that 0 <MT ) <CD and T = UT Clearly {x.)L.} and

1 L

1 ’ . - _
[xNTKTnj} are sequences ]n 5_qn) SfCh t hat 5 XTn > X ae
Hence F(x ) =1limF(x ~L ) = Ilim Jf (x* X )d/x. Since f satis-
of n->00 - n n>00 i - n :
fies ~condition (2), f{x)eLy (i) if xeLPUD . In particular
Cf(x ) el (M ém} since | f(x\,) [<If(x) | and f(X IT) -~ f (x.)
Pl prxxaA A I'r vi Xr
a. e. we have by the dom nated convergence theorem F(XE) =
limF(x X ) = /f(xdx . A simlar argunment verifies the equati on
n-> Qo P "n ™ P

F(xy) =Jf(xn)dM Thus F(x) =Ji(x)d|i for all X€pr@ . The proof
i's Conplgte. - | |

W remark that Theorem 5 is valid even if the continuity condi -
tion is replaced by F(x,) -£ F(x) whenever the sequence {x,} in
LP(JJL) cbnverges in measure to X in lp(n) . The proof is very si mi -
lar in details to that of the preceding theorem except that instead
of appeal ing to Theorem 3 one appeals to the corol lary follow ng.

Theorem 3.

Theorem 6. Let. F e anadditive functional on L, (i) for some P,

1<p<G. Ihen F Is continuous on the Banach space L() L't
and only if F admts the followng integral representation. For

al | xeLPUD , F(x) =Jf (x) di _where f is_g conti nuous function on
, T —_ _

iy

R~> R suweh-that— (1) f (0 =0, (2 |f(r) | =<Kk|r|?P for all real
Aubers- 1 and for sone constant k.

The proof is very simlar in details to that of Theorem 5 except
that instead of applying Theorem 3 we need to apply Theorem 4.

Next we proceed to the representation of nultiadditive function-
als. W confine our attention to the case of biadditive functionals
since the passage to Madditive functionals for M> 2 is a straight-

forward generalization of the biadditive situation.
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3. Representation of Biadditive Functionals in the Finite
Nonat omi ¢ Case.

The measure spaces (T"2*, M) i = 1,2 in this section
are finite nonatomc and 0 < M(T;) < oo. The product neasure
To

associ ated with these neasure spaces is denoted by M, d$ M e

facilitate the presentation we adhere to the followi ng notation in

the rest of the paper.
2

Let <p be a function on R-> R W define the foll owi ng
properties of. (|d

(z) <p(a,Q = <p(Qb) =0 for all real numbers a,b.
(_BB) <p is bounded on bounded sets in le.

(BS) <p is bounded on finite strips Se = {(a,b)j|la =<c},

S;:{ (a,b) | | b|—<d) ; sup|<p(a,b) | on these strips will
be denot ed by a(c) and ,8(d) respectively. _ '
R@rmﬂc &. Suppose that <p is separately continuous, i.e. <p(a °)
and <p(*,b) are contin.uous for each a,beR If for 1 =12 fa

are nmeasurabl e functions on the neasure spaces (T.3L.1,/ia) then

‘p(fl,f,g) I's measurabl e on the product of these neasure spaces. For
if E~LT consider the function (pic, X* , f,) =<p(0,f,) + ((pic..Y* ,fn)
L L
- <p(Qfy)) = cp(0,fy) + ~(cy ™ ,fj . It is easily verified that
L

this function is neasurable on .t he product spabe. Mor eover using the
fact that 2’p(QfE) =0 it is easily verified that <p(f"A_,f2) i s |
rreaiSurabI e whenever f_:L Is a sinple function. Finally since every
measur abl e function on (T1’£’i/i£) is the a.e. Ii_m't of a sequence
of sinple functions it follows fromthe continuity of <'p inits
first argunment that the assertion holds for cp(f 7 fz)’ In the proofs
to followwe shall assume this fact w thout special nention.

Theorem 7+ '°' %> i = 13° £ the vector spaces £f_essentially
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bounded neasurabl e functions on the finite nonatom c neasure spaces

-(Tj.3|"1’\1|')' Let N__p'eEbiadditive functional_g_n_Bl, B, which is "

continuous in the follow ng sense. If_ {x",rl} is_a sequence in B,

such that x*A>x,GB. boundedly a.e. then N(x{ xo) -> N(x, , Xo)  for
each x.,eB,. Likewise if {x*} 1is a sequence in B, such that

X?~>x2_eB_2_ boundedly a,e, then Nfx"j~Ax"-V N(x-,,x;) for each x,eB,.
2 1

For .each such N there exists z;"“uni que function <R -> R which .

is separately continuous, satisfies (z) and (BB)y and which for

each (XTAX*JGBTX B, sSatisfies
+ 7 % z,
(® " N(x.,x) =/ P(x1, xfd/it® Ms-
X z

TiXT2 . .

~Conversely if <p 1" a"_separately continuous function satisfying

conditions (z) and (BB) then the functional N(Xpn, Xo) =J <P(X, , Xo) di. -@1#2
- 12 TAXT, 12 1
is biadditive and continuous in the sense nentioned above.

Proof: Let x€Bl Then by the biadditivity of N the functional
N( X 0 is additive and. satisfies the hypotheses of Theorem 1. Thus
there exists a unique continuous function f :R>R f (0) =0,

' X X

such that

N( X1, X2) =J Ex.(*2)dM for all X,GB, . (2)
T2‘ 1

Define P R:-~" R by
£(c,d) =1 (d ) where 1. =% - (2

Now the biadditivity and the co'ntinuity property of N clearly
irrply that <p is separately continuous and has the property (z) -

We proceed next to establish that for every measurabl e set El of T,
Ky (E )
PRRRP S S S
fCXEl(') - P-l(Tl) ele, ) | _ (3)
HUMT -LIBRARY
CARNEGIE-MELLON  UNIVERSITY
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Observe that by the biadditivity of N we have for a fixed >x«x<€By
k ' 2"
and for each simple function x_. = E ¢ \"LE s the E® denoting dis-
_ i=l i '
joint measurable sets in TJ_,:

Kk K - ,

N( Lc.Xg , Xa) = LN\ ,Xx2) 4
_ i ¥ i i ¥ i _

In particular if Cy, =Cy and By (Ei) = pl(El) t hen we _obt ain that

N(ciXy g.>%> = N(e X g %) (3)
i=1 i 1

Hence i f {Ei)r.=|, is a partition of T:L

N(cl 'XEl,xz) = ]?N(Clll,xz) = W N(Clll,xz) . _ (6)

I'n particular for X* chosen to be a constant function we deduce from
(6) that (3) holds whenever FI.L ('Ii.) is an integral nultiple of

Jli (.E) . By applying additi'vity once again we deduce from (6) that (3)

is also verified whenever e is a rational nunber. Finally,

by uéing the continuity property of N it is verified that (3) holds

in general. Wth (3) thus Verified we can rewrite (4) as follows,
K o kix (E)
N(iflcx . ,xz.; = ?““I(T]_) N(cill’XZ)

Ié # () f__( X.ya

- — wlc. 13
i=1 pl(Tl) . iv 2 2

2 _ (7)

1 _ k

TR (T f o( T cXp »x,)am@up,.
171 T. XT i=1 "1

172

If now the function <p is defined by setting

1

we see that *) is established in those cases in which x,l'eB,L is

a sinple function.
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Assuming for a nonent that <p has the property (BB) let us
show that (*) holds in general. Let X'fB’L Thus there exists a
‘sequence of sinple functions x,LneBl such t hat Xy is the bounded
a.e, limt of. xin . W have by the biadditivity and the results in
t he preceedi ng paragraph that

N(X|., X)) = LimN(xi",xp) = lim f. <p(x,"x LdfiJp[i~ (9
U n->co = - n->00 7 X pAttgp Ly,
. T1XT2

for every XOZeB%. Let us consider the functions hn(s[|35%) =
<p(x1"(s1) , X2(52)) g€l , s.€'2+ ' follows by the separate cohti nuity
of <p that the h (s1"Sy) convérge poi ntwi se to- h(s-"s.)
= <p(XTJL(s,_l) J X(Z(SZJ) out side a set of the for.m (N Z( Tn)ZU(T..lx Itfz) wher e
‘the Ny a're null sets in T.ll. Fromthe property (BB) of cp we
concl ude t hat hh(s,l, Sp) ->Ms *'s,) boundedly outside a set
(Nx T2) U (T3 XNz) . Thus by Lebesgue's doni nated conver gence
theoremit follows from (9 that

N(xl,xz) = J (p(xl,xz)dpl&l\/é - (10)

T1XT2

for all Xi®% ~and xzeez3> establishing (¥)

Next we proceed to show that <p has the propert.y (BB) . Assum
i ng that this is false there exists a rectangle Q= { (c,d) | |c|< k]-__g\ d|_§kz}

such that (p(c,d) is unbounded on Q Since (p is separat e'ly contin-

uous we note that for fixed c”d*, k * = mx |<p(c*d) | and
‘ °l d | <K>
lae = maxK [ Afc. ~d*! are wel |l defined. However by assunption both
-1 _ ' ' '

A= Akt <K and A, - (t lg! d] < Ke> are unbounded.

Let [Q) be a sequence of positive nunbers such that £0. =1

3 - H 3
j 2

and L - 9. <___-]2'< 9 . W now choose inductively a sequence of points

j>n+l T n

{ (eAd?) }AJL i" Q as. follows. Start by selecting G so that
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k > 401" l, and then taking dll to be such that |(p(cyd )| =k
Cl -— -~ Cl

I n general having chosen (c,ld.)l 1 <~i <~ n-1, choose G, SO t hat

N-.
k >2e -1 Lt_e+,"ten.ln
Ch— n I,_|-d.|| n n
wher e
n-1 . n-1 . i-1
<. > 3/2 Eke 2~'e; + S2"! £t40._ +n
i=1 i i=l  j=1 § I
_ _ N ~ .
and t hen take dn to be such that /cp(c nd )n/ =k c, Let {E.l) 1”1
and {Fj}jk'f. be sequences of disjoint nmeasurable sets in T; and

T, respectively such that jil(Ei) = 2"iJUl(T1) and
/izo(F3) :eD/f"(EO)' Def i ne X = Lg)ﬁj?j. Clearly %neBy. Furt her -

nore the sequence of functions Xy =S Ci & and the function
I = [

X, = £ c.*% are in B, and x{‘—> X, boundedly a.e. Thus

X N |?..I. X '/\i X X X

N( X =2 Xp) - > N(x,l"Xp) as n-* oo. Consider the integral representa-
tion which we have established for N(xx3;) when either x* or

x& is a sinmple function. Tgis permts us to wite
X, ", xJ =/ L ¢. ,, E d. Xg )d/i<5M
NCx, 7 % Tlx%i L Ge® j>l A FjF) 7

——

n | (ID
= L L . ,d. . ). '
=B j>1<p (cj,d5)Hy (By) By (Fy)

Furthernore we note that for each 1 <*i <n
i-1 i-1 _i
I_jflxo(ci,dj)ultai).pz(Fj){ < Ity 27Meym (1) py(T,) |
: : (12)
< 2"Y(eil2 ke - 2%ai) M(T1) /i 2(T2)
: 1
Al so
L i
L5y, Ple AEIUEF) < Bk 2719 M(T) by (1)
u3s)

-i
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Fom (11, (12) and (13 it is clear that

NG ") | 2 | L<p(cn,d)ey ix: (En) iz (To) |

21 ]
n-1
- L E 6 -l<p(c;,d ) \ny () My(Ty)
i=1j>1P° P T
"5 / (T,)
> (k. ® - L4 0. -k 6 _/2]u, (E ), (T
= c, B jzldj_J cp o 1Y n'2*2
n-1 - i-1
= L2 O + Loty 04tk 6,7, (T)) Ky (T))
=1 i j=1 7j i
>n

which contradicts the fact that N(x;", X,)-> Nf x*x 3. Thus <p has
property (BB). |

The proof of the converse is quite sinple. It is enough to
notice that the argunment |eading to.(10) establishes that a finite
valued N is actually defi‘ned by (*). The rest is a routine
-verification.

As a corollary of the preceding theoremwe obtain the foll ow
ing representation when the functional N is requited to satisfy a |

stronger continuity property.

Corol lary . Suppose that N isx a*_biadditive_functional .on BJ_.X Bg
wth B':. as® rn the preceding theorem Suppose further that when-
ever the sequences X. GB. | =1 ,2 are such that x."—> x. boundedl y
1 2 1 2 '
a.e. tfrem N(x ,x ) ->N(x¢ x ) . —For—each such N there exists
o, . _ S

$L unique jointly continuous function <R ~ R satisfying conditions

(z) and (BB) which represents- N in the sense OT(*) * iri the theoré'm

The converse statement is also true. _ _
Proof: Since N satisfies the hypothesis of Theorem 7 there exists

a uni que function <p:R2-> R which is separately continuous, has the

properties (z) and (BB and represents the function B in the sense of (*) .
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quther by consi dering constant functions in Bﬁ and 82 one easily
sees that the continuity condition in the corollary inplies the joint
continuity of (p.

The proof of the converse is exactly simlar to the proof of the
conver se part in Theorem 7. -

For functionals N which are continuous relative to (unbounded)

a.e. convergence we have the follow ng representation theorem

Theoiiein 8 Let B, he. as in Theorem?7. Lef N he. a biadditive i

functional on B.X B, which [s separately continuous with respect

. — | z =

| ]

to a.e. convergence. Then there exists ci separately continuous function
2 _ _

R —= R satisfying properties (z) and (BS and such that for every

pair (X, x3)€BIX B; The Teépresentation - ' .

f -~

12 rnvm 12 1 2
T1XT2

is valid Such < represeptation is unique. _
Sonversety- - (p " a'-separatety continuous fFunctomrtravitg proper—
t+es (z) -and—(BS -then -for -aH+ (xt"x2) A.X B, -+the above tntegra +s
-weXt- defined and is indeed a bi_additive functional on B, X B, whieh
ﬁ?epmha%ei-y'eﬁﬁﬂmm%respeﬁ-P&a.e..eeﬁvergwee.
Proof: Let N be a biadditive functional on B.x B satisfying the - |

given continuity condition. Cdearly N also satisfies the corres-

pondi ng continuity condition in Theorem 7. Thus there exists a

. 2 .
unique separately continuous function @R -> R such that <p satisfies

condition(z) and represents N i.e.

N( Xy, X2) = (P(Xq, X2) ap; @u,
T1X T2
for all (x7, Xp) GBlX BZ' We proceed to showthat <p has the property
(BS . Suppose that <p lacks the property (BS . Then there exists

astrip G. = {(c,d),l a<d<bl or astripc_-f (cgla < ¢ < bM such

L —> _ 2 " Il.lll nmm
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that <p is unbounded on G, or Cy- Le“ s assume for the sake of

definiteness that <p is unbounded on O'J_. Let {©1}-1>;i be a sequence

of pdsitive reals such that £ 0. =1 and E 9. <lU29 - W
' =l : i 2n+l X n

choose inductively a sequence of points ((&*& )+ in 4+ as

foll ows. Denote

ko= mx |<p(c,d) |, 1,= sup [<p(crd) | .
€ a<d<b & .COo<C<GD

That kc is well-defined follows fromthe separate continuity of cp;

t hat £t1 is finite follows fromthe continuity of N(»,dl~) (see.
Theorem 3) . The assunption that <p is unbounded on GiJ_ I mplies
t hat kC i s unbounded as a function of ¢ and I..OI i s unbounded as
a function of d, a <d < b. Choose ¢. such that
ke Z4ejni
and then take d, €a,b] such that |<p(c, ,d,) | =k . In general
a1 1 -L C+
havi ng chosen {(c._,:,dl)} 1=<i=n1 select c, such that
- n-1
k, > 26" £ 6.1, +n" 1
“n "=l 9
and then choose d, such that "|g(c ,d) | =k, . Let x,%f2 "

fi- -
defined as foll ows.

_Xo x Sdj'n | wher e (Fj}jz_l is a

21« 3
di sj oi. nt sequence of neasurable sets such t hat l1o(F) =0C1U(Ty .
" nested 2 3 32 2

Let ; (E'} be afsequence of neasurable sets in " ~ such that './xl(E")
- 2" jiz2(Tj) . Proceeding as in Theorem?7 it is verified by direct
conputationthat if x," = c"__E
n
1 n

However the continuity hypothesis on N inplies N(x:""X,)->0 si nce
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«x'->'0 a.e. Hence we have a contradiction and the proof of property
(BS) is conplete.

: t he _
The converse assertion is an easy application of ,bounded convergence

theorem and the proof is omtted.

Remar k 4. It m ght be noted that the proof inplies that the N

E o e e T S :
defined in the theorem admts extensions to the spaces BY“X M and
j¥|.L* 82 retaining separate continuity with respect to a.e. conver-
gence, on their respective domains.

Next we proceed to represent biadditive functionals on
Lp(Ux DX Lpitta)  for 1 <. p < ao .

Theorem 9. A functional - N defined on L(JLL, ) xL (lig i s biadditive

and separately continuous with respect to the normtopology if and
. . 2

oty - Hhetre- exdsta— <& separatety conttrauots Frettorr (PR -> R

satisfying the growth condition

(QY) |<p(c,d) | < K(I +fc|)P(l + | d|)P for some constant K
: and all real numbers c,d,
such that
*) N(x ,x) =1J (pt x*xJdM & Hy
2 L

1 2 FiXFo *

-

for all_ paits (x’\x’\eLP(jL’\) X LP(M) e Such a representation is unique.
. _ )

Conversely. if <p is™ a_separately continuous function on R -e>» R

1 . _ _
hayi ng the property (@) then the preceding integral exists for all

pai rs (x, ,xpo) eL () x L (jup) and defines a separately continuous

bi addi ti ve functional on L (t..) x L (jiO.
' P 4 p ~

Proofp 4det pN zbe such arbiadditive separately continuous functional
on L (/i,) XL (/-O -, ’\e’\_ N, be the restriction of N to_the subspace

Bl xB2 ¢Llp(M ~* ~0(~2~ where B" is the vector space of essentially
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bounded functions on (T._,L..,(i.) . By Lebesgue's bounded convergence
JL JL . J- - .
theoremit is verified that N satisfies the hypothesis of Theorem 7.
' 2

Thus there exists a unique separately continuous function <R ->R
with the properties (z) and (BB) such that fo,r pCx-*x" eB" Bp
N(xl,xz) =, f ) p(xl,xz)dpl® By (1)
T1XT2
Next we remark that for a fixed c (for a fixed d) there exists

a constant K. (I*9. such that |(p(c,d) | < Ko[1 + |d|]P for all d
(I(c.,d | < La[l + | c|]P for all d). For if one of the above in-

-equalities is fal se, say if there does not exist a constant K ,

and ©
then there exists a sequence {d } ., suchthat |d | ->o00 |<(c,d) |>n]d '
Ry of Ne-y TS contradictdl.
Hence by Theorem 4 the conti nui of Nl 1/ ) i's contradicted.
Thus there do exist such constants K. and L,, which we will here-

c a :
. c.d
after take to be Kke-- MP, {[ME))RP ™ “H—~ . A A SR
Usi ng the above inequalities the representation (1) can be
extended to the case of pairs (xi,xz) X, sinple and X, in Lp (/19

or 'x,l in Lp(/i]) and x, sinpletas follows. Let x’\.l be si npl e.
Then since "M is afinite measure® B, is a dense subset of L (juy
and there exists a sequence Xi_'”g SUEAt hat x":> X« i_n t he Lp-norm
“Further we can select x3 such that |x§ < |x| and -> X,

pointwise a.e. Since (xi*x3) eByx B, it follows from (1) that
A /\)— | n -
N(x X J <p(xl,x2)dp.l® K. |
T1XT2

Now |<p(x,, .,d) |<K (1 + |d|)P where' K =sup{K} . ,F being the
Xor P C Cér

range of the sinple function x, . *Since (p(x-~x") -?* xpx. ,%,) a.e. X yi2

it follows from Lebesgue's dom nated convergence theorem that
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' , ; . ' n
N(xl,xz) = I|ml\tx?"x_2) = limJ (p(xl,xz)d,u1® ",
n->00 n>® o
1 2
= ot xpan@u, (2)
Tlx T2

Usi ng the above representation we prove that <p satisfies the

growt h condition (Gf). Let _{63. }J(>1 be a sequence of positive real

nunabers such t hat L e =1 and E O. <"19 . Suppose that <p
' . . - jznTe : s |
does not satisfy (@) . W shall choose a sequence f(c. {d.) Ji»7 @8

foll ows. Sel ect' C, Stjch t hat
Ke »8ep-*(i + e NP
1
and t hen take d,l to be such that
lotey,d;) | ?_%Kcl(l + {a; ¥ .

In general having chosen (Gid.)_ 1 %_’\ I < n-1" choose ¢ such t hat

N-1
* >4 Gt LLg (1 + |al)Per/ (1 + |d. )P+ 2"""V\ (33
“n j=1 j . J n _
where
5 n-1 . n-1 1 i-1
W78 K Q27NX + M+ L 277 S L, 0./(1 + |d. )F-+n
i=l Ci! X e =] =1 4 D
(3b)"
and then take d to be such that
n
letc,. @ )| = 3 Ko (L + [aDF . (@)

Let fE~)~M- and {5’. 5 >N be sequences of disjoint nmeasurable sets

in T, and T, respectively such that

M(E) = 2~*M(T1)/ (1 + [c.|)? , M(5')) - eM(T2)/(l+]djj)P.
Define x..= 2d.A .. Clearly xg9eL (i ) . Furthernore the sequence
' s j n
of sinple functions ¢xj = £ c. Xg and the function Xxy= L ¢c; %

i=1 i i1 i
arein LP(M‘) and Xj - Xx in LEgM() e Thus N(X”l,xz)-> N( X1, X2)
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as n-* oo. Consider the I ntegral representation whi ch we have
established for Nf x~Ax” when either x; or X, is a sinple

function. This permts us to wite

N(x-,x-) = po( Z c , & d ® u
) { jo=] xEl j>1 % F 1= "2
11XT
no2 : (5)
= Z L <p(ci,dj) M(E)M(F)
i=1l j>1
Furthernore we note that for each 1 <__?\ I <n )
i-1 i-1
| Zole,anuE)uE)] < L Ly (1+ \c+|)Pe s/ P py (B8, (T,)
j=1 _ j=1

- (6)

Al so

VoL o<ple dOU(E IR ) 1< LK (1+do |) e/ ([ d, )X (E, ) By (T,)
e m

J>H
- (7)
From (5) , (6), and (7) it is clear that
' 1
N, X' | > ljfl<p(c a0 )i E Wimgllr) | - i=LI J>2I loles,d5) lry B p,y (7))

> OMey, do) | e/ (i +] ] )P Uz L (L+le,[YPoyfiefasDP
j=1 dj J ]

- e. B |
J)gﬂ_}chn ]ul( ) My ( F)

n-1 i-1

- Z{K 8.+ TL (L+|c; yP e./(1+la. NP
ALY 5% [y | 3 | jf

. i o
+ j;fi+1K°i 0-127"/+|c; N ¥ry (T e (T,)  2n

which contradicts the fact that N(x/*x"-* N(x,L,'xz).. Thus 9 satis-
fies (_G‘i).

Using this property of <p the domain of validity of representation (2)
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can be. extended to all of L }SIVL) * L giz) : Since <p satisfies

(Glp) it_ is c;l ear t.hat (x"~Axn eLP(f’\) X Lp( M) i nplies cpq-AxA €L1(Plxﬂ'2) .
Let x* be a sequence in B” such that x—j’_\n-> xj" in LP(IVh) . We

can choose xj such that Ix{] < \xs\ and x{-» x« a.e. Thus

@ (x],%,) > <p(xuxz) a.e. and
| 3 P < x(L + P 1+ P
_ltpgxl,xz) < Kl |2 )5 lxz )

SR+ T PP+ Ixg))"

L]

‘Hence by applying the dom nated convergence theorem we obtain

' . n
N(xl,x2) = lim N(xl,xz) = f <p(xl,x2)dpl® By
. n-» 00 ' TXT

12
THe essential part in the converse namely <p (x4, "xj eL™ (/i" ]W)
is once again an application of the bounded cohvergénce t heorem and
.si. mlar in dé.t ails to the argument in the preceedi ng paragr.aph. Hence

t he détails are omtted.

Remark 5." "It is easily verified that the theoremremains true if
N A N LA Al .
separate continuity is replaced throughout by joint continuity.

Bef ore ‘concluding this section we state the results when the
bi addi tive functional on Lp(jul) X LP(MZ) is continuous with respect to a.e,
convergence or convergence in measure. Since the proofs are
essentially simlar to these in precedingtheorens we omt them

Theorem 10. Suppose N i__s_'a_‘bi additive functi onal on_ L LSI\A,)J_X Lp(M)l ..

Then N is separately continuous with respect to a.e. convergence

i_f and only Lj_-thefe exists _a separately continuous function

2 -
<p:R -> R seatisfying the preperites (z) -ahrd (BS) -ant t+he growth
condi ti on*"

(Gl) a(C)..SK(l + 1cl)? and 'jS(d) < K(1 + jd|)" for

some fixed K ahd, all real nunber. c,d

_ ¥ a(c) and j3(d) -are defined in (BS) .
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such that
(*) N (x,,%,) =f @(x,%,) @ py.
T1XTo '
Remark 6. The theoremremains true even if a.e. convergence is re-
Pl .
pl aced by convergence in neasure or separate continuity is replaced

by joint continuity wherever it occurs.

4. Representation of Biadditive Functionals in the a-fihite Case.

| In this section the representation theorens obtained in
t he brebedi ng séction are genefalized to the a-finite case. The
passage fromthe .finite to the a-finite case for biadditive functionals
tijrns out to be very simlar to that carried out for additive function-
al s in.'Section 2. For reasons nentioned in Remark 2 we choose the
dormai n of thé bi additive functional to be “,(My)* " (M) (I <£I< oD) .
It is assuned in this section that the rreasurﬁe spaces ¢ (T, Z, [ x™)

i -~ 1,2 are afinite nonatoni ¢ and t hat I\/](_'T.l = 00 .

.Theorem 11.  Suppose that N i£ a"biadditive functional defined on_

Rt N

L (juy) x L (/ig . Then N s separately continuous wi th respect 1o
p i p 2 - - e % . :

mmrmvgvgrmmrrrﬁwma real. valued cont1 nuous
functiomr cp O R MY R sArTsSTtyrng fhe conditron (z) and tThe
growttr comditiTomr (GQ) | <p(c,d) | < k|c|P|d|P =For Sonme constant k and
jTH Teat mumbers ¢, d, sUCH Tiar The Tepresent atron

") N(x1,%X2) = J (p(x1,x)d/i®\i, is valid

TleZ

The function <p JLs” uniquely determned by the equation (*) .

PI’OOf: Let EJJ-JE_'2 t>e anY t wo measurabl e s&ts in T, -aLnd T2 such

that 0 < M L*) < oo. Consider the measure spaces -(T,.2)/i": ) where
' B _
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jiiE Is the contraction of /i® to E” Consider the functional

N,' » canoni cal ly det-errri ned by N defined on L (ju, -} XL (i~ )
by_t he formula N, , (X..,X,) = Ntx-"x*) where x..* are the functions
ridl j-Bep X n X z |
in Lp(jIIX) i = 1,2 defined by x,'|E :&,&'|TX~EX =0. It
follows fromthe properties of N that N_ is biadditive on
: =1 F2

L X L and is se'arétel conti nuous. Applying Theorem 9
| P(I\;!gpi ) P(l\,/é}”\?z) p y _ pplying

we see that there exists a separately continuous function Pe g
! . . ’

2 . p X" 2
on R->R having the properties (z) and (G2 such that

-NEl’EZ (%, ,%,) . = )' wEl’Ez ('x.l"XZ)d“lﬁ:l® ‘u'ZEz E
. E1%E2

NQW noting that N( XE «) and N(F X~) take the same val ues on equi -

measur abl e functi ons (condition( 2) in definition 1) and that the neas-

ure spaces are nonatonic we see by an argunent simlar to that in

t he second par agr aph- of Theorem 5 that the representing function

A . 3 .
E,l,éE,. i's |ndep_endent of the sets 'E'x' Let < By <p for a_II EX

such that E#S,;, 0</4q () <oo. Wth <p chosen as abové | et us

consi der two sinple functions x.; on (T.glL.gju) i = 172. Since

the supports of the x4 hav.e finite méasure it follows fromthe

- preceeding remarks that in this situation

N(x;,x,) = [ Qlx,x,0dp S My, | (1)
Tle2

Next we observe that for each pair of real nunbers <c¢*, d* the function

<P satisfies

| <p(c*,d)'| < KA d| P for all d, | <p(c,d*)| < Lg*| c|® for all c,

(2)
For et c* be given and choose E.€L, such that WE) = 1. Then
XX X X

N(C*)CEJ._*°) is a continuous additive functiolnal on Lp(/xz) . Hence
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'-fromTheoremG it follows that there éxists a continuous function

& ~R-*>R Such that 1it_, (d | <K. .| dl P for sone constant K *
TQ JC _ - c s c . : ' c
and all de(-cD, 00) and such that
N( c* Xg , X2) :j OCA(Xz) d/ i 2 for XzFLp(/ | 2) .
. 1 T2 .
Further the representing function j/>c" Is unique. In particular if

Esel,, Nb( Ez) =1 then

N (c* XEl,d XEZ)

{ ¥oe(d )(.Ez) di,
T2 (3)
= Pox (D)

' Prom equations (1) and (3) it follows that

¢c* (@) = N(e* XE| -deZ)
= [ ole* ¥y ,axy Yo, ®u,
D X 1 2
172 _
= (O(C*,d) p'l (El)pz (E2) .
Thus <p(c*~d) = Oc’\ (d) . Thus the first equat i.on in (2)is a conseq.uenc‘e

of the properties of Oc". - An entirely sinilar ar gunment y| el ds the
second inequality in (2). Hereafter we shall t ake Ky and L»

c Ci
to be defined as foll ows

.V=su Jo(c*,d /.dp, L ..= su c,d) |/fc|”
SA) ( ) |/]d| ax CQfO(P( ) | |

Notice that since <p satisfies the grovvt'h conditions.in (2), it
follows by Theorem 6 that for each set EeS,; 0 < M{E) < oo, and any
x2€Lp(_‘u2)

T1XTo '

wWitha simlar formula applying for N(deXW) . By the additivity of
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N this leads to the repr esent ati on

N(X.i,Xz) = <p( X1, X2) dM® H - X1€Lp (M), x26Lp( M) (4)
’ T1XT2

vvhenever_ X, Or X, is a sinple function.

Now we proceed to show that <p satisfies the growth condition
(C_S:‘). The proof of this assertion is quite sirrilaf to an argunent
occurring in the proof of Theorem9, If (@) is invalid then
| {Kc/|c|"|_c £ 0} is unbounded. Le.t (GL'}:l 2. be a sequence of
0, =1, £ @ glre . v

>n+1 3 2 n

positive real nunbers such that ,
3
)_ !J_ as follows. Select

L
2‘.
choose inductively a sequence {(c.,

c, / 0 such that

L 5
, 2 p

Kcl.?_ 8 ;" |cy|
and then take d, 0 to be such that

fote;,a) [ > 3/4 Kclldllp

I n general having chosen (ci,d.l) 1 <i <n-1 choose cn_" 0 such
't hat |

K >4 "L ccip ldi [P+ AR AT (54
. C>_ vV . d.l Jpv_l I_l /\'/\r'/\'x ( )
n 0=
where the quantity ay Is required to satisfy
n-1 N n-1 . i-1. -
% >.3/2 LK ei2"V|c 1P+ £ 2"1( L Lde /Jd 5 + n, (5b)
i=1 1 i=1 5

and then take dr » 0 to be such that |

b (¢, gi- | > 374 E(n'ldn'l P %6)
Let fEi)i-: and {FJ} n.1 be sequences of disjoint neasurable sets
in T, and T, respectively such that

NED) = 2. Vi cjP and Ha(Fy) = gj/ldj[P.’
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Define x9 = Sd. \ P Jearly x«elL (/Q_. Furt hernore the sequence
L] - D - z P
j=l J
of sinple functions

Xn §C )& andtn? fnction x, = Ec DE

i=1 % X st E

are in Lp(/i"‘) : and Xq-" X in Lpdt!) e Thus I\I(xi,xz)§> N( Xp X>)
as n— o0o. Consider the integral representation (6) which we have
established for N when either of its argurments is a sinple function.

This permts us to wite

n ' .
NGGx) = f . @ ny
: T XTJ - t S 3>1PF3 1

N (7

S Eqp(c i295) # (B, (B
|—Ij._

1

Furthernore we note that for each 1 <i <n
i-1 N
] Etp(cl,d)pl(E)pz(F), ANICi | ANER] |"F:? (8

j=1 - B
Al so '

|Z ol d)u(E)u(F)<EK a,|Pe./k. 1P uq(E,)
158 1 5 ! S ll |Fo /B, 15wy (g

(9)
=K¢6,/2" (EN
_ i
Fromequations (5)-(9) it is clear that

N, 30) | 2 1M (60, )T Xa(En) M(P) | - S| S<oley,a )iy ) k)|

. i 1=1 >1

2. tleten,dn) len/IdnlP - ~ \ 4 _|cn|P%./|d3. P - k_ e /2y, ()

J n
1] ] b p P
-Zi[tp( ,d)e/d +ZFL . d 2
i=1 i ;1 j=1 djlc | /I =+ KC 9/ ]""1(E

=N
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whi ch contradicts the flact that N(XE, xz)-> Nf x-"x" .

Conversely sUppose that <p 1is a separately continuous function
with the properties (2) 'and (G). Then it is clear that for all pairs
(X1, x2)€LP_(fi_j) XPL (M), (p(xi, Xz)eLy(/1,® " Iand that the functional
N defined by

N( X1, X2) = J <p(Xy, x2)d/i©/i, is biadditive. -
T1XT2

‘Now suppose x"-~x.”™ in Lp(dLY)  and XZeL_p"Z"# since xfLax in
Lp(/i-L) and <P(™ d) verifies condi tions (i) and (2) of Theor<3n6, it
follows that if e Ql ,0 are the functions on T_z defined a.e. by

bolt) = [ @Gy (eg))dn

T
and ,
oty = Jetmpxptean
T.| .

then”” On-~ 0 poi _ntvvi se on TA. Since <p(x"Xxy) and "(x~x”" are
integrable-vvith respect to /i,®]lUty the functions 1ij) and 0 arein
Le (/® and recalling that <p satisfies (G) it fol | ows th.at
Un(y) | <K X N[AxTIP and 10(y)'! < Kxo(y)|7]xi||P. Since the set
(117 Fsz. 11X} is abounded set and since x,€EL(/*M we nmay apply |
the dom nated convergence theorem to deduce |

f'l‘ ¢nd“2*9'4 Ydp,, i.e N(x;l,xz)._;. N (x),%,) . H

2 ] 2
The proof of the theoremis conpl et e.
Simlarly one can establish that‘the anal ogues in the cx-finite

case of Theorem 10 and Remark 5 continue to be true

provided that condition (@) in Theorem 10 is replaced by
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(QD a(c) <Klc|®? , j8(d < K/ d|® for some K and all real c,¢

~where a(c) and ]8d are as defined in (BS .

In conclusion we wish to point out that although our arguments
have been given for real valued functionals they apply equally well
to conplex valued functionals.. Next we nmention a few problens not
considered in this paper, W have only partial results concerning
integral representations of additive functionals when the neasure
| space contains atoms. These results are sinilar to Theorem 1.8 in
[1]+ |In several theorems in this paper we considered the donain to
be an Lpspace. Some of these admit straightforward generalizations
to the case when LP is replaced by an Orlicz function space,
Luxenmburg [10] or Zanen [11]”but our investigation of this matter
Is not conplete. The additive functionals considered here admt a
natural generalization to vector val ued additive functional s. Further
the case in which the measure is a vector valued neasure aiso arises

in a natural way.

We hope to discuss these and other related problens el sewhere.
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