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1. Introduction

The paper deals with the number of zeros of a solution of the

n-th order linear differential equation

(1.1) y(n)(z) + p n 2(z)y
(n"2) (z) + ... + po(z)y(z) = 0 n=2,3,-...,.

where the functions p.(z) (j=0,l,...,n-2) are assumed to be regu-

lar in a given domain D of the complex plane. The differential

equation (1.1) is. called disconjugate in D s i£ n<3 (nontrivial)

solution of (1.1) has more than (n-1) zeros in D . (The zeros

are counted by their multiplicity.)

The ideas of this paper are related to some papers by Nehari

[5], [7], in which second order differential equations were consid-

ered. In [5]9 Nehari pointed out the following basic relationship.

The function

(1.2) f(z) =

where y1 (z) and yo(z) are two linearly independent solutions of

11
(1.3) y (z) + p(z)y(z) = 0 ,

is univalent in D, if̂  and only if no solution of equation (1.3)

has more than one zero in D 9 i.e. , if and only if (1.3) iŝ  dis-

conjuqate in D.
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The coefficient p(z) of (1.3) is expressed in terms of the

function (1.2) by the identity

(1.4) 2p(z) = {f,z}

where {f,z} denotes the Schwarzian derivative of f(z) with

respect to z , namely

n *\ rf ,i - f
f!!(z) 3 ,f"(z) .2

(1.5) if^zj = — — - ?( i )
f (z) 2 f (z)

It is well known that the Schwarzian derivative (1.5) is invari-

ant under a linear transformation

(1.6) Tf = |f±§ 3 AD-BC * 0.

Thus, (1.4) is independent of our choice of the solutions y- (z)

and y2 (z) in (1.2).

By making use of the duality relationship between disconju-

gancy of (1.3) and univalence of (1.2) (for the necessary condition)

and of an integral inequality (for the sufficient condition),

Nehari proved the following theorem ([5], Theorem 1), which we

state here as a disconjugancy criteria. Iri order that equation

(1.3) be disconjugate in |z|< 1, it is necessary that

(1.7) |p(z) | < 2 2 , | |

and sufficient that

(1.8) |p(z) I < * 2 2 > l zl < 1-

Both conditions are sharp as shown by the Koebe function and by an

example due to E. Hille [4].



2. (n-2) parameter family of univalent functions.

Our study of equation (1.1) starts with a problem suggested,

to us by Z. Nehari. In view of [5], [7], what are, if any, the

function-theoretic aspects of disconjugancy of n-th order linear

differential equations. In the following, we shall prove that a

disconjugate equation (1.1) is related to an (n-2) parameter

family of univalent functions.

In analogy with (1.2), we consider the function

Y l ( z )

(2.1) f (z, a^, a2, . . •, y TzT

where y^(z) and y2(z) are two linearly independent solutions

of (1.1), which vanish on a given set S of (n-2) points

a,,a~,...,a ~ of D. (Some of these zeros may coincide, giving

rise to zeros of higher order). The existence of at least two

such linear independent solutions is an immediate consequence of

the existence of a foundamental set of n linearly independent

solutions ?], (z) ,?7 (z) , . . . ,*7 (z) of equation (1.1). Indeed,± z n n

setting now, y(z) = £ ^t7?]^2) * anc* writing

k=l

(2.2) y(a_.) = 0 ^ j = 1, 2, . . ., (n-2) ,

one obtains a system of (n-2) homogeneous equations for the n

unknown constants OL % and there always exist at least two linear-

ly independent solutions of (2.2). In case of a zero of higher

order, e.g. a1 = a2 = ... = am, 1 < m < n-2, (2.2) is replaced by

Y(ax) = 0 , y'fa^ = 0 , ... y*1"1 (a^ = 0 , y (am+1) = 0, . . . ,y (an^2) =0

The author wishes to express her thanks to Professor Z. Nehari
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and the same conclusion follows. Moreover, if m = n-2 there

exist exactly two linearly independent solutions which vanish

(n-2) times at the point a^eD, but for 1 < m < n-2 it does

not follow from the general existence theorem that any three

solutions of (1.1) which vanish on a set of (n-2) points are lin-

early dependent. In the following lemma we give two sufficient

conditions which guarantee such a situation.

Lemma 1.

If there exist more than two linearly independent solutions

of equation (1.1)9 which vanish on the set S of (n-2) points

of D, then equation (1.1) is. conjugate in D and at least one

of the functions of the type (2,1) iŝ  nonunivalent in D.

Proof.

Assume there exist three linearly independent solutions y-(z),

(z) and y (z)} which vanish on S. Let b€D^ such that

(b) ĵ  Oj and set

y*(z)= aiy;L(z)+ a2y2(z)+ «3y3 (z) y* (b) = 0 , y*'(b) = 0 .

It follows that there always exists a nontrivial solution y*(z)

which vanishes at least n times in D. Moreover, y*(z)/y9(z),

which is a function of the type (2.1) is nonunivalent in D.

We are now ready to formulate the connection between the

function (2.1) and the equation (1.1).

Theorem 1.

Equation (1.1) is_ disconjugate ill D if and only if the

function (2.1) is univalent in D for any choice of two linearly

independent solutions yx(z) and y2(
z) which vanish on any



given set (aTJa2* • • • *
a
n 2} — (n~2) Points of D.

Proof.

i) Disconjugancy implies univalence. If f(b,) = f(fc>2)= -£a

it follows from (2.1) that the solution ay. (z)+ )3y (z) has n

zeros in D at the points a..,a9,...,a ,b,,b9J, and (1.1) is

conjugate in D .

ii) Univalence implies disconjugancy. Suppose there exist

a solution y,(z) which vanishes at a.5a _,..., a . There always

exists a solution y9 (z)3 which vanishes at a-,a 5...^a 9 and

is linearly independent on y^fz) . Now if

(2.3) Y2(an-1) ^ ° Y2(an} ^ °

then the function (2.1) is nonunivalent in D. So suppose (2.3)

is false and denote by L the set of common zeros of y,(z) and

y9(z). We may assume without loss of generality that a ,e£.

Let now beD, such that b/S. There exists a solution y3(z) =

a-y1(z)+ a y (z), which vanishes at b and at all the points of

E. Moreover, there exists another solution y.(z) which vanishes

at b and at a, _,..., a ^ and is linearly independent on y^ (z) .

Now Y4(an_2) ^ °'
 y4^an-l^ ^ 0 # B e c a u s e suppose Y4(

a
n_2)

 = °^

then by our lemma y. (z) is a linear combination of y, (z) and

y^(z) i.e. y. (z) = P-IY-I (z) + P^Y? (z) 3 but being independent on

y3(z) it follows from y3 (b) = 0>y4(b) = 0 that y± (b) = Y 2 (
b) = °>

which contradicts our assumption that b/S. So y- (z) does not

vanish at a o nor at a n. Considering now the functionn-2 n-1 J

y3(z)
(2.4) f(z,a1,...an_3,b) = j-^- ,

it follows that (2.4) is nonunivalent in D .



3. Quantities invariant under linear transformations

Our next goal is to express the coefficients of (1.1) in terms

of the function (2.1). In case of a disconjugate equation (1.1),

a different choice of the two solutions in (2.1) would have result-

ed in a function Tf , where T is a linear transformation of the

type (1.6). Hence, any identity connecting the coefficients of

the disconjugate equation (1.1) with the function (2.1) should be

expressed by quantities invariant under the transformation (1.6).

The simplest quantity of this type is the Schwarzian derivative

(3.1) s(z)
f (z) " xf (z)

Other invariant quantities may be obtained by differentiating

(3.1) and by producing various combinations of s(z) and its

derivatives. But, basicly, all these invariant quantities are

derived from s(z). A different way of obtaining invariant

quantities is by expanding the function

-f(0

into a power series of the form

(3.2) g(z) = J + S l.[f(C)]zj .
2 j=O 3

It is easily checked that the coefficients I.[f(t)l[j=l,2,...,)

are invariant under a linear transformation (1.6). Examination

of the first coefficients shows that



(A\ in it
f f (431 -

lfl) J
(3.4) i2[f(O]=-^ iiiMi-f: + 3(V|« -

B-m-
Z 4- ' (f )Z f J 24

While for I.[f(C)](j=2,3,...) we have, by a recent result due to

D. Ahronov [1] the recurssion formula

j-l
(3.5)

In view of (3,3), it now follows from (3.5) that all the invariants

I•[f] (j=l*2,...,) are also derived from (3.1). This information

arises the question whether there exists at all an invariant

quantity which is not derived from the Schwarzian derivative

s(z). In the following theorem we answer this question in the

negative, provided the function f(z) is meromorphic in D, with

simple poles at most, and such that f (z) j4 0. We shall say

that such functions belong to the restricted class in D (see [8]) ,

and denote the class by RG(D). Evidently, for f(z)eRC(D),

(3.1) is a regular function.

Theorem 2.

Let f(z)eRC(D), and let

(3.6) E[f(z)] = E[f(z),f' (z),...,f(n) (z)] = I(z)

be ci differential operator of order n, operating on f (z) . Îf

(3.6) ±s. invariant when f is, subject to â  linear transformation

(1.6), namely if

(3.7) E[Tf(z)] =E[f(z)] =I(z), ZGD,

then I(z) is derived from s (z), and E[f(z)] is identical with
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JL differential operator of order (n-3) , operating on s(z) , i.e.

(3.8) I(z) =E[f(z)] =E*[s(z)] = E*[s(z),s' (z) , . ..,s { n" 3 ) (z)

Proof.

Let z eD. We may assume without loss of generality that

(3.9) f(zQ) = 0, ff (zo) = 1, ff!(zo) = 0.

Because if (3.9) is not true and f (z ) = a, f» (z ) = /3 ̂ 0 and

f"(z ) = 2ys then the function

F ( z ) =

y[f(z)-a]

satisfies (3.9), and by (3.7) we have E[F(z)] = E[f(z)]. If

a = CD , then apply first a transformation f -* f~ and then

proceed as before. Setting now z = z in (3.1) and (3.4),

it follows by (3.9) that

(3.10) S(Z Q) = f"» ( Z Q ) ,

and

(3.11) s' (zQ) = f
(4)(zQ) .

By differentiation of (3.4) and by induction we obtain

(m) f ( m + 3 )

(3.12) s(m)(z) = f f l (r (z) [f (z)] m + 2

where P _ is a polynomial of order (m+2), in which the high

est degree of f (z) is m . Using (3.9), it follows now from

(3.10), (3.11), and (3.12) that

(3.13) s ( m ) (zo)= f
( m + 3 ) (zo) +

m = 2 y 3 _, . .



By elimination and induction,, (3.13) implies

(3.14) f(k)(zQ) = s
(k-3)(zQ)+ Qkl[s

(k-4)(zo),...,s(zo)] i k=3,4,...,

where Q.. j, (k = 5,6, . ..) is a polynomial of order (k-1) free of

terms of order 0 and 1, and Q = Q3 = 0. Insertion of (3.9)

and (3.14) in (3.6) yields now.

(3.15) I(zo) = E[0,l,(*s(zo),s' ( z o ) o o

= E*[s(zo),s' (zo),...,s
(n'3) (zQ)].

As (3.15) holds for every z eD, it implies the identity (3.8).

4. Relations between the coefficients of (1,1) and the Schwarzian

derivative

If equation (1.1) is disconjugate in D , then by Theorem 1

and 2 any connection between the coefficients of (1.1) and the

function (2.1) has to be expressed in terms of the Schwarzian

derivative of (2.1). But, in case equation (1.1) is conjugate

in D , (2.1) may or may not belong to RC(D) and Theorem 2 may

not be applied. To take care of this problem, we replace the

(n-2) parameter family of functions (2.1) by an one-parameter sub-

family of functions f (z,a) defined by

(4.1) f(z,a) «

where y-,(z) and y2 (z) are linearly independent solutions of

(1.1), which vanish (n-2) times at the point aeD. Now, even if

(1.1) is conjugate in D d f j ^ a ^ | = a = f'(a,a) / 0, and

f(z,a)eRC(N(a)) where N(a) is some neighborhood in D of the

point a. Denote by
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(4.2) s(z,a) = ff(z,a),z) ,

and let

s(r)(z,a) ^ ^ s ^ a ) r -1,2,...,
dz r

it follows that s(z,a) and s (z,a) are regular functions in

N(a). We are ready now to establish a relation between some of the

coefficients of (1.1) and the derivatives of s(z,a).

Theorem 3.
Assume

(4.3) P n-2
( z ) " °' pn-3 ( z )~ °>---'pn-k+l(z)S °* pn-k ( z )^ 0/ 2 < k < n

where p. (z) (j=O,l, . . . ,n-2) are the coefficients of equation (1.1).

Then

(4.4) s(a,a) = 0, s ' (a,a) = 0, .. . ,s (k"3) (a,a) = 0 3 < k < n.

(4.5) p n (a) = (n+k"1)
| ' r s ( k^ 2 ) (a,a) , 2 < k < n .

Proof.

Let y, (z) and y2(z) be two solutions of (1.1) which sat-

isfy the following initial conditions.

(4.6) y1(a)=O, y^(a)= 0, ..., y[
n~2) (a) = 0, y;[

n"1) (a) =(n-l) !

(4.7) y.(a)= 0, yl(a)= 0, ..., yi n - 3 )(a)=0, y^n"2) (a) = (n-2) !,

By (1.1), (4.3) and (4.6) it follows now that

(4.8) y1(z)=(z-a)
n~1[l + a(z-a)k + . . . ] , 2 < k < n

with



(n+k-1) . •. . » (n

Y, (a) Pn v<a)yv
— —± — n-JS. i

- D - - (

n nrv — —± — n-JS. i n -a -

11
- 1 ) , » / \ / T \ .

and in a similar way,

(4.10) y2(z) = (z-a)
n~2[l + S(z-a)k + . . . ] , 2 < k < n

with

o Pn-k<a><n-2>:

By inserting (4.8) and (4.10) in (4.1) we obtain

(4.12) f (z,a) = (z-a) [1 + (o;-#(z-a)k + . . . ] , 2 •< k < n .

Hence,

f(a,a) = 0, f (a,a) = 1,. f" (a,a) = 0, ...f(k) (a,a)= O,

(a-j3) 2 < k < n .

By (4.13) i t follows from (3.12) that

s<
m) (a ,a) = f(m+3) (a,a) m=0,1,2 , . . . (k-2) , 2 < k < n,

which implies (4.4) and (4.5).

Since any solution of (1.1), which has a zero of order (n-2)

at the point a, is a linear combination of the two particular

solutions (4.8) and (4.10), a different choice of the two solutions

in (4.1) would replace f by Tf, where T is of the form (1.6).

(r)
But s(z,a) and s (z,a) are invariant under the transformation

(1.6), hence (4.4) and (4.5) hold for any choice of the solutions

y^(z) and y2(z) regardless of the initial conditions (4.6) and

(4.7).

Remark: If for n = 2, (4.1) is interpreted as (1.2), then (4.5)

implies the known relation (1.4).



12

5. Linear transformations of equation (1.1)

We shall use now (4.4) and (4.5) in order to study the result

of a linear transformation

(5.1) z = clU AD - BC ? 0

upon the differential equation (1.1). We start by considering

the effect of (5.1) on s(z,a).

Suppose z = z(C) is an one-to-one analytic transformation

which maps the domain A onto D and &€& to aeD, then

(5.2) f(z,a) = f[z(£),a] = <p(Z,a) .

The Schwarzian derivative when subject to a transformation z =

obeys the following rule.

(5.3) oK,a) = s(z,a)(||)2 + {z(O,C}

where

,a),C) , s(z,a) = (f(z,a),z).

If z(C) is of the form (5.1) then {z (£),£)= 0, and

(5.30 a(C,«) = s(z,a) (||) .

By (5.3'), we have now, s(a,a) = 0 if and only if a (a, a) = O.

Differentiation of (5.3') with respect to C yields

3 2
(5.4) a' (C,a) = s- (z,a) (g) + 2s(z,a) || |^| .

Suppose s(a,a) = O, then a1 (o,o) = s'(a,a)(^|) | - a and

s1(a,a) = O if and only if a1(a,a) = O. By successive differ

entiation of (5.3') and by assuming (4.4) we obtain
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(5.5) o(a,ct) = O, a ' (a ,a ) = 0 , . . . oK ' (a,a) = 0 , 3 < k < n

a ( k - 2 ) (a ,a) = s (k"2) (a,a) ( f | ) k | 2 < k < n

which can be r e w r i t t e n as

(5.6) o{r) (ct,a) = s ( r ) ( a , a ) r = 0 , 1 , 2 , . . . , k - 2 .

Formula (5.6) provides us now with a deeper understanding of the

mechanism which determines the form into which equation (1.1) is

transformed when subject to a linear transformation (5.1). We

give here a new proof to two theorems stated by R. Haddas for

the case k = n,([3] Theorems 1 and 2).

Theorem 4.

Equation (1.1) with the additional assumption (4.3) JL£ trans

formed by an one-to-one transformation

(5.7) w(C) = y[z(C)]T(O, T(C)

into an equation of the same form, namely

w(n)(C)(5.8)

with

(5,9)

if and only if z(£) _is p^ the form (5.1)

Proof.

Substitution of z = z(£)i w(0 = y[

to

... +qQ(C)w(C) = 0

,2 < k < n,

in (1.1) leads us

= 0 .

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSITV
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It is well known that the coefficient of arn~ ' (C) can be re-

moved by a suitable choice of the function T(C) in (5.7). Indeed ,
rR n(C)

by setting r(C) = exp[\ — d£] , one obtains equation (5.8).

So what we really have to prove is that (4.3)implies (5.9), if and

only if z(C) is linear. Let y^z) and y2 (z) be linearly inde-

pendent solutions of (1.1) possessing zeros of order, (n-2) at a€D,

then wx(C) = Y1[Z(O]T{Z) and w2(C) = y2 [z (C(l T(C) are independ-

ent solutions of (5.8) with zeros of order (n-2) at the point a

(z (a) = a) , and

holds.

Suppose now z(£) is of the type (5.1). By Theorem 3,

(4.3) implies (4.4) and (4.5) which imply (5.6). In view of (5.10),

we may apply (4.5) to the coefficients q ?(£) ,•••&- ^(Q of

(5.8), and by (5.6), we obtain (5.9). Conversely, assume z(£)

is not linear, then {z(£),C} f 0, i.e., there exists a point

aeA, such that (z(£),C}| * a ^ 0. For 3 <. k <, n, it now follows

from (5.3) and (4.4) that a (a, a) ^ 0 which by (4.5) implies

that q 2 (a) ̂  0. For k = 2 , it is trivial that (5.3) implies

(5.9) if and only if z(C) is a linear transformation.

Remark.

As noted by R. Haddas the necessary condition goes back

to a theorem by Wilczynski [9].

6. Necessary condition for disconjugancy in the unit disk.

We shall use now the results of Theorems 1, 3 and 4 to obtain

a necessary condition for disconjugancy of equation (1.1) in the

unit disk.
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Theorem 5,

Let the coefficients of (1.1) be regular for |z| < 1 and

satisfy (4.3) there, and let equation (1.1) b£ disconjucrate in the

unit disk, then

(6.1) |pn k(z) | <
k2(n-2)!(l-|z|2)k 2 < k < n .

Proof.

By Theorem 1, disconjugancy of (1.1) implies univalence of

the function (2.1). In particular, the function (4.1) is univalent

in the unit disk for any |a| < 1. Setting a = 0 in (4.1) and

choosing y,(z) and y2(z) as in (4.6) and (4.7), we obtain by

(4.12) ,

(4.12') f(z,O) = z + (a-j3)zK x + .. ., 2 < k < n

where a and p are given by (4.9) and (4.11) . But, for the

univalent function (4.12!)

(6.2) |a-j8| < f ,

and equality holds in (6.2) if and only if

(6.3) f (z,o) = i Q
Z
v ?/v 0 < © < 2TT .

( X O K ) Z / K

By (4.9) and (4.11) it follows now from (6.2) that

(6.4) |p (o)| < 2in±k-lli 2 < k < n

which establishes (6.1) for z = 0. In order to prove (6.1) for

any |z| < 1, we apply a linear transformation
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(6.5) z = £ § £ , |a| < 1

which maps |£| < 1 onto |z| < 1. By Theorem 4, equation (1.1)

is transformed into equation (5.8), and by (5.9)

(6.6) qn_k(o) =P n_ k(a)(f|)
k| c = 0 .

Since disconjugancy is preserved by the transformation (5.7),

which is our case means that (1.1) is disconjugate in the unit

circle if and only if (5.8) is, we may apply (6.4) to a _, (o) .

Using the fact that for transformations of the unit circle on it-

self

2
(6.7) dz, 1-

'<!£' 1 -
z

•2-

holds3 we obtain (6.1).

In view of (3.14) and (5.6), it is possible to state Theorem

5 also as a necessary condition for univalence of f(z) in |z| < 1.

Theorem 5.

Assume f(z) is univalent for |z| < 1 and let s(z)= {f(z),z}

Suppose

s(a) = s'(a) = ... = s ( m' 1 ) (a) = 0 , |a| < 1

then

| ( ) |

(m+2) (1-| ap

7. The equation y* m^+ py = 0.

For k = n = 2 (6.1) reduces to (1.7) which is the necessary

condition given by Nehari for the disconjugancy of equation (1.3).

The natural question to be asked next is whether it is possible to
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establish a sufficient condition for disconjugancy, which will

generalize the sufficient condition (1.8). (Sufficient conditions

of different type were given by Nehari in [6].) It is obvious that

the easiest case to handle is that of equation

(7.1) y(n) (z) + p(z)y(z) = 0

where we have only one coeficient. For (7.1) we have the following

conjecture.

Conjecture.

Assume p(z) is regular in |z| < 1. In. order that (7.1)

be discoiijugate in | z | < 1, ijc i^ sufficient that

(7-2) I P ( Z ) | - 7 ^ M V ' M < L

with .a suitable constant 0 < A(n) < j ' : . Unfortunately,
' " n (n-2)1-

we have not succeeded in proving this conjecture nor in disproving

it. Yet, weaker results backing (7.2) a bit, were obtained for

equations of even order

(7.3) y(2m)(z) + p(z)y(z) = 0 . m=l,2,...

In the following theorem we prove that a condition of the type

(7.2) quarantees the non-existence of a solution of equation (7.3)

possessing two zeros of order m.

Theorem 6.

Assume p(z) jjs regular in |z| < 1 and satisfies

(7.4, |p(., | <
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where

m
(7.5) B(2) = 1, B(4) = 9, B (2m) = 9 TT (4k-3) m = 3,4,...,

k=3

then no solution of (7.3) has two zeros, of order m jLn |z| < 1.

To prove Theorem 6 we need an integral inequality, which will

be established in the following lemma.

Lemma 2.

Let U (x) be a, real function with m continuous derivatives

in the interval [-1,1] , possessing zeros of order m jat the points

x = ±1, then

(7.6) C+1[U(m)(x)]2dx> B ( 2 m ) f [ U ( x ^ ^ m = 1,2,...

where B(2m) are constants defined in (7.5).

Proof.

For m = 1 (7.6) was proved by Nehari [5]. By a slight

change in Nehari!s proof we first establish the following inequal-

ity

, + 1 t 2 + 1 2

(7.7) C tV 2 2k-2 - f 4 k" 3 ) J tV 2]2k^ k = i*2**"*

for real continuous function V(x) with zeros of order k at

tl. Expansion and integration by parts of the trivial inequality

vjx} + aaszisLj 2
6x> o

leads us to
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+1 , +1

]2dx , k = 1,2,....f rv (x)i*dx > r i+(4k-3-r)x
\ 9 9V 9 - - r \ 9 9V

J^d-x 2 ) 2 ^ ' 2 {± (i-x2)21c

Setting now y = 4k-3, (7.7) follows. Equality may hold in (7.7)

if and only if

(7.8) V(x) = C(l-x2)2k'2 k = 1,2,...

For k = 1, (7.8) does not satisfy our hypotheses^ so equality

in (7.7) is excluded, but for k=2,3,... equality may hold in (7.7)

Applying now (7.7) successively to the functions V(x) = u'111"1' (x)

(k=l), V(x) = u ( m~ 2 ) (x) (k=2),..., V(x) = U'(x) (k=m-l), we obtain

+1 o +1 / T v 2 +1 . 2

-^— ^-A— dx > ...C [ U ^ ( x ) 1 d x > ( f ^ ' T ^ I d x > l . 5 C
1 1 ( 1 - * ) "

• •

> 1.5.9...(4m-3) C

2 A

d-x")""

Hence

+1 m +1 2

(7.9) f r" ( m ) '-̂  ' -=•" ̂ -lA^ ^ C r u ( x ) 1f [U(m) (x)] dx > ir(4k-3) f
«*_]_ k = l O ^ 2 2 m

)

Now (7.9) differs from (7.6) only by a constant. To prove

(7.6) one has to use Beesack's inequality, ([2] p. 494)

+1 +1 2

(7.10) f fr « « (x) ] 2dx > 9 f fr
1 1

2

2
d x

which holds for real function v(x) with two continuous derivatives

in the interval [-1,1], possessing zeros of second order at ±1.

2 3.
Beesack mentions that for v(x) = C(l-x ) 2 both sides of (7.10)
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2 £go to ao . But since (1-x ) 2 does not satisfy our hypotheses,

(7,10) holds always for the class of function defined above. Apply-

ing now (7.10) to V(x) = u*m~2* (x) we obtain

(7.1C) C\u(m><x)]2dx > 9 ( V ^ 2 ' <?> '2 d* •
J i 4i (1-x >

Proceeding now as before by applying (7.7) successively, (7.6)

follows.

Remark.

By substituting px for x in (7.6) we obtain a modified

form of inequality (7.6),

(7.6.) $ [U-(m) (x)]2dx > B ( 2 m ) p 2 m ^ U ^ l 2 ^ , m-1,2,...,

which holds for real function U(x) with m continuous deriva

tives in the interval [~P,P], possessing zeros of order m at

Proof of Therem 6.

Suppose the theorem is false and there exists a solution y(z)

with two zeros z, and z 2 • (|z,|,|z2| < 1) each of multiplicity m.

By a suitable choice of the parameters a and e in

(7.11) G(z) = e i ej!a^ * |a| < 1, 0 < e < 2TT

it is possible to map |z|< 1 onto \C\< 1 and z, and z? on

two symetric points of the real axes ±p. By Theorem 4, the diff-

erential equation (7.3) is transformed into

(7.12) w ( 2 m ) (0 + q(C)w(C) = 0
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with

,_ 2m
q(C) = P(z) (ff)

By (6.7) and (7.4) it follows that

(7.4') q(C) = W-/ i- i , l2l - , l2

U-lcl2/ (i-lci2)
Thus, our assumption that (7.3) has a solution with two zeros of

order m implies that (7.12) has a solution w,(£) possessing

two zeros of order m at ±p , while (7.4*) holds. We write now

(7,. 12) for w..(C), multiply by w, (£) and integrate along the

real axes. This leads us to

p

(x)w1(x)dx + J g(x) |w1(x) |
2dx = 0.

-P -P
,By integrating by parts m times, and by noting that all the

integrated parts vanish, we obtain

(-1

Hence,

(7.13)

P
)m [ |w

-P

P
C |w(l
-P

^m) (x)

m) (x) |

|2dx =

2dx =

p
- f q(x) |w1
-P

P
1 \ q(x) |w1(

-P

(x)|2dx.

x)|2dx|
P

2dx

-P

Writing now ŵ . (x) = u (x) + iv(x) , we have |w.| = u +v ,

|w{m) | 2 - [ u ( m ) ] 2 + [v ( m ) ] 2 , and (7.13) takes the form

(7.13 •) C ([u(m)(x)]2 + [v(m) (x)]j3x < ( |q(x) | [u2 (x) +v2 (x) ] dx

which by (7.4') implies



2 + [v
(m)(x)]2bx < B(2m)

B(2m)P

22

P o <•>

-Px
P

2m ( u (x)
\ — 2J (p -x

Since w.. (x) = u(x) + iv(x) is supposed to have zeros of order

m at x= +p , the same is true for u(x) and v(x) separately.

By the remark following Lemma 2 we obtain, therefore

f[u(m) (x)]2 + [v(m) (x)]2L > B(2m)p2m C u 2 j X ) ^ i x ) d>
\ / J (P -x )

which contradicts (7.14). Thus, we have proved that no solution

of (7.3) can have two zeros of order m in the unit circle if

p(z) satisfies (7.4) .

Remark 1.

For fourth order equation (m=2) Theorem 6 is included in

Theorem 6 of [3], while for m>_ 3 our Theorem 6 may serve as a

complimentary theorem to Theorem 6 of [3].

Remark 2«

As regards the sharpness of Theorem 6, the question is still

open. It seems that for m-2 B(4) = 9 is the best constant,

while for m >_ 3, B(2m) are not the best.
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