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JRepresentations of Certain Isotropic Tensor Functions*

by Walter Noll

1. Results. Let u be an inner product space of dimension n

over the field d\' of real numbers. The inner product of u and

v is written 11 • v. We denote the ^*~—*- -dimensional space

of symmetric tensors (i.e. linear transformations) over (J by ^

and the orthogonal group of IT by & . A function whose domain

is a Cartesian product made up from (Ac , is , and >o and whose

values are in Oc , ~U , or jo is called isotropic if it is covari-

ant under the action of the orthogonal group & . For example,

£: > o — * Crt is isotropic if

£(QAQT) = g(A) ^ (1)

cy T

holds for all Ae Jo and all Qe &* . (Q denotes the transpose

of Q.) The function J?: skf-^sO is isotropic if
= Qf(A)QT (2)

for all Ae J° and all Qe

It is well known (cf. [1] , p. 28 and p. 32) that functions

of the two types just described are isotropic if and only if they

have certain representations in terms of real valued functions of

several real variables. Such representations have important

applications in Continuum Mechanics.

It is the purpose of this note to prove the following repre-

sentation theorems for isotropic functions of the type tpx >o x U

and jiO : ->ox 2/ *~*

*The research leading to this paper was supported by the Office of
Naval Research under contract NONR-760 (30).

HUNT LIBRARY
CAJME6IE-MELL0N UNIVERSITY



Theorem I; The function <p: J*V is isotropic. i.e..

satisfies

<p(QAQT,Qu) = <p(A,u) (3)

for all AeJa9 all ue u andall Q€ cr> if and only if there is

a function <p: ^ 2 n _ ^ (Q such that for all £e ̂ S and all

(4)n(A),u^.u, u-Au, . . ..u-A^-Ki)

where I.(A) is the j!th principal invariant of A.

Theorem II; The function A9

satisfies

: /)

for all Ae x£> all \ie~U, and all Qe

are n isotropic functions (p^: >i>x

such that for all A€ Js and all ue

n-1

(A,u) = ( E ^(A

* L/ is isotropic, i«e.,

(5)

if and only if there

—% < ^ , k = 0,1, ...,n - 1,

k)û ... (6)

It is a matter of trivial verification to show that

the functions tp or 4Q satisfy (3) or (5) if they have repre-

sentations (4) or (6), respectively. The existence of such

representations for given isotropic functions remains to be shown.

To prove Theorem I it is sufficient to show that if A,B€ J£

and u,ve *7¥ satisfy

(7)



and

u • A u = v, • §,YJ k = O,•..,n - 1, (8)

then there exists a Q€ tr such that

B = QAQ , v̂  = Qu. (9)

It is well known (cf. [1], p. 28) that (7) implies the existence

of a Q1 G .•&" such that

5. = Ql^2l *10)

It is also well known (cf. [2], p. 156, Theorem 2), that the ortho-

gonal projections E. of the spectral resolution

r

£ = £ aiEi (r <_ n) (11)

can be expressed as polynomials of degree <c r in A:

E± == p±(A) j = l,...,r. (12)

Therefore, since ET = E. and E. e J$, we can infer from (8) and

(.10) that

|E.u| = E . U * E . U = u^ • Ê .u = u^- p. (Â )̂ u

= v • p. (B)v = Q^v • p. (AjgFv

Let 7/- = range E.. Since E.u and E.Q-V both belong to Z£

and have^ by (13) , the same magnitude, there exist orthogonal

transformations of the LL> which map E.\i into Ê.Q-.v. The

direct sum Q^e ty of these transformations leaves every

invariant and hence satisfies
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It is clear from (14) that E. Q2u = U^Q.v and hence, after

summing over i, that

(14)

= Q?v. (15)
X—

Moreover, (11) and ?

A = Q2AQ^ (16)

It follows from (10), (16) and (15) that (9) holds with the choice

Q = Q-xQ^e CTy which completes the proof of Theorem I.

To prove Theorem II assume that Ae Jo with spectral resulution

(11) and UG 1/ are given. Consider, for some j, 1 <^ j ^ r> the

vector E.u€ ijL = range E.. The only vectors in 7J,. that are

left invariant by all those orthogonal transformations of (J.

that leave E.u invariant are just the scalar multiples of

E.u. Hence, if v.eU- and if

holds for all Qe O^ that satisfy
*+*

QE.u = E .u and Qw = w if we it. (18)

we can conclude there is a number j8. such that

v. = ^.E.u. (19)

Now, if (18) holds, it is easily seen that QAQ = A and Qu = u

For such a choice of Qe cr (5) states that

Qv = v, where v = A& (A,u). (20)



Hence, if we put v. = E.v and observe E.Q = QE., we see that
• ^3 ^3^ ~^3*^ *^\J

(17) holds. We can conclude that (19) must be valid for v. = E.v.

Summing over j we get
r

v = S jS.E.u. (21)

Substituting the polynomial representations (12) into (21) we

obtain -*

v = *5>(A,u) = ( t c vA
k)u, (22)

~ ~ " k=0 k ~ r

where the c, are the coefficients of the polynomial E-jS.p.(x)
X j=l D 3

These coefficients depend^ of course, on the original choice of

A and u.

We can define an equivalence relation on the set JO X 7/ by

putting (A^u) /%̂ (A ,u ) if there exist a Qe o- such that

Selecting a particular member (A ,u ) from each of the resulting
-̂ -o —-̂ o

equivalence classes, we can construct the representation (22) for

the choice A = A , u^ = u . For any pair (A,ja) equivalent to

(A.u ) we set (p,(A,ja) equal to the coefficient c, constructed

with (A^u^) . It is clear that the • <a : J& xlj" —* (Q thus
obtained are isotropic. Moreover, we have

n-1

i.e., the desired representation (6). Q.E.D.
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