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1. Introduction

The basic concepts of the theory of simple materials have
been introduced in reference [1], (see also the exposition in [2],
Chapter C III). Here I present a detailed study of the structure
of bodies that consist of a uniform simple material yet are not
necessarily homogeneous.

After assembling the necessary mathematical tools in Sects.

2-4, the concept of a simple body is introduced in Sect. 5. This

concept is more inclusive than the one described in [1] because it
can be appropriate not only to mechanical material properties,

but also to thermal, optical, electrical, magnetic, or any other
type of material properties. A body may be simple with respect to
any particular or combination of particular such material properties.
The physical theory relevant to these properties need not be made
explicit.

In Sect. 6 a precise definition of a materially uniform simple

body is given. The nature of the coherence of a uniform body with

respect to the local material properties under consideration can be

described mathematically in terms of what I call a material uniformity

or in terms of what I call a uniform reference. 1In general, neither

of these is uniquely determined by the simple body structure, but
the degree of non-uniqueness can be delimited precisely. There may
or may not exist uniform references that are gradients of global
configurations. If they do exist, the body is homogeneous and the
theory becomes trivial.

Sections 7-9 contain an exposition of the mathematical pre-
requisites necessary to describe the local behavior of material

uniformities and uniform references that possess a degree of




2.

smoothness. In the remainder of the paper, such smoothness is
always assumed. A material uniformity is then equivalent to an
affine connection, which is defined in Sect. 10 and called a

material connection. The Cartan-torsion of this connection describes

locally the deviation from homogeneity and is therefore called,

in Sect. 11, the inhomogeneity of the given material uniformity.

Associated with each smooth uniform reference is also a
Riemannian structure on the body, and the relation of this structure
to the material connection is studied in Sect. 12. The difference
between the Riemannian connection and the material connection

determines what I call the contortion of the given unifofm reference.

Contortion and inhomogeneity determine one another.
Of particular interest is a special type of non-homogeneity

called contorted aelotropy in Section 13. It generalizes the more

familiar curvilinear aelotropy. In contorted aelotropy, the

deviation from'hdmogeneity is given by a distribution of rotations
on a suitable global configuration, and the contortion describes
the local behavior of this distribution. The curvéture of the
Riemannian structure mentioned before describes locally the devia-
tion from contorted aelotropy.

Section 14 contains a number of results that apply when the
response functions of the body have special properties, especially
with respect to material symﬁetry.

The usual version of Cauchy's equation of balance (cf. [2],
(16.6)) is very useful only when applied to bodies that are
homogeneous. For applications to materially uniform but inhomo-

geneous bodies, a new version of Cauchy's equation, derived in




the Sect. 15, is much more suitable than the usual one. This
new version gives rise, for example, to a definite differential
equation for the theory of inhomogeneous but materially uniform
elastic bodies.

Unfortunately, there is no easily accessible exposition
of the coordinate-free type of modern differential geometry
that is the most appropriate for the applications made here. The
monograph of Lang [3], although it explains some of the concepts
used here, does not'éontain sufficient material and emphasizes
matters not relevant in the present context. For this reason 1
develop here all the mathematical tools as they become needed,

tailored to the requirements of the intended applications..

There is a large literature on theories of continuous

distributions of dislocations, proposed in various forms by
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KONDO, NYE, BILBY, BULLOUGH,SMITH, SEEGER, KRONER, GUNTHER, and
3 , .

others. Motivated by heuristic considerations, mostly con-

cerning 1atticé defects in crystals, these authors lay down a priori
certain geometric structures to describe distributions of dislo-
cations. These geometric structures are formally of the same

type as some of those occurring in the present paper. The con-
ceptual status of the theory presented here, however, is very
different. I show that once a constitutive assumption defining

a materially uniform simple body is laid down, the geometric

structures of the body are determined. The geometry is thus

the natural outcome, not the first assumption, of the theory.

Since the underlying constitutive assumption is very general, the
real materials to which the theory can be expected to apply need

neither be crystalline, nor elastic, nor solid.

2. Deformations.

NV SN T e N

2)

We shall employ the concept of absolute physical space ', as

is customary in classical physics. This space 6‘ s whose elements

X, y)..' we call spatial points, has the structure of a three-

3)

dimensional Euclidean point space™’, The translation space of é;

is denoted by iﬁ/ ;3 it is a three-dimensioﬂal inner product

A
space. The elements U, Y, --. of (J are called spatial vectors.

1)For details and references I refer to the expositéory articles
[4] and [5].

2)'I‘he considerations of this paper can be adapted to the neo-
classical space-time explained in [6]. When this is done, absolute
space must be replaced by suitably defined "instantaneous spaces".

3)The exact meaning of this term is explained in (7], Sect. 4.




The translation which carries x ¢ E to Yy € & is denoted

- Cu . .

by y-x € U , and X+ L denotes the point into
-zc)/
7.

~

which X ¢ E is carried by the translation W € The
inner product of two spatial vectors w ,VY €& ch is denoted by
we v . Of course, uU-Y & 02 , where @ is the set of all
real numbers.

The set of all linear transformations [ : s ot U
into itself is denoted by oé/) . The composition of !:_, éa{é)
with M 50&[} is denoted by ﬁf/x € f . The identity trans-
formation on 79' is denoted by _Z_ & ‘{[) . The transpose of [:_ é-{ﬂ
is denoted by ‘L\_T s SO that - L:_y _L_I/-’)_/ holds for
all W«,v ¢ )" . The trace and determiniant of ,Z:_ L‘—g
are denoted by 'br ’L: and 4{(/{')4: , respectively. The set
ég of all linear transformations has the natural structure of

a nine-dimensional algebra. It is also endowed with a natural

inner product, whose values are given by Z_' M: IL/r (,Z: /‘77) .

A transformation L 6—.{ is said to be invertible if it is
a bijection (i.e., one-to-one and onto). 1In this case, there

-t . o -1
exists an inverse L_ & f so that [:[; = L é__ = 1 . The

. A
invertible members of ,,{ form a group Z Cag under com-

position; it is called the linear group of 23/ . Important

subgroups of { are the unimodular group

w- fHel| JdtH]- 1}

and the orthogonal group

c-feet| QO-1}

-




Of course, @& is a subgroup of ¢ .

Consider a mapping gfg ! g, - E' of an open subset
g c E into a point-space of vector-space é’ . Let 29’
be the translation space of E’ ( UJ: gl if gl is already
a vectorspace) and let ,,g (19; 77/) be the space of all linear
transformations of ’Cq' into /),3’1 . We say that g@ is

of class Ci if there is a continuous mapping Vg e 9_;{)/755179

/ such that
where

holds for all X & The mapping \‘72 , if it exists,

e

is uniquely determined by g and is called the gradient of
-4
g . 1If Vgg exists and is itself of class ( , we

2 —
say that gg is of class C~ . The gradient of \/Sg is

2)
denoted by V( g) and is called the second gradient of g
Continuing in this manner, we say that <1£ is of class C
r—1
if it is of class ( and if its (r~1) st gradient
r-1) - ' 1 (r-1)
V g ~is of class C . The gradient of V gg
~(r) o
is denoted by \/ ‘56 . We say that %‘ is of class C
if it is merely continuous. If/? is of class C its second

gradient has the symmetry property ((Vm ((Vm )V)H- v 67/q—

The modifier "of class (/7 ¥ may apply, in particular, to

a scalar field, i.e. a mapplng {- g, — @ , a vector field,

i,e. a mapping 1') } —_ , or a tensor field, i.e., a mapping




I: 9), - X/ . A one-to-one mapping Z : —_—> E is
( r
called a deformation of class C (r>1) if it is not

~r
only of class C but if also the values of its gradient are
invertible, i.e. if V) (x) ¢ 4 for all gédé‘;
The members of the linear group € are also called local

deformations, so that a (global) deformation has a gradient

whose values are local deformations.

3. Continuous bodies.
L2 W W W N P N N

A physical object can often be described mathematically
by the concept of a body 3 , which is a set whose members

ZY ... are called material points, and which is endowed

with a structure defined by a class Q of mappings 2c: tB“';‘ E

The mappings 2¢ ¢ g are called the confiqurations of B

(in the space g ). The spatial point ¢ (Z) & (C is called

the place of the material point Xé B in the configuration 2< .

We say that :5) is a continuous body of class CP ('Ap g-_l}
if the class Q of configurations satisfies the following axioms:
(Cl) Every 72¢ ¢ Q is one-to-one and its range 2 [B) is

an open subset of g , which is called the region occupied

)
by 5 in the configuration 7 .

c~—

(c2) 1f Y, % € _.__(.. then the compositel) A =a/oi€l X /B) ~—>a, (3)

—_

is a deformation of class CP , which is called the

1) Composition of mappings other than linear mappings is denoted _

by o . The inverse of a one-to-one mapping 7 1is denoted by 3¢ .




deformation of Z‘? from the configquration 7 into the config-

uration ) .
(C3) If 3 € _C and if 2 T Xk (3)-%6; is a deformation
of class C! , then Qo € :.C . The mapping De2%

is called the configuration obtained from the'confiquration

% by the deformation N

—~ o~

In the remainder of this paper we shall always assume that B
is a continuous body of class CP s P = 1 .

The axioms \(Cl)-(C3) ensure that the class C:: endows
the body ?‘Z with the structure of a C'F—- manifold modelled
on g # in the sense of S. Lang ([3], Ch. II, §1). Topologi-
cally, it 1s a very simple manifold because it can be mapped
out with a single "chart* ("configuration" in our terminology).

Of central importance for the present paper is the concept

of a local configurationl) at a material point X . Two (global)

configurations % and y are said to be equivalent at X and
2) -

we write

- ~1
% ~g iF V&wé)]z@) -1, G

It is an immediate consequence of the chain rule for gradients

that ~x is an equivalence relation on _C__ . The resulting

partitioh of _C__ is denoted by EX and its members "{Z" G

i,e. the equivalence classes, are called local configuratlons
at X . 1Instead of writing > € /<X when 72¢ is a member

of the class /L(X we often write

L rhe term’configuration gradient” was used and another meaning was
assigned to the term "local confzgura:tcon ¥V in [l]

2 por better reading, we sometimes write -}I instead of :f(X)
for the value of § at x . X




sz (X) = KZ (3.2)

and say that the local configuration Z{X is the gradient at

X of the (global) configuration 2¢ .

Let L\/'X’) .QY € Z?Z be two local configurations and let

i € ’\KZ y Y€ QX . It is easily seen that the local deformation
V(b;o ié)/k (z;;- f depends only on KZ and QX , and not on the
particulé\r choices of x & L(X and )y € QY . We denote this
local defomation by QY(’ L(Z:L and call it the local deformation
from the local confiqura;ion Kx into the local confiquration
QY . Using the notation (3.2) we then have

v(gcgé)/ = VJ x) [V )] 1 (3.3)

& 2% (X) g

If [{X € Z; is a local configuration and Q € ( any

local deformation, we can define a new local configuration LL{X € EX'

. by

LKy= 2o | V2 =L , Va®-KG L 6.9

x

We call L_ KZ the local“confiquration obtained from the local

configuration L(X by the local deformation /___ . Clearly, we

have the rules
-1

(QX KX‘L) )SX = ~x (/L:,;'I{z),» = /:: - (3.5)

b

4. Tangent spaces.

Favava v w a0 " -]

Consider pairs (L{x) k‘) , where L(r € EX is a local

configuration at X and Yy ¢ z/ a spatial vector. We say

that two such pairs (./—{;r)i‘i'> and (QX‘ )){> are equivalent

if
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(5, Gy (4.1)

It follows from the rules (3.5) that (4.1) does indeed define an
equivalence relation. The resulting equivalence classes are

(93 ~—
called tangent vectors Ay , Mg ;-.- at X . The totality

of all these tangent vectors is denoted by ':Z; and is called

the tangent space at X ¢ & . Let A g/jv and K, e(‘fg

be given and let ((j > be any pair belonging to the class

<x )~
A&X . Now, if .'xgxrﬁ) is to belong to .ﬁgz then (4.1)

must hold. Therefore, we see that i%r & :;; and kgf & Cf
determine a unique spatial vector u ¢ Qj/ such that (kar)%)é/%k.

We can therefore use the notation

w = Ky ¥y, 4% /g if (7))6 Aty | (4.2)

and we see that JS;( determines a one-to-one mapping of the
tangent space iZ; onto the space ‘?j/ of spatial vectors.

—
The tangent space ‘{g has the natural structure of a three-

dimensional vector space, with addition defined by
[os P — -4 ~4
A+ 19 = KT (ury) if A= K u, s K v (4.3)

and multiplication with scalars by

X AA]X = KY (‘X,‘é) if /M,/X: ,.'L.<X H’/ x éQ“ (4.4)

It is immediately seen that these definitions of A;?_+ A%E and

14 A@r are legitimate because the results are independent of

the choice of the local configuration &SZ used to represent
— /"jc . »
e and -ﬂ%[ in l// . The local configurations can be

identified with the invertible linear transformations of :Zr onto 27 .
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[ -~
Given a local configuration j;Y € C&, , we can define an
. “ - S -
inner product Ay x & of 45,48 € JX by
-1 -4
g = AL e . 4.
e X Wy (A-z Ao ) (lgr ’OX>' (4.5)
5 .
However, we obtain different inner products on Ygr_for differ-

ent choices of ﬁ; , and hence izé is not naturally an

X
inner product space.

5. Simple bodies, material isomorphisms, intrinsic isotropy groups.
D T W N I N e N NS N S = ey
To describe mathematically the physical characteristics of
a body :E’ we must endow 75) with additional structure. Some
of these characteristics, such as elasticity, viscosity, heat
capacity, and electrical conductivity, are local, i.e., they are
attached to the individual material points 2{61:29 rather than
to the body as a whole. Other characteristics, such as mutual
gravitation and internal radiative heat transfer, involve more
than one material point. We deal here only with local character-
istics. The physical response of the body ;E) at a particular

. 0 S . 3 .
material point ‘2g6~29 and a particular time will depend on the
configuration 72¢ of vZ? at that time. It may happen that only
the local configuration ‘7@ GZ) at X determined by 2 ,

and no other properties of 7¢ , has an influence on the response.

If this is the case, we say that the material at ;ZT is simple.

We say that the whole of 2; is simple or that E is a simple
body if the material at X is simple for all X ¢ .5.
We assume that a possible physical response at a material

point is given mathematically by specifying an element from a set
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ﬁ? of mathematical objects. The nature of ﬂ?’ depends on the
particular physical phenomena to be described. For example, in the
theory of elasticity &? consists.of all possible 'stress tensors',
i.e., of all symmetric linear transformations of ‘2L'into Z?/

In the mechanical theory of simple materials with fading memory, AQ’
consists of "memory functionals" that relate relative deformations
histories to stresses and are subject to certain smoothness require-
ments. In theories that include non-mechanical effects E? consists
of functions or functionals whose independent and dependent vari-
ables have interpretations as local temperatures, energy or entropy
densities, heat fluxes, electric or magnetic field strengths,
polarizations, magnetizations, electric currents, etc. For the
purpose of the present paper, no specific assumptions about the
nature of ﬂ? need be made.

We can now make our definition of a simple body precise:

Definition 1: Let ﬂQ be a set, whose elements we call response

P2 Vs Wi S i <E WL W v A A

. . P .
gsggfigggfg.. A continuous body :E? of class Cf will be called

a simple body with respect to HQ if it is endowed with a structure
AN

by a function (} which assigns to each material point X&B a
~

mappin

X
A ~ .
The value E?k: Q(%I> is the response descriptor of the material

9/ P KXQ)E’W (5.1)

at X in any confiquration y of B such that VX (X =’,@_

A~

The mappings Q%X' cannot be entirely arbitrary, they are

subject to restrictions imposed by general physical principles
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such as the principle of frame-indifference and the principle of
dissipation. These restrictions need not be made explicit here.

We would like to give now a precise meaning to the statement

that the material at one point X € A is the same as the material
at another point Ye‘ 75 . We cannot construe this statement

to mean that d’ff and Q? are the same, for they have
different domains and hence cannot be directly compared. However,

we can connect the domains C:z‘ and EY if an isomorphism

$oo: T — T ¢ Y to the t £
ey - \/Y — of the tangent space at [ onto e tangen

space at X_ is given. Recalling that a local configuration §X & 202
can be regarded as a mapping Gy j —> w’(f , we can let GX I C:X
correspond to the composition (, JZ} I Z;_ . We are thus led

e

to the following definition:

. . . 0 . 0 . /\-/
Definition 2: An invertible linear transformation @——ZY \/?.—-7 ”X)

AN NN T

. -~ - .
is called a materlal isomorphism from :7 . onto 7 if
A AN ™~ N Y _— X ==

(o )= }? (G, day) (5.2)

holds for all ( t

To say that the material at X is the same as the material

at Y means that there exists a material isomorphism from J

pa
I~
onto _/Y—
It follows immediately from Definition 2 that if $7Y - JY% \é
and . /\‘/—9 7 are material isomorphisms, so is their
iYZ \/_Z - Y N— S * ’ ——— P —
composition N g - J . Also, if i - -
ey §Yz Vo e Xy J.Y JX
i terial i ph i is its i s T .
is a material isomorphisms, so is its inverse {ZY Tl =
If we denote the set of all material isomorphisms from /J; onto
HUNT LIBRARY

CARNEGIE-MELLON UNIVERSITY
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3} by 5/2'{’ , these facts can be expressed by 1)

-4
?ZY?YZ = j’zy > 3’?2 =jx-\z (5.3)

It is clear that gYZ , the set of all material isomorphisms

~ ) .
of ‘/X onto itself, is a subgroup of the linear group é
of ‘JX , which consists of all invertible linear transformations
of 7; . We write

fx " Fxx (5.4)

and call ;‘Z the intrinsic isotropy group of the material at

X For any §XY € JO/X.? one easily establishes the relations

ZXY gYéFXF?Y J jx gﬂf”yé—w - (5.5)

It follows from (5.5)2 that if a material isomorphism

QSXY 7 - 7; exists, i.e. if the material at X is the same

as the material at ? , then the intrinsic isotropy groups ﬁ_

and ﬂ? are isomorphic.

6. Material unlformltyl uniform references, relative isotropy groups.
e Vgl U NN W Do : A S W W NI Ui P N \/\,/\/\’/\/\/ N —t" L

A simple body B is said to be materially uniform if the

material at any two of its points is the same, i.e. if Z,

never empty. From now on we assume that B is a materially uni-

form simple body. We select a member ;v‘: LX;Y) from each fx‘,

l)If / and ﬁ, are sets of linear transfomatlons of any kind such -

that the composition L f’/ makes sense whenever /\'/e é we
write ?/2 {I_M } Lef M e A’} . If the Léf are invertible,
we write { L ‘1 L é?’ . Also, we write Kf {/(1__ / L éf/}

if ,/fl;: makes sense for all L é—ﬁ/

X
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-1
and thereby define a function § which assigns to each pair

(X/Y) of material points of 5 a material isomorphism from

JX onto j;. .
¢ vy

Choose _X; & B arbitrarily and define

Tz -3 @x) FExy] (6.1)

It follows from (5.3) that §(gf} 6/[_22- . Moreover, we have
dzVd(v,X)- ¢ (zX), b3 1, (6.2)
where ,‘ZX is the identity transformation of :’;

Definition 3: A function @ which assigns to each pair (X:Y)

g V2Rl =gl "o NI N gy e

- :
of material points of b a material isomorphism g):-[X/Y> éﬁ?’f’
«

is called a material uniformity if (6.2) holds.
P Y S W W ey N e

e N W Y

The construction (6.1) shows that the materially uniform
bodies are those that admit material uniformities. It follows
from (5.5) and (6.2) that any two material uniformities ji; and

’./\\

é- are related by

dxy)-R@IEDP® (6.3
where ? is a function on ? whose values ? (X) belong to

the intrinsic isotropy groups ﬁx .
(

Definition 4: A function K on /5 whose values K (X) & (’Z
T U oW o~ —~ —

NN

are local configqurations is called a reference for B .
A e U

ll—l
th

s

moreover,

— '-i'
P=xY) = K& K (6.4)
is a material isomorphism of 7} onto :7; for any .Y/Ye— 2?,

then A  is called a uniform reference forB.
AT N

o~
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Actually, (6.2) holds if éﬁ is defined by (6.4), so that gﬁ_
is a material uniformity if h? is é uniform reference. Hence,
every uniform reference K determines a material uniformity _@?

Ead

through (6.4). Conversely, if a material uniformity &; and a

local configuration ﬁg{ € t;? for a particular material point
[=4 — o
Ez;éfZ? are given, then there exist a unique uniform

reference ‘fg such that (6.4) and kféE;) = kgf hold. 1In

(4

fact, f? is given by

KEx)= K & ex). (6.5)

Therefore, every material uniformity has representations (6.4)
in terms of uniform references.

If 2¢ 1is a (global) configuratio:, then Y;Ey , which
assigns to EZ' the local configuration V%g CZT) at ;X? R
i.e., the equivalénce class to which 2 belongs, is a reference,
called the gradient of the configuration 2¢ . We say that a

body is homogenecus if it admits a gradient as a uniform reference.

Of course,not every reference is a gradient and it may happen

b
that none of the uniform references of a materially uniform body

is a gradient.

Let f{ be a uniform reference. Every local configuration

gxef

X
F = gx g(X’féj‘ ¢ from K (X) into gx ,

can be characterized by the local deformation

so that

C,= EK&. (6.6)

o~

Substituting (6.6) and (6.4) into (5.2) with the choice ¢ o= d.x¥)

we see that

1
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I (k) :;/f (FX () (6.7)

must hold for all //t:-dg ( and all Z‘/Y & B . Conversely,
if (6.7) holds for all ¢ ¢ andall XY ¢ 5 , then K

is a uniform reference. This result may be formulated as follows:

Theorem 1: A reference K for 7 is uniform if and only if there

N

is a function ﬁk - ( —> &7 which satisfies

L ey - (O I 9 (6.8)

e (5= Gy (Fk

for all X ¢ 5~ and all F e Va
The function L))(/IK , which assigns to each local deforma-

tion a response desc'riptor, will be called the response function

of the body relative to the uniform reference /( .

-_

Let L( be uniform reference. If we substitute (6.4) for

i;— , in (5.5) we see that
L XY

K &) g k(z) = ;/gz?)%, km ™ (6.9)

i.e. that
K (% ol
G " 5(2:.)"7;‘{ a (6.10)
is independent of X . The group %K is a subgroup of the
linear group [ . We call ﬁ,}( the isotropy group of the
“body ﬁ relative to the uniform reference Kk . 1In view of (6.10),

all the intrinsic isotropy groups fz 5 X es , are isomorphic
¢
to the relative isotropy group %ﬁ( . It is easily seen that fk
@ -~ -~

is given in terms of the response function ;7( by

/CkK ‘—“7(/061 ¢ / %/(E\:%{[E‘[’) for all Eéf} (6.11)
(/,4 -~ = TR
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The relation between two uniform references and the corres-
ponding response functions and isotropy groups is described by

the following theorem:

A
Theorem 2: Any two uniform references ﬁ{ and kK are related by

IV CLal WS Wi B

K= L P K, (6.12)

: a
where L. e {? and where ‘E? isﬁfunction on 25) with values

The isotropy groups C%%( and C?ﬁ% relative to K and

—_

>

are conijugate:

/6/,;‘ = Zz//( = (6.13)

The response functions C;%? and C;é; are related by

-~

the identity o

;{/ (F) = % (FL) for all ¢ €. (6.14)

-

Proof: The two material uniformities 4§; and.-if given by

Fen- Koo 'kw), § ®D- K@ k)
must be related by (6.3). It follows that
Rmpmkw - K@poKk® Ll

is independent of éz.é~ 2; . Hence (6.12) holds with the choice

P K REKE (6.15)

It follows from (6.10) that /(%) 6%,( for all X e 3

which proves the first assertion of the theorem. If we write
A
(6.10) with K replaced by K and substitute (6.12) we obtain
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o . -1 . -4 -1
g2 ° & Pk (x) e K& P L
- gf@)i,(f’(z)*sz

Since P/X) €q, we have F/X)//Cygg/ﬁﬁi; e and hence
(6.13). The ident:ity (6.14) is derived by writing (6.8) with K
replaced by L/<\ , then substituting (6.12) and observing (6.11).
Q.E.D.

The theory of isotropy groups relative to a local reference

1)

configuration at a single material point extends without change
to isotropy groups relative to a uniform reference ﬁ; of a whole

materially uniform body. 1In particular, we say that the uniform

reference é' is undistorted if é%k is comparable, with respect
to inclusion, to the orthogonal group ¢ , i.e., if either f,(c o~

or G’(ZZ?K’ . If there are uniform references lg' such that

72 . . . . .
;h( > ¢ , we say that /5 is a uniform isotropic body; if
there are uniform references K such that 5%( c o , we say
(/ ——

T
that Jﬁ’ is a uniform solid body. It is possible that a uniform

simple body has no undistorted uniform references at all; such a

body would be neither a solid nor isotropic.

l)This theory was initiated in [1], é&§ 19-21. An exposition is
given in [2], ‘§§3l—33.
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7. Vector and tensor fields.
As before, we assume that B is a continuous body of class
ch, p=1 .

A mapping "Lf': B “’écgl of 3 into some point-space or
vector-space 5{ is said to be of class CV‘ s 05;’5)0 if
for every configuration ?2¢ ¢ Q , the mapping jiyoici: 2 (B) -—>El
is of class Ck . In view of the axioms for B it is clear
that Yo :%i is of class CF for every ég if it is
of class CF for some ¢ € g . These definitions apply, in
particular, to functions (scalar fields) on B , i1.e, mappings
3(: B -’42, to vector fields ‘on B , i1.e. mappings. b,: Bq V ’

and to tensor fields on B , i.e. mappings I_: 38—9.,25’ .

A mapping d/? which assigns to each material point Xé 79

o~
a tangent vector %K) € "IY is called a tangent vector field.

[4 Pt

r
We say that such a tangent vector field is of class ( 5 07§r§,)'1)

if the vector field [VZ,‘)% on 73 defined by

(V%){f/z = (V-gg (Z))f(X) | (7.1)

r
is of class C for some — and hence every — configuration z ¢ C

The algebra of all linear transformations of the tangent
space /“7ij into itself will be denoted by yX . A mapping ,;J/
which assigns to each material point Xé B a linear trans-

formation /3’ (X) € /:72( is called an intrinsic tensor field.

»
We say that /A« is of class C , O<vr gls-i) if the tensor

gieta (Vi) 4 (Vi)™ on /5 defined by
(V%) 4 (\7%>~i{7 = Ve ®) 3 (X)(V% éf)fi (7.2)

r . . . -
is of class C for some--and hence every--configuration ¢ € C

=

We shall use the term field on B for any mapping that assigns to
every Xé— ;8 an element of some vector space (which may consist

of linear or multilinear transformations).
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We shall employ the following scheme of notation:

r _ s r
/‘}/B = set of all functions (scalar fielc&) of class C

on B .

~
set of all vector fields of class C on B

set of all tangent vector fields of class C on \B .

’?%"
,3;}"

(&) Lol
o% = set of all tensor fields of class C on B .

1 an
y3r= set of all intrinsic tensor fields of class C on B .

r
The set ’3'/ is a commutative algebra under pointwise addition

B
S —S s AT
and multiplication. The sets 293 s }3 ) é , and %
r

can be made modules with respect to any of the algebras % s

s<€r< P—l)by defining addition and scalar multiplication with

r . r
functions in /\}; pointwise., For example, if %ﬂ & 33

and f C-’};ﬁ we define %uﬁ/ﬁ &?’;r and f% E%r

by
(fr )|, =f@+RE, P = 5 EOFE,XE 3 5

n r
The sets a{i_s and :73 become associative (but not commu-

tative) algebras over /};r if multiplication is defined
pointwise,
It is evident that we have /jér C—%;S if $<r
and similar inclusions for the other sets in the list given
above., Actually, %r is a subalgebra of %S . Also,
/Zjér is not only a /%ffmodule, but also a submodule of
7?7'; , regarded as a /};Cmodule. Analogous observations

apply to the other modules and algebras of the list above.
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K r S
If —1:—60% and !lé ’l% or 26%3 and d//c‘g

we define TL or ?—% pointwise, i.e. by

Th, - Tahe , - A@paE).
When 4 < ) , one can see that ﬂg/[%s "Qfé/‘/\z—;s

==

It is evident from (7.4)1 that the rules

f//ﬂ;k)'—‘ T + 1k ) ,,Téclg)z 14 (7.5)

S
are valid. Hence every Mj 60% gives rise to a mapping

r s
- _> 06
T:% =15 oo
2 ‘ 12
which satisfies the rules (7.5) for ,/i’),/f & ’L% 3 '§5 3@
Mappings of the type (7.6) satisfying the rules (7.5) are homos
NP .7}”
morphism with respect to the fé-module structures of (/

a- S Vet . .
and ,7/73 . We also call them c--linear mappings. Thus,

XY - .
every Té/gfg gives rise to an ?—linear mapping (7.6).
It is remarkable that the converse is also true, i.e. that every
?j-linear mapping of the type (7.6) arises from a tensor

s
field of class (,/ on 2? :

— g 79»‘ o
Proposition 1: If 1 - LC% —— B (Sgr)_i_g ‘A -linear,

- = Y
then there exist a unique tensor field T e % such that
T h=1h holds for all h e 'V

Proof: Let (gt) gj_/ gs) be a basis of 7/9/ The vectors

€. can be regarded as constant vector fields on B , so that
~t

1 n r
¢, € ‘—Z%F.C lﬁé . Every //J = /297; has a unique com-

ponent representation

BN
/ = 2 hes
4

‘ 7.7
L,e‘?g (7.7)
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Applying the given /gx/—linear mapping :Z— to (7.7) we obtain
. -, . :
Th=22hTe:. (7.8)
Z -
Now, if there is a tensor field | such that T_’g = :[—l; for

c-r . . ==
all h ¢ 7/73 , we must have, in particular, ] €= / e- ,
e -~ A.‘

i.e.

T[Z)f,—= a—.é)/x_ (7.9)

for all ZE B . But since [gib)ﬁz/‘f’s) is a basis of U s
we can find, for each X € B , exactly one T(X_')é .,Lﬂ
such that (7.9) holds. Since the vector fields Tg-' are of
Ky . - ¢ o
class C , it is easily seen that the tensor field } obtained
s
in this way is also of class C . Moreover, in view of

(7.8), (7.9) and the q-linearity of T we have

Th - 7 T 300 T2~ T(50e)=Thh

A ] -~

for all h . Q.E.D.
A
Proposition 1 enables us to identify the set of all ?'/—
s
linear mappings of the type (7.6) with the set XE o all
’ )
tensor fields of class C on B . Similarly, we can identify

the set of all ?—linear' mappings of the type

2T = (s=r)

S
with the set /\\73 - of all intrinsic tensor fields of class
.S :
C on B . The proof of this fact follows from Proposition 1

by choosing a configuration 2¢ of ;5) and letting 3— corres-

pond to T = Va 4 (77\!) - 7/% - UZ/B’ . The result just

stated is a special case of a general proposition referring to
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Ol’ -multilinear mappings., For later application we state

another special case:

Progdsitibn 2: If
ST T Vs L W

. x ] — or :7 7.10
is ?C—bilinear (i.e. /%/-linear in each of the two variables),

then there exist a unique_field To_n B whose values T[X‘)

are bilinear mappings

?f’/z)? 7; XU; — /\7; [or /L\//’Z> (7.11)

such that
T @ @, < TH (7.12)
holds for all f)/jz € Oj;bépﬁ_a_ll_ X ¢ 5. The function :—7)7:

. S . .
is of class C (in the obvious sense).

8. Relatlve radlents e

. brackets.
AN IO ASE
From now on we assume that \B is a continuous body of
class CF with /9> 2
r
’,\ﬁ/ B%g be a mapplng of class C 5 1 <r

where é is some point space or vector space. Given a

I

P>

configuration 3¢ of B , we can then define
Ve - B — X VBT I, (8.1)

where ’lﬁ‘ is the translation space of 8 by
V. y = V(:’\{/ogg)o?g) i.e.
Ve % }

) X ¢ 2?_ (8.2)

V¥ (g -

2 (X))
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We call ‘Z”* the gradient of ’%{’ relative to the confiqura-

r-1
tion % . It is clear that Z 1# is of class C .

Let 2%, g € Q be two configurations. Taking the
gradient of -¥o 2% = (’*‘oX)O (ﬁ’o % and using the chain
rule, we see with the help of (3.3) that the gradients of ’3#{

relative to 3¢ and &/ are related by

T . — -1
\7,1;4 1’4 /I = \z¥/ZOL V&'(Z) (Ve () j (8.3)
Let K and Q be two references for E (see Definition

-1
4) . We define EQ pointwise, i.e. by

K G-i/z = K& G )7, (8.4)

A A

Recalling that the configuration gradients V}g and VQ»

are references, we see that (8.3) can then be written as

~1
Viv = Vype(Vy (v ). (8.5)
We say that a reference K is of class Cr) r< /o-i s
if for some--.and hence every -.configuration ¢ ¢ g the
—— \ -4 e -
tensor field (\/?g L< is of class C , 1.e. belongs to

r .
%75 . It is clear that every gradient reference \7?3 is

b~ 4
of class CF .

Let a local configuration KX Eé ZfX be given, If

2 and a/ both belong to the equivalence class that defines

L(X , which means that Vg( (X) = Va» (x)= L<X’ we have,

by (;.3), V&t"\}/ (Z)’ g,y [f) Hencej Z‘}i/ [Z) depends on

only, through the equivalence class KZ_ € &OZ to which

WO

belongs and it is legitimate to define

VKQK (x) = Z“ng) it % Kp. (8.6
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If g is a reference, we define the gradient of }'/ relative to

the reference ’l‘\< by

\715“?/3 = \710;::)171/[5) y X e, (8.7)

If L\( and (; are any two references for B , we see that

—~~

(8.3) and the definitions (8.6) and (8.7) yield the formula

ey - Gye(GKY
which generalizes (8.5). By writing (8.8) with Q = Va/ s
where a/ & é , we infer that V}K is of class C;:
if ’L’( is of class C and K of class Cr_i .
When the range of ’%{ coincides with the set OQ of
real numbers, i1;1 which case we write j{— instead of ’7\( , we can
identify V{— with a vector field on /5. Thus, if & /\9;3/"

then Vf ’ZS'F - . The formula (8.5) becomes

. ) - T

(\7;1(\71‘) 1) Z‘f, (8.9)
Let f 7"‘-1 nd JL & /7‘%,‘” . The function % /f) on

B defined by

% (£) = 7( (\7?<)f (8.10)

where the inner product is defined pointwise, does not depend
on the choice of the configuration 2¢ € Q , as 1is easily
seen with the help of (8.9). Moreover, (%[f) is of class

rvi -~ /\_/h—i . .
C . Therefore, every %é_ JB gives rise to a map-

ping

f - fvfr ~—> /\;/hi, (8.11)
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p , i . o . .
Actually, every (3( S ‘/73 can be identified with a mapping

o

of the type (8.1ll1l), because it is easily seen from (8.10) that
P . . X /\_—"‘
?(/1 (f'): ﬁ (‘f) cannot hold for all ‘f‘ & J‘LB unless

fizdﬁ . The mapping (8.11) defined by (8.10) has the follow-

ing basic property, which follows immediately from the chain

rule.

Progosition 3: If % & , Aif H is a real-valued

function of class C of any number m of real variables,
‘,.

and if f15 fz),.. . £, € x , then
f (—-, (fi) ‘fz)"') f‘lu» H ('fa.) f;)"")fm)%/fk (8.12)

where F)Jk denotes the derivative of H with respect. to its

k'th variable.

Actually, the property described in Proposition 1 char-
acterizes the tangent vector fields of class Ck—i and hence
could have been used for their definition; but we shall neither
use nor prove this fact.

Applying (8.12) to the cases when [ (§,,5.)= §,+&,

H (‘51)5-1).__, §1§2 we obtain
d*gff-#—ﬁ):f/f)*féj) f@?) §dgj)7f/§) (8.13)
Let f, R e /T 1 with F= 2 . Since /J;S';C' j/;;

N"~1
and hence also Z’f} R e we can 1dentify f and A not

r-2

r.
only with mappings from /77:]’3 into /I , but also
. . —g—Fr-4 r- 2,
with mappings from ;7]\75 into T . Therefore,

we can form the compositions f /Q and f % as mappings

r /9:'”-2
from % into 5 . By themselves, these compositions
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do not correspond to tangent vector fields, but it is remark-

able that the differe_nc;e
’ —~F r-2
-— A— L4 - ﬁ? B
[f) A7 = fo/lz ,420} . 7"3 ) /7’;3 5 (8.14)
called the bracket of % and /‘@ y has values that belong to

-r-1 o~ =2 a
/:}73 (C j—B ) and does correspond to,tangent field:

Proposition 4: The bracket of two tangent vector fields

% /& él g [r' ;2) can be identified with the tangent
r~2
vector field of class C given by

[4#] = 72) " [GROL-(ZK] 5 h=02)f, k0P 15,

where 2¢ 1is an arbitrary configuration.
— o~

) r-2
Proof: We denote the tangent vector field of class C
defined by the right-hand side of (8.15) by z@—, so that
() B = [(V k-G h)k]. (6.16)
F

I In view of (8.10), it follows from (8.16)

Now let -f: &
that —

B 5= V§- (G 0h-07 k] (8.17)
and from (8.10) that

(B k)E) = f RE) = G (F52k) b s

The rules of ordinary differential calculus yield V,; (Va:fv,k)'é
(2) (b)) ) ;

l’] (V —})k + V:F (\7}()‘, Hence, since V -jl is symmetric,

if we write (8.18) with f and 42 1nterchanged take the differ-

ence, and then compare with (8.17), we obtain
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B ()= Qo k) oo p)B) - L4, 2005

i.e. the desired result 4; = l[é%d%]] . Q.E.D.

The bracket [f) 4(’]7 depends linearly (but not /}/—
r-1 r
linearly) on ; and /f’ and satisfies for f) /Q)/ﬁé-j’z 3 ft-‘ gi-; B 2§l3

the identities

E&V/&:U =“II'4Z/E~D) (8.19)
L4420 = 5LLALD + f(f)/% (8.20)

i~
and for afJ R Le /\/73 , 2= r< p-1 , the Jacobi-identity

S L4, .21] - O, (©.21)

c ycl 3
where the sum is taken of all terms obtained from the one written

by cyclic permutation of 3€,4b,4?. The identity (8.19) is obvious
from (8.14% and (8.21) is the result of a trivial calculation.
The identity (8.20) follows from (8.14) and (8.13).

It would have been possible to define the bracket [[é£,4%1)6'<zg' *
for f) A G%F > L£r< p-1, directly by (8,15), for it is
easy to see that the right-hand side of (8.15) does not depend on

the choice of the configuration 2% .

‘curvature.

9. Affine connectionsf tqrsionf_ .

From now on we assume that\29 is a continuous body of class
CF, pz3
A mapping
r r~4
. . 9.1)
/'7./7;3*9"773 (

~1
is called an affine connection of class ( (ié r< f?‘-l) on
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B it
I__'(f4—42) = f_’.é{f+ 4 | (9.2)

-
holds for all f/ £ e % and

TPk = § (NP4 + £I5)F (9.3)

holds for all 385_7;3': fé%r and all 4 &U)}rni

If q@ is a real constant then @(a)a 0 by the
definition (8.10). Hence (9.3) reduces to F(af)= a ﬁf
when az—‘@(, f € 7;3r~ . Thus, F is a linear mapping, but
it is never ?'/-linear. The rule (9.3) resembles one of the
product rules for gradient operators.

A triple (11,1 )11/1}11,3) of tangent vector fields of class

C"\n r< F-i),is called a frame of class Ck if the values

/\/
T, (Z) form a basis of the tangent space JX for each XG‘B
-4 n
Frames of class CP ( and hence of class C , r= F"i)
exist. For example, if . (€, €,,€,) is a basis of U
~4
and % a configuration, then 11’£=<\7?f € defines a frame
P*i —~r
of class C . Every tangent vector field fé JB - has

a component representation

_— ¢
Zﬁ = >  hn; A (9.4)
c
. . C"
with respect to a given frame (nl) LAY 11'3> of class
such that the component functions: l’) belong to /5:,5
r-1
Now let /_7 be a connection of class C . Substi-
tuting (9.4) into (Ff)ﬁ,a; and using the rules (9.2) and

(9.3) we obtain
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(/_';ﬁ)b- = Z[h[(/-'#;)nj + oy (h)n-]. (9.5)

The components ]—1‘-. of the three intrinsic tensor fields

,‘—'41,‘: with respect to the frame (’n,i ) 11,) are defined by

(/——'-n‘—)ﬁd* = <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>