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Inverse Holder Inequalities

Zeev Nehari

It is known that, for various classes of non-negative

functions f,g, the Schwarz inequality

( J fgdll ) 2 < J f2dil J
X X ' XX X X

has an inverse of the form

(1.1) J / f
X X

where C9 is a positive constant which depends on the classes

considered. For instance, if X is a finite interval, L^ is

the Lebesgue measure, and f,g are non-negative concave functions

on X, it was shown by Blaschke and Pick [3] that C2 = 2. If

(X, 2^, u) is a positive measure space, and f,g€L (X, 2T^/C) and are

such that

(1.2) O < m̂  < f < M1 < oo , 0 < m2 <. g < M2 < oo,

then

(1.3) c 2 = :

[ 9 , 6 , 7 ] .
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Similarly, the Holder inequality

Jfgdu, < [ Jf Pd^] P [ Jgqdlt]q, p"1 + q"1 =f
X ' X X

has an inverse of the form

r k c k (
(1.4) [ J f p d ^ ] p [ J g q d * ] q < c p J

X X ' X

if the functions f and g are subjected to suitable restrictions

It was shown by Bellman [2] that the result of Blaschke and Pick

generalizes to (1.4), with

(1.7) C p = 6(p + 1) P (q + l )
q .

For functions satisfying the conditions (1.2), Diaz, Goldman and

Metcalf [5] obtained an inequality equivalent to (1.4), with the

value

M PM q - m Pm q

(1.6) C p =
 1 2 1 2 j

for the constant. A closely related inequality had previously

been obtained by Cargo and Shisha [4].

Diaz and Metcalf also showed that, for functions subject to

(1.2), there exist inequalities of the type

(1.7) A JfPdu +B J gqdu < C f'fgdu. , . p"1 + q"1^ 1,
X X ' X '

with suitable positive constants A,B,C. Since, by the geometric

arithmetic inequality,



(1.8) (PA)
P(qB)q[

X

A J
X

B

X

(1.7) will be stronger than (1.4) in those cases in which

1 1
C = (PA)

P(qBq)Cp.

In the present paper we shall examine the existence of

inequalities of this ''inverse'! type from a more general point

of view. Our basic result, to be proved in the following section,

is that an !tinverse11 inequality which holds for functions

feH,, geH2, where E^ and H2 are given sets of functions,

must also hold for functions belonging to the convex hulls C (H^)

and C(H2), respectively. This leads to two conclusions:

(a) the sets H, and H2 may be assumed to be convex in the

first place; (b) to prove such an inequality for feEL, geH2,

it is sufficient to establish its validity for subsets whose

convex hulls coincide with H, and HL, respectively. If these

subsets consist of functions of simple character for which the

integrals appearing in the inequalities can be easily computed,

the determination of the exact constant in the inequality in

question reduces to an elementary extremal problem.

In the subsequent sections we shall apply this procedure

to obtain a number of ''inverse'' inequalities for various classes

of functions.

2. We now state our basic result.

Lemma 2.1. Let (X, ", LC ) be a positive measure space, and let

<j>v(t) ( V = lj...;Ti) be non-negative continuous convex functions
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for t > 0. Let H%, be a set of non-negative functions fu
' — V V

such that (j)y (fy) eL
1( X , %, it) , and let C (H ) denote the convex

hull of Hv. If the inequality

n - p n
(2.1) ^ A y J <|>v(f,)cUt < C J [TTf v]dii

v=i x / x v=i /

(A ,C positive constants) holds for all f eH (v = l, . . ., n) ,

then it also holds for f eC(H^).

This, of course, is of interest only if the integral on

the right-hand side of (2.1) exists. This will therefore be

assumed to be the case. We shall also assume that the constant

C is the best of its kind, i.e., that there exist functions

f..,..., f such that (2.1) becomes false if C is replaced

by a smaller number.

In the special case in which q) (t) = t (py >_ 1,

p-̂  +•••+ p" = 1), the geometric-arithmetic inequality

n

""1 K, > 0).(2 2)

shows

(2.3)

tha t
n

V=l

n

v=i

n

Ti
V = l

[

v =

X X

/ n

X
i.e.

P P "1 C —
v y u * < D J[ll*"* x x v=-



where D is a positive constant. The functions fy. of Lemma

2.1 (with (p. (t) = t ) are thus subject to an inverse Holder

inequality. However, if (2.4) is obtained in this way, the

question arises whether the constant D is the best possible

of its kind. Evidently, this will be true only if the sign of

equality holds in both inequalities (2.3) for a set of functions

f.,...,f such that fveHv. This difficulty is avoided if (2.4)

is obtained by means of the following lemma.

Lemma 2.2 Let (X, 2,1*) be a positive measure space, and let

H (\)=1, . . . ,n) be a subset of L (X, Z, u. ) , where p^ >^ 1,

1 1p +•••+ p = 1 . If the inequality (2.4) holds for functions

f eHy, then it also holds for functions f eCfH^.

We first prove Lemma 2.1. To simplify the writing, we

assume n = 2; the extension of the argument to general n is

obvious. To establish the result it is sufficient to show that

(2.5) Ax J ^ ( F ^ d K + A2 }<t>2
(F2)d/li -C J F l F

X X X

for all convex combinations

Fl =

*

provided (2.1) (with n = 2) holds for f.. = f l ' and f = f

(k = 1, ... ̂ m; r = 1,, ... ,,M) .

By (2.6) and Jensen's inequality, we have

m

1 l ~~ k=l



and a s i m i l a r i n e q u a l i t y for <j>2 ^ 2 ^ # Hence,

C F ^ d , + A2

X ' X
m Mm M

X

m M

+ Ap
k=l r=l - \ * - - - * / x

Since (2.1) holds for f, = f, (k) and f = f (r) , it follows
1 1 « ^

that
m M /*

X

Because of (2.6), this is equivalent to

X '

This completes the proof of Lemma 2.1.

The proof of Lemma 2.2 is similar, except that Jensen1s

inequality has now to be replaced by MinkowskiTs inequality.

Again, we simplify the writing by setting n = 2 ; the modifications

required in the general case are evident. By (2.6) and Minkowski!s

inequality, we have

and thus



X X

X •*•

m * r (k) P]_ PL f_ (rKP2, ,p2

k=l r=l k|'5r J L A ^

But f.^'eH,, f2^
r^eH2, and we have assumed that (2.4) holds

for all f^H,, f2eH2. Hence,

m M

k=1 r~1 x x x /

and Lemma 2.2 is established.

3. As a f i r s t application of Lemma 2,1 we consider the case in

which C(H ) consists of the functions fy for which

(j) (f ) eL (X/X^K) and which are subject to the inequalities

(3.1) 0 < my < fy < M/ < oo.

We shall also assume that the functions (j) } (t) are increasing for

t > 0. The fact that c|) (f^) can be approximated in L by

step-functions is equivalent to saying that f. may be appro-

ximated by expressions of the form

(3.2) F, = V , <• >

where
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(3.3) f/*' = m y + (My - mr

S, € T", and /C(SV) denotes the characteristic function of S,.

We may thus conclude from Lemma 2.1 that, in order to obtain

an inequality of the type (2.1) for functions fy satisfying

(3.1), it is sufficient to do so for functions of the form (3.3).

With the help of this procedure, we shall prove the following

result for the case n = 2. This restriction is, unfortunately,

not merely a matter of convenience; for larger n, the diffi-

culties encountered in determining the exact constants mount rapidly,

Theorem 3,1. Let (X, ̂ A ) be a finite positive measure space,

and let <ĵ (t) (V= 1,2) denote a function which vanishes for

t = 0 and is continuous, non-decreasing and convex for t >^ 0.

(3.4) 0 < my <fv <M, < co, =1,2,

and (f) (f^)eL (X, X, A ) , then, for any two positive constants

A-JJA^, we have the sharp inequality

(3.5) Ax j (^(f^dA. + A2 J <|)2(f2)d/t < C J f ^ d ,
X X ' X

where

(3.6) C = max[61^62,63,64]

and

(3'7) 61 = ^ f A A ( m l ) + A2(|>2(m2)], 62 - M ^ A ^ C M ^ + A2(J)2(M2)],

(3'8) 63 = M^jtA^CM^ + A2(f)2(m2)]3 54 = ^ [ A ^ ^ ) + A ^ (M2)



9

In view of what was said before, the exact constant C in

(3.5) can be characterized by

Ai

(3.9) C = sup
J f l f 2 ^
X

where

(3.10) f = m + (M, - m.) /(S,) , f = m9 + (Mo -
1 JL 1 1 * 1 ^ -̂ £

and S1 ,S2 may be identified with any set in

Since /̂ _(X) is finite, we may normalize it by the condition

ytt(X) = 1; evidently, this does not affect the value of the

right-hand side of (3.9). If we set J^ = A ^ S k ^ k = 1^2^ we

then have 0 < ^7, £ 1 and

x
Furthermore,

(3.12) J f -j^^dtt = nyr^ + niĵ  (M2 - ™^) J 2 + m2
X

Since

H S2) > max[0, k f S ^ + k (S2) - LL (X) ]

= max[0,

(M2 - m2)

It follows from (3.12) that
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'(

(3.13) min ./ I ^ ^ A = mlm2 + ml 2 ~ m2'^22 + m2

(M2 - m2)

where

(3.14) >-= max[O, ^i +

In view of (3.11) and (3.13), (3.9) is equivalent to

(3.15) C = sup

0< 2x,

where

(3.16)
( M2 } ̂ 2 ( m2 }

and I is defined by (3.14).

In the square 0 <. ^7, , *h2 <, 1* the function <j> (

in both ^- and y~, a rational function of order 1, except along

the diagonal ^h - + ^ 2 = 1, where--because of the expression

(3.14)--its partial derivatives are discontinuous. Accordingly^

CJ)(1 1̂̂  y^) c a n a t t a^ n ^ t s niaximum in the square only at one of

the corners or along the diagonal 7̂-, + *J. 2 ^ !• Since <j) ( ̂  , 1 - ̂  )

is again a rational function of order 1 for ^,€[0,1}, its maximum

coincides with the larger of the two values 63 = §{\,Q) y 5* = (̂ (0,1)

The maximum of ^ M / ^ T J ^ O ) in t ^ square is therefore attained

at one of the four corners. Since the values df (j) ( y^-i^^p) at

these points are the numbers 5^y52?5^^8, in (3.7) and (3.8) ,

this completes the proof of Theorem 3.1.
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4. As an example for the application of Theorem 3.1, we derive

the inequality

X X
(4.1)

< \VL*VL* - m^m2
q] f f ^du

X '

(p~ + q~ = 1 ) of D i a z , Goldman and M e t c a l f [ 5 ] , I f we s e t

= tP (f)(t) = tq 1 1
(t) = t P , (f)2(t) = t q , h1 =

A2 = ml Ml [M2M1^~ " m2ml^>~ ^' a c o m P u t a t i ° n

shows that the constants (3.8) take the values

(4.2) 63 = 64 = M 1
PM 2

q - m 1
Pm 2

q.

If 6, and b~ are the constants (3.7), it is found, after

some simplification, that

(4.3) 6X - 63 = M1
PM2

q[(A1~
1 - 1) (A,,'1 - 1) - A 1 -

1 X 2 -
1 ( A 1

1 - p 1 q

and

(4.4) 62 - 63 = M1
PM2

q[A1A2(l - A^"
1) (1 - A2

q-1) - (1 - 7,^

where A, = m./M,, A2 = m2/M2.

Since, for r >_ 0, x ̂  1, x(xr - 1) > r(x - 1), we have

(because of p >_ 1, q >^ 1, ^ < 1, A2 < 1)

- 1).
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It thus follows from (4.3) that 5± - 63 < 0. Similarly, the

inequality x(l - xr) < r(l - x) (r >. 0, 0 < x < 1) shows that

In view of (4.4), this implies 52 - §3 < O. Accordingly, the

constant C defined in (3.6) has, in our case, the value (4.2),

and this establishes the inequality (4.1).

It is of interest to find the cases in which (4.1) becomes an

equality. As shown above, §3 = (j)(l,0) and 54 = <j)(0,l), where

) is the function (3.16). Since §(y±> 1 ' f^ is a

rational function of order 1 in ^ for ^,e[0,l], (j) ( /\jl ~/^i)

will reduce to a constant if (j)(0,l) = (|)(l,0), i.e., if 53 = 6^.

In view of (4.2), we thus have §(^^,l - ? ±) = 6 3 for all

-^..e[0,l]. The maximum §3 of (j) ( ̂ ,, ̂ 2 ) is therefore attained

at all points of the diagonal^? ^ + ̂ 2
 = 1^ an<^ ifc is easily seen

that this implies equality in (4.1) whenever f, and f2 are

of the form (3.10), and the measurable sets S ',S2 satisfy the

conditions

(4.5) M(SX) + U(S2) = ^L(X), utSj/l S2) = 0.M(SX) + U(S2) = ^L(X), u

Because of (1.8), inequality (4.1) implies an inverse Holder

inequality of the form (1.4), where C has the value (1.6).

Equality in (1.4) is possible only if there is equality in both

(1.4) and the geometric-arithmetic inequality used in (1.8).
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An examination of these cases shows that there will be equality

in (1.4) (with the value (1.6) for C ) if and ±2 are of

the form (3.10), where the sets

additional condition

satisfy (4.5) and the

where /M..,

5. The inequalities (4.1) and (1.4) can be sharpened if, in

addition to (3.4), the functions f TJ f ? a r e s u bjected to certain

other restrictions. As an example, we derive the following

inverse Holder inequality.

Theorem 5.1. Let (X, Z£ 9 M) be a finite positive measure space,

and let f^L^X, X, A ) , f2eL
q(X, ~Zs/\) , where p,q> 0,

P" + *£ = ~^> If, in addition, f1 and f« satisfy the con-

ditions (3.4) , and if the numbers % 1 , <h~ (0 <,
 /l7. - , ̂ o < 1) are

defined by

(5.1)

then

(5.2)

where

] > L ( X ) , • = 1 , 2 ,
/

Jf2
qdA]q < D

X X

HUNT LIBRARY
UNIVEflSITV
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A ' I
[m^ + (M^ - m^) J^l-nf + (M2

q - n2
q)22l

q

(5.3) D - m ^ + ^ ^ _ m 2) ^ 2 + m2(M1 - rt̂ ) ^ + /" (Mx -m^ (M2 - n»2)

and

(5.4) is= max[O,

. This result is a direct consequence of Lemma 2.2 and the

fact [8] that the functions f satisfying (3.4) and (5.1)

(with a fixed J,, ) form a convex set which is spanned by the

functions

(5.5) F^ = m,

where S e Z,

(5.6) A(S.) = %,A(X), = 1,2

Accordingly, the constant p in (5.2) is given by
1 . 1

(5.7) D = sup

[

X

J FiF2dA
X

By (5.5) and (5.5),

y ^(M 2
q - m2

q)] i
X

The smallest possible value of the denominator in (5.7) was

earlier found to be equal to (3.13). Inserting these values in

(5.7), we obtain (5.3). In view of the derivation of (3.13),
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there will be equality in (5.2) in the following two cases:

(a) A(S1) + A(& 2) < /( (X) , l^(S n S2) = 0; (b) H-iS^) +

S.. and S2 overlap as little as possible). This completes

the proof of Theorem 5.1.

* It is of interest ot observe the behavior of (5.3) as

nu'~>0, m2 ~ * 0 . According to (5.4), the denominator of (5.3)

will vanish if y ~ + ^ 9 < 1, and this shows that there cannot

be an inequality of the type of (5.2) in this case. If ^ ] _ + ^2 > lj

we obtain the following result:

If fneL
P(X, 2T,A> * f9eL

q(X, XJ/L) , 0 < f. < 1 ( /= 1,2) t and

X '

then ĵ .̂

X / 1 / _e , ^J(f 1 +
X X

6. In the present section we consider inverse inequalities for

concave functions.

Theorem 6.1. Let f-,...Jf be continuous non-negative concave

functions on a real interval I. If p > 0 ( y = 1, . . . ,n) ,

Pi" '+•••+ p ~ = 1, then

n

(6.1) || [ \ £„ ' dx] ' < C_ ^\( II fjdx
V=l
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where

(6.2) C =
n n

([f]D2 TT (p,
V=l

There will be equality in (6.1) if f ̂  = x for [y] of the

subscripts )} , and fv = 1 - x in the other cases.

For n = 2, this reduces to the result of Bellman quoted

in Section 1. It may also be noted that we derive our result

without the assumption, made by Bellman, that the f vanish

at the end-points of I.

To simplify the writing, we shall assume that I is the

interval [0,1]; evidently, this amounts only to a trivial

normalization which does not affect (6.1). We shall obtain

Theorem 6.1 as a corollary of the following stronger result.

Theorem 6.2. Let f1,...,f be continuous non-negative concave
• • • • i n ' : — ; — ; —

functions

(6.3)

H Pv >

(6.4)

then

in

0

[0,1]

and

, and let

1

J V 2
o

n

if.i,

n 1 FL I n
(6*5) ~ ( 1 + w )
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where

n <[§]!)

There will be ecruality in (6.5) if f = x for [y] of the

subscripts y , and f = 1 - x in the other cases.
s y

Inequality (6.1) is obtained from (6.5) by means of the

geometric-arithmetic inequality (2.2), according to which

n 1 p j- n ' 1
(6.7) IT [(1 + pw) f f "dx] " < 22 (1 + -M ( f. "dx.

o o

F o r t u n a t e l y , t he func t ions f^ for which (6.5) becomes an

e q u a l i t y - - x and 1 - x - - a l s o g ive e q u a l i t y in ( 6 . 7 ) ; indeed,

for bo th fy = x and fL = 1 - x, we have

1

(1 + p j J fy *dx = 1,
o

and the equality in (6.7) follows from (6.4). As a result,

these functions also give equality in (6.1). We also note

here that the normalization (6.3) has no effect on (6.1).

It is evidently sufficient to prove Theorem 6.2 in the case

in which the curves y = fy(x) are concave polygonal lines.

Such functions f can be written in the form

n

(6.8) f,(x) = -2o<:k^ )g(x,tk^ )), c/k
(v0 > 0,

(V)
where the t* are numbers in [0,1] and g(x,t) is defined by



18

g(x,t) = |-(0 < x < t), g(x,t) = j~ (t < x < 1), te(O,l),

(6.9)
g(x,O) = 1 - x, g(x,l) = x

Since, for all te[O,l],

1

g(x,t)dx = j,

we have
n

k=l

The function fv will thus be normalized in accordance with

(6.3) if
n

k=l K

In view of (6.8), (6.10) and Lemma 2.1, it is sufficient

to prove (6.5) in the special case in which

fv(x) = g(x,ty),

Since

o

(6.4) shows that (6.5) reduces in this case to

(6.11) Y(t1,...,tn) > B "
x,

where

1 _n_

(6.12) ">p(t . ..,t ) = ( [ l( g(x,ti/)]dx

I ^
and B is the constant (6.6).
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Since V ^ i * . . ., tn) is continuous for t^cfl^O] ( = l,...,n),

it is sufficient to prove (6.11) under the assumption 0 < ty < 1.

If te(O,l) and g(x,t) is defined by (6.9), then t(l - t)g(x,t)

is the Green's function of the differential operator L y S y''

for the interval [0,1] and the boundary conditions y(0) = y(l) = 0,

Hence,

^ f R(x)g(x,t)dx] = - t ( ^
( ^ t ) , te(O,l),

o

for any function R(x) which is continuous in [0,1]. Applying

this to (6.12), we find that

- V -^2 y^'-'K) = - [ i <i g(x,t )]dx,
dt ^ V^k

and this shows that ] is a concave function of t, in (0,1).

Hence, r cannot have a local minimum for t, e(0,l). Applying

this argument, in turn, to all the variables t,,...,t , we

arrive at the conclusion that the expression (6.12) can attain

its minimum only if each of the variables t . is either 0

or 1. By (6.9), this corresponds either to g(x,t^) = x or

g(x,ty) = 1 - x. In view of (6.11) and (6.12) we thus have

1

,...,t ) = min f xk(l - x ) n ^ '
l<k<n )Q

kl (n-k) 1 _ U 2 J m)
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where the minimum is attained for k = [-j] . Hence, the constant

B has the value (6.6), and the proof of Theorem 6.2 (and its
n

corollary, Theorem 6.1) is complete.

7. A function is said to be superharmonic in a region D of

the Euclidean space Em (m >_ 1) if - f has continuous first and

second partial derivatives with respect to the coordinates and

if \J f <_ 0, where SJ is the Laplace operator in E . For

m = 1, the notions of concavity and superharmonicity coincide,

and it is therefore natural to ask whether there exist results

analogous to Theorem 6.1 for superharmonic functions in spaces

of dimension m >_ 2. This question was considered by Bellman

[2jl,p. 42], who showed that, for functions f, and f2 of

this type, there exists an inequality

t -1 r -1

(7.1) ( JfjPdVjP ( Jf2
qdV)q ) < C Jf^dV,

D D D

where p~ + q" = 1, dV is the volume element, and C is given by

-1 r ^-1

where g(z^) is the harmonic Green' s function of D with zero

boundary values. The question whether or not the inequality

(7.1) is meaningful thus depends on the finiteness of the right-

hand side of (7.2). We shall show that, if m = 2 and D is
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a disk, C = co. Accordingly, no inequality of the type (7.1)

can exist for superharmonic functions in a disk.

We take D to be the unit disk, and we use complex

notation. We shall compute the right-hand side of (7.2) under

the assumption that *? = 0 and p> q; evidently, this is

sufficient for our purpose. Since g(z,O) =—log|z|, the

denominator of (7.2) has the form

(7.3) -A (5) •= - jriog|z}g(z,^)dV.
D

To evaluate this integral, we set

1 9 r2

u(r) =_J (1 - r ) - i- log r, r = |z|,

and we observe that ^ u = —log r and u(l) = 0. Applying

2
GreenTs formula, and noting that S] g = 0 and g = u = 0 for

r = 1, we obtain

)g(z,t)dV = - lim [ J
°

and thus

(7.4)

where K, is a positive constant
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To compute the numerator of (7.2), we note that

(7.5) B p

or, with the substitution

Because of

2 ( 7 ^ 4 = 2 . Z ( v + i ) 2 i s i 2 v / v ,
3 u - j t r v=o

this yields

OD

B (i) = 27r(l - | 3 | 2 ) 2 2
P V=0

CO

| t | 2 V f
o

CO

* I 2 ) 2 Z
voV=G

If p = q = 2, we thus have

B2(^) > K2(l - |S|)log

where K2 is a positive constant. If p> 2, ŵe use the fact

that
oo

v=o
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and therefore

9 2

Bp(*) > K 3(l - |i I > ,

where K^ is another constant. In view of (7.2) , (7.3) , (7.4)

and (7.5), we finally obtain

[B (i:)]p [B (o)q

for p > 2, and

1.

C > Kc [ log rl

~ 5 i i 5 r

for p = 2. Hence, C = oo in all cases,
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