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Representation of Additive and Biadditive Functionals

V. J. Mizel1 and K. Sundaresan

This paper is concerned with obtaining integral representations

of a class of nonlinear functionals on function spaces of measurable

functions. These functionals are known as additive functionals and

their representation has been studied in recent papers of Martin and

Mizel [1], Chacon and Friedman [2] and Friedman and Katz [3]. The

class of additive functionals studied in this paper is the same as

in [1] and has been found to be useful in the theory of fading memory

in Continuum mechanics,(Coleman and Mizel [4]) . Such functionals

also occur in the functional analytic study of ordinary differential

equations. These and other applications will be dealt with elsewhere

Apart from these applications the representation theorems obtained

here are of intrinsic interest and provide generalizations of results

established in Halmos [5] and Bartle and Joichi [7] concerning certain

nonlinear operators on function spaces.

In this paper we propose to make a systematic study of the repre-

sentation of additive functionals under varied continuity constraints.

In addition since the applications to fading memory and nonlinear

differential equations often require functionals of several variables,

we define multiadditive functionals and study their representation.

We mention in this connection that bilinear functionals over the

Cartesian products of some important Banach spaces have been studied

by Morse and Transue [9] and others.

• .After stating below the basic definitions and notations, we analyze

1 Jpirtially supported by NSF Grant GP-6173
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in Sections 1 and 2 the representation of additive functionals over

subspaces of the space of measurable functions on finite nonatomic

and cx-f inite nonatomic measure spaces . In Sections 3 and

4 these results are generalized to the case of multiadditive function-

als.

Throughout the paper (T̂ Î /i) with or without a suffix i is a

nonatomic measure space with E a cx-algebra of subsets of the set

T and pi a non-zero measure. M denotes the vector space of real

valued measurable functions on (T̂ Ŝ /x) with the usual identification

of two functions which are equal a.e,t R denotes the real line and

and Rn the n-dimensional space.

Definition 1. ££ L IJÊ  a_ subspace of M then a^ function F cm L

is called an additive functional if (1) P(f + g) = F(f) + F (g)

whenever f, g are two functions in L such that f (x)g(x) = 0

a.e.j and (2) F(f) = F (g) if. f,g are eauimeasurable functions,

le.jLf for every Borel set B in R /i (f (B)) = fi (g~ (B)) .

Functionals that satisfy condition (2) are called statistic-

al in [1] .

Definition 2. Let (T. , £. 3p.) i = 1,2 be two measure spaces and let

M. be the space of measurable functions on T. . If L. is a vector

subspace of M. for i = 1,2 then ci functional F on L^X L2 is

said to be biadditive provided F(*,,y) and Fix,*) are additive for

every function yeLo and XGL.. . More generally one defines n-additive

functionals for n > 2.

Before proceeding to the representation theorem we restate for

convenience of reference a useful theorem established in [1].

Theorem 1. Let (T.L u) be a finite nonatomic measure space

such that M(T) ^ 0. Let p be an additive functional on L (n)
' ' ••«•»—««. ! • >• I " I ' l l i » i I wmm—mmm \JLj



which is continuous in the sense that whenever { x } - in L (/i)

is a sequence converging boundedly a.e., to the function x in L (/i)

then F (x )—> F(x) . Then there exists a unique continuous function
"• n — — — — — — — — , . , — _ . •

f:R->R such that f(0) =0 and for all xeL

F(x) = T

1. Representation of Additive functionals in the Case of Finite

Nonatomic Measure Space.

The theorems established in this section are similar to Theorem

1 except that different continuity conditions are imposed on the

additive functional. We state first a proposition which is a gener-

alization of the above theorem and states that the above theorem is

true even if x —^ x boundedly in measure.

Proposition 1. Let (T̂ Ê /i) be^ a^ in Theorem 1 and let F be. an

additive functional on L (ju) . Then F (x ) - ^ F (x) whenever the

sequence of functions x in L (u) converges boundedly in measure
— . n -"•""- GO — -.••• —• •

to the function x ij? and only if F admits an integral representa-

tion of the form F (x) = J f(x)d(i for some continuous function on

R -> R such that f (o) = 0 . Such <a representing function f is_ unique

Proof: Since a.e. convergence on a finite measure space implies

convergence in measure it follows from Theorem 1 that F admits a

unique integral representation satisfying the conditions in Theorem 1.

Conversely suppose f is a continuous function on R-> R such that

f(o) = 0 . Let F be defined on L (ju) by the formula F (x) -J t (x)
OO T

Since the additivity of F is obvious it suffices to show that

xn-» x boundedly in measure implies P(x]-f F(x). Since f is

continuous and x ,x are totally measurable functions it follows by



Theorem II. 2.12 in Dunford and Schwartz [6] that f(x ) -^ f (x) bound-

edly in measure. Thus f (x ) and f(x) are in L-. (/LX) and

F (xn) -> F (x) .

Next we proceed to the case of not necessarily bounded a.e.

convergence and convergence in measure.

Theorem 2. Suppose (T3L3II) ijs aŝ  iri Theorem 1 and let F:M-^ R

be an additive functional on M. Then F (x )^ F(x) whenever x

is a^ sequence in M . such that x -^ x ill M a.e. iJ[ and only if

there exists a^ continuous function f on R-> R such that f (0) =0

and range f i^ .a bounded set in R 3 for which F (x) =J f (x) d/i

for all xeM. Such ci representation is unique.

Proof: Let f be a function having the properties stated in the

theorem. Consider the functional F:M-3^ R defined by F (x) =J f (x)d/i,
T

Since range f is bounded and f is continuous the functional F

is well defined and it is clear that F is additive. Now consider

a sequence {x ] in M which converges to the measurable function

x a.e. Since f is continuous f(x ) - ^ f(x) a.e. Since range f

is bounded it follows by the theorem on dominated convergence that

F(xn)—>F(x). Conversely suppose that F is an additive functional

on M satisfying the given continuity condition. Then clearly

F^ = F | L verifies the hypothesis in Theorem 1. Thus there exists

a unique continuous function f on R into R such that f(o) =0

and for all x in L (/i) 3 F (x) = j f(x)djiz. Suppose that range f
T

is unbounded. Then there exists a sequence of reals r such that

|r |-̂ . oo and 1 < |f(r ) |^oo . Since the measure space is nonatomic

there exists a decreasing sequence of measurable sets E such that

L e t xn = r n ^ E ' Clearly xn€M and x^ 0^ n

a.e. However since x^L^ (n) , P (xn) =ff(xn)dfi = ± /J(T) is



a contradiction. Thus range f is bounded.

Next let x be a nonnegative function in M. There exists a

sequence s of simple functions such that s ^f x a.e. Since f

is continuous f(s ) -> f (x) boundedly a.e. Thus • f (x) €L, (/i)- and

J f(x)d/i = lim Jf{s )d/i = lim F(s ) = F (x) . Thus the representation
T T n n

of F is valid.

The uniqueness of F is clear by applying Theorem 1 to the

functional F,.

As a corollary we obtain the following representation theorem

for additive functionals on the topological vector space M with the

topology of convergence in measure.

Corollary. F is an additive functional on M for which F (x )->F(x)

whenever x •->- x in measure if and only if there exists a continuous

function f: R -> R with range f bounded and f (o) =0 such that

for all x€Mj F(x) = Jf(x)djU. Such a representation is unique.
T

The proof is similar to that of Proposition 1 and will thus be

omitted.

Remark 1. Theorem 2 is valid even if the continuity condition is
replaced by: x —> x almost uniformly d£> F (x )-^F(x) . The existence

of a representation for this case follows from the proof of Theorem 1

(see [1]). The necessity and sufficiency of boundedness of range f

follow respectively from arguments in Theorem 2 and the observation

that almost uniform convergence implies convergence in measure.

Next we turn our attention to the vector subspaces L (ju) (1 £ p < oo)

of the vector space M. We equip the vector spaces L (JLI) with the

usual L -norm.
P

Theorem 3O If (T,Zr,]Li) is a finite nonatomic measure space and if
+y*vws\rt*f\ ̂ %*v — — — —— : —-—! — ' — - — —

F is an additive functional on L (/i) then F (x )—^F(x) whenever
." "" : : '— — P n ' , *



x -V x a.e. if and only if there exists a continuous function
n * — — — "
f: R-^ R such that (1) f (0) = 0, (2) range f %s_ <* bounded set in .

R and, (3) for every xeL (ju) , F (x) = /f(x)d/i. Such a representation_ p ^

of F is. unique.

Proof: Let F be an additive functional on L (/i) satisfying the

convergence condition in the theorem. Considering the additive function-

al F, = F|L (/it) and noting that F, (x ) -> F (x) if a sequence

x eL (ju) converges boundedly a.e. to xeL (/i) we see by Theorem 1

that there exists a unique continuous function f: R-> R with

f(0) =0 and such that for all xeL^ (M) , P]_ (x) = ff(x)d^i. Now it

is claimed that f must satisfy condition (2). Suppose that f

does not satisfy condition (2). Then there exists a sequence {r }

in R such that | rn |-> oo and 1 < |f(rn) | f oo . Let {^j be a decreasing

sequence of measurable sets in T such that M (B ) ~|f / \ I M(T) •

Since /i( B ) - ^ 0 the sequence of functions r /tD-> 0 a.e. Clearlyn n B n

a n d F(rn^B } = ^ f (rn^B } d/i = ± ^ ( T ) ' T h U S

bounded range.

Since the verification of the remaining assertion is routine the

proof of the theorem is complete.

Corollary. The above theorem is true even if convergence a.e. is

replaced by convergence in measure.

The proof of this is similar to that for the Corollary of Theorem 2.

Theorem 4. Ij[ F is. an additive functional on L (/x) where jU is

nonatomic and 0< \L (T) <oo then F i^ continuous on the Banach space

kQ (M) ij. and only if there exists a continuous function f: R->R

such that (1) f(0) = 0 (2) lim If ̂ 1 I < oo and (3) for xeL
~~Z || \x^

F(x) = J f (x)dM.
T



Proof: Let F be a continuous additive functional on the Banach space

L (/i) • Passing on to the restriction F, = PJL (/i) and appealing

to Theorem 1 it is at once verified that there exists a unique contin-

uous function f: R^ R such that f(0) =0 and for all xeL

F(x) = F, (x) = /f (x)dju. We claim that f satisfies condition (2) •
T

For if not there exists a sequence [r } in R such that 1 < |f (r ) | =

n|r |^. Let {E } be a sequence of measurable sets in T such that

p £ M<TM0, r ^ ^ 0 inn TfTFlT nE; p £ ^
L -norm. However since F(r A ) = J f (r A. ) d/i = t/i(T) / 0.
p ^ n ^ T n E^

F (r ^ )-/}• 0 contradicting the continuity of F. Hence f satisfies
n

condition (2) of the theorem.

We proceed next to verify that the function f represents F

as in (3) of the theorem. We note that if xeL (/i) then ffxJeL-jf/i)

For condition (2) implies there exist constants c and k such that

|t| > c implies |f (t) | < k|t|p. Thus if E± = {t| |x(t) | < c} and

then |f(x) [ is bounded on Ê ^ and |f(xXE ) I < 3c|xXE I
P

Since xcL (jut) implies [ x ^ | GL (M) it follows that f(x)eL,(ji).

Now let xeL (fi) . Since L (/i) is a dense subset of the

Banach space L (/i) there exists a sequence x GL (/i) such that

||x -x||p"^0. As already observed in the first paragraph of the proof,

F(x ) =/f(x ) djU and since F is continuous F (x) = lim F (x ) =n —, n n

lim/f (x )d/i0 Thus it is sufficient to show that f (x ) -> f (x) in
m n n

the space L, (jii) # This will be accomplished by applying Vitali* s

convergence theorem for a statement of which we refer to Theorem 7.13,

Bartle [8]. First note that according to that theorem the condition

||x -x|| -^ 0 is equivalent on the finite measure space (T,2,/i) ton p

the assertions (i) x -> x in measure, (ii) for each e > 0 there

is a 6(e) > 0 such that if EeS and ju(E) < &(e), then J^ [ xn |
 pdjU < €
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for all n >/l.

Now by the continuity of f we deduce from (i) the assertion

(i!) f (x ) -£• f (x) in measure. Moreover since f satisfies condition

(2) , there exist constants, c and K such that |f(t) | < K|t|^ when-

ever |t| > c. Let K-. = sup |f(t) |. Then we deduce from (ii) the
|t|< c

assertion (iiT) for each e > 0 there is a 6!(e) > 0 such that

if M(E) < <51 (e) 3 t h e n ^ | f (x ) |dju < e f o r a l l n >. 1. T h i s s t a t e -

ment is clearly valid if we define 6* (e) = min{5(e/2K), -r̂ —}
2 K1

Finally we note that by the case p = 1 of Vitali*s theorem,

(i!) and (ii !) suffice on the finite measure space (T,L, /i) to imply

that f (x ) -> f (x) in L, (AO . Thus we obtain

F(x) = lim F(xn) = lim/f (xn)d/i ==/f (x)d/i,

which is the desired representation.

Conversely if f is a continuous function on R-V R satisfy-

ing conditions (1) and (2) then the functional F(x) = Jf(x)djL4 is
T

well defined on L (pi) and is clearly additive. By arguing as in

the preceding paragraph it is seen that F is continuous as well^

and the proof is complete.

2. Representation of Additive Functionals in the a-finite

Nonatomic Case.

We proceed next to the case in which (T̂ L̂ pt) is a a-finite

nonatomic measure space with /i(T) = <x> .

Remark 2. We note that there exist no nontrivial additive function-

als on M. For if X n G £ is such that 0 < U(X^) < oo we can find
-L -A-

a sequence ^Xî -j_> \ of pariwise disjoint measurable sets such that

M (X^) = JJ-(X̂ ). If F is any additive functional on M then because of
condition (2) in Definition 1 for any constant K, F ( K V ) is

*i



independent of i. Thus if F(K/[v- ) £ O then ( F ( K X M X ^ I
 i s

infinite. Since F is real valued function this is a contradiction.

Thus F(S) = 0 for simple functions S. With any reasonable continu-

•ity condition the last equation in turn implies F(x) = 0 for all

measurable functions x. The same argument applies to functions

xeL (AO . For this reason we confine our attention to the case of

additive functionals on L (p) 3 1 < p < oo .

Theorem 5. Let F be ari additive functional on L_ (M) . Then

F (x ) —> F(x) whenever the sequence {x } in L (/i) is such that

x —> x a .e. for some function xeL (M) ijf and only if there

exists a_ continuous function f: R -> R such that (1) f (0) = 0 and

range f ±s_ _a bounded set in R^ (2) for some constant k and for

all real numbers |f(r)| <k|r|p,i.e. Tim ' . 'Tl-' < oo in view of

V condition (1), and (3) for all x€L (p) , F (x) =/f(x)d/i. Such
p /^

fL r e P r e s e n t a t i Q n of the functional F iŝ  unique.

Proof: Let f be a real valued continuous function on R satisfy-

ing conditions (1) and (2) in the above statement. Since f satis-

fies condition (2) it follows by Theorem 1 in Halmos [5] that
xeL (jit) implies f(x)€L,(jU). Since f is continuous f (x )-v.f(x)

xr "̂* n

a.e. whenever x -> x a.e. Thus since range f is bounded it follows

by Lebesguefs theorem on dominated convergence that j f(x ) djti-̂ /f (x) d/x
T n T

whenever xnJ,x eL (ji) and xn->x a.e. Hence if F is the functional

defined by F (x) = )t (x) d/i then F has the convergence property in
T

the theorem and further it is verified that F is additive on L (p) .

Thus the proof of the if part is complete.

Conversely, suppose F is an additive functional on L (/i)

satisfying the continuity condition in the theorem. If B is any

measurable set in T with 0 < /i(B) < OD consider the space
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L (T,£,/i ) where H is the contraction of /i to B. Let us

define a functional F_ on L (/O by setting F (y) = F(y') where
D p JD X5

yf is the function in L (/i) such that y |B = y|B and y' |T~B = 0.

It is easily seen that Fgis a well defined functional on L p(M B) 9 so

that as a consequence of Theorem 3 the additive functional FR admits

a unique integral representation FB(y) = J^f(y)dM where f is a

continuous function on R •> R such that f(0) = 0 and f has bound-

ed range. Further we note that the function f determined by F

is independent of Bj for if C is another set in £ such that

0 < /x(C) < M(B) then by the nonatomicity of the measure space there

exists a measurable set B^ B such that M(B-.) = M(C) . Now since

for any real number r, *)L, and r)Cc are equimeasurable, F (rXB ) =

F (r/L) . Thus if f,g are the functions determined by FD and F^

then F (rXB) = P(rKc) i.e. FB (r)CB ) =* FQ (r^,) . Thus if f,g are

functions representing FR and F the preceding equation implies
f MiliBjJ = g(r)^(C) . Since M(B]L) = /x(C) it follows that f = g.

With f chosen as above let us consider any simple function S.

Denoting the support of S by N(S) it follows that F(S) = FN/gx (S) =

Jf(S)dju. Next we verify that f satisfies condition (2) . For
T
if not there exists a sequence of real numbers r -> 0 such that

|f (rn) | - n|r I . Let {B } be a sequence of measurable sets such

that M(Bn) = 'lf'(r-') 1 * Then the sequence of functions {r XR }

are in L (/i) and ||r X |L-> 0. Thus F (r X ) ~» 0. However
• P

 f
 n n p n ^n

F(r A ) = jf(r Y )dfl = +1 which is a contradiction. Thus f
n B n ^n Bn T n ^ n

satisfies the condition (2).

Now let us consider an arbitrary function xeL (u) and let x and
• P P

x̂ . be its positive and negative parts. Since F is additive F (x) =

F(xp) + F ( X
N ) • Let {Tn} be an increasing sequence of sets in S
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such that 0 < M(T ) < CD and T = U T Clearly {x )L } and

1 } are sequences in L (jit) such that x XT -> x a.e.

Hence F (x ) = lim F (x ^L ) = lim J f (x^ X )d/x. Since f satis-
•r n->oo n n-> oo i n

fies condition (2), f{x)eL1(^i) if xeL (/i) . In particular

f(x ) eL (̂) and- since | f (x \ ) |<|f(x ) | and f(x I ) -^ f (x )
PI P " * * ^ » i " ^ ' lr v\ xrn

a. e. we have by the dominated convergence theorem F(x ) =

m F (x XT ) = / f (xjd/x . A similar argument verifies t
n-> P T P
lim F (x XT ) = / f (xjd/x . A similar argument verifies the equation

n-> GO P n T P r

F(xN) =Jf(xN)dM. Thus F(x) =Jf(x)d|i for all X€L (/x) . The proof

is complete.

We remark that Theorem 5 is valid even if the continuity condi-

tion is replaced by F (xn) -£• F (x) whenever the sequence {xn} in

L (JJL) converges in measure to x in L (/i) . The proof is very simi-

lar in details to that of the preceding theorem except that instead

of appealing to Theorem 3 one appeals to the corollary following.

Theorem 3.

Theorem 6. Let F bje aun additive functional on L (/i) for some

is continuous on the Banach space L (/i) îf1 < p < GD . Then

and only if F admits the following integral representation. For

all xeL (/i) , F(x) = J f (x) d/i where f is a continuous function on
P T

R~> R such that (1) f (0) = 0, (2) |f (r) | < k|r|p for all real

numbers r and for some constant k.

The proof is very similar in details to that of Theorem 5 except

that instead of applying Theorem 3 we need to apply Theorem 4.

Next we proceed to the representation of multiadditive function-

als. We confine our attention to the case of biadditive functionals

since the passage to M-additive functionals for M > 2 is a straight-

forward generalization of the biadditive situation.
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3. Representation of Biadditive Functionals in the Finite

Nonatomic Case.

The measure spaces (T^ 2^, Mi) i = 1,2 in this section

are finite nonatomic and 0 < Mi(Ti) < oo . The product measure

associated with these measure spaces is denoted by Mj, d$ M2 •
 To

facilitate the presentation we adhere to the following notation in

the rest of the paper.

2

Let <p be a function on R -> R. We define the following

properties of (p.

(z) <p(a,O) = <p(O,b) = 0 for all real numbers a,b.
2

(BB) <p is bounded on bounded sets in R .

(BS) <p is bounded on finite strips S = {(a,b)j|a| < c},

S, = { (a,b) | |b| < d) ; sup|<p(a,b) | on these strips will

be denoted by a(c) and ,8(d) respectively.

Remark 3̂ . Suppose that <p is separately continuous, i.e. <p(a, •)

and <p(*,b) are continuous for each a,beR. If for i = 1,2 f.

are measurable functions on the measure spaces (T.,L. ,/i.) then

,f2) is measurable on the product of these measure spaces. For

if E ^ L T consider the function (pic, X^ , f o) = <p(0,fo) + ((pic.Y^ ,fn)

- <p(O,fo)) = cp(0,fo) + ^(cn ^ ,fj . It is easily verified that

this function is measurable on the product space. Moreover using the

fact that <p(O,f2) =0 it is easily verified that <p(f^,f ) is

measurable whenever f, is a simple function. Finally since every

measurable function on (T,,£,,/i1) is the a.e. limit of a sequence

of simple functions it follows from the continuity of <p in its

first argument that the assertion holds for cp(f , f ), In the proofs

to follow we shall assume this fact without special mention.

Z' L e t Bi> i = 132 ^£ the vector spaces £f essentially
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bounded measurable functions on the finite nonatomic measure spaces

(T. 3L. ,\l.) . Let N be £ biadditive functional on B, x B
2 which is

continuous in the following sense. If {x̂ ,} is_ a_ sequence in B,

such that x̂ 1 ̂ > xn GB. boundedly a.e. then N (x1 ,xo) -> N (x, ,xo) for

each xoeBo. Likewise if {x^} is a sequence in Bo such that

X2~>x 2eB 2 boundedly a,e, then Nfx^j^x^-V N(x-.,x2) for each x.eB,.

2 1

For each such N there exists a^ unique function <p:R -> R which

is separately continuous, satisfies (z) and (BB)9 and which for

each (XT^X^JGBTX B O satisfies
± Z ± Z, "

(*) N(x.,x ) =/ <p(x ,xjd/i,® Mo-
x Z T i x T 2 • •

Conversely if <p i^ a^ separately continuous function satisfying

conditions (z) and (BB) then the functional N(xn,xo) =J <p(x, ,xo) d/i.
1 2 T^XT 1 2 1

is biadditive and continuous in the sense mentioned above.

Proof: Let x.,€B . Then by the biadditivity of N the functional

N(x,,0 is additive and satisfies the hypotheses of Theorem 1. Thus

there exists a unique continuous function f :R-> R, f (0) = 0,
xl xl

such that

N(x1,x2) =J £x.(*2)dM2 for all X 2 G B 2 . (1)

Define P̂: R2-^ R by

£(c,d) = f t (dl ) where 1. = %r • (2)

Now the biadditivity and the continuity property of N clearly

imply that <p is separately continuous and has the property (z) .

We proceed next to establish that for every measurable set E. of T]

( 3 )

HUMT -LIBRARY
CARNEGIE-MELLON UNIVERSITY
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Observe that by the biadditivity of N we have for a fixed x«~€B9

k z

and for each simple function x]L = E ci VE 5 the E.̂  denoting dis-
i=l i

joint measurable sets in T,:

k k
N( L c . X , x2) = LN(c±\ ,x2) (4)

i l i i l i

In particular if c. = c, and

N(c1Xu E.>x
2> = k N(

i

then we obtain that

Hence if {E ) . , is a partition of T,
i l l

(6)

In particular for X^ chosen to be a constant function we deduce from

(6) that (3) holds whenever pt, (T-.) is an integral multiple of

JU, (.E,) . By applying additivity once again we deduce from (6) that (3)

is also verified whenever -—(n, , is a rational number. Finally,

by using the continuity property of N it is verified that (3) holds

in general. With (3) thus verified we can rewrite (4) as follows,

k % k ix (E )
N(

x Ei

(E.)

(7)

If now the function <p is defined by setting

we see that (*) is established in those cases in which x,eB, is

a simple function.
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Assuming for a moment that <p has the property (BB) let us

show that (*) holds in general. Let x.eB, . Thus there exists a

sequence of simple functions x., eB.. such that x. is the bounded

a.e, limit of x.. . We have by the biadditivity and the results in

the preceeding paragraph that

N(x]:,x ) = lim N(xl
n
J,x2) = lim f <p (x,n,x ) dfiJp [i~ (9)

n->co n->oo x
T1 X T2

for every xoeBo. Let us consider the functions h (sn3So) =
•̂  2 2 n L 2

<p(x1
n(s1) ,x2(s2)) s^eT , s2€

T2 • Jt follows by the separate continuity

of <p that the h (s1^s9) converge pointwise to h(s ^s )

= <P(XT (sn) jXo (sJ ) outside a set of the form (N, X Tn) U (T.. x Itf ) where
JL ± ' Z Z 1 Z 1 Z

the N. are null sets in T. . From the property (BB) of cp we

conclude that h (s,., s2) -> M s ^ s2) boundedly outside a set

(N,x T2) U (T X N 2 ) . Thus by LebesgueTs dominated convergence

theorem it follows from (9) that

,& M9 (10)

T1 X T2

for all xi€Bi a n d X2 G B2 J > establishing (*) .

Next we proceed to show that <p has the property (BB) . Assum-

ing that this is false there exists a rectangle Q = { (c,d) | |c|< k19 \ d|<k?}

such that (p(c,d) is unbounded on Q. Since (p is separately contin-

uous we note that for fixed c^d*, k * = max |<p(c*̂ d) | and

° I ci | < K 2
IA¥: = max l̂ fc.̂ d*! are well defined. However by assumption both

Al = ^k
cII

ci < Kx] and A2 - (t | | d | < K2> are unbounded.

Let [O.j be a sequence of positive numbers such that £ 0 . =1
3 j>l 3

and L 9. < -x 9 . We now choose inductively a sequence of points
j>n+l J

{ (c^^d^) } ̂ JL in Q as. follows. Start by selecting Ci so that



16

k > 40," , and then taking d1 to be such that |(p(c1J,d.|)| = k ..
cl . 1 cl

In general having chosen (c,d.) 1 <^ i <^ n-1 , choose c so that

k > 2 e -1 L t e + 2
n + 1 e^-1^

c — n , - d . i n nn i=l l

where

n-1 . n-1 . i-1
<*n >_ 3/2 E kc 2~

1ei + S 2"1 £ t d 0. + n

and then take d to be such that /cp(c ^d )/ = k • Let {E.). > 1

n —
and {F.}.., be sequences of disjoint measurable sets in T1 and

"1JT2 respectively such that ji (E.) = 2"1JU1(T1) a,nd

/io(F.) = e./zo(To). Define xo = L d X D . Clearly xneBn. Further-
2 3 D 2 2 2 ^ D F. 2 2

more the sequence of functions x, = S c. - and the function
i=l i

x-, = £ c .*%-, are in Bn and x1 —> x, boundedly a.e. Thus
x
 n i>l

 x ^i x x x

N(x1<?Xp)-> N(x,^Xp) as n -*• oo . Consider the integral representa-

tion which we have established for N(x1^x2) when either x̂ ^ or

x« is a simple function. This permits us to write

N(x,n,xJ =/ <p( L c.XF , E d.XF )d/i<5Mo1 2 T1XT2i=l
 X Ei j>l ^ Fj 2

(ID

Furthermore we note that for each 1 <^ i < n

(12)

2"1(ei/2 kc - 2
1ai)M1(T1)/i2(T2)

Also

L <P{c.,d.)n(E.)u(F.)\< E k 2"i9.M1(T1)i > u i x J L x 2 3 — .̂ . , ! c . i l l

U 3 )
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From (11) , (12) and (13) it is clear that

| L < p ( c n , d . ) e . ix± (En) ii2 (T2)

n-1
L E 6 - . l<p(c . ,d ) \n (E.) M2(T2)

i = l j > l D D

n-1

i = l
2"i[>: 0.

c i 1

i - 1
+ L

> n

which contradicts the fact that N(x1
n,x2)-> Nfx^x ). Thus <p has

property (BB).

The proof of the converse is quite simple. It is enough to

notice that the argument leading to (10) establishes that a finite

valued N is actually defined by (*). The rest is a routine

verification.

As a corollary of the preceding theorem we obtain the follow-

ing representation when the functional N is required to satisfy a

stronger continuity property.

Corollary . Suppose that N is>, a^ biadditive functional on B..X B2

with B. aŝ  rn the preceding theorem. Suppose further that when-

ever the sequences x. GB. i =1_,2 are such that x. —> x. boundedly

1 2 1 2
a.e. then N (x ,x ) -> N (x • x ) . For each such N there exists

" n r • • — ^ — — — • ' ; • •

2
$L unique jointly continuous function <p:R ^ R satisfying conditions

(z) and (BB) which represents- N in the sense of (*) ' iri the theorem.

The converse statement is also true.
Proof: Since N satisfies the hypothesis of Theorem 7 there exists

a unique function <p:R -> R which is separately continuous, has the

properties (z) and (BB) and represents the function B in the sense of (*)
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Further by considering constant functions in B^ and B one easily

sees that the continuity condition in the corollary implies the joint

continuity of (p.

The proof of the converse is exactly similar to the proof of the

converse part in Theorem 7.

For functionals N which are continuous relative to (unbounded)

a.e. convergence we have the following representation theorem.

Theô rein 8. Let B. be. a_s In Theorem 7. Let N be. a, biadditive i

functional on B.X Bo which is separately continuous with respect

—• — l z '

to a.e. convergence. Then there exists ci separately continuous function

2
<p:R —> R satisfying properties (z) and (BS) and such that for every
pair (x,,x2)€B.X B2 the representation

1 2 r n v m 1 2 1 2
T 1 X T 2

is valid. Such <* representation is unique.

Conversely if (p i^ a^ separately continuous function having proper-

ties (z) and (BS) then for all (x.^x^) GB..X B2 the above integral is

weXl defined and is indeed a biadditive functional on Bn X Bo which

is separately continuous with respect to a.e. convergence.

Proof: Let N be a biadditive functional on B-, x B2 satisfying the

given continuity condition. Clearly N also satisfies the corres-

ponding continuity condition in Theorem 7. Thus there exists a
2

unique separately continuous function cp:R -> R such t h a t <p s a t i s f i e s
condition(z) and represents N; i.e.

N(xx,x2) =.J (p(x1,x2
T 1 X T2

for all (x^,x2) GB X B . We proceed to show that <p has the property

(BS) . Suppose that <p lacks the property (BS) . Then there exists

a strip C-. = {(c,d) I a < d < b} or a strip c -f (c.djla1 < c < bM such
_L —-» — 2 " """" mmm



19

that <p is unbounded on C-, or Cy • L e t us assume for the sake of

definiteness that <p is unbounded on Ci . Let {©.}•>-! be a sequence

of positive reals such that £ 0. =1 and E 9. < 1/2 9 • We

i>l x i>n+l x n

choose inductively a sequence of points ((C.^d,)}^. in - as

follows. Denote

k = max |<p(c,d) | , l,= sup |<p(ĉ d) | .
a<d<b a

 -CO<C<GD

That k is well-defined follows from the separate continuity of cp;

that £, is finite follows from the continuity of N(»,dl~) (see

Theorem 3) . The assumption that <p is unbounded on C-i implies

that k is unbounded as a function of c and I.. is unbounded as
c d

a function of d, a < d < b. Choose c-. such that

kc - 4 e i " 1

and then take d, €[a,b] such that |<p(c, ,d,) | = k . In general
1 1 -L C -i

having chosen {(c..,d.)} 1 < i < n-1 select c such that

k > 2 6"1 £ 6.1, + n a ^
n i=l x di

and then choose d such that |<p(c ,d ) | = k . Let x2
€B2 "be

fi-
de fined as follows.

-X2 * . S di^F. w h e r e

disjoint sequence of measurable sets such that /io(F.) = ©.]Uo(Tn) .
nested 2 3 3 2 2

Let (E^} be aAsequence of measurable sets in ^ such that './x. (E.)

- 2 " jiẑ  (Tj) . Proceeding as in Theorem 7 it is verified by direct
computation that if x n

n = c"
1 n

E n

However the continuity hypothesis on N implies N(x1
n^x2)->0 since
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x
 n-> 0 a.e. Hence we have a contradiction and the proof of property

(BS) is complete.
the

The converse assertion is an easy application ofAbounded convergence

theorem and the proof is omitted.

Remark 4. It might be noted that the proof implies that the N

defined in the theorem admits extensions to the spaces B̂ x̂ M2 and

jyL* B retaining separate continuity with respect to a.e. conver-

gence, on their respective domains.

Next we proceed to represent biadditive functionals on

Lp ( /*1 ) X Lp(jLt2) for 1 < p < ao .

Theorem 9. A functional N defined on L ( J L L , ) X L (/io) is biadditive

and separately continuous with respect to the norm topology if and

2
only if there exists <* separately continuous function (p:R ->. R

satisfying the growth condition

(G^) |<p(c,d) | < K(l + fc|)P(l + | d | ) P for some constant K
and all real numbers c,d,

such that

(*) (x ,x ) = J (ptx^xJdM,
1 2 T_XT ± 2 L

for all pairs (x^x^ eL (jL̂ ) x L (M2) • Such a representation is unique.

2

Conversely if <p iŝ  a_ separately continuous function on R -•>• R

haying the property (Gp) then the preceding integral exists for all

pairs (x, ,xn) eL (^) x L (jLtn) and defines a separately continuous

biadditive functional on L (/Lt..) x L (jiO .
P 4- P ^

Proof; Let N be such a biadditive separately continuous functional

on L (/i,) XL (/-O • ^ e^ N, be the restriction of N to the subspace

B l x B2 c Lp(Mi^x ^0(^2^ where B^ is the vector space of essentially
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bounded functions on (T. ,L. ,(i.) . By Lebesgue's bounded convergence
JL JL J-

theorem it is verified that N1 satisfies the hypothesis of Theorem 7.
2

Thus there exists a unique separately continuous function <p:R -> R

with the properties (z) and (BB) such that for pCx-^x^ e B ^ B2

T 1 X T 2

Next we remark that for a fixed c (for a fixed d) there exists
i

a constant Kc (l*d). such that |(p(c,d) | < KQ [1 + |d|]
P for all d

(|<p(c.,d) | < Ld[l + |c|]
P for all d) . For if one of the above in-

equalities is false, say if there does not exist a constant K ,
and c

then there exists a sequence {d } ., such that |d | -> oo |<p(c,d ) |>n|d
n n^ l ' n /̂  n nHence by Theorem 4 the continuity of N(cl-./*) is contradicted.

Thus there do exist such constants K and L,, which we will here-
c a

take to be Kc - ^P (I^di) P ^ Ld ~P ^Kc - ^ P < o o (I^di) P ^ Ld ~ . ^ ^ U+Ic |) P "

Using the above inequalities the representation (1) can be

extended to the case of pairs (x,,x2) x, simple and x2 in L (/i?)

or x, in L (/i1) and x2 simple^as follows. Let x̂ . be simple.

Then since M9 is a finite measure^ Bo is a dense subset of L (juto)

and there exists a sequence x2 € Bo suc^ that x^ -> x« in the L -norm.

Further we can select x2 such that |x2| < |x'| and x2-> x2

pointwise a.e. Since (x1^x2) eB1x B2 it follows from (1) that

^x^) = J )

T 1 X T2

Now |<p(x, .,d) |<K (1 + |d|) P where K = sup{ K } ,F being the
-*- X̂ j X-| C C6r

range of the simple function x, . Since (p (x-^x^) -?* xp(x-. ,x2) a .e. JLX f^ /i

it follows from Lebesgue's dominated convergence theorem that
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N(x ,x ) = lim Ntx-^x") = lim J (p
n> oo

(2)

Using the above representation we prove that <p satisfies the

growth condition (G?). Let {6.} ( > 1 be a sequence of positive real

nunabers such that L e. = 1 and E 0. < ^ 9 . Suppose that <p
j

does not satisfy (GP) . We shall choose a sequence f(c. ̂ d.) J

follows. Select c1 such that

KC ^ 8 e1-
1(i +

and then take d, to be such that

In general having chosen (G.,d.) 1 <^ i <^ n-1^ choose c such that

* > 4 G^1 L Ld (1 + |Cn|)
pe./(l + |d.|)p + 2 n + V \ (3a)

where
, n-1 . n-1 . i-1

a
n - 7 L K Q.2~X/IX + \c.\f + L 2 S L, 0 . / ( l + |d . | ) P -

i = l G i 1 x • i = l j = l d j ^ D
(3b)"

and then take d to be such that
n

cn' n - cn n

Let f E ^ ) ^ ^ - and {P.}.>^ be sequences of disjoint measurable sets

in TJL and T2 respectively such that

M1(Ei) = 2~
1M1(T1)/(1 + | c ± | )

p , M2(5
l
j) - ejM2(T2)/(l+|djj)

p.

Define x. = 2 d.^ . Clearly x9eL (/i ) . Furthermore the sequence
j n

of simple functions •xj = £ c± XE and the function xx= L c i %

are in L (Mx) and xj -^ xx in L (Mx) • Thus N(xn,x2) -> N(x1,x2)
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as n -* oo . Consider the integral representation which we have

established for N f x ^ x ^ when either x1 or x2 is a simple

function. This permits us to write

x )
1 2

, X T
2

3 Fj

= Z L <p(ci,dj)M1(Ei)M2(Fj)

Furthermore we note that for each 1 <^ i < n

L Ld (1 + \c±

Also

\ L <p(c.,d.)u(E )U(F ) I < LK (l+|d. |)Pe.
1 j>il

(6)

.|)P/X (E.
3 x i

(7)

From (5) , (6) , and (7) it is clear that

|N(x, ,xo)'| > I £ <p(c ,d.)/i, (E ) /i~ (I1 2 — .. , n ] 1 n ^2

> CMcn,dn)|en/(i+|dn|.)

n-1
- L 2
i=l j>l

L - l

d

- s. K
cn

n)M 2(T )

n-1

i=l ci x

i-1

j=l dj

K 0
ci J

>n

which contradicts the fact that N ( x ^ x ^ -* N(x,,x2).. Thus 9 satis-

fies (GP) .

Using this property of <p the domain of validity of representation (2)
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can be extended to all of L (Mx)
 x L (fi2) . Since <p satisfies

(GP) it is clear that ( x ^ x ^ eL (f^) x Lp(M2) implies cpCx-^x^

Let x^ be a sequence in B.̂  such that x-ĵ  -> x-ĵ  in L (M1) .

can choose xj such that |x"| < \x±\ and x"-» xx a.e. Thus

<p(x1J(x2) a.e. and

|)
2

2

Hence by applying the dominated convergence theorem we obtain

|x 2|)
P

n-» oo T X T
1 2

The essential part in the converse namely <p (x-. ̂ x j eL^ (/i^ ]U2)

is once again an application of the bounded convergence theorem and

similar in details to the argument in the preceeding paragraph. Hence

the details are omitted.

Remark 5." It is easily verified that the theorem remains true if

separate continuity is replaced throughout by joint continuity.

Before concluding this section we state the results when the

biadditive functional on L (ju,) X L (M2) is continuous with respect to a.e,

convergence or convergence in measure. Since the proofs are

essentially similar to these in preceding theorems we omit them.

Theorem 10. Suppose N is a biadditive functional on L (M-,) X L (Mo) •

Then N is separately continuous with respect to a.e. convergence

if and only if there exists _a separately continuous function

2
<p:R -> R satisfying the properties (z) and (BS) and the growth

condition*"

(G|) a(c) < K(l + lc|) P and 'jS(d) < K (1 + jd|) P for

some fixed K and, all real number c,d

a(c) and j3(d) are defined in (BS) .
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such that

T1 X T2

Remark 6. The theorem remains true even if a.e. convergence is re-

placed by convergence in measure or separate continuity is replaced

by joint continuity wherever it occurs.

4. Representation of Biadditive Functionals in the a-fihite Case.

In this section the representation theorems obtained in

the preceding section are generalized to the a-finite case. The

passage from the finite to the a-finite case for biadditive functionals

turns out to be very similar to that carried out for additive function-

als in Section 2. For reasons mentioned in Remark 2 we choose the

domain of the biadditive functional to be L
p ( M 1 )

x L
p (M2) (I < P < OD ) .

It is assumed in this section that the measure spaces • (T^,Z^,/x^)

i - 1,2 are a-finite nonatomic and that Mj(T.) = oo .

Theorem 11. Suppose that N i£ a^biadditive functional defined on

L (jLt1) x L (/io) . Then N is separately continuous with respect to
p i p 2 - - • .. % •

the norm topology if and only if there exists a real valued continuous

function cp on R into R satisfying the condition (z) and the

growth condition (G*) |<p(c,d) | < k|c|p|d|p for some constant k and

jill real numbers c,d, such that the representation

(*) N(x1,x2) = J (p(x1,x2)d/i1® \i2 is valid .

The function <p JLs^ uniquely determined by the equation (*•) .

Proof: Let E T J E
2
 t>e anY t w o m e a s u r a b l e s&ts i n T, a n d T2 s u c h

that 0 < MjL^) < oo . Consider the measure spaces -(T̂ ,.Ẑ ,/î E ) where
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ji. is the contraction of /î  to E.̂ . Consider the functional

N, „ canonically determined by N defined on L (jun } X L (/i~ )

by the formula N_ „ (x. ,xo) = Ntx-^x*) where x. * are the functions
ri- j-Ej-p x ^ X z l

in L (jll.) i = 1,2 defined by x. '|E. = X.,X.'|T.~ E. = 0 . Itp X x x x x x x

follows from the properties of N that N_ _ is biadditive on
E1'E2

L (Mip )x L (M9T? ) and is separately continuous. Applying Theorem 9
P X£ii P ^^2

we see that there exists a separately continuous function <p „

2 P X 2

on R -> R having the properties (z) and (G?) such that

E1 X E2

Now noting that N(Xp •) and N(#jX~) take the same values on equi-

measurable functions (condition( 2) in definition 1) and that the meas-

ure spaces are nonatomic we see by an argument similar to that in

the second paragraph of Theorem 5 that the representing function

^E,,E,. is independent of the sets E. . Let <p „ = <p for all E.
12 x EX.,E2 x

such that E.eS. , 0 < /x. (E.) < oo . With <p chosen as above let us

consider two simple functions x. on (T. 3L. 9 ju.) i = 1^2. Since

the supports of the x. have finite measure it follows from the

preceeding remarks that in this situation

S> M 2. (1)

Next we observe that for each pair of real numbers c*, d* the function

<p satisfies

|<p(c*,d)'| < Kc^|d|
P for all d, |<p(c,d*)| < Ld^|c|

P for all c,

(2)

For let c* be given and choose En€L, such that U{E.) = 1. Then
XX X X

N(c*)CE *•) is a continuous additive functional on L (/x2) . Hence



27

from Theorem 6 it follows that there exists a continuous function

& ~:R-*> R such that I it „ (d) I < K . |dlp for some constant K *
TQ-JC C """" C C

and all de(-cD,oo) and such that

N(c*X E ,x2) =j 0c^(x2)d/i2 for x2FLp(/i2).

1 T2
Further the representing function j/> ^ is unique. In particular if

E2eL2, M2(E2) = 1 then

T 2 (3)

Prom equations (1) and (3) it follows that

l' 2

1 2

Thus <p(c*^d) = 0 ^ (d) . Thus the first equation in (2) is a consequence

of the properties of 0 ^. An entirely similar argument yields the

second inequality in (2). Hereafter we shall take K „ and L,»
c ci

to be defined as follows

V = sup Jo(c*,d) |/|d|p , L = supf(p(c,d*) |/fc|P.
dA) ĉ O

Notice that since <p satisfies the growth conditions in (2) , it

follows by Theorem 6 that for each set EeS, 0 < Mi(E) < oo , and any

T1 X T2

with a similar formula applying for N (xvd Xw) . By the additivity of
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N this leads to the representation

N(x1,x2) = J <p(x1,x2)d^1® H2 x1€Lp(M1),x2eLp(M2) (4)
T1 X T2

whenever x, or x is a simple function.

Now we proceed to show that <p satisfies the growth condition

(G^). The proof of this assertion is quite similar to an argument

occurring in the proof of Theorem 9, If (G^) is invalid then

{K /|c|^|c £ 0} is unbounded. Let (G.'}.^, be a sequence of

positive real numbers such that L 0 , = 1 , £ ® • £ T e • We

3 3 2 nj j
choose inductively a sequence {(c.,d.)}•>•! as follows. Select

c, / 0 such that

and then take d, ^ 0 to be such that

> 3/4 K
c

In general having chosen (c.,d.) 1 < i < n-1 choose c ^ 0 such

that

K
C -4 v .s Ld. i c j p v | d i | P + ^ ' ^ r ' ^ ' x (5a)

n j=l j
where the quantity a is required to satisfy

n-1 . n-1 . i-1
a
n > 3/2 L Kc e i2"V|c i|

p + £ 2"1( L Ld e./|d. |
p) + n, (5b)

and then take dR ^ 0 to be such that

|<p(c .dj | > 3/4 K Id |P (6)1 n n ' -" c ' n' % 'n

Let f E i ) i > 1 and {F.} ̂ > 1 be sequences of disjoint measurable sets

in Tx and T2 respectively such that

^(Ei) = 2-VicjP and
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Define x9 = S d. \ . Clearly x«eL (/O . Furthermore the sequence
j>l D j P

of simple functions
n

. X- a n d t n e function x, = E c. *)£„
x Ei X i>l 1 Ei

x, = S c.
1 x

are in L (/î) , and x"-^ x̂ ^ in Lpd^!) • Thus N(x",x2)-> N(XpX2)

as n —• oo. Consider the integral representation (6) which we have

established for N when either of its arguments is a simple function.

This permits us to write

X T J - 1 *• 3>1 D FJ 1

n
S
i=l j

Furthermore we note that for each 1 < i < n

Also

From equations (5)- (9) it is clear that

|N(xJ,x2) | > | .^(cn,dj)/X1(En)M2(Pj) | - _S | S <

n,dn) |en/|dn|P - ^ \ d _ |cn|Pe./

< ̂ ^JCil^^E^/i^F.) (8)

(9)
< K c 6./2 ̂ ( E ^

KC

> n
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which contradicts the fact that N(x£,x2)-> Nfx-^x^ .

Conversely suppose that <p is a separately continuous function

with the properties (z) and (G^). Then it is clear that for all pairs

(x1,x2)€L (fij) X L (M2), (p(x1,x2)eL1(/i1® ^ and that the functional

N defined by

N(x1,x2) = J <p(x1,x2)d/i1© /i2 is biadditive.

T1 X T2

Now suppose x^-^x.^ in L (JL^) and x 2 e L
p ^ 2 ^

 # s i n c e x l ~ ^ xl in

L (/i-i) and <P(m,d) verifies conditions (1) and (2) of Theor<3n6, it

follows that if • 0 ,0 are the functions on T2 defined a.e. by

and

0(t2) =

Tl

then 0 n-^ 0 pointwise on T^. Since <p(x^x2) and ^ ( x ^ x ^ are

integrable with respect to /i,® ]Lt0 the functions ij) and 0 are in

L, (/O and recalling that <p satisfies (GP) it follows that

U n ( y ) | < K | x (Y)|
P||xillP and i0(y)'! < K|x2(y)|

P||x1||
P. Since the set

(||xn||pn;>1:, ||x1||} is a bounded set and since x2€L (/*2V, we may apply

the dominated convergence theorem to deduce

The proof of the theorem is complete.

Similarly one can establish that the analogues in the cx-finite

case of Theorem 10 and Remark 5 continue to be true

provided that condition (G^) in Theorem 10 is replaced by



31

(GP) a(c) < K|c|P , j8(d) < K|d|p for some K and all real c,c

where a(c) and ]8(d) are as defined in (BS) .

In conclusion we wish to point out that although our arguments

have been given for real valued functionals they apply equally well

to complex valued functionals. Next we mention a few problems not

considered in this papero We have only partial results concerning

integral representations of additive functionals when the measure

space contains atoms. These results are similar to Theorem 1.8 in

[1]• In several theorems in this paper we considered the domain to

be an L space. Some of these admit straightforward generalizations

to the case when L is replaced by an Orlicz function space,

Luxemburg [10] or Zanen [11]^but our investigation of this matter

is not complete. The additive functionals considered here admit a

natural generalization to vector valued additive functionals.Further

the case in which the measure is a vector valued measure also arises

in a natural way.

We hope to discuss these and other related problems elsewhere.
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