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1.

1. Introduction

The basic concepts of the theory of simple materials have

been introduced in reference [l], (see also the exposition in [2],

Chapter C III) . Here I present a detailed study of the structure

of bodies that consist of a uniform simple material yet are not

necessarily homogeneous.

After assembling the necessary mathematical tools in Sects.

2-4, the concept of a simple body is introduced in Sect. 5. This

concept is more inclusive than the one described in [l] because it

can be appropriate not only to mechanical material properties,

but also to thermal, optical, electrical, magnetic, or any other

type of material properties. A body may be simple with respect to

any particular or combination of particular such material properties.

The physical theory relevant to these properties need not be made

explicit.

In Sect. 6 a precise definition of a materially uniform simple

body is given. The nature of the coherence of a uniform body with

respect to the local material properties under consideration can be

described mathematically in terms of what I call a material uniformity

or in terms of what I call a uniform reference. In general, neither

of these is uniquely determined by the simple body structure, but

the degree of non-uniqueness can be delimited precisely. There may

or may not exist uniform references that are gradients of global

configurations. If they do exist, the body is homogeneous and the

theory becomes trivial.

Sections 7-9 contain an exposition of the mathematical pre-

requisites necessary to describe the local behavior of material

uniformities and uniform references that possess a degree of



2.

smoothness. In the remainder of the paper, such smoothness is

always assumed. A material uniformity is then equivalent to an

affine connection, which is defined in Sect, 10 and called a

material connection. The Cartan-torsion of this connection describes

locally the deviation from homogeneity and is therefore called,

in Sect. 11, the inhomogeneity of the given material uniformity.

Associated with each smooth uniform reference is also a

Riemannian structure on the body, and the relation of this structure

to the material connection is studied in Sect. 12. The difference

between the Riemannian connection and the material connection

determines what I call the contortion of the given uniform reference.

Contortion and inhomogeneity determine one another.

Of particular interest is a special type of non-homogeneity

called contorted aelotropy in Section 13. It generalizes the more

familiar curvilinear aelotropy. In contorted aelotropy, the

deviation from homogeneity is given by a distribution of rotations

on a suitable global configuration, and the contortion describes

the local behavior of this distribution. The curvature of the

Riemannian structure mentioned before describes locally the devia-

tion from contorted aelotropy.

Section 14 contains a number of results that apply when the

response functions of the body have special properties, especially

with respect to material symmetry.

The usual version of Cauchy!s equation of balance (cf. [2],

(16.6)) is very useful only when applied to bodies that are

homogeneous. For applications to materially uniform but inhomo-

geneous bodies, a new version of Cauchy's equation, derived in



the Sect. 15, is much more suitable than the usual one. This

new version gives rise, for example, to a definite differential

equation for the theory of inhomogeneous but materially uniform

elastic bodies.

Unfortunately, there is no easily accessible exposition

of the coordinate-free type of modern differential geometry

that is the most appropriate for the applications made here. The

monograph of Lang [3], although it explains some of the concepts

used here, does not contain sufficient material and emphasizes

matters not relevant in the present context. For this reason I

develop here all the mathematical tools as they become needed,

tailored t° the requirements of the intended applications..

There is a large literature on theories of continuous

distributions of dislocations, proposed in various forms by



KONDO, NYE, BILBY, BULLOUGH, SMITH, SEEGER, KRONER, G^NTHER, and

others• Motivated by heuristic considerations, mostly con-

cerning lattice defects in crystals, these authors lay down a priori

certain geometric structures to describe distributions of dislo-

cations. These geometric structures are formally of the same

type as some of those occurring in the present paper. The con-

ceptual status of the theory presented here, however, is very

different. I show that once a constitutive assumption defining

a materially uniform simple body is laid down, the geometric

structures of the body are determined. The geometry is thus

the natural outcome, not the first assumption, of the theory.

Since the underlying constitutive assumption is very general, the

real materials to which the theory can be expected to apply need

neither be crystalline, nor elastic, nor solid.

2. Deformations.

" ~"̂  ̂ 2)

We shall employ the concept of absolute physical space ' , as

is customary in classical physics. This space c 9 whose elements

£j / ) * • • w e call spatial points, has the structure of a three-

dimensional Euclidean point space , The translation space of £

is denoted by Iff ; it is a three-dimensional inner product

space. The elements uJ X >> — • of U are called spatial vectors.

1 \ •

'For details and references I refer to the expository articles
[4] and [5].
2)
'The considerations of this paper can be adapted to the neo-

classical space-time explained in [6]. When this is done, absolute
space must be replaced by suitably defined !linstantaneous spaces11.
3)The exact meaning of this term is explained in [7], Sect. 4.



5

The translation which carries v £ c t o / 6- c. is denoted

by y-x <£ U , and X +• iju denotes the point into

which x £ c is carried by the translation tc 6- U . The

inner product of two spatial vectors u ^ y e U is denoted by

u*y . Of course, U* Y & &*~ , where 0\, is the set of all

real numbers.

The set of all linear transformations L ; U—^ 1/ of U

into itself is denoted by J^ . The composition of L- €r ̂ j

with M & ̂  is denoted by ML. 6 Jc . The identity trans-

formation on (/ is denoted by JL & <\? • The transpose of iL. ̂ *C

is denoted by Z_ , so that Us* L--Y : ir- i7' 'J^ holds for

all U? Y •£• TX • The trace and determiniant of L- &•£.

are denoted by j/r L and cUtL , respectively^ The set

of all linear transformations has the natural structure of

a nine-dimensional algebra. It is also endowed with a natural

inner product, whose values are given by /_• M =• iy^ ([_ M J

A transformation L- & J^ is said to be invertible if it is

a bijection (i.e., one-to-one and onto). In this case, there

exists an inverse \_ *6 -c so that L L - L L - ,L . The

invertible members of Jz form a group c ^ ̂ Z under com-

position; it is called the linear group of (J . Important

subgroups of -£ are the unimodular group

*L- (He

and the orthogonal group



Of course, <?- is a subgroup of

Consider a mapping cp : Cu —> £ of an open subset

Gu C C into a point-space or vector-space £ • L e t &

be the translation space of ^ ( u ~ C if <£ is already

torspace) and let Jz (IT Tf J be the space of all lineara vec . „ _

transformations of U into u . We say that Cp is

of class (̂  if there is a continuous mapping

such that

where

= o

holds for all X £ cL- . The mapping STcp , if it exists,

is uniquely determined by C£ and is called the gradient of

CP . If v/<£ exists and is itself of class C > we

say that (0 is of class C . The gradient of v<p is

denoted by \7 /^ and is called the second gradient of <p

Continuing in this manner, we say that C£ is of class (2

if it is of class C ^ and if its (r-±) si gradient

V Cp is of class C • The gradient of v

is denoted by \/ (6 . W e say that CO is of class

if it is merely continuous. If eg is of class C 9 its second

gradient has the symmetry property

The modifier "of class Cr u m aY apP^Y^ in particular, to

a scalar field, i.e. a mapping •£ : U- —> 0<. , a vector field,

i.e. a mapping U : c? —^ 7/ ^ or a tensor field, i.e., a mapping



^ : Lu ~^ JZ . A one-to-one mapping A ' CL —^ {** is

called a deformation of class C (V>l) if it is not

only of class C but if also the values of its gradient are

invertible, i.e. if \7/\ (x) e C for all x €

The members of the linear group -£- a r e also called local

deformations, so that a (global) deformation has a gradient

whose values are local deformations.

3. Continuous bodies.

A physical object can often be described mathematically

by the concept of a body o >• which is a set whose members

*, a r e called material points, and which is endowed

with a structure defined by a class C- of mappings ^ : <j —^ cZ.

The mappings Oc £ C- are called the configurations of >O

(in the space £ ) . The spatial point jc CSj £- t* is called

the place of the material point A^6 JD in the configuration '

We say that ^O is a continuous body of class (Z (p ̂ " 1)

if the class O of configurations satisfies the following axioms:

(Cl) Every 2r £ Qz is one-to-one and its range >e (!&) is

an open subset of <~ ^ which is called the region occupied

by Jj in the configuration 5:

(C2) If ^ 7c £ C then the composite1^ ^ " ̂  ° 2? r 2?

is a deformation of class C, ^ which is called the

'Composition of mappings other than linear mappings is denoted
by o . The inverse of a one-to-one mapping >c is denoted by >c
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deformation of JD from the configuration 7c into the config-

uration V

(C3) If }c £ Q and if 7^ : }c CJ3J~*£ is a deformation

of class C- y then ^ 9 6 6 C . The mapping ^ c ^

is called the configuration obtained from the configuration

"K by the deformation ~/\ .

In the remainder of this paper we shall always assume that -AJ

is a continuous body of class C , P ̂  ^ .

The axioms (Cl)- (C3) ensure that the class ^ endows

the body Jr> with the structure of a " Q, — manifold modelled

on £ H in the sense of S. Lang ([3], Ch. II, § 1). Topologi-

cally, it is a very simple manifold because it can be mapped

out with a single "chart* ('* configuration" in our terminology).

Of central importance for the present paper is the concept

of a local configuration ' at a material point X . Two (global)

configurations *K and V are said to be equivalent at ]*£ and

we write

It is an immediate consequence of the chain rule for gradients

that ^^r is an equivalence relation on C . The resulting

partition of C is denoted by CL- and its members \\ G^.^

i.e. the equivalence classes, are called local configurations

at J*T . Instead of writing yc € }<C when ^ is a member

of the class /N^ we often write
2£

The term "configuration gradient11 was used and another meaning was
assigned to the term * local configuration u in [1] •

*For better reading, we sometimes write -f I instead of -§*(*'
for the value of -f a t



= K- (3.2)

and say that the local configuration /<^ is the gradient at

X of the (global) configuration ?£

Let AC^ ̂  6>^ 6 C^- be two local configurations and let

7c 6 ACL V 6 £? . It is easily seen that the local deformation

• C depends only on K arid 6^ 9 and not on the

particular choices of 0€ £ K T and fr 6 O . We denote this

local deformation by Q K and call it the local deformation

from the local configuration K into the local configuration

(7. . Using the notation (3.2) we then have

\ (3.3)

If KT fc cL is a local configuration and I £ x any

local deformation, we can define a new local configuration u k l . t Urr

by

••* I ̂ \X(Z)-L , V ^ ^ - k ^ } , (3.4)
We call jL kf_. the local configuration obtained from the local

~~ — 2L

configuration K by the local deformation /_ . Clearly, we

have the rules

4r. Tangent spaces.

Consider pairs ( l<f u ) , where KL- € cLr is a local

configuration at JT and u 6- U a spatial vector. We say

that two such pairs ( K u) and (G y) are eguivalent

if
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It follows from the rules (3.5) that (4.1) does indeed define an

equivalence relation. The resulting equivalence classes are

called tangent vectors 44^ ; ̂ -^y- a t 3£ . The totality

of all these tangent vectors is denoted by \J and is called

the tangent space at JJ <? 3> • Let •£ 6- *J" and i$V £

be given and let ((I v) be any pair belonging to the class

AA^ . Now, if C.^^.v, Ji)
 is t o belong to M^ then (4.1)

must hold. Therefore, we see that •& 6 J^. and K

determine a unique spatial vector u 6- IX such that

We can therefore use the notation

% i f ^ , 4&) € <u£y (4.2)

and we see that kT determines a one-to-one mapping of the

tangent space ^yC onto the space U of spatial vectors.

The tangent space J has the natural structure of a three-

dimensional vector space, with addition defined by

and multiplication with scalars by

if .<%£ * Kx LLy o< 6 01 w (4.4)

It is immediately seen that these definitions of -'£*' +- ̂ ^ a n d

ex An^ are legitimate because the results are independent of

the choice of the local configuration /<^. used to represent

.'ij,. and '1Q in Is . The local configurations can be

identified with the invertible linear transformations of J. onto U .
J3T
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Given a local configuration V^. 6- C , we can define an

inner product Ai^.^ ASL of -*£_ ,40^ 6 JL bY

(4.5)

However, we obtain different inner products on J for differ-

ent choices of /<C > and hence J^ is not naturally an

inner product space.

5. Simple bodies, material isomorphisms, intrinsic isotropy groups,

To describe mathematically the physical characteristics of

a body .Jo we must endow Jzy with additional structure. Some

of these characteristics, such as elasticity, viscosity, heat

capacity, and electrical conductivity, are local, i.e., they are

attached to the individual material points 2C &~ Jy rather than

to the body as a whole. Other characteristics, such as mutual

gravitation and internal radiative heat transfer, involve more

than one material point. We deal here only with local character-

istics. The physical response of the body jo at a particular

material point Â_ t ̂ ) and a particular time will depend on the

configuration ->c of _.o at that time. It may happen that only

the local configuration V ^ Q£) at JX^ determined by ~H, ,

and no other properties of ĉ , has an influence on the response.

If this is the case, we say that the material at 5T is simple.

We say that the whole of ,/p is simple or that *jQ is a simple

body if the material at J}(" is simple for all ^ 6- 2?.

We assume that a possible physical response at a material

point is given mathematically by specifying an element from a set
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]f\ of mathematical objects. The nature of If^ depends on the

particular physical phenomena to be described. For example, in the

theory of elasticity li\ consists,of all possible ! stress tensors1,

i.e., of all symmetric linear transformations of 7/~ into 7/^ .

In the mechanical theory of simple materials with fading memory, Jfc^

consists of "memory functionals11 that relate relative deformations

histories to stresses and are subject to certain smoothness require-

ments. In theories that include non-mechanical effects fi\ consists

of functions or functionals whose independent and dependent vari-

ables have interpretations as local temperatures, energy or entropy

densities, heat fluxes, electric or magnetic field strengths,

polarizations, magnetizations, electric currents, etc. For the

purpose of the present paper, no specific assumptions about the

nature of IK need be made.

We can now make our definition of a simple body precise:

Definition 1: Let ^ be a set, whose elements we call response

descriptors. A continuous body /y of class C will be called

a, simple body with respect to IJ\ if it is endowed with a structure

by a function (% which assigns to each material point JkT£~ JC> ji

mapping ^

x ; CK
 R -

The value (%. CG J is the response descriptor of the material

at 5C in any configuration v o^ Jrj such that V v GEJ ~ G .
The mappings C^w cannot be entirely arbitrary, they are

subject to restrictions imposed by general physical principles
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such as the principle of frame-indifference and the principle of

dissipation. These restrictions need not be made explicit here.

We would like to give now a precise meaning to the statement

that the material at one point X e JD is the same as the material

at another point i 6- JD . We cannot construe this statement

to mean that Qi~ an<^ /?y a r e t^ie s a m e* f° r they have

different domains and hence cannot be directly compared. However,

we can connect the domains u and C-y^ if an isomorphism

q) ; J —^ J, of the tangent space at ]f onto the tangent

space at J£ is given. Recalling that a local configuration G:

: J ~"~̂  L-' , we can let (j7

2C 2T ~2E2C
correspond to the composition {T <JT (? ̂  . We are thus led

to the following definition:

Definition 2: An invertible linear transformation d> ; ) —> ŷ

is called a material isomorphism from \y onto J if

(5.2)

holds for all (jT 6

To say that the material at Jx is the same as the material

at X means that there exists a material isomorphism from J.—

onto J-rr

It follows immediately from Definition 2 that if n) .̂  j

and a) : J —*> J are material isomorphisms,, so is their

composition & A) :; J -=» J . Also^ if (V : )

is a material isomorphisms, so is its inverse <JT - /^T^

If we denote the set of all material isomorphisms from 'ZT^ onto

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSITY
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o'w by CL* , these facts can be expressed by'w by CL* , these facts can be expressed by

It is clear that a^«- , the set of all material isomorphisms

of J— onto itself, is a subgroup of the linear group »C

of J^, , which consists of all invertible linear transformations

of J7 . We write

and call Q— the intrinsic isotropy group of the material at

For any Y.~^V ̂  sfczY o n e easily establishes the relations

- (5"5)

It follows from (5,5)^ that if a material isomorphism

J —=> J exists, i.e. if the material at ̂ K. is the same
XT r 2Z

as the material at JL , then the intrinsic isotropy groups CL^

and CL. are isomorphic.

6. Material uniformity, uniform references, relative isotropy groups.

A simple body Jj is said to be materially uniform if the

material at any two of its points is the same, i.e. if Q-^^ ^s

never empty. From now on we assume that Co is a materially uni-

form simple body. We select a member (ft (K^J from each

If Of and n̂L are sets of linear transformations of any kind such

that the composition L- M makes sense whenever Z_ £ # , A/& M^ , we

write

we write
J L-*Oy M & £} " If the t: ̂ 9^ are invertible,J

aT*- * £ l_^lf \__ & cJ\ • Also, we write Ka, * f i<L, / L &
makes sense for all L ^ O- ^if /CL makes sense for all L O- .
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and thereby define a function <£ which assigns to each pair

of material points of JO a material isomorphism from

• Choose 3£Q €- J3 arbitrarily and defineonto 'DZ-

by

It follows from (5.3) that e 9~ Moreover, we have

where 1 is the identity transformation of

Definition 3; A function oT which assigns to each pair

of material points of Jt) a material isomorphism

is called a material uniformity jL£ (6.2) holds.

The construction (6.1) shows that the materially uniform

bodies are those that admit material uniformities. It follows

from (5.5) and (6.2) that any two material uniformities <p and

(j? are related by

where <p is a function on Jj whose values

the intrinsic isbtropy groups

jl belong to

tL

Definition 4; A function K on Jo whose values

are local configurations is called a reference for

moreover,

If«

is a material isomorphism of onto

then AT is called a uniform reference for JD.

J for any
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Actually, (6.2) holds if 9> is defined by (6.4), so that 3T

is a material uniformity if /<" is a uniform reference. Hence,

every uniform reference }( determines a material uniformity 3T

through (6.4) . Conversely, if a material uniformity (jT and a

local configuration K £ ^ for a particular material point

2 ^ £- ̂ o a r e given, then there exist a unique uniform

reference K such that (6.4) and /C Q*T) - /<C hold. In

fact, K is given by

(6.5)

Therefore, every material uniformity has representations (6.4)

in terms of uniform references.

If 25̂  is a (global) configuration, then Vfjc , which

assigns to JHC the local configuration \/̂ *: CSHj at JSf ,

i.e., the equivalence class to which Oc belongs, is a reference,

called the gradient of the configuration 7< . We say that a

body is homogeneous if it admits a gradient as a uniform reference,

Of course, not ev€*ry reference is a gradient and it may happen

that none of the uniform references of a materially uniform body

is a gradient.

Let K be a uniform reference. Every local configuration

C^j c- F* can be characterized by the local deformation

pr _ Q jgcsffe ̂ from ]<(£?) into Q , so that

(6.6)

Substituting (6.6) and (6.4) into (5.2) with the choice

we see that
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^ y (6-7)

must hold for all /•""*£ L a^d all 2ijY (r «/) . Conversely,

if (6.7) holds for all F~& ~£ and all 2£Y £ & , then Af

is a uniform reference. This result may be formulated as follows

Theorem 1; A reference K for is uniform if and only if there

is a function IR which satisfies

K
(6.8)

for all 2£ & 2? andTall F £ .£

The function A^ , which assigns to each local deforma-

tion a response descriptor, will be called the response function

of the body relative to the uniform reference K .

Let K be uniform reference. If we substitute (6.4) for

in (5.5) we see that

K (6•9)

i.e. that

ô CZ) ofr

is independent of

linear group

T h e group

We call CL

a subgroup of the

the isotropy group of the

body /S relative to the uniform reference /<" . In view of (6.10),

all the intrinsic isotropy groups Q~~ . 2T 6- 2> , are isomorphic

to the relative isotropy group Cj^.^ . It is easily seen that <Z.

* b y
is given in terms of the response function

CP
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The relation between two uniform references and the corres-

ponding response functions and isotropy groups is described by

the following theorem:

A
Theorem 2: Any two uniform references K and kT are related by
> vl̂ -'V-1" V^ ' \.^*\,^ -^ — — — ^^ —«—————————

K (z) = L P(s) }<(K) (6.12)

where [ <c •£ and where P is function on ]Q with values

in

The isotropy groups <<£. and £L*<\ relative to /(" and

K are conjugate:

The response functions "fc-^ and t^ are related by

the identity '~ ^

fe) = ̂ k //Tic) for all ffe-d, (6.14)

Proof; The two material uniformities <i and ̂  given by

must be related by (6.3) . It follows that

K (Y) V CT) hc/zf *- £ (& ¥ &
is independent of X" ̂ O . Hence (6.12) holds with the choice

(6.15)

It follows from (6.10) that tj^)&9'K f o r a 1 1 ^ &

which proves the first assertion of the theorem. If we write
A

(6.10) with K replaced by K and substitute (6.12) we obtain
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L P{z)k(K) a-. K {£.) P(sf L d

Since P (K) & fy}< we have R^c^P/^J ^ af< and hence

(6.13). The identity (6.14) is derived by writing (6.8) with ]<

replaced by K 9 then substituting (6.12) and observing (6.11).

Q.E.D.

The theory of isotropy groups relative to a local reference

configuration at a single material point extends without change

to isotropy groups relative to a uniform reference K of a whole

materially uniform body. In particular9 we say that the uniform

reference K is undistorted if cp^ is comparable, with respect

to inclusion, to the orthogonal group cy , i.e., if either ^ . ^ C O~~

or cy CL CL . If there are uniform references K such that

Z> O~ 3 we say that y6> is a uniform isotropic body; if

there are uniform references K such that ty a &" , we say

that JO is a uniform solid body. It is possible that a uniform

simple body has no undistorted uniform references at all; such a

body would be neither a solid nor isotropic.

This theory was initiated in [1], £$ 19-21. An exposition is
given in [2], §§ 31-33. J
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As before, we assume that Jj is a continuous body of class

Jm.Jm. ^ ^ C of JO into some point-space or

vector-space c is said to be of class C Q *£ r *£ P if

for every configuration ^ 6 C- 3 the mapping W°?£ ~ 2f

is of class O • In view of the axioms for Jj it is clear

that *V/o 7£ is of class ^ for every ot & O if it is

of class L, f°r some *>t £ C . These definitions apply^ in

particular, to functions (scalar fields) on Ij , i.e. mappings

j- ! 13 * £A., to vector fields on JO 3 i.e. mappings ji ; J^ —> ~)j ,

and to tensor fields on Jo , i.e. mappings T - ̂ o —*«^f .

A mapping £ which assigns to each material point ̂ /£6 Jo

a tangent vector £(K) € J^ is called a tangent vector field.

We say that such a tangent vector field -p is of class C ^ ^ ^ K

if the vector field ( V ^ y ^ on JQ defined by

is of class L, for some — and hence every — configuration ->c & C .

The algebra of all linear transformations of the tangent

space Q"L into itself will be denoted by jL- . A mapping 4^

which assigns to each material point jx € Jj a linear trans-

formation q~ CKj € J-^ is called an intrinsic tensor field.

We say that *% is of class C D Oig r <£ f>-lj if the tensor

field ' (S7*t) "3- CVTC) on 2? defined by

is of class C for some--and hence every--configuration ?£ 6 C .

We shall use the term field on JD for any mapping that assigns to

every ^ 6 - Jj an element of some vector space (which may consist

of linear or multilinear transformations).
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We

% r

shall

= set

on

= set

= set

= set

= set

employ

of

of

of

of

of

all

•

all

all

all

all

the following scheme of

functions (scalar field)

vector fields of class

tangent vector fields of

tensor fields of class

intrinsic tensor fields

notation:

of class

C** on %

class C

C/ on *£

of class

c"

y
m

" on ^

i .
C- on

?.

The set ^ is a commutative algebra under pointwise addition

and multiplication. The sets (Z-, , J-~ , ^rz > a n d

can be made modules with respect to any of the algebras

£*£ f ̂  &~1 by defining addition and scalar multiplication with

functions in ^JHL pointwise. For example, if

and J* & UZj we define ^^4^- & v/^ and

by

The sets J^L and ^Z> become associative (but not commu-

tative) algebras over Ĵ L if multiplication is defined

pointwise.

It is evident that we have zfc~ ̂  ot if S *£ **

and similar inclusions for the other sets in the list given

above. Actually^ (j^L is a subalgebra of C/X • Also,

is not only a zjr -module, but also a submodule of

2 9 regarded as a '3 : ^ " m o d u l e - Analogous observations

apply to the other modules and algebras of the list above.
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If / ^ <*t^ and /i £ LA, or
B

we define T~7| or <jL& pointwise^ i.e. by

When 5 ̂  k- > one can see that ~7~7> <f- 1§L , . ?•> 6 OZ

It is evident from (7.4). that the rules

are valid. Hence every J^ &<^~> gives rise to a mapping

; % (7.6)

which satisfies the rules (7,5) for /? . J< & C^ j T ^ ^>.

Mappings of the type (7.6) satisfying the rules (7.5) are homot

morphism with respect to the ^—module structures of

and i/_ . We also call them c^-linear mappings. Thus,

every / £~ j£ gives rise to an -j^ -linear mapping (7.6).

It is remarkable that the converse is also true/ i.e. that every

-linear mapping of the type (7.6) arises from a tensor

field of class L on

Proposition 1: If / r cA? ^ ^4? tS^^y is '^ -linear,

then there exist a unique tensor field / 6r JL such that
^ -o

T*A -T"/i holds for all U €- J^ .

Proof: Let ^ £ > 4i/ - 3 ^ b e a b a s i s o f ^ • T h e v e c t o r s

-&m can be regarded as constant vector fields on v/5 $ so that

^^ ^ ^ B ^ ^ ^ * Every // (f 7 ^ has a unique com-

ponent representation

h ' ^ h % > ̂ *%'- (7-7)
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Applying the given ^tT_iinear mapping J^ to (7.7) we obtain

£

Now. if there is a tensor field T^ such that /7i ~ T~7/ for
* — -*- — ̂

all r) 6- 7 ^ , we must have, in particular, / e- =- 7 e~ >

i.e.

T^)e^(Ti;)j^ (7.9)
for all JL ^ ^ . But since C&±.) £±j £-$J is a basis of 1/ ,

we can find, for each j%T & J$ , exactly one ZJ^ CKl) ̂  ^

such that (7.9) holds. Since the vector fields 7~£- are of

class O , it is easily seen that the tensor field / obtained
/rsS

in this way is also of class C . Moreover, in view of
(7.8), (7.9) and the ^^-linearity of jT* we have

for all h . Q.E.D.

Proposition 1 enables us to identify the set of all

linear mappings of the type (7.6) with the set C

tensor fields of class O on X? . Similarly, we can identify

the set of all ^-linear mappings of the type

1* :
with the set V-r> of all intrinsic tensor fields of class

G on jO . The proof of this fact follows from Proposition 1

by choosing a configuration 7c of Jj and letting <f- corres-

pond to T ~ V?c % (Voc) ; U^ —* 1%^ m The result just

stated is a special case of a general proposition referring to
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-multilinear mappings. For later application we state

another special case:

Proposition 2: If

JJ5
— > JB Cor J^ J (7.10)

is. ^-bilinear (ite, ^7^-linear in each of the two variables) «

then there exist a unique field Q on Jo whose values (f (Ky

are bilinear mappings

f (7.1D

such that

holds for all

is of class

6 \JZ and all

(in the obvious sense).

J . The function ?T

8. Relative 55^^fnt£i^^ brackets.

From now on we assume that jo is a continuous body of

class C with P ^ 2

Let ^\y + Jj> ~̂ ^ c be a mapping of class O y -•- •«

is some point space or vector space. Given a

configuration 3£ of >̂O 9 w e c a n then define

where \J i

(8.D

is the translation space

i.e.

of c , by
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We call v^^ the gradient of TJ' relative to the configura

tion yc . It is clear that v{ *U/ is of class C

Let 0<y V f y be two configurations. Taking the

gradient of V o }c = ['tyo Y Jc ()fo ?fj and using the chain

rule, we see with the help of (3.3) that the gradients of *V/

relative to -o< and V are related by

Let r\ and (3 be two references for Jj (see Definition

4). We define \£ (g pointwise, i.e. by

G ao'i (8-
Recalling that the configuration gradients Vjjt: and VA-

are references, we see that (8.3) can then be written as

We say that a reference f<f is of class (\ y-<*£ p — i ,

if for some--.and hence every configuration t̂: ̂ JL- the

tensor field / \/^c) rC is of class C , i.e. belongs to

• It is clear that every gradient reference V>£ is
^2

of class

Let a local configuration fC_ 6 c^_ be given. If

and V- both belong to the equivalence class that defines

, which means that VTC [Xj ~ Vv^T/~ KL., we have,

(8.3), V ^ ^ ^ " r ^ ^ ^ - Hence, ^ ^ ^ ) depends on

only> through the equivalence class \<^ (r ̂ t o which

belongs and it is legitimate to define
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If K. is a reference, we define the gradient of "\U relative to

the reference K by

If K and £7 are any two references for O , we see that

(8,3) and the definitions (8.6) and (8.7) yield the formula

(8.8)

which generalizes (8,5) . By writing (8.8) with (,7 — VV ,

where V & C~ , we infer that ^ C ^ is o f class (̂  ^

if "l^ is of class O and /x of class O

When the range of ^ coincides with the set Ox of

real numbers, in which case we write -£- instead of ^\y , we can

identify V̂ -f- with a vector field on Jj . Thus, if ~f-<5
t j

then v^-y & (/& . The formula (8.5) becomes

f (bx? ^ . (8.9)
Let •£ & Z!Z and f^'^g ' The function ^ C&) on

defined by

where the inner product is defined pointwise, does not depend

on the choice of the configuration oc 6 C , as is easily

seen with the help of (8.9). Moreover, & (yj is of class

C • Therefore, every ;£ £- J gives rise to a map-

0 73
p i n g

^ ^ ) r ^^ (8.11)
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Actually, every -> 6 Jj> can be identified with a mapping

of the type (8.11), because it is easily seen from (8.10) that

~ Al &' cannot hold for all ^ 6- V 7 ^ unless

The mapping (8.11) defined by (8.10) has the follow-

ing basic property, which follows immediately from the chain

rule.

, . „ _ , jLf }-} is a real-valued

function of class ^ of any number yn of real variables,

a n d if fuf aj---j ftH ^ ^ , then

where |—'/ , denotes the derivative of /-/ with respect, to its

lc ! th variable.

Actually, the property described in Proposition 1 char-

acterizes the tangent vector fields of class (̂  and hence

could have been used for their definition; but we shall neither

use nor prove this fact.

Applying (8.12) to the cases when H ^ I ; ^ ^ Si-^Ji. a n d

*

j AZ e J with t~*> Z . Since

/& & 'J— we can identify -p and 4? not

only with mappings from *^1 into ^̂ CT but also

^
~

with mappings from cA into ^r . Therefore,

we can form the compositions -£o/fe and A?* 3^ as mappings

from r?^ inTo ZTL . By themselves, these compositions
T5 Jo
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do not correspond to tangent vector fields, but it is remark-

able that the difference

(8.M)

called the bracket of J£ and 42 3 has values that belong to

" I d j~ I and does correspond to tangent field:

Propo sit ion 4; The bracket of two tangent vector fields

JL /Q & J (r ̂2.) can be identified with the tangent

vector field of class (^ given by

where ot is an arbitrary configuration.

defined by the right-hand side of (8.15) by -Ir*, so that

(8.!

Now let -f- 6- sh% • I n view of (8.10), i t follows from (8.16)

that

^j£t^-)~ \Z X. + [jOC^O d "" (v̂ C h)hj (8.17)

and from (8.10) that

The rules of ordinary differential calculus yield

* i'^ftj'f)i+- ^ f ' & ) i H e n c e ^ since ^ V - is symmetric,
if we write (8.18) with £ and M, interchanged, take the differ-

ence, and then compare with (8.17), we obtain
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(0 =
i.e. the desired result

The bracket

Q.E.D

depends linearly (but not

and At. and satisfies for jf^ A^j-v^ 6-

the identities

and for

f
-̂  r

(8 • 20)

, the Jacobi-identity

< 8- 2 1'
where the sum is taken of all terms obtained from the one written

3/i2>'{'. The identity (8.19) is obvious

from (8.14)^ and (8.21) is the result of a trivial calculation.

The identity (8.20) follows from (8.14) and (8.13).

It would have been possible to define the bracket [££ /fe]) 6 v/_

for Jjsj /jl € Jg j JL i£ h d= P^^j directly by (8# 15) , for it is

easy to see that the right-hand side of (8.15) does not depend on

the choice of the configuration oc .

9. Affine connections« torsion, curvature.

From now on we assume that JZJ is a continuous body of class

C/, pi 3 .
A mapping

r •.

> X

is called an affine connection of class O (^ iz ̂ ^ P~ on
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if

/ (9.2)

holds for all -£y ̂  £ J^ and

/ (9-3)

holds for all ^ £ J -̂  f ^ and all ^

If a is a real constant then 4? (ct)^ 0 by the

definition (8.10). Hence (9.3) reduces to f1 (a £) ~ Ct

when (X&(JC} fr & X . Thus, / is a linear mapping, but

it is never ^r -linear. The rule (9.3) resembles one of the

product rules for gradient operators.

A triple (i^i ; % y i M °f tangent vector fields pf class

/ ^ ̂  P~^\W called a frame of class £ if the values

form a basis of the tangent space J_ for each J2T 6- -O

Frames of class (, ' ( and hence of class C ^ Y*4^ p - X /

exist. For example, if (£1., fc^j It^y ^s a b a si s °f C/

and x a configuration, then 1U-^(S/?<J &' defines a frame

Jof class £, . Every tangent vector field ^p

a component representation

with respect to a given frame (j^^j^j^J o f c l a s s O

such that the component functions • n belong to ^/^

Now let / be a connection of class £ . Substi

tuting (9.4) into (T^yOiV' and using the rules (9.2) and

(9.3) we obtain
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k d
The components / - - of the three intrinsic tensor fields

with respect to the frame (% } ̂  ) n ) are defined by

belong to *j~ and are called

the components of the connection / with respect to the frame

( l t ^ . ^ 3 y . If we prescribe a frame (fuL > 1LX % ) of

class (2 and 27 functions / t-j 6 J-~* on Jtj arbitrarily,

then (9.5) and (9.6) determine a unique affine connection of

class

Let / be a connection of class (̂  having corn-
r-i fc O r ' 1 /

ponents / - 6 v73> with respect to the frame i^i; %yla ^ -
of class {7*" • When / ̂ S ̂  ^ then fu^ ^ 1̂ -̂  is also

of class C and I -- € Zr ^ vV* • Hence^ (9.5) and

(9.6) define an affine connection of class C^ . There-

fore, the mapping / ; J ~-̂ ^ J/^ has a unique extension

to Jj^ that is an affine connection of class (^

We denote this extension by the same symbol / • With this

convention, we can say that every affine connection of class

L^ is also of class C^ when :L s S iz*^ p~"±

be a connection of class {, , and hence

also of class Q when 1 ^ S ̂  ^ . Using the

notation

P 4Z -
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we can identify / o with a mapping

^ <9-8)

for any choice of £ , 4~ is £ is ̂ , and any choice of

In terms of j L the rule (9.3) reads

P.
Moreover, / depends xh -linearly on £> .

The Cartan-torsion (or simply torsion) of the connection /

is the mapping

T ;
defined by

In view of (8.19) it is obvious that Q is skew in the sense that

It is an almost immediate consequence of (9.9) and the rule (8.20)

that 0 is ^ -bilinear. Hence, by Proposition 2, (Sect. 7),

the torsion Q can be identified with a field on \Q of class

~~ whose value (j Q£) at j£L £ Jj is a bilinear map-

7?(£y M)ping from ^ V ^ - f into J _ . It follows that

remains meaningful for any, even discontinuous, tangent vector

fields £,4l9 and that TP^/^)^ = lT&O(f&^^ &§ depends

on and /fe only through their values at

Let ^j £ 6 <^j3~ > 2 ~ K - P"1 • I n V i e w Of

(9.8) we can regard /i and / '. as mappings from
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and also as mappings from into
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-2.

Hence we can form the compositions / , o /

and the bracket

and f~] o I~L4z f-

(9.13)

as mappings from into

we can regard r
Since

as a mapping from oL> I c" 7̂3 ./
B

into

Hence we can define

by

(9.14)

(9.15)

An easy calculation, based on the definition (9.13) and the

rules (9.9) and (8.20), shows that the mapping (9.14) is

linear. Hence, by an analogue of Proposition 1 (Sect. 7) for

intrinsic tensor fields, (h (%/%') can be identified with an

element of J~r> and OC can be regarded as a mapping

y (9.16)

which is called the Riemann-curvature (or simply curvature) of

the connection / . It is obvious that $c is skew in the sense

that

(9.17)

A short calculation shows that the mapping (9.16) is

bilinear. Therefore, by Proposition 2 (Sect. 7), we can identify

the curvature 'Ol with a field on Jj of class C whose
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value (K (A.) at 2£~& 2> is a bilinear transformation from

0^*3^ into Vx . We have TR.($y4d\^~ '&&)(#&,

which shows that 0\ [fly 4?) is meaningful for any tangent vector

fields £, 4Z .

There is an important relation between the torsion and the

curvature of an affine connection:

r
be an affine connection of class

and the curvature

The sum is to be taken over, all

cyclic

for a l l <: j /fZy

terms obtained from the one written by cyclic permutation of

The identity (9.18) is often called the First Bianchi

Identity.

Proof: Operating with \ * on (9.11) gives

The cyclic sum of the left side of this equation remains unchanged

if the third term is changed by one and the fourth by two cyclic

permutations of & , 4^ \ -fc . Hence we have

f
Using the definitions (9.15) and (9.11) we obtain
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7 f
Cyr

In view of the Jacobi-identity (8.21) the last term gives no

contribution and (9.18) results. Q.E.D.
ir-t

Let / and / be two connections of class C on

. Using the notation (9.7) and observing the rule (9.9),

we see that, for each S 3 1 *£ S i£ Ir , and each £ &

the difference

* t" f ''
-linear. Hence

B

is actually

intrinsic tensor field of class

Since 1/p. depends

an 3/- -linear mapping

can be identified with an

o n

9

S-l

can be regarded as

(9.20)

and hence can be identified with a field of class C whose

values '\/ L-X-/ are linear transformations from yL- into

c>£. . The possibility of identifying K/s> and 1/ with fields

on JD follows from analogues of Proposition 1 (Sect. 7).

Let u and u denote the torsions and (A and uv the

curvatures of / and / , respectively. If we write the

definition (9.11) of the torsion for both / and / and take the

difference, we obtain,

(9.2D

If we write the definition (9.15) of the curvature for J~* and
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i—i »—\ CL
substitute / g - *JP~^P > we find

10. Material connections.

Let (p be a material uniformity for the simple body Jtj

of class C' . (See Definition 3, Sect. 6/) We say that a

tangent vector field f is materially constant if

t (X) = £ CKljY)^ (Y) (10.1)

holds for all JLjXt? JO . if 2CO ̂  O is fixed and

is prescribed arbitrarily, then

is easily seen to define a r^berially constant field 4? such

that <V (J£o) ~ 'ttyr • Moreover, every materially constant

field & can be obtained in this fashion. Thus (10.2) describes

a one-to-one correspondence between 'jjr an(^ the set ̂ j^r-

of all materially constant vector fields. This correspondence

is actually a vector-space isomorphism, showing that /̂rRT ^s

a three-dimensional vectorspace when addition and multiplication

with scalars in Jr- are defined pointwise.

Let K be a uniform reference (see Definition 4, Sect. 6).

and <t & 'ZTtfT • Then it follows from (10.1) and (6.4) that

\<Cz)<r(Z) - \<(Y)*(Y) for all XjY't 3- , i.e. that

rC 4? ~ C = constant. (10.3)

Conversely, if C & L/ , then 47 - ̂  £ is easily seen
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to be materially constant. Thus Jir is exactly the set of

all tangent vector fields with the property (10.3).

A material uniformity g) is said to be of class (Z >

r <£}>-£ * if '-MT ̂  C^? > i.e., if all tangent vector fields

materially constant with respect to c£> are of class C-

For the remainder of this paper we lay down the following:

Smoothness assumption: ./j is a materially uniform continuous

body of class O , P ^ 3 , which admits a material uni-

formity g) of class (_/

Let (p be a material uniformity of class C and

let K be a uniform reference such that (6.4) holds. Then for

C € U~ 3 7c e Q 9 and -jr - \< C & U^ , the vector

field (C\/^)^ Jc = (V^y* -^ is of class C because

is of class C-, . This is possible for all C 6

only if (v/%//^ and hence K^ is of class C ' . Thus,

if K' is a uniform reference such that

,Y) - K
then K^ is of class Q'

Theorem 3; Given a material uniformity (p of class (/J ,

C. C. Wang [8] has recently shown that the theory given here can
be extended to the case when each point has a neighborhood that
admits a smooth materially uniformity. This can happen even when
all material uniformities for the whole body are discontinuous.

For all considerations not referring to curvature, P ̂  2-
is actually sufficient.
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there is a unique affine connection f^ such that f1^ ~ O holds

for all material constant tangent vector fields $r & J^- . in

terms of any uniform reference K satisfying (10.4) , / JLS

given by

(10.5)

Also. / is of class CL

Proof: To prove the uniqueness, assume that / and / are

connections such that / 47 - \ 47 for all sP~ & J%

Putting *Vo r K "" H , we then have 1A 4? ~ O for all

s$r £r Jj*r . We have seen at the end of the previous section that

u ^ can be identified with an intrinsic tensor field in Jj-?

when £ & yi° . Hence -& (^)^CK^O for all STO* 73

and all 47 & J ̂  . Since for any prescribed

the 4^ &' J-flr given by (10.2) has the property

it follows that Xvt2^/4^.- & for all t^ & O-^ , i.e.,

that l A c2^ J ~0 . Since Xo & u3 is arbitrary, we infer

To prove the existence of / we choose a uniform reference

K with the property (10.4), define \ by (10.5), and show

that it has all the necessary properties. It is clear that

/ 17-0 when & £ J fir because, by (10.3), V^t^'FI" ^

when 47 6 ^Jfir • Since rC is of class C it follows

that / -y is of class C when -£ 6 J^ . The

validity of the rules (9.2) and (9.3) follows from the validity

of the analogous rules for the relative gradient VV^ . Hence
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/ is indeed an affine connection of class C . Q.E.D.

Definition 5; The affine connection (of class £ ) with

the property P 1 ^ - 0 for all tr 6 J <JT is called the

ĵ ateria 1^^QR^^APff ^or t^ie I^aterial uniformity (g (of class

Theorem 4; Material connections have zero Riemann-curvature.

Proof: Let 2T ̂  O and ^Cw. 6- . ̂- be given. We can

determine -pr 6 J55- C Ĵ g such that 4? Qsf)~ M^ . if

is the material connection for (£ we have lp 4? - 0 for

all •<- 6- J-n . Hence the definition (9.15) shows that

l )^O for all £,& £%P Since ty (£&) can

be identified with an intrinsic tensor field it follows that

This can be valid for all 5 T ̂  -JE> anc^ a H '^x: ̂ JT only if

& • Hence^ since ^ /^ f- 0 ^ are arbitrary, we

must have Qt ~ 0 • Q.E.D.

11. Inhomoqenity.

Let ^ be a material uniformity of class C , let

/ be the associated material connection (of class (2 )

with torsion 0 , and let !<" be a uniform reference (of class

C J such that (10.4) holds. We can define a field S of

class C with values S CZ.) : ̂ -^Je by the condition

(S v.)Y - k T [K'u, \£\) (H.
for all U / V £ Is . In view of the linearity of the values
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S (Xs9 UCSTj 9 and Jf ̂ ^ , (11.1) continues to hold if the

fixed vectors U and )/ in (11.1) are replaced by vector

fields h and k . The following theorem shows how £

and hence 0 can be expressed directly in terms of K^ :

Theorem 5: Let v be an arbitrary configuration of 2> and

Then S is given by

<1:L-4>

or

where u. V f~ (J and U - P^u k •=

Proof: The tangent vector fields /<f u and jK̂  \/ are

materially constant and hence are annihilated by / . Hence,

the definitions (11.1) and (9.11) of S and 0 yield

Using Proposition 4, (8,15), we find

The formula (8.8)^ with the choices -\y ~ h and (j?

gives

Substituting (11.8) and the formula obtained from (11.8) by
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interchanging n and K into (11.7), we obtain (11.3) and

(11.4).

To prove (11.5) we note that v, u =- O for constant

U &• U . Using one of the product rules for gradient operators

we find

Of course, (11.9) remains valid if we interchange n and (<

The formula (11.5) follows from (11.7) and (11.9). Q.E.D.

Recall that the body Jj is homogeneous if it admits a config-

uration gradient \<\~\<'K as a uniform reference. We can

then choose > - oc in (11.2), obtaining F** J- > which is

constant and hence has gradient zero. Thus, Theorem 5 shows

that S - Q and hence U - 0 for suitable uniform refer-

ences if the body is homogeneous. The converse of this result

is not true, but it becomes true if "homogeneous" is replaced

by "locally homogeneous" in a sense we shall now make precise.

Let uv be an open subset of a simple body JQ of class

C . We can give C/V the structure of a continuous body of

class 0 by letting > ' (Jv ~~^'u he a configuration of

C/V if ZO~X Z V &M)-* € is of class C for all

configurations 7£ £ C- of ^O . We denote the set of all

configurations of (JY by C .j^ If f̂ & C- 9 then the

restriction of ô  to (Jy belongs to C^ i^ . However, not all

configurations \ £ L^ u o f ^ c a n b e obtained in this manner.

Still, given any JST 6 l/v and any configuration v of

one can easily construct a configuration Tt: of o such that
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defines a local configuration at XI relative to C/V can be

made to correspond to the non-empty set y 25 6 C / V ^ ^ ^ W / ~ -

for all V 6 K_. s * which is a local configuration at yt relative

to JD . This correspondence is one-to-one and can be used to

identify local configurations at J>T relative to (Jv with local

configurations at 5T restive to J$ . Using this identification,

we can endow cY with the structure of a simple body by using

the restriction to (Jv of the function CL which defines the

simple body structure on jh according to Definition 1 (Sect. 5).

Thus, every open subset (Jr of ./> has a natural structure of

simple body of class C , i.e., every open subset (A^ of

can be regarded as a simple body of class C- . Such a sub-

set is called a neighborhood of a material point if it contains

that point.

A simple body Jo is called locally homogeneous if every

has a neighborhood (// that is homogeneous. A body can be

locally homogeneous without being homogeneous, even if it is

simply connected.

Definition 6: The Cartan-torsion 0 of the material connection /

associated with a material uniformity m of class (̂  is

called the inhomogeneity oj£ (j> .

a

The field \ defined by (11.1) is called inhomogene

relative to the reference K .

This definition finds its motivation in the result already

mentioned:

XIt corresponds to what is called " dislocation density11 in the
theory of continuous distributions of dislocations (cf. [4])
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Theorem 6: If JJ is homogeneous then it admits a material uni-

formity of class Q with zero inhomogeneity. If Jo admits a

material uniformity of class C. with zero inhomogeneity, then

it is locally homogenous.

Proof: Only the second part of the theorem remains to be proved.

Assume, therefore, that a) is a material uniformity of class (S

with zero inhomogeneity. Using the same notation as before, we

then have Q - Q and hence S ^ 0 . Theorem 5, (11.5),

shows that if ^ e Q, is arbitrary and r^ defined by

(11.2), VT JT"" has the symmetry property

for all U/ V t- 1/ . Let F f S be given and let cM

be a simply connected neighborhood of Jtj . By a classical theorem

of analysis, the symmetry (11.10) implies the existence of a

mapping ^ : A ( o v J ^ fc such that F~~ ^(\/^)° fr holds in

Qy , Moreover, K , Vfr and hence r^ and J^ being

of class 0 , 7 is of class O- . Since VA - E~ o v

is invertible, it follows by the inverse function theorem that ^

is locally (but not necessarily globally) invertible, i.e. that

_X has a neighborhood (J/^C- \M on which ~)\ is invertible.

The mapping ?f = ^ ° > ° 3 when restricted to Cty , is therefore

a configuration of W with gradient \ ^ =((\7^J)^ > ) = Ĵ 7" ^

on ^K . Hence the uniform reference /<̂  on (yr is the gradient of con-

figuration ?c of ^4^, i.e., Cnr is homogeneous. Q.E.D.

The theorem stated in the middle of p. 90 in reference [2]
is incorrect and should be replaced by Theorem 6.
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The first Bianchi identity gives rise to the following

identity for the relative inhomogeneity S and its gradient \C S

relative to K :

S)Mv) - (SuXSyhl - Q (u>u)

To prove (11.11), substitute £'~ K u, j^^lf&j / ' \£X into

(9.16), observe that 7R,- 0 (Theorem 4, Sect. 10), and make use

of (11.6), .
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12, Relative Riemmanian structures, contortion.

Let K be a uniform reference of class C . If we choose rCL. ~ KCKj

in (4.5), then this equation defines an inner product X on each of the tangent

spaces cjL. J 2x & O . The structure on 25 defined by these inner products

will be called the Riemannian structure of jtj relative to the uniform reference

K . If JL and 42 are tangent vector fields, we define £* 4Z pointwise.

For such fields, (4.5) then yields

It is clear that %* & 6 ^ if /,<# 6 C/g for 0£ )r <g p - i . This

fact is expressed by saying that the Riemannian structure relative to K is

of class

Although the following proposition is one of the basic facts of Riemannian

geometry, we shall give an independent proof:

Proposition 6: There is a unique affine connection f"7 of class Q' with the

following properties:

(a) The torsion 0 of / vanishes,

(b) For any ^ /fe £ 6 Q ^ the relation

0 00

is valid.

/ • Let /Proof: First we assume the existence of / • Let / be the material connection

associated with K and consider the difference
A

7 / • t 3
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According to the results given at the end of Sect. 9, 1/ can be identified

with a field of class C on i) whose values are linear transformations

into Jy . Therefore, we can define a field LJ on JO of class

C with values 0 (]£) C 7/-*-c by the condition

a

for all U el/. Since Q ~ Q , the relation (9.21) and the definitions

(12.4) and (11.1) give

By the Definition 5 (Sect. 10), we have / p 4T = 0 whenever # is

materially constant. Hence, since /(r = kf C is materially constant when

C £ 1^> w e infer from (12.3) and (12.4) that

when C & IT. Now let U 7 )/, W/ ^ 7 / . If we substitute ^ }< u^ &"= f< X

and £~ /< w into (12.2) and observe (12.6) and (12.1) we obtain

I (12.7)

Since V - y is constant, we have ft LY'^ -0 (see the definition (8.10)).

Therefore (12.7) states that Ou 6 J^ is skew for all j^

Du = - (Uuf , u ̂  7$t

The equations (12.5) and (12.8) enable us to express D in terms of S^ .

Indeed, if we take the inner product of (12.5) with We Is , subtract from

the resulting equation the two equations obtained from it by cyclic permutations
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of u , v, W , and observe (12.8), we find

2 *- (Ow)v = w~ (Su)v - Z'(Sz)%: - J/' (SJ)u^ (12.9)

Since (S^)^ ~ —&¥'}& , (12.9) is equivalent to

Now, since S is determined by the uniform reference K , it follows

from (12.10), (12.4), and (12.3) that P is uniquely determined by K .

To prove the existence of a connection P with the properties (a) and

(b), one can define P by (12.3), (12.4), and (12.10) and verify that it has

all the required properties. Q.E.D.

Definition 7: The connection \ determined by the conditions (a) and (b) of

Proposition 6 is called the Riemannian connection relative to the uniform

reference /< . The field 0 determined by (12.3) and (12. ) or (12.5) and

(12.8) is called the contortion 'of kT.

It corresponds to what is called "Cosserat structure curvature" in the theory

of continuous distributions of dislocations (cf. [4]).

The term "contortion" will be motivated in Section 13.

In general, the curvature QL of the Riemannian connection is not zero.

_ with values Rfcj: lj*&*s£by the condition

<~£ (12.11)

for all uyX & U . Let U^w; u/ & U and put -p ~ K u 42 =• £^ Y>

~" fields JLj 41 -& are then materially constant and hence are
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annihilated by I . Recalling that the curvature 0\ of ' vanishes (Theorem 4,

Sect. 10), we then infer from (9^22), (10.5), (11.6)1, (12.4), and (12.11) that

and hence

" ^ " " ' ~ ' " 1.12)

In view of (12.5) and (12.10), equation (12.12) shows that f\ can be

expressed in terms of the contortion U and its gradient relative to K or

in terms of the inhomogeneity J> and its gradient relative to K .
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13. Contorted aeolotropy.

Definition 8: A uniform reference )f( of class £T' is called a stateojf

contorted aeolotropy if there exists a configuration jc such that the tensor

field

has orthogonal values ( Q,(K) 6 &* for all J? ^/J ).

Assume that \\ is such a state of contorted aelotropy. Since the inner

product in U is preserved under orthogonal transformations, the Riemannian

structure (12.1) relative to K satisfies

a (%
for all tangent vector fields <p and 42- . It follows from (13.2) that the

Riemannian connection / relative to K is obtained by transporting the

gradient operator V from ?t{B) into 3$ via CV^c) , so that

Indeed^ if / is defined by (13 3 ) , condition (a) of Proposition 6 follows

from the symmetry of the second gradient and condition (b) from the rule for

the differentiation of inner products. By virtue of (13.1), (13.3) is

equivalent to

J
IS

Now let U^j£ e U . If we substitute Z- K U ; ^?= Ky into (13.4) and
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observe (12.6) we obtain

which, by (13.1) and (8.8), is equivalent to

O j & tiX (13.5)

This equation shows that the skew transformation — Qu^l 6 ^ is the

instantaneous rate of change of b2 at JL in the direction of u y if viewed

in any configuration belonging to r\ (>c) . In other words, [y describes the

local behavior of the rotation field Q, which changes the given state of

contorted aeolotropy K into the gradient of a global configuration jo . It

is this property that the term "contortion" for LJ is meant to express.

Theorem 7: llf K is a state of contorted aelotropy then the curvature of the

Riemannian connection relative to K vanishes. Conversely, if the curvature

of the Riemannian connection relative to /c' vanishes, then f^ is locally a

state of contorted aeolotropy (i.e., every point in Jj has a neighborhood

tnf such that the restriction of K to OV is a state of contorted aeolotropy

for sJo .)

Proof; Assume first that (13.1) holds. It follows from (13.3) that \ A?- O

if and only if (Vjt/4^ is constant. Hence we could give a simple direct proof

of vi- O by using the same argument as we used in the proof of Theorem 4

(Sect. 10). Another proof can be obtained on the basis of (13.5) as follows:

If V is an arbitrary configuration and /^-<V^pi5^ > t h e n (13*5) is

equivalent to
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If we take the gradient vl of (13.6) in the direction of k C (7", we find

CU.J>

where U - H h , Y^ EF k • Of course, because of the linearity of the

values of the fields Q , V£ 4? , *% Qy etc., (13.6) and (13.7) remain valid

if n and £ are not fixed vectors but vector fields. In particular, they

remain valid when U and V are fixed. If we interchange it and V and

hence /? and K in (13.7) and subtract the resulting formula from (13.7), we

obtain, after observing (11.5) and (12.12),

(13.8)

Thus, IX-0 and hence Oc~ 0 follows also from the symmetry of the second

gradient V Q, .

Assume now that K is a uniform reference such that f\ ~ U m Let > be

an arbitrary configuration and put H ~\S/)rJ*S y a s before. We can then

regard (13.6) as a differential equation for the determination of Q2- • A s w e

have seen, J\~ O is an integrability condition necessary for the existence of

a solution. According to a classical theorem, f\ ~ 0 is also sufficient for

the existence of a solution that is valid in a simply connected neighborhood

tV of a given point Ko €- J^i . The solution can be chosen so that for jLo£ <J

Q C^pJ has a prescribed value, which we take to be the identity X . Since

Oii is skew for all U 6 1/ , it follows from (13.5) that QQ has gradient

zero and hence must be equal to 1 everywhere in C^V . Hence Q has

orthogonal values. To summarize: If n; - Q , every point in tj has a

neighborhood Cw on which we can find an orthogonal-valued tensor field

(of class C ) such that (13.5) holds.
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Assume, then, that (13.5) holds on cV . Combining (12.6) with (13.5) we

obtain

which is valid when 4^-j\ C is materially constant. Consider the affine

connection / of class C- defined by

H& = ~k~lV-(%£))< 4z e "JI (13.10)

where

K = Qk.

It is easily seen that (13.9) is equivalent to the statement that

holds for all materially constant tangent vector fields 4? . Using the same

argument as in the uniqueness proof of Theorem 3 (Sect. 10) we conclude that

I ~ I . Since / has zero torsion, an analogue of Theorem 6 (Sect. 10)

shows that every point in (// must have a neighborhood cV such that j£ - V?£

for some configuration ?£ of iM . Hence, by (13.11), we have G-(V^))^ on

(J/ , i.e. K, is a state of contorted aeolotropy on (/K Q.E.D.

A Special case of contorted aeolotropy is curvilinear aelotropy. It

corresponds to the case when there exists an orthogonal coordinate system on

# (B) C £ With the following property: If ($XC£)} g^GS$? €*&$) *s the

orthonormal basis which consists of the unit vectors that point in the

direction of the coordinate lines at yc QCJ, then QCZ)^^ does not depend
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14. Special types of materially uniform bodies«

We consider first the case when the isotropy group O^ of /> relative to

some—and hence every—uniform re erence K is discrete. Suppose that K
A

and K are two continuous uniform references. They must be related by (6.12),

where PC£) € Q*^ must depend continuously on X. . Since fy^ is discrete,

this is possible only when P is constant. Thus we can absorb P into t—

y\ ^ ^

and (6.12) becomes K- L-kC , with L~ = const. If we write (6.4) for
A ^

both \ and K , we see that they correspond to the same continuous material

uniformity. Since every continuous material uniformity must be of the form

(6.4), where K is a continuous uniform reference , we have the following

result:

Theorem 8: If the isotropy groups of a materially uniform simple body o are

discrete, then .£> has at most one continuous material uniformity gT . Any
A

two continuous uniform references K , K are related by

/< - L. /<T y L- ~ cemi- £ -u^ (14.1)

Since material connections are only associated with differentiable

uniformities (£) and not with discontinuous ones, it follows from the uniqueness

assertion of Theorem 8 that in the case when the isotropy groups are discrete,

the inhomogeneity 0 is a characteristic of the body. If the isotropy groups

are non-discrete Lie-groups, however, and if there are any material uniformities

of class C at all, there will be many, and hence also many inhomogeneities

0 for one and the same body. This is the case, in particular, for uniform

isotropic bodies.
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Next, we consider a uniform isotropic body JD with an undistorted uniform

reference K of class C , so that Or C Cl-^ . If K is a state of

contorted aelotropy, so that (13,1) holds, it follows from Theorem 2, (6.12),

that Voc is again a uniform reference and that Ci^ is also the isotropy group

relative to P W :

Theorem 9: If a uniform isotropic body has an undistorted state of contorted

aeolotropy it is homogeneous.

The conclusion of the theorem becomes false when the qualifier "undistorted"

is omitted; i.e., there are inhomogeneous isotropic bodies with distorted states

of contorted aeolotropy.

Finally, suppose there is a natural way to single out, among all uniform

references for # , a particular class L/ with the following property (P):

All members of [X are of class C an(* differ from one another by a field

of similarity transformations with constant ratio, so that ^t}^£ *\j implies

where a is a real constant and Q, an orthogonal valued tensor field on *O .

For example, if JB is a uniform solid body that is either isotropic or has

cubic symmetry then the class U of all undistorted references has the property

(P) . This follows from results proved in reference [9l. Other examples

are obtained by letting {J be the class of all uniform references K such that

the corresponding response functions %. satisfy a certain special condition

such as Ty tL ) ~ 0. Such references are often called natural references.

The nature of the response function is often such that the class U of

natural references has the property (' J.
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If (14.2) holds, it follows from (12.1) and the fact that orthogonal

transformations preserve inner products that the two Riemannian inner products

I
corresponding to K' and K differ from one another only by the constant

factor Ci . Therefore, Proposition 6 shows that the Riemannian connections

relative to K and JK are the same, and we have the following result:

Theorem 10: If JO is a uniform simple body with a distinguished class [J of

uniform references with the property (P) , then the Riemannian connection /

and its curvature 0L are characteristics of the body.

The assertion of Theorem 10 applies in particular, to uniform isotropic

solid bodies, for which the curvature, 01 , defined by the class of

undistorted uniform references, is an intrinsic measure of deviation from

homogeneity.

We now derive a new version of Cauchy's equation of balance, which

expresses the fact that the forces acting on every part of a given body Jo

must add to zero. In order to do so, we first derive a lemma, Proposition 7

below.

Let \\ be a vector field and 7~~ a tensor field of class C on lo .

We define the divergence of these fields relative to some reference /< by
————————— — — — — . v̂̂, ^

respectively. The following product rules are valid for -f & J-g > A 6

u (fh) = (\£
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If K - Vic is a configuration gradient, we write CUA^ instead of

Suppose that a uniform reference K of class C for o and a tensor

field J^ of class L on O are given. For any configuration v of J& we

then define another tensor field JT of class C by

where

(15.4)

Proposition 7: If

for some ^ T V 2? , then the divergences at )C relative to jfC of the tensor

field T and of the tensor field ~£" defined by (15.3) and (15.4) are related by

T)J (15.6)

where the vector field £ is defined, in terms of the homogeneity 3 relative
, _ ^ A •-**' — — —

to /< , b£

S* U = tr CS u) , U ̂  7?T (15.7)

Proof: We make use of (15.3) and (15.4) with ^ replaced by ^c . We then have

Using the rule
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for the differentiation of a determinant, the product rules (15.2), and the

definition (15.1)2, we see that taking ckvk of (15.8) yields

(15.10)

Since F(Zhl, J72T)=i, and 7^^>71^by (15.5), (15.4), and

(15.3), evaluation of (15.10) at JT<^2? gives

- 0, (15.11)

Using the rule trJJ^F')}/'] x V^ (trF/*¥, we see that (15.11) can hold for

all U e U only if

T" f^; frE')-ety<ET] + ̂ < X^-^%lTj = P. <15a2>
On the other hand, if we evaluate (11.4) at 5 T ^ S and take the trace, we obtain

which, in view of (15.7), is equivalent to

- (15.13)

The desired result (15.6) follows from (15.12) and (15.13). Q.E.D.

Let us assume now that the body JD is subject to internal contact forces

and external body forces . If the forces acting on every part of Jj are

Inertial forces should be regarded as part of the body forces.
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balanced and if suitable regularity assumptions are satisfied one can prove the

following results (cf. [10j):

(i) With every configuration >c of 2J one can associate a stress tensor field

/ of class C and a body force field J?^ of class C such that

the force -f exerted on a part / of >O by the combined action of a

separate part J~ of J5 and the external world is given by

where C- is the surface of contact between Cr and j in the configuration

35- and where ?L is the unit normal to C directed away from >c (•3~ J .

(ii) Cauchyfs equation of balance

is valid on Jo for every configuration 2£ •

(iii) If K and ^ are two configurations of JO , then the stress fields

and X. v
 anc* t"le body force fields b and ID are related by

where

(cf. equation (43A.3) of reference [2]),

Let /C be a uniform reference of class C for ^O . Let a particular

point X f 3 be given. It is clear from (15.16) and (15.17) that
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and J?> fir)2" j?*. (*& hold whenever both •£ and fr belong to the equivalence

class by which the local configuration K CZJ is defined. Thus, we can define

fields jifc and O{< by the condition that for each JOT £ £J >

Tt< &y - T* cz) y jtj, or) - b^ (z) <i5. is)

hold whenever V*-&*) - I?*'&). We call 7 ^ and jp^ the stress tensor field

and body force field relative to the reference /<"" . It is clear from (15.16)

and (15.17) that

T~ - -i^-7~ /="r b ^^=~b (15.19)

when C and ^ are given by (15.4), where ^ is an arbitrary configuration.

Since (li*- II = tî V(. / / whenever \7>c(K)-~ ^CSj , it follows from

~ ~ 'X $ ̂  IX ~ ^ ;
I tî V(. / /
'X $ ̂  IX

(15.15) that

' ! ? (15'20)
holds whenever V y ($D ~ }?f GSi) . On the other hand, Proposition 7 applies

when we choose T~ ~ A\^ • Thus, by substituting (15.6) with the choice J_ ~ JL^

into (15.20) we obtain the following result:

Theorem 11; The stress tensor field ~J and the body force field O relative

to a uniform reference K satisfy the modified equation of balance

- o) (15.2D

where £ is defined in terms of the inhomogeneity o relative to K b^ (15.7).

The equation (15.21) is much more useful than (15.15) for dealing with

inhomogeneous materially uniform bodies. Consider, for example, an elastic
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body JJ y for which the set of response descriptors is the set *o ^^c °f

symmetric linear transformations. According to Theorem 1 (Sect. 6) we can

associate with a given uniform reference /<f a relative elastic response

function jy ; £ — > x> • In order that a configuration V be compatible

with a given force system, the constitutive equation

1 (15-22>

must be satisfied on JO . where / is the stress tensor field for V . In

view of (15.19)p (15.22) is equivalent to

where ^ ^ ; j£ ~-^ V^ is defined by

IE) -1 MFj & (F)FT'L j Ed.
 (15-24)

Assume that £ is of class (J and denote its gradient by nj^ . For each

F*& -P the value fir/, ̂ ^ / is then a linear transformation from JQ?

into ̂ Jf7 . If we take the gradient of (15.23) relative to /C , the chain

rule yields

It follows that

where ^A^ is that function on { whose values

determined by the property that ^\{C(F
>)\^\^W is the trace of the linear
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Ktransformation U -> £ //-/ (S/Uzr^JC & f o r a 1 1 ^ ^ ^ a n d a 1 1

_>/ 6r J^ C$/Cj • Of course, /^x^ is determined by the response function J£>. .

If we substitute (15.26) and (15.23) into (15.21), we obtain1^

= o

''This result, in terms of coordinates, was already announced in reference [2l

as equation (44.7).

which is the differential equation for the determination of configurations \

possible in a materially uniform elastic body. If the body is homogeneous we

can choose K~ vU . Then £ vanishes and (15.27) reduces to the classical

differential equation of finite elasticity.

Finally, we given another application of Proposition 7. Using the fact

that U is three-dimensional (which was irrelevant up to now), we choose an

orientation in \J and consider the associated cross product X . The curl

of a vector field \\ and a tensor field T on o relative to some configuration

v are defined by

r (15.28)

., T) B . cW; (T<t),

where U V 6-lT . It follows from (15.28) that

I CUAI T ) (u,*y) ̂  (( Y / JYJU ~((\/J Ĵ yv-. (15.29)

Also, we have the rule

~T~ -= 0 . (15.30)
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The inhomogeneity O relative to a uniform reference K has the skew

symmetry (St£/J£ = — [S\/JU , UyV e U • Therefore, jS determines and is

determined by tensor field yA on JO such that '

(Su)v =

^ field A here corresponds to what has been denoted by /A in [2], Sect. 34.

If we substitute (15.31) into (11.5) and observe the rule (15.29), we see that

A (uxy)« [CMJ^ (£""')] (Fv * FuX (15-32)

Hence, since f- (F~v * F~u *) -(ctett^J()£*%) and since U>r\S is arbitrary,

(15.32) yields

- a*£ /f7"^- -t=-AFT X- MF (15.33)
jS U — -^ 0 —

U —

Thus, the tensor field ~ CUbi {F~T ) is obtained from A by the rules (15.3),

(15.4), except that the absolute value signs are omitted in the definition of

CT , which does not affect the validity of Proposition 1. Since by rule

(15.30) we have

(15.6) yields

dW^A -h A S - O (15.34)

where £ is determined by /A through

(A -A*')* - $ X LL , U? T?~ (15-35)
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Thus, (15.34) is a differential identity for A and JC . One can show that

it is equivalent to the Bianchi identity (11.11).
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