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0. INTRODUCTION. Cardinal invariants such as weight, density,

dimension, etc, have been widely used in the classification of

topological spaces. More rarely (see for example Maurice [10])

ordinal invariants have been employed. In this paper we introduce

two related ordinal invariants, a and K , first in the categories

of sequential and k-spaces (section 1) and later for arbitrary

spaces (section 6) . Our main result is the existence, for each

a £. ***! °f a countable, zero-dimensional, Hausdorff space X with

or(X) = ^(X) = a. (Theorems 4.1 and 5.1) .

1. PRELIMINARIES. We begin by recalling some definitions. A

topological space X is a k-space (see Arhangelskii [2], and Cohen

[4]) if a subset F of X is closed whenever its intersection with

each bicompact subset K of X is closed in K. For each subset A

of X we will write xeA if and only if for some bicompact subset

K of x, xeclK(A fl K) . Now let A° = A, and for each non-limit

ordinal a = jS + 1, Aa= (A*j . If a is a limit ordinal, let Aa =
0

U{Ap|j8 < a}. For an arbitrary space X let us denote by ^(X) the

infemum of the ordinals cc such that fcr each subset A of X,

A = c^x A* A straight-forward argument, involving only cardinality

in one direction and the fact that a single point may be added to a

bicompact set without destroying bicompactness, shows that

1.1 PROPOSITION. X i^ a k-space jLf and only if f̂ (X) exists.

Since the definition was given in terms of closure only, one sees

immediately that
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1.2 PROPOSITION. ^ i§. fL topological invariant in the category of

k-spaces.

K(X) = 0 if and only if X is discrete, and *( (X) < 1 is just the

definition of the k!-spaces (see Arhangel'skii [2]) .

We now restrict attention to a special case. A subset U of a

topological space X is sequentially open if each sequence which

converges to a point in U is eventually in U. X is sequential

if each sequentially open subset of X is open (see Franklin [8],

[9]). For each subset A of X we will write A for the set of

all limits of sequences in A. Now let A° = A, and for each ordin-

al a = £ + 1, let Aa = (A^) .If a is a limit ordinal, let

Aa = U(A ||8 < a), (Whether A refers to the sequential closure

A or the k-closure will always be clear from the context.)Denote

by O(X) the infemum of those ordinals a such that A = c l ^ for

all A c x. It is a folk theorem that

1.3 PROPOSITION. X iŝ  sequential if and only if a(X) exists.

In this case a (X) < ai (where to is the first uncountable ordinal) .

For a proof of the second assertion see, for example, Dolcher [5]

(22) or Vaidyanathaswamy [12] p. 278. Similarly we have

1.4 PROPOSITION. cr i£ <a topoloqical invariant in the category

of sequential spaces.

Again a (X) ==0 if and only if X is discrete, and a (X) < 1 is

just the definition of the Frechet spaces (see [3], [8], [9]) .

1.5 PROPOSITION. Every sequential space is <a k-space. Conversely,

every countable Hausdorff k-space X iŝ  sequential and a (X) = K((X) .

Proofo The first assertion follows from the bicompactness. of a

convergent sequence and one of its limit points. For the first part

of the second/ if a subset A of X is not closed, there is by



[2] 10 a bicompact set K c x and a point peel (K Pi A) \ (K 0 A) .

Since K is first countable, there is a sequence in K 0 A which

converges to p/A. Hence A is not sequentially closed (i.e., its

complement is not sequentially open). Thus X is sequential. To

complete the proof we need only note that f£ (X) < a (X) is always

true and again use the fact that countable bicompact Hausdorff spaces

are first countable.

The one-point compactification of M\N, where M is the space

of example 5.1 of [9] is a countable, T ^ k-space which is not

sequential. (This is in fact the one-point compactification of S^

without the level one points, as described in section 3.) There is

a sequential bicompact Hausdorff space •$* which is not Frechet

([9],7.1) . Hence >t(̂ *) = 1 < <T(**) (=2 as it happens) . Also there

are countable, bicompact, sequential T,-spaces which are not Frechet

([9]5.3) . Hence the cardinality and seperation hypotheses of 1.5

are actually needed. For future reference we note that

1.6 PROPOSITION. It X ijs. the disjoint topoloqical sum of c* family

{X ] of k-spaces (or sequential spaces) , then K(X) = sup V(X^)
u —u* —' — v ex

(a(x) = sup o(xa)) .

2. THE SEQUENTIAL SUM. Let S = {0} U (l/n|neN}CR have the

relative topology, i.e., S is a convergent sequence with its limit

point. For each 0 < i < ccQ let <X.,0.> be ^-spaces with base

points. We define their sequential sum Z5<X.,0.> as follows. Let

X be the disjoint topological sum of the X. and A = {0. |i < co } .

Then A is a closed subspace of X and the function, f :A—^S

defined by f(0i) = 1/i is continuous. Let £<X.,0.> be the adjunc-

tion space X U- S. The pertinent facts about the sequential sum are

as follows.



2.1 PROPOSITION. IJ. each X i is_ a, k-space (or a, sequential space) ,

then so is £ <X. ,0 .> for; any choice of 0. . IjE for each X. ,
- ' ——— ——— 1 1 l l

H. = K.(X.)(cr. = a (X. ) ) i s a n o n - l i m i t o r d i n a l , t h e r e a r e 0 . such
l 1 1 l — — i

t h a t K ( X ) = ( s u p n O + 1 (<? (X) = ( s u p a ) + 1 ) .
• • I i

Proof. The first assertion follows in the sequential case from [8]

Propositions 1.2 and 1.6, and the k-space case is proved similarly.

Since X\{0} is the disjoint topological sum of the X., j((X\{0}) =

sup \{ . by Proposition 1.6. From the fact that (0) U {0. } is bi-

compactj it follows immediately that K(X) <(sup K,•) + !• We shall
tsup .)+ 1\ sup .

construct a subset M of X\{0}- such that OeM \M .

Choose a subsequence {*{>} of the {*{>} which converges in the

order topology monotonicly upwards to sup *[ . . For each j, let

G . + 1 = *U . Then there exists 0 . eX. and M. c x. so that
3 X . 3 Q 3 3 ~" 3

O.e (M.) ^ \ (M.) -̂ . (the remaining 0. may be chosen arbitrarily.)

Let M = UM.. Let 0 be the least ordinal such that Oe

Then for some bicompact B^0€clv(B (1 Mr). 'Letting K = {0.}^ this
-̂  3

implies that K 0 B D M^ = U(K 0 B H (M.) ) is infinite. But

K 0 (M.)^ ̂ 0 only if ]S > K • • Hence $ > sup ̂  ± and thus

O/Msupf£i. Hence \{X) =(supi[i) + 1 .
An even simpler proof may be given in the sequential case.

In addition, one may easily verify that

2.2 PROPOSITION. If each X± is zero-dimensional so is their

sequential sum.

3. CONSTRUCTION OF THE S . In this section we shall construct

(in two distinct ways) for each n < co , a countable space S

(enjoying all !niceT topological properties except local bicompact-

ness) with ^(S ) = a(S ) = n, which is minimal in a sense to be made

explicit in Proposition 3.1.



Let S = {0} and, having already defined Sn_1 with base

point 0, let S be the sequential sum of countably many copies

of <S 1,0>3 choosing 0 again as base point. Thus Sn is defined

recursively for each n < coo. Clearly S1 = S and S2 is the space

of Arens (see [1] and [9] Example 5.1.)

We now define the level !n(
x) f o r points x€S

n-
 F o r n = 0,

let 1 (0) = 0 . Having defined the level of each point in s
n_i>

choose *€Sn. If x = °> l e t 1n^
 = °* I f not> xeSn-l a n d W e

let ln(x) = ln-1(x) + 1. •

Now for each level n point x of S^ take a copy S of
n x

S and let X be their disjoint topological sum. Let A =

{0 eS ll (x) = n} and define f:A—• S by f(0 ) = x. Then thex x n n x

adjunction space X UfS is homeomorphic to S n + 1 and we have

the second construction.

Suppose we have defined for each k < n, a partial order < ,

on S, with 0 as maximal element. Then let < be the partial

order on S generated by < ,U ( (y,x) |yeS ) . These orders will
LL LL "* JL. 2St

be used in section 5.

Also for later use, note that this second construction yields

a natural embedding <p : S — * S in .

n n n+l

The properties claimed for the S in the opening paragraph

of this section follow immediately from Propositions 2.1 and 2.2,

and from

3.1 PROPOSITION. I£ a Hausdorff sequential space X contains a.

copy of Sn, then a (X) >. n. Conversely, if a (x) >̂  n, X contains

£L subspace whose sequential closure is homeomorphic to S .

Proof. Let LR be the level n points of S £ X. If a (X) = k

for k < n, there are countably many points x. eL^\(Lnll Ln j) with



0 (the zero level point of Sn) in {x. |jeN} " . Let A. be the

range of a sequence in Ln converging to x., and for each Yi€Ln_iJ

let B. be the L points under y. . Then by Hausdorffness

A.n B. is finite for all i,jeN. Hence there are disjoint sets

A and B such that A ^ A . and B^B. are finite for all i,J€N.

Then B U S \ L is an open set in S containing 0. Hence theren n n

is an open set U in X such that U 0 Sn = B U Sn\ Ln. Hence

A 0 U = 0. Thus for each j , x./U. This contradicts O€cL.(x. | jeN} .
J A j

The second assertion is obvious for n = 0 and n = 1 and for

n = 2 it follows from Proposition 7.3 of [§]• As is frequently the

case, in order to complete the induction, it is easier to prove

something a little stronger: îf A isr â  subset of <a Hausdorff

sequential space X and if xeAn\An~ , there is a subset S. T of
r. • — — — « _ . • — — — — -pi —

An whose sequential closure is homeomorphic to S , and whose level

k points lie in An~ \A n" " . Stated in this form, the inductive

proof is trivial when it is noted that a sequentially bi-continuous

bijection is a homeomorphism from the sequential closure of its

domain to that of its range. The second assertion of the proposition

is now immediate.

4. CONSTRUCTION OF THE K . In this section we shall construct for

each' a < oi a countable space K (again with !nice! properties)

such that ^ K
a ) =

 a<Ka> = a-

Let KQ = S = (0} and suppose Kg. is defined for each j3 < a.

If a is a limit ordinal, let K^ be the disjoint topological sum

of the Kg with j8 < a. By Proposition 1.6, \ (K̂ ) = o (K̂ ) = a.

If a = j8 + 1, choose a sequence of non-limit ordinals {£.) with

supremum j8. By Proposition 2.1, we may choose O.eKg. so that

a) = ^sup î.) + ! = a9 where Ka is the sequential sum of K^ .



By Proposition 1.5, a (K ) = a also.

Recapitulating we have

4.1 THEOREM. For each ordinal a < 01, there is a countable, zero-

dimensional Hausdorff space K^ such that ^(K^) = ̂ (K^) = a.

Note that we may also define the space K as the disjoint

topological sum of the K for a < to . Then K is a zero-

dimensional Hausdorff space of cardinality and local weight y

with K(K/.5 ) ̂  ° (K/,5 )
 = °°i • I n ̂ he n e x t section we shall construct

another such space which is countable and homegeneous.

5. CONSTRUCTION OF S^. Using the maps ^n^n*-* s
n +i defined

in section 3, we define for each pair m < n < co 9 a map

<p :S —> S by <p_ = <p . 0...0<p , creating an inductive

system <S ,<p ̂> of spaces and maps. Denote by S the inductive

limit of this system.

5.1 THEOREM. S., is a countable, sequential, zero-dimensional,

homogeneous, Hausdorff space with ^(Sj = °^u) = ^i* which contains

â  copy of K for each a < oi .

Proof. S is clearly countable and is sequential by [8] Corollary

.1.7. Hence by Propositions 1.3 and 1.5 ^ (S ) = a ( S j < OL (S

is clearly .T, and is therefore Hausdorff since it will be shown

to be zero-dimensional.). The opposite inequality will result from

K^ c s/% for each a < ai .
IX — CO 1

Denoting by *n:S*n—>S^ the canonical map we define a partial

order on- S^ by x < y if only if for some n, a^b we have

a€*n""
1(x), b e ^ ^ t y ) and a < nb (see section 3.)

Noting that l n (x) - k implies that 1 ̂  (<pn (x)) = k, one may

unambiguously define the level 1 (x) of a point S by choosing
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some n and a with ae^ ~ (x) and setting 1 (x) = ln(a) « It

is easy to verify that x < y implies 1 (x) >_ 1 (y) •

For each xeS^ let I (x) = CyeS^Jy < x}, ie., I (x) is the

principal ideal generated by x. We shall show by an induction

on the level of x that each I(x) is homeomorphic to S.. . For
1 ' " ' CO

1 (x) = 0 the assertion is trivial. Suppose 1 (x) = 1 and let

T = ^ ""1(I(x)) for each n < COQ . T Q = 0, and for n > 0, Tn is

homeomorphic to S .,. But clearly I (x) is the inductive limit
of the system <T .<p m|T > and hence is homeomorphic to S . Now•* n n ' n x co

suppose our assertion is true for points at level n-1 and that

1(x) = n. Then there is exactly one Y^S^ with 1(y) = n-1 and

x < y. Then x is a level one point with respect to I(y) which

is homeomorphic to S by the inductive assumption^ and hence

I(x) = S by the level one argument.

Denote the level one points of S by 0.. Then S is the

sequential sum of the family <I(0,)^0.> _and so S .is the

sequential sum of countably many copies of itself with the level

zero point of each as base point.

It is easily verified that a sequence {x } £ S^ of distinct

points converges to x €S if and only if eventually l(x ) =

1 (x ) + 1 and eventually x < x • We will write x ~ y ifo n — o

1 (x) = 1 (y) and for some z, 1 (z) = 1 (x) - 1, x < z, and y < z.

Hence x —-*x implies that eventually x ~ x or x = x .no ^ n m no

In fact> in order that a sequence of distinct points in S converge^

it is necessary and sufficient that it be eventually composed of

points pairwise related by ~ . Using this characterization of

sequential convergence and the fact that S is sequential, one

sees that not only is each I(x) clopen but given any family {x.)*



no infinite subfamily of which is related by ~, U I (x.) is clopen

B: then follows immediately that S,y is zero-dimensional.
CO ' '' ' ' "

Let xry€S^ be distinct points. If x and y are not com-

parable, then I (x) and I(y) are homeomorphic disjoint clopen

neighborhoods of x and y respectively. If x <_ y~, .then I (x) and

I(Y.)\l(x) are such neighborhoods and so S is homeoqeneous.

We will now recursively imbed each K^ in S . Suppose this

has been accomplished for each j8 < a, so that the base point

OQ of Kg is the level zero point of S^ whenever jS is not a

limit ordinal. For each such &, let Lg be a copy of S with

Kg so embedded. If a is a limit ordinal K is the disjoint

topological sum of the Kg and is homeomorphic to a subset of any

sequential sum of the Lg. If a = j8 + 1, K is the sequential _~

sum of some sequence Kg.. Then K^ is embedded in the sequential

sum of the corresponding <Lj3fDjg-> w^ich is again S^.

Since for each non.-limit ordinal a, Ka is homeomorphic to

a closed subspace of S , o (S )= co and the proof is complete.

Dudley has shown ([6] Theorem 7.8) that the sequential closure

(i.e., the smallest sequential topology containing the given one)

of the weak.topology of a separable, infinite dimensional Banach

space is the Abounded topology1 (see [7] 425-30). We shall apply

5.1 to show that a(I ) = co if I is provided with its bounded

topology. The authors are indebted to C. V. Coffman for a key

idea in the proof.

.5.2 THEOREM. S can be embedded as â  sequentially closed subset

of t taken with its bounded topology. Hence3 ^(^9^ = ^̂ L"

Proof. Using the second description of S in section 3, we will
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embed recursively each S into t ^ via © : S — ^ o * ^ n sucl1 a

way that for each m < n, 9 = 9 <p n. Since S is the inductive

limit of the Sn, this will map S^ into ^2
m

We first represent each S as a collection of finite sequences

of natural numbers as follows. Represent the single point of S

by the empty sequence* Let S, = S U{(i)|ieN}. Supposing that S

has been defined, and for x = (i,,i9,..., i )eS and of level n,

let S = {x} U {(i,,.*.,i ,j) |j > i }. Now consturct S , as in
Jr*> JL II lX 11 1' JL

section 3. S^ can be thought of as the uiion of the S in this

representation, i.e. , the collection of all finite strictly increas-

ing sequences of natural numbers.

Convergence of sequences in S (or in any S ) can be easily

described in terms of this representation: essentially a sequence

converges if and only ij: it is eventually of the same level (i.e.,

length) , say n, and eventually constant in each of the first n-1

co-ordinates, and further is either unbounded in it!s eventual last-

co-ordinate or eventiially constant there. In the first case the

limit point is represented by the sequence of the first n-1 eventual

values, and in the second case the sequence is eventually constant.

We shall now embed,each S as a sequentially closed subset of

t via^ 9- in such a way that sequential" convergnece in 9 (S )

has this same description. Hence each 9 will be a homeomorphism

(see for example Moore [11] Theorem 6.13), and so will theirlimit 9.~

Let (b } be the standard orthonormal basis for t defined

by b^ 1 = 0 if i ^ k and b ^ = 1. Define 9 Q by 9 Q (0) = 0,

the origin in l2. Define ei by ei (i) = b
1 and Q (0) = Q (0)= o.

Having defined 9 as an extention of 9 ,, let 9 ,, = 0 on
n n-± , n+i n

S n and for (î ,̂ .. . ,in,in+1) eSn+]^\ Sn, let e n + 1 (ix, .. .,in,in+1)
= © n (in } . •, i ) .+ i b . We must show that each 0 is a sequential
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homeomorphism onto 0 (Sn) , and that .. 9 n (Snj.. is sequentially

closed in ^2
#

It is clear from the fact that 0 (i...,,,.i ) is non-zero

only in the i,,i2,. ..,i t\i places, that each 0 is one-to-one.

That ©, is a sequential homeomorphism follows from the well

known fact that the sequence {b ) converges weakly to zero.

Clearly ©, (S,) is sequentially closed in £ . If. we. suppose that

0 has been shown to be a sequential homeomorphism and that £^3

is a convergent sequence in S ,, then we may assume all x, to

have the same level. If 1 - (x, ) < n, 0 - (̂ O = © ^ht) an<^ *"̂ e

convergence is preserved. If 1 , (x,) = n+1, we may assume that

x, = (i,,...,i jj-iJ with the j, unbounded. (Otherwise l*̂ .} is

an eventually constant sequence and convergence is preserved.) Then

lim K^ = (i1..,,, .iR) and © n + 1 (̂ J = e
n
(iil' ' * * ̂ r? + i n b w h ich

converges weakly to © n (i^, . . ., i^) =
 e

n+l ̂ 1 ^ # - *-' ̂ n^ m T h u s en+l

is sequentially continuous.

Conversely^ suppose [x } is any sequence in ©(S^) which

o k
converges weakly to x in £ Since {x ] must be bounded in
norm there is a uniform bound, say q, on the number of-non-zero

k k
co-ordinates of the x . Thus {x } <z © (S ) . Hence if each 0 (S )

—- q q — ——— n n
is sequentially closed^ so is © (S^) . Since weak convergence implieskpointwise convergence^ and since each co-ordinate of each x

an integer, the sequence {x } must be eventually constant in each

coordinate. Let r be the number of eventually non-zero coordinates

and suppose the theorem proved for r < n . If r = n we may assume

k k k k k
that x = ^(i-L ,...,±n ) where eventually i1 = i]c^«»^

i
n-i = *-n_i<

Then x = ©n (î .̂,,, ̂ n^
 eQ

n (
s
n) which is therefore sequentially

closed. Clearly {in } is unbounded and so (i^, . • •., i-^) converges
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in S to (i,,...jin j). This completes the proof.

Note that 0 is in the weak closure of e 2 ^ S 2 ^ 0 l ^ S l ^ b u t

is not the weak limit of any sequence therein. This is the well

known example of von Neumann.

6. SOME REMARKS AND QUESTIONS. As suggested by Theorem 5.2, the

functions o and ^ c a n ke extended to the category of all topologi

cal spaces and continuous maps by means of the co-reflective functors

s and k which assign to each space X 3 the spaces sX and kX

where the underlying set is the same and the new topologies are the

smallest sequential and k-space topologies containing the original.

We may then define O(X) = a(sX) and \(X) = ^(kX). Propositions

1.5 and 1.6 extend immediately. What else can be said ?

Proposition 3.1 establishes the S as 'test spaces1 for . ..._
- v • •• n

spaces X with a(X) = n. It would seem that permitting all

possible choices of the B. (see the second paragraph of Section 4)

the K could be used as 'test spaces1 for cr(X) = ct. Are there
7

'test spaces' for ^i

The disjoint topological sum K of the K for cc < ui satis-

fies cr(K) = oi but contains no copy of S . Can this happen with

a countable space, or with a homogeneous space ?

Is there for each a > oi a space K with J£ (K ) = a. More

particularly, if a is an ordinal corresponding to a cardinal

T(a) >J\i* is there a k-space K^ with ^ (K^) = a and K a < r (a)

(K^ < 2T(Oi))? Is there for each a < j8 < ^ a space X^ g with

What are the permanent properties of space with a (X) = oc or

K(X) = a .?

S^ is something of a topological curiosity in itself. Are there
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other countable Hausdorff k-spaces with no point of first countabil-

ity? If so are there other such which are homogeneous and sequential ?'

It is easily seen that the proof of Theorem 5.2 depends only

on the existence of a sequence bounded away from 0 which converges

weakly to 0. For what linear topological spaces do such exist 7
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