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Inverse HYl der Inequalities

Zeev Nehari

It is known that, for various classes of non-negative
functions f,g, the Schwarz inequality
s
( Itgdl )’ s I1%i) J g?apn
X x %

has an inverse of the form
(1.1) &4 [obuccio fraapr?
X X X

where G is a poSitive constant which depends on the classes
‘consi dered.  For instance, if X is afinite iynterval, /L" i's
the Lebesgue neasure, and f,g are non-negative concave functions
- on X it was shown by Bl aschke and Pick [3] that Cz_ = 2. |If
(X 2",[_u) IS a positive neasure space, and f,g€L2(>§ ZT;/Q and are

such that

(1.2) O<m <f<M <o, 0<m< g<M,< 00,
then

Jo L L &

9 R,

[9,6,7].

Research sponsored b\{? the Air 'F'orce O fice of Scientific Research,
(N)‘flézg of Aerospace Research, United States Air Force, under Gant .
o. ) '

HUNT  LIBRARY
CARNEGIE-MELLON UNIVERSITY

uaA ot 69




Simlarly, the HSlder inequality

L i
Jgdy < [ ITPAN 7L Igidle]t ptte gt =,
X X X
has an inverse of the form
r k C k rf )
(1.4) [ JfPAA]P [ Jgid*]%=c, J 2/
X X X

if the functions f and g are subjected to suitable restrjctions.
It was shown by Bellnman [2] that the result of Blaschke and Pick

generalizes to (1.4), wth 1 1
(1.7) Co=6p+1) P(qg+1)e.

For functions satisfying the conditions -(1.2), Diaz, Coldnan and

Metcal f [5] obtained an inequality equivalent to (1.4), with the

val ue
MPMY - mPm@d
. — 1 2 1 2 H
_ (16) Cp_ 1 J
g-1 q-1y¢P p-1 P-1,,q
[pm,M, (MM, 2" emqmy 27 7) 15 [gmy My (MM, 57 " -mym, 57 7) ]

for the constant. A closely related ihequality had previously
been obtained by Cargo and Shisha [4].
Diaz and Metcal f al so showed that, for functions'subject to

(1.2), there exist inequalities of the type

r d .
(L7) A JdeL)L +B J g%u,<C f'fgu , . p"t+qg"'" 1,
” / .
X X ' X '
wth suitable positive constants A B,C. Since, by the geonetric-

arithmetic inequality,




3
1

(1. 8) (pA)P(qB)q[ ffpd/,]P[ f qd/n.]a A \]fpd/u_ + B fgqc%,
X X

(1.7) wll be stronger than (1.4) in those cases in which
1 1
C = (#A) "(qB") C,.

In the present paper we shall exanine the existence of

inequalities of this inverse'' type froma nore general point

of view. Qur basic result, to be proved in the follow ng section,
is that an '‘i nverse!’ inequality which holds for functions

feHl, geH,, where E* and H, are given sets of functions,

nmust al so hold for functions belonging to the convex hulls C(H)
and C(H,), respectively. This leads to two concl usions:

i
first place; (b) to prove such an inequality for féE&, geH,,

(a) the sets H and H, may be assuned to be convex in the

it is sufficient to establish its validity for subsets whose
convex hulls coincide with Hu and HE, respectively. If these
subsets consist of functions of sinple character for which the
integrals appearing in the inequalities can be easily conputed,
the determi nation of the exact constant in the inequality in
qguestion reduces to an elenentary ektrenal probl em

In the subsequent sections we shall apply this procedure
to obtain a nunber of ''inverse'' inequalities for various classes

of functions.

2. W now state our basic result.

Lemma_2.1. ‘Let (X Z",/J,c) .be a positive neasure space, and |et

g>(t) (V=1j...;Ti) _be non-negative continuous convex functions .




for t > 0. Lét H, be a set of non-negative functiohs fu
I — Vv . \Y

such that (j)y (fy) eL'( X, % 4t) , "and Tet C(H) "denote the convex,

AuTT—of H,. TT the Tnequality

n ' _ p n
(2.1) MAL D (f)e € ¢ [TTE] i
o VZI X / X V=i /
(AC-pea—H—ve—een%t—&m—sa—heLd-s—f—eF—-aH—f H ¢v=I, ..., n),

+-hen—t—also—holds—For fyeC(H").

This, of course, is of interest only if the integral on
the right-hand side of (2. 1) exiéts. This will theref_ore be
assuned to be the case. W shall also assune that the constant
C is the best of its kind, i.e., that there exist functions
fl""" fn such that (2.1) beconmes false if C is replaced
by a smaller nunber. |

In the special case in which q’v(t) =t (py >_ 1,

=1 1

p"‘ oo+ p'r'1 = 1), the geonetric-arithnetic inequality
n P;l n
(2.2 W= <Zxpmt K, > 0).
V=l v=1
shows that
n n j B, -1 n B
(2.3) (py &) ¥ ' awl '’ < a f q
\]T v \/-I=_|I v ‘gl - A
[ n
<c V(T L7
x V=t
i.e.
n
P pP"! cC =
(2.4) I [ SI Ve _ 1d u,
e 3 Y Vy u* = DI ST




where D is a positive constant. The functions f,. of Lemm
2.1 (with (b'v (t) =t ) are thus subject to an .inverse Hol der
Inequality. = However, if (2.4) is obtained in this way, the
question arises whether the constant D is the best possible

of its kind. Evidently, this will be true only if the sign of
equality holds in both inequalities (2.3) for a set of functions
fl""’f n such that f,eH,. This difficulty is avoided if (2.4)
i's obtained by neans of the follow ng | enma.

LemTa 2. 2 Let (X 2, 1{*) be a positive.measure space. __and Iet”

Hv(\):]" .. .,n_be a subset of L (X Z }1 ) , where p~ >* 1,

pl'1 +---+1pn' =1. | f the inequality (2.4) holds for functions

fv eHy, then it also holds for_ functions f‘# eCf HM.

We first prdve Lenrma 2.1. To sinmplify the witing, we
assune n = 2; the extension of the argunment to general n is

obvious. To establish the result it is sufficient to show that

ra { r
(2.5) Ax JN(FAAK + Ay J<t> <F2)d/"< MR RPL7C
. X X X

for all convex conbi nations

Fl = d1f1(1)+---+o{mfl(m) (g[k > 0, 0(1 oot Q&m =1, £ (k)e_H

1 1!
(2 6) '
= 5, (W, +{5Mf ) ((Sr > 0, :/51 teeetfy =1, (r)eHz)'
provided (2.1) (wth n=2) holds for f. =f,'% and f_=f_ (%)
(kzl,...."mr:l,...,,l\).

By (2.6) and Jensen's inequality, we have

m
_ (k)
¢, () < go(ktb(fl ),




and a similar inequality for <$»"2"* Hence,

=5 I'¢1CF“% + Az J.qu(Fz)d/u,
X ' X

X

M m | m
, (k)
<A (2 Ao 2% !q:l(fl ap B, (Z,

T Sy k) (x)
Z ZO‘.L_ :{Br[A1 (¢1 (f1( Yduw + Ap Sd)z(fz )d/“].

k=l t=I <\ % g - x .

Since (2.1) holds for f, =f, (X and fo=1fL7, it follows
1 1 « n

t hat

> 3 ( (k) ¢ (r)
' r
b<c k§=1 gloik(sr j 1006, M
X

Because of (2.6), this is equivalent to

¢ <c 5 lzdu.

X
This conpletes the proof of Lemma 2.1.
 The proof of Lemma 2.2 is similar, except tlhat Jensen's
inequal ity .has now to be replaced by M nkowski 's inequal i t-y.
Again, we sinmplify the witing by setting n =2; the nodifications
required in the general case are evident. By (2.6) and M nkowski's

I nequality, we have

[JFlpld/ulpl < ;Z:f-’(k[ § e, 007 au] o
X

X

and thus




P P
Y=l .{Fl fap l[ sz fau 1
X X
1 1
m , — M . '52"
(x),*1 1,57 e ()24
< (I f e M e e A fee, a0
mox P f_ (kP P2
k) H - _ r K L4 )
o5 Tl a0 o T 3" @
R="r=l "3 A ~» ? /
But f.l’c"eH,l, f A" "eH,, and we have assuned that (2.4) holds
for all f"HL f ,eH,. Hence,
m M
A . {‘ FATY f =1 [
Y <2 2, <
=t X x X /

and Lammma 2.2 is established.

3. As a first application of Lema 2,1 we consider the case in

which C(Hv )I consists of the functions fy for which

®v (f|J ) el (X/X"K) and which are subject to the inequalities
. i _ .

(3.1) O<m < f, <M, < oo
VW shall also assune that the functions () h(t) are increasing for

1

t > 0. The fact that q)v (f~) can be approximated in L by

step-functions is equivalent to saying that f,’ may be appro-

xi mat ed by expressions of the form

. .
(3.2) F, o= 2o, .UV ¥ <eM> o, o Myiiivad W

k—1

where




(3.3) FI5 = m, o+ (M - m) (s,)

é, €T, and YO(SV) denotes the characteristic function of S,.

W may thus conclude fromLenma 2.1 that, in order to obtain

an inequality of the type (2.1) for functions f, satisfying
(3.1), it is sufficient to do so for functions of the form (3.3).

Wth the help of this procedure, we shall prove the follow ng

result for the case n = 2. This rest_riction is, unfortunately,
not nerely a matter of convehi ence; for larger n, the diffi-

culties encountered in determ ning the exact constants nount rapidly,

Theor em 3, 1. Let (X ~ f\) be a finite positive neasure space,

and | et Jg™Mt) (V= 1,2) denote a function which vanishes for

t =0 and is contipuous, non-decreasing_and_convex for t >* 0.

if

(3.4) 0 <m_<f, <M < co, =1, 2,

éhd (f)v (f’\)eL1 (X x,/A) , then. for any two positive constants

A-JJAM, we have the sharp inequality

(3.5) A ("(frdh + A T9)dfAgt <C Jind
X /

X d X
wher e

(3 6) C = ITHX[ 61/\62, 63, 64]

énd

(3:7) 61 =nf AACT ) * A(]3(m)], 6, - M AN CMA + A(J)yAM)],

(3:8) 63 = MNjt ANCMN + A(f)A(m)]s Ba =72 [ A~ A ) + AN (M) ]
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In view of what was said before, the exact constant C in
(3. 5) can be characterized by

Aj I‘I’l(fl)d/’“““z Xf¢’2 (£2)du
(3.9 C:sup_x

L ’
X
wher e
(3.10) f==m-~+ (M-- m) [{S,), f~ =m + (M - mz)Z(Sz)
1 JL 1 1 * 1 ~ ~n £

and Sl_,Sz may be identi'fied with any set in 2.

Si nce //"_()Q is finite, we may nornalize /it_by the condition
ytt(XY = 1; evidently, this does not affect the val ue of t he
I'right-hand side of (3.9). If we set JrTAASkA~ K= InaZnowe

f /

then have 0 < "7, £1 and

-

(3.11) f¢k(fk)d/u = ¢ (m) + -?k[q)k(mk) - ¢k(mk)], k= 1,2.
X

Furthermore,
r . .
(3.12) J f-j_"’\dt} = nyr® + nj® M, - TM’\)'_J 27 M2 (Ml - ml) ?‘1 +
X
+ (M - my) (M, - mz)/k(slﬂ 5,)
Since

/« (S;H S2) > max[o, kSh + K (S) —L/L ) ]

= max[O, ?1 + ?’2 - 11,

It follows from (3.12) that
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(3.13) mn .,'fgﬁlf\_,’\Azmlm2+”1 ‘5[~”2'/\‘22+”2 (Ml-ml)?l+
+ G{/(MI -m) (M- m),
wher e

(3. 14) §= max[ O, ~i * 7, - 1l.

In viewof (3.11) and (3.13), (3.9) is equivalent to

(3.15) C = sup ¢(?l,‘12),
0< 2x, 7251 4

wher e |

(3.16)

< 21’ 22) B m, My +my (Mz-mz) v72+m2 (Ml—ml) ’"Zl ¢ } (Mz-mz)

and J is defined by (3.14).
In the square 0 <'—A?_’£ *}1? <, 1* the function = ( ?l’ ?2) is,

in both ’\-l and y~, a rational function of order 1, exc'ep't al ong
- [

t he di agonal "th- + Ny = 1, where--because of the expression
(3.14)--its partial derivatives are discontinuous. Accordingly”?

CJ)(_l’:l" yr) camattant ats piaximumin the square only at one of

-

]

- -

-

the corners or along the diagonal *7-, + ;‘J.'z A le Since 9) ( Al’ 1 :\l)
is again a rational function of order 1 for ",%[Q, 1}, ité rr:axi mm
coincides with the larger of the two val ues b63i = 8{\,0Qy 5’; = (0,1 ,
The maxi mum of "M/"’\;I'J"(z) i"t~" square is therefore attained
at one bf the four corners. Since the values df ) ( y’ri/"‘p) at
these points are the nunbers 5"_y52?5"’\8, a in (3.7) aer (‘:'%. 8) ,

this conpletes the proof of Theorem 3. 1.
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we derive

4. As an exanple for the application of Theorem 3.1,

the inequality

myM, [Mleq—l - mlmzq_l] fflpd/q_+ my My (MZMlp_l - mzmlp"l] ffzqc}i.‘_
X X
(4.1)
T \WLL* - m'my  f fAdlT
_ X .
1 1 :
(p~ + g~ =1) of Diaz, Goldman and Metcalf [5], If we set
_ +P — 19 — q- q-
¢l (t) ; %P’ §¥32(tt)) ; Eq’ hl - sz-z [M].MZ 1 - m1m2 1] »

‘A2 =m| MI. [N?M:L,\:_ :.IImZn“ A>'f' ,\% acomputati on

shows that the constants (3.8) take the val ues

= M "M% - my Py 9.

(4 2) 63 = 64
| f 61 and b~£ are the constants (3.7), it is found, after
sone sinplification, that

(4.3) 6x - 63 = M\"MI[ (A~* - 1) (Aﬁ_’ll - 1) - Ai-'Xs- l(A-ll])Q\zpi-q'l)]

and

(4.4) 62 - 63 = MM AA (1 - ANY) (1 - AS-F) - (1- 7.7 - 2,1,

wher e A,L :nlll\/&, A = m/ M.

Since, for r> 0, x™ 1, x(x" - 1) >r(x - 1), we have
(because of p>_ 1, q> 1, NSL A<D
-1, -1, 1- - . -1 -
ATRTTOP D0 oy e - D@ - DT - D0, - 1)
= ("t -0, 1),

1
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It thus follows from (4.3) that 5. - 63 < 0. Similarly, the

inequality x(I - x') <r(l - x) (r> 0, 0<x< 1) shous that

Phigoan®h < - Dil@- DA -2 -2y =

7\1?\2 (L - » 2

1

= (1 - A (L - 2,

In viewof (4.4), thi.s..irrplies 5 - 8 < O Acco.rdi ngly, the
constant C defined in (3.6) has, in our case, the value (4.2),
and this establishes the inequality (4.1).

It is of interest to find the cases in which (4.1) becomes an
equality. As shown above, 8; = (j)(1,00 and 5, = g)(0,1), where
¢('21,”Z2) is the function (3.16). Since §(y+> Lorofa isa

rational function of order 1 in ~ for *, e[LO, 1], () ( :f_ljl ~/”‘i_)
will reduce to a constant if g)ywty =a,0, i.e., if 53 = 6"
In view of (4.2), we thus have §(",I -?+) =63 for all

-‘-"l. e[0,1]. The maxi mum §3_, of (j) ( ""1, :‘2) is therefore attained
at all points of the di agonal"’_?_" + M, = 1N a<A jfC jS easily seen
‘that this inplies equality in (4.1) whenever fl and f_2 are
of the form (3.10), and the rreaéurable sets Sl',S_z' satisfy the

condi ti ons

(45  MS) + WS) = "L(N, pSifls) = o

/

Because of (1.8), inequality (4.1) inplies an inverse HSI der
inequality of the form (1.4), where CP has the value (1.6).
Equality in (1.4) is possible only if there is equality in both

(1.4) and the geonetric-arithnetic inequality used in (1.8).
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An exam nation of these cases shows that there will be equalit'y
in (1.4) (with the value (1.6) for Cp) i f f]L and +, are of

the form (3.10), where the sets

Sl’s satisfy (4.5) and the
additional condition
p-1 -1 p-l,q
S M LN B L N
M (5) " A, il AT ot - o, TTh P

wher e Ay o= mllM.L’ Ay = m2/M2.
5. The inequalities (4.1) and (1.4) can be sharpened if, in
addition to (3.4), the functions 'TJf? 23'e subjected!'® certain
other restrictions. As an exanple, we derive the follow ng

, \ . .
i nverse Ho'l der inequality.

Theorem 5. 1. Let (X Z£9/I\/p be a finite positive neasure space,

and let f~ALMX, X é) , f.elLY X, =ZJ/\) , where p, g> O,
{
Plll+ *£ 1:

~A> 1f, in addition, f; and f«4 satisfy the con-
ditions (3.4), and if the nunbers %, <h~ (0<,''7. -, A, < 1) are
defined by |
(5.1) ff',d L = [mv + ?.,(Mv -_mv)] >L(X), o= 1,2,
X ’ /
t hen
(¢ Pa 17 @
= 1gaAlT <D
(5.2) [ d,u] [ Jf, dA] fl_fzd/t
X X X '
Wnler'e

HUNT LBRARY ‘
CABNEGIE-MELLON UNNVEASTV -
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A | I
m + (M - ) JIM -nf + (MY - ny,9) 2,1 9

- A

(5.3) D - N n A_mz) A2+mz(Ml- t’\)’\+/(’(|\/J( m (M - n»y)
and
(5. 4) {}s: max[ O, 71 + ?2 - 1].

" This result is a direct consequence of Lemm 2.2 and the

fact [8] that the functions f, satisfying (3.4) and (5.1)

(with a fixed J,, ) forma convex set which is spanned by the

functi ons

(5. 5) Fro=m o+, -m)LLs,), v=1,2

where S,e Z, and

(5.6) /A(S..,,) = EA)/A(X), = 12.
Accordi ngly, the constant p in (5.2) is given by '
!fF tl [ fF Qay lé
(5.7) D = sup 1% FZIA

X

By (5.5 and (5.5),

fFlpd/u = [P + ’Zl (1, ® - rﬁlp) ]/L(X),
X

H

[_ :
y %k T (M9 - m9)] JEE

X

The smal |l est possible value of the denominator in (5.7) was
earlier found to be equal to (3.13). |Inserting these values in

(5.7), we obtain (5.3). In view of the derivation of (3.13),




-
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t here mﬂll be equality in (5.2) in the followi ng two cases:
(@ A(S) + A(&) < /[( (X, /"8 nS) =0 (b) {His) +
/M,(sz) > M), A (slﬂ s,) = p (s)) + /&(sz) - _/.If- (X) (i.e.,
Si and S, overlap as little as possible). This conpletes
the proof of Theorem 5. 1.

¥ It is of interest ot observe the behavior of (5.3) as

ng'4>0, np-?0. According to (5.4), the denominator of (5.3)

*wll vanish if y7 + "¢ < 1, and this shows that there cannot

be an inequality of the type of (5.2) in this case. If ~] _* ~2>1,

we obtain the followng result:

Lf faelP(X, 2T, A>* foel%(X, XJ/L), 0<f. <1 (/= 1,2) . and.

f(fl + £, - 1)du > 0O,
X i

t hen N A,
> SN S A SR 1f(1£1+, © A < fflfzd/t_
X X

6. In the present section we consider inverse inequalities for .

concave functions.

Theorem 6. 1. Let f-,...,f be continuous non-negative concave
functions on a real interval I. Ij__p R 0 (y=1,. . ,n),
Pi L ey p -1 = 1, then
n -1
- P, P. f -r—l- _
(6.1) [l [ \JE., ' dx] ' < C_ "N( Il fjdx

V=I I I ¥=1
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wher e
(6.2) c = o+ 108
n £
([f1D° 1T (p +1)®>
V=l
There will be equality in (6.1) if f~=x [;‘/'1 of the

Substripts )} ,_and f, =1 - x .in the other cases.

For n = 2, this reduces to the result of Bell man quoted

in Section 1. It may al so be noted that we derive our result
wi t hout the assunption, nmade by Bellman, that the fV vani sh .
at the end-points of |

~To sinplify the witing, we shall assune that | is the

i nt erval [0,1]; evidently, this amounts only to a trivia
nornal i zation which does not affect (6.1). W shall obtain

Theorem 6.1 as a corollary of the follow ng stronger result.

Theoren16 2. Let fL...,f be continuous non-negative concave

iy_n_QL_Qas_Ln[Ol] and_ let

1
(6.3) vadx=—21—, v=1,...,n.
0
H R >0 and
_n
(6. 4) 1 f.n,
t hen
n 1 FL |
> 1 T
(64 5) v;l(l+ m gf‘, ax < B_ g (il'l £,)dx,
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(6.6) B, = o L

<[§]")
There will be ecruality in (6.5) if fv:X for [f}] of the
subscripts y , and f =1 - x in the other cases.

L] S y
I nequality (6.1) is obtained from (6.5) by neans of the
geonetric-arithnetic inequality (2.2), according to which
n 1 o - n R .
(6.7) 1 T[(1+py) f f"dx] " <22(1+- M(f.,"dx.
| T v -1 v
(@) (0]

Fortunately, the functions f~ for which (6.5) becomes an
equality--x and 1 - x--also give equality in (6.7); indeed,
for both fy = x and fL, = 1 - X, we have

1

(L+pj nydez 1,

0]
and the equality in (6.7) follows from (6.4). As a result,:
thesé functions also give equality in _(6. 1). W also note
-here that the normalization (6.3) has no effect on (6.1).

It is evidently sufficient to prove Theorem 6.2 in the c‘ase
in which the curves y = f,(x) are concave pol ygonal |ines,.
Such functions f can be witten in the form

n i .
(6.8) f,(x) =v-z;o<:k~g<x,tw>), c/ V% >0,

where the tk are numbers in [0,1] and g(Xx,t) is defined by
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g0, 1) =1-(0<x<t), glxt) =1F(t <x<1), te(Ql),

(6.9) '
g(x, 0 =1-x, g(x,1) =x

Since, for all te[Q1l],

1
. { o thax =
we have
1
gfv (x) dx =-§— :.O{k(").
3 * k=l

The function f, wll thus be nornalized in accordance with

(6.3) if

(6.10) 2 gy,

Inviewof (6.8), (6.16) and Lemma 2.1, it is sufficient

to prove (6.5) in the special case in which

fu(x) = g(x, ty), t,el0,1].

S nce 1
Pr t)dx = —2
Sg (X, _Pv+1:
0

(6.4) shows that (6.5) reduces in this case to

(6.11) Y(ty, ..., ty) 2B"%
wher e
1 n
(6.12) "Sp(t 1’..,t h = (I[ Is\ g(x, ti/)]dx

and B, Is the constant (6.6).
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Since VA *. . ., t,) iscontinuous for tAcfl*g (=1,...,n);
it is sufficient to prove (6.11) under the assunption 0 < t, < 1.
If te(Ql) and g(x,t) is defined by (6.9), then t(I - t)g(x,t)
is the Geen's function of the differential operator LySy"

for the interval [0,1] and the boundary conditions y(0) = y(Il) =0,

Hence,
A RO QX t)dX] = - T tA g te(O 1),
dt g .

for any function R(x) which is continuous in [0,1]. Applying
this to (6.12), we find that

‘ 1
2 . _
g - V-"2yM-tK) =- [0 gxty)]dx
dtk B VK
and this shows that '}bis a concave function of b in (0,1).
Hence, ‘P cannot have a | ocal m ni mumfor t,Kg(O,I). Appl yi ng
U, we |

L n

arrive at the conclusion that the expression (6.12) can attain

this argument, in turn, to all the vari abl es t

its mninmumonly if each of the variables t v is either O

or 1. By (6.9), this corresponds either to g(x,t") =x or

g(x,ty) =1- x. Inviewof (6.11) and (6.12) we thus have

1
B,  =min Ve, t) =nmin f xN(I - x)"Arax
I<k<n  )q .
= min K (nki1 =~ Z270
(0 1)t ()T

1<k<n
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where the mninumis attained for k = [qT . Hence, the constant
Bn has the value (6.6), and the proof of Theorem 6.2 (and its

corollary, Theorem6.1) is conplete.

7. A function is said to be superharnonic in a region D of
the Euclidean space E" (m>_ 1) if - f has continuous first and
second partial derivatives with respect to fhe coordi nates and
if \J“f < 0, where SF¥ is the Laplace operator in E™.  For
m= 1, the notions of concavity and superhahnnniéity coi nci de,
and it is therefore natural to ask whether there exist results
anal ogous to Theorem 6.1 fof super harnoni ¢ functions in spaces
of di nensi on n{z_ 2. This question was considered by Bel |l man
[2j1,p. 42], who showed that, for functions 'u and f, of

this type, there exists an inequality

_1 -1. -
(7.1) ( 3fj!3dvjp ( Ji,%dV) ¥ ) < C Jfnrdyv,
D D D
wher e p~1 + q"1 =1, dV is the volune elénent, and C is gi ven by

-1 AT
1{Pz.fan® qu(z,z)avr*- .
D

(7.2) C = sup
¥,3eD

D
S g(Z,f)g(Z,‘z) dv ’
D
where g( z“) is the harmonic Green' s function of D wth zero
boundary val ues. The question whether or not the inequality
(7.1) is neaningful thus depends on the finiteness of the right-.

hand side of (7.2). W shall showthat, if m=2 and D is
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a disk,'C = co. Accordingly, no inequality of the type (7.1)
ean exi st for superharnonic functions in a disk.
W take D to be the unit disk, and we use conpl ex
not ati on. Vé.shall conmpute the right-hand side of (7.2) under
t he assunption that 23 =0 and p>_q; evidently, this is
sufficient for our purpose. Since ¢g(z,O :—+og|z|, t he

denom nator of (7.2) has the form

-(7.3) ~A(5) += - jlioglz}g(z,")dV. S -
D

To evaluate this integral, we set

1 r?

9
ur) =J(@2-r) -4 logr, r =]z,

and we observe that ~ T = —+og r and wu(l) = 0. . Applying

2
Green's fornula, and noting that S| g =0 and g =u =0 for

r = 1, we obtain

A (a)glz )= lim ) R Rhas + § o2 - 3%ae
5 €0 jme |2mg]=c

= =2ra(®) =0 - [§1%) + 1617109 [E]1,
and thus
(7.4) a5) < k(1 - |55,

wher e K,L IS a positive constant.
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To conpute the nunerator of (7.2), we note that

1-z%,P
(7.5 B9 = (P vav, - { (1ogi3=28)Pav,,,
D D

or, with the substitution

5 -z
t = 1--E-Z;

2,2 5 1. _ e -
= - (log =) - , t Se
BP(I) (1 | §1%) . € |l—:{t|4

Because of

@
m . .
0 7T™N4=2. 7 (vii)sisi®VlY,
& u-jtr V=0
this yields
° 21412V - 1.P _2p+1
B_() = 2n( - 13192, 2w [T T tea " g™ as
P V=0 o
2 1 2V
= 2P e+ 1 (1 - [*F)? V_% v+ 1) P51,
VO
If p =49 =2, we thus have
B2(") 2 Ke(l - |SAlog —77 »
1- |
where K, is a positive constant. |If p> 2, “we use the fact

t hat

b3 )

V=0 -
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and therefore

Bo(*) 2Ks(1 - |1 1%

where K" is another constant. In viewof (7.2), (7.3), (7.4

and (7.5), we finally obtain

1 1
. 2
[B (i:)]° [B (0)° o
cz= a Tz KO- AP
for p> 2, and
1
1 2
C > Kc[log——l
~ > Tibr

for 2. Hence, C=o00 1in all cases,.

o
I
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