NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying of this document without permission of its author may be prohibited by law.

ORDINAL INVARIANTS FOR
TOPOLOGICAL SPACES
A.B. Arhangel'skií and S. P. Franklin

Report 67-27

Ordinal Invariants for Topological Spaces

by
A. B. Arhangelskiy and S. P. Franklin
O. INTRODUCTION. Cardinal invariants such as weight, density, dimension, etc. have been widely used in the classification of topological spaces. More rarely (see for example Maurice [10]) ordinal invariants have been employed. In this paper we introduce two related ordinal invariants, σ and k, first in the categories of sequential and k-spaces (section. 1) and later for arbitrary spaces (section 6) . Our main result is the existence, for each $\alpha \leq \omega_{1}$ of a countable, zero-dimensional, Hausdorff space X with $\sigma(X)=\xi(X)=\alpha . \quad$ (Theorems 4.1 and 5.1).

1. PRELIMINARIES. We begin by recalling some definitions. A topological space X is a k-space (see Arhangel'skiY [2], and Cohen [4]) if a subset F of X is closed whenever its intersection with each bicompact subset K of X is closed in K. For each subset A of X we will write $x \in A^{\sim}$ if and only if for some bicompact subset K of $x, x \in C l_{K}(A \cap K)$. Now let $A^{0}=A$, and for each non-limit ordinal $\alpha=\beta+1, A^{\alpha}=\left(A^{\beta}\right)^{\sim}$. If α is a limit ordinal, let $A^{\alpha}=$ $U\left\{A^{\beta} \mid \beta<\alpha\right\}$. For an arbitrary space X let us denote by $K(X)$ the infemum of the ordinals α such that for each subset A of X, $A^{\alpha}=c l_{X} A$. A straight-forward argument, involving only cardinality in one direction and the fact that a single point may be added to a bicompact set without destroying bicompactness, shows that
1.1 PROPOSITION. X is a k-space if and only if $K(X)$ exists. Since the definition was given in terms of closure only, one sees
1.2 PROPOSITION. k is a topological invariant in the category of k-spaces.
$K(X)=0$ if and only if X is discrete, and $K(X) \leq 1$ is just the definition of the k'-spaces (see Arhangel'skiľ [2]).

We now restrict attention to a special case. A subset U of a topological space X is sequentially open if each sequence which converges to a point in U is eventually in U. X is sequential if each sequentially open subset of X is open (see Franklin [8], [9]). For each subset A of X we will write A^{\wedge} for the set of all limits of sequences in A. Now let $A^{\circ}=A$, and for each ordinal $\alpha=\beta+1$, let $A^{\alpha}=\left({ }_{A}{ }^{\beta}\right) \wedge$. If α is a limit ordinal, let $A^{\alpha}=U\left\{A^{\beta} \mid \beta<\alpha\right\}$. (Whether A^{α} refers to the sequential closure \wedge or the k-closure \sim will always be clear from the context.) Denote by $\sigma(X)$ the infemum of those ordinals α such that $A{ }^{\alpha}=c l_{X} A$ for all $A \subseteq X$. It is a folk theorem that
1.3. PROPOSITION. X is sequential if and only if $\sigma(X)$ exists. In this case $\sigma(x) \leq \omega_{1}$ (where ω_{1} is the first uncountable ordinal). For a proof of the second assertion see, for example, Dolcher [5] (22) or Vaidyanathaswamy [12] p. 278. Similarly we have 1.4 PROPOSITION. σ is a topological invariant in the category of sequential spaces.

Again $\sigma(X)=0$ if and only if X is discrete, and $\sigma(X) \leq 1$ is just the definition of the Frechet spáces (see [3], [8], [9]).
1.5 PROPOSITION. Every sequential space is a k-space. Conversely, every countable Hausdorff k-space X is sequential and $\sigma(X)=k(X)$. Proof. The first assertion follows from the bicompactness of a convergent sequence and one of its limit points. For the first part of the second, if a subset A of X is not closed, there is by
[2]10 a bicompact set $K \subseteq X$ and a point $p \in c l(K \cap A) \backslash(K \cap A)$. Since K is first countable, there is a sequence in $K \cap A$ which converges to $p \notin A$. Hence A is not sequentially closed (i.e., its complement is not sequentially open). Thus X is sequential. To complete the proof we need only note that $K(X) \leq \sigma(X)$ is always true and again use the fact that countable bicompact Hausdorff spaces are first countable.

The one-point compactification of $M \backslash N$, where M is the space of example 5.1 of [9] is a countable, T_{1}, k-space which is not sequential. (This is in fact the one-point compactification of S_{2} without the level one points, as described in section 3.) There is a sequential bicompact Hausdorff space Ψ^{*} which is not Fréchet ([9],7.1). Hence $K\left(\Psi^{*}\right)=1<\sigma\left(\Psi^{*}\right)(=2$ as it happens). Also there are countable, bicompact, sequential T_{1}-spaces which are not Fréchet ([9] 5.3). Hence the cardinality and seperation hypotheses of 1.5 are actually needed. For future reference we note that
1.6 PROPOSITION. If X is the disjoint topological sum of a family $\left\{x_{\alpha}\right\}$ of k-spaces (or sequential spaces), then $k(X)=\sup k\left(X_{\alpha}\right)$ $\left(\sigma(\mathrm{X})=\sup \sigma\left(\mathrm{X}_{\alpha}\right)\right)$.
2. THE SEQUENTIAL SUM. Let $S=\{0\} \cup\{1 / n \mid n \in N\} \subseteq R$ have the relative topology, i.e., S is a convergent sequence with its limit point. For each $0<i<\omega_{0}$ let $\left\langle X_{i}, O_{i}\right\rangle$ be T_{1}-spaces with base points. We define their sequential sum $\Sigma<X_{i}, O_{i}>$ as follows. Let X be the disjoint topological sum of the X_{i} and $A=\left\{O_{i} \mid i<\omega_{0}\right\}$. Then A is a closed subspace of X and the function $f: A \rightarrow S$ defined by $f\left(O_{i}\right)=1 / i$ is continuous. Let $\left.\Sigma<X_{i}, O_{i}\right\rangle$ be the adjunction space $X U_{f} S$. The pertinent facts about the sequential sum are as follows.
2.1 PROPOSITION. If each X_{i} is a k-space (or a sequential space), then so is $\left.\Sigma<X_{i}, O_{i}\right\rangle$ for any choice of O_{i}. If for each X_{i}, $k_{i}=K\left(X_{i}\right)\left(\sigma_{i}=\sigma\left(X_{i}\right)\right)$ is a non-1imit ordinal, there are O_{i} such that $k(X)=\left(\sup _{k_{i}}\right)+I\left(\sigma(X)=\left(\sup \sigma_{1}\right)+1\right)$.
Proof. The first assertion follows in the sequential case from [8] Propositions 1.2 and 1.6, and the k-space case is proved similarly. Since $X \backslash\{0\}$ is the disjoint topological sum of the $X_{i}, K(X \backslash\{0\})=$ sup k_{i} by Proposition 1.6. Frown the fact that $\{0\} \cup\left\{O_{i}\right\}$ is bi-
 construct a subset M of $X \backslash\{O\}$; such that $O \in M$ Choose a subsequence $\left\{k_{j}\right\}$ of the $\left\{k_{i}\right\}$ which converges in the order topology monotonicly upwards to sup k_{i}. For each j, let $\theta_{j}+1=\eta_{j}$ Then there exists $O_{j} \in X$, and $M_{j} \subseteq X_{j}$ so that $O_{j} \in\left(M_{j}\right)^{K_{j}} \backslash\left(M_{j}\right)^{\theta_{j}}$. (the remaining O_{i} may be chosen arbitrarily.) Let $M=U M_{j}$. Let β be the least ordinal such that $O \in M^{\beta+]} \backslash M^{\beta}$. Then for some bicompact $B, O \in C l_{X}\left(B \cap M^{\beta}\right)$. Letting $K=\left\{O_{j}\right\}$, this implies that $K \cap B \cap M^{\beta}=U\left(K \cap B \cap\left(M_{i}\right)^{\beta}\right)$ is infinite. But $\mathrm{K} \cap\left(\mathrm{M}_{\mathrm{j}}\right)^{\beta} \neq \varnothing$ only if $\beta \geq k_{j}$. Hence $\beta \geq \sup _{i}$ and thus $O \notin M^{\sup K_{i}}$. Hence $K(X)=\left(\sup K_{i}\right)+1$.

An even simpler proof may be given in the sequential case. In addition, one may easily verify that

2.2 PROPOSITION. If each X_{i} is zero-dimensional so is their

 sequential sum.3. CONSTRUCTION OF THE S_{n}. In this section we shall construct (in two distinct ways) for each $n<\omega_{0}$, a countable space S_{n} (enjoying all 'nice' topological properties except local bicompactness) with $K\left(S_{n}\right)=\sigma\left(S_{n}\right)=n$, which is minimal in a sense to be made explicit in Proposition 3.1.

Let $S_{0}=\{0\}$ and, having already defined S_{n-1} with base point 0 , let S_{n} be the sequential sum of countably many copies of $\left\langle S_{n-1}, O\right\rangle$, choosing 0 again as base point. Thus S_{n} is defined recursively for each $n<\omega_{0}$. Clearly $S_{1}=S$ and S_{2} is the space of Arens (see [1] and [9] Example 5.1.)

We now define the level $l_{n}(x)$ for points $x \in S_{n}$. For $n=0$, let $I_{0}(0)=0$. Having defined the level of each point in S_{n-1}, choose $x \in S_{n}$. If $x=0$, let $l_{n}(x)=0$. If not, $x \in S_{n-1}$ and we let $l_{n}(x)=l_{n-1}(x)+1$.

Now for each level n point x of S_{n} take a copy S_{x} of S and let X be their disjoint topological sum. Let $A=$ $\left\{O_{x} \in S_{x} \mid I_{n}(x)=n\right\}$ and define $f: A \rightarrow S_{n}$ by $f\left(O_{x}\right)=x$. Then the adjunction space $X U_{f} S_{n}$ is homeomorphic to S_{n+1} and we have the second construction.

Suppose we have defined for each $k<n$, a partial order $\leq k$ on S_{k} with O as maximal element. Then let \leq_{n} be the partial order on S_{n} generated by $\leq_{n-1} U\left\{(y, x) \mid y \in S_{x}\right\}$. These orders will be used in section 5 .

Also for later use, note that this second construction yields a natural embedding $\varphi_{n}: S_{n} \longrightarrow S_{n+1}$.

The properties claimed for the S_{n} in the opening paragraph of this section follow immediately from Propositions 2.1 and 2.2, and from
3.1 PROPOSITION. If a Hausdorff sequential space X contains a copy of S_{n}, then $\sigma(X) \geq n$. Conversely, if $\sigma(X) \geq n$, x contains a subspace whose sequential closure is homeomorphic to S_{n}. Proof. Let I_{n} be the level n points of $S_{n} \subseteq x$. If $\sigma(X)=k$ for $k<n$, there are countably many points $x_{j} \in I_{n}^{\wedge} \backslash\left(L_{n} U L_{n-1}\right)$ with
O (the zero level point of S_{n}) in $\left\{x_{j} \mid j \in N\right\}^{k-1}$. Let A_{j} be the range of a sequence in L_{n} converging to x_{j}, and for each $y_{i} \in L_{n-1}$, let B_{i} be the L_{n} points under Y_{i}. Then by Hausdorffness $A_{j} \cap B_{i}$ is finite for all $i, j \in N$. Hence there are disjoint sets A and B such that $A \backslash A_{j}$ and $B \backslash B_{i}$ are finite for all $i, j \in N$. Then $B \cup S_{n} \backslash L_{n}$ is an open set in S_{n} containing O. Hence there is an open set U in X such that $U \cap S_{n}=B U S_{n} \backslash I_{n}$. Hence $A \cap U=\varnothing$. Thus for each $j, x_{j} \notin U$. This contradicts $0 \in \alpha_{X}\left\{x_{j} \mid j \in N\right\}$. The second assertion is obvious for $n=0$ and $n=1$ and for $\mathrm{n}=2$ it follows from Proposition 7.3 of [9]. As is frequently the case, in order to complete the induction, it is easier to prove something a little stronger: if A is a subset of a Hausdorff sequential space X and if $x \in A^{n} \backslash A^{n-1}$, there is a subset S_{n}^{\prime} of A^{n} whose sequential closure is homeomorphic to S_{n}, and whose level k points lie in $A^{n-k} \backslash A^{n-k-1}$. Stated in this form, the inductive proof is trivial when it is noted that a sequentially bi-continuous bijection is a homeomorphism from the sequential closure of its domain to that of its range. The second assertion of the proposition is now immediate.
4. CONSTRUCTION OF THE K_{α}. In this section we shall construct for each' $\alpha<\omega_{1}$ a countable space K_{α} (again with 'nice' properties) such that $H\left(K_{\alpha}\right)=\sigma\left(K_{\alpha}\right)=\alpha$.

Let $K_{0}=S_{0}=\{0\}$ and suppose K_{β} is defined for each $\beta<\alpha$. If α is a limit ordinal, let K_{α} be the disjoint topological sum of the K_{β} with $\beta<\alpha$. By Proposition l.6, $K\left(K_{\alpha}\right)=\sigma\left(K_{\alpha}\right)=\alpha$. If $\alpha=\beta+1$, choose a sequence of non-limit ordinals $\left\{\beta_{i}\right\}$ with supremum β. By Proposition 2.1 , we may choose $O_{i} \in K_{\beta i}$ so that $k\left(K_{\alpha}\right)=\left(\sup \beta_{i}\right)+1=\alpha$, where K_{α} is the sequential sum of $K_{\beta i}$.

By Proposition 1.5, $\quad \sigma\left(K_{\alpha}\right)=\alpha$ also.
Recapitulating we have
4.1 THEOREM. For each ordinal $\alpha<\omega_{1}$, there is a countable, zerodimensional Hausdorff space K_{α} such that $k\left(K_{\alpha}\right)=\sigma\left(K_{\alpha}\right)=\alpha$.

Note that we may also define the space ${ }^{K} \omega_{1}$ as the disjoint topological sum of the K_{α} for $\alpha<\omega_{1}$. Then $\mathrm{K}_{\omega_{1}}$ is a zerodimensional Hausdorff space of cardinality and local weight \mathcal{H}_{1}, with $k\left(K_{\omega_{1}}\right)=\sigma\left(K_{\omega_{1}}\right)=\omega_{1}$. In the next section we shall construct another such space which is countable and homegeneous.
5. CONSTRUCTION OF $\mathrm{S}_{\omega^{*}}$ Using the maps $\varphi_{\mathrm{n}}: \mathrm{S}_{\mathrm{n}} \rightarrow \mathrm{S}_{\mathrm{n}+1}$ defined in section 3, we define for each pair $m<n<\omega_{0}$, a map $\varphi_{m}^{n}: S_{m} \rightarrow S_{n}$ by $\varphi_{m}^{n}=\varphi_{n-1}{ }^{n} O \ldots O \varphi_{m}{ }^{m+1}$, creating an inductive system $<S_{n}, \varphi_{m}^{n}>$ of spaces and maps. Denote by S_{ω} the inductive limit of this system.
5.1 THEOREM. S_{ω} is a countable, sequential, zero-dimensional, homogeneous, Hausdorff space with $k\left(S_{\omega}\right)=\sigma\left(S_{\omega}\right)=\omega_{1}$, which contains a copy of K_{α} for each $\alpha<\omega_{1}$. Proof. S_{ω} is clearly countable and is sequential by [8] Corollary 1.7. Hence by Propositions 1.3 and $1.5 \quad k\left(\mathrm{~S}_{\omega}\right)=\sigma\left(\mathrm{S}_{\omega}\right) \leq \omega_{1} \quad$ (S ω is clearly T_{1} and is therefore Hausdorff since it will be shown to be zero-dimensional.). The opposite inequality will result from $K_{\alpha} \subseteq S_{\omega}$ for each $\alpha<\omega_{1}$.

Denoting by $\Psi_{n}: S_{n} \longrightarrow S_{\omega}$ the canonical map we define a partial order on S_{ω} by $x \leq y$ if only if for some n, a, b we have $a \in \Psi_{n}^{-1}(x), b \in \Psi_{n}^{-1}(y)$ and $a \leq n^{b}$ (see section 3.)

Noting that $l_{n}(x)=k$ implies that $l_{n+1}\left(\varphi_{n}(x)\right)=k$, one may unambiguously define the level $l(x)$ of a point S_{ω} by choosing
some n and a with $a \in \Psi_{n}^{-1}(x)$ and setting $I(x)=l_{n}(a)$. It is easy to verify that $x \leq y$ implies $l(x) \geq l(y)$.

For each $x \in S_{\omega}$ let $I(x)=\left\{y \in S_{\omega} \mid y \leq x\right\}$, ie., $I(x)$ is the principal ideal generated by x. We shall show by an induction on the level of x that each $I(x)$ is homeomorphic to S_{ω}. For $l(x)=0$ the assertion is trivial. Suppose $l(x)=1$ and let $T_{n}=\Psi_{n}^{-1}(I(x))$ for each $n<\omega_{0} . T_{0}=\varnothing$, and for $n>0, T_{n}$ is homeomorphic to S_{n-1}. But clearly $I(x)$ is the inductive limit of the system $\left\langle T_{n}, \varphi_{n}^{m} \mid T_{n}\right\rangle$ and hence is homeomorphic to S_{ω}. Now suppose our assertion is true for points at level $n-1$ and that $I(x)=n$. Then there is exactly one $y \in S \omega$ with $I(y)=n-1$ and $\mathbf{x}<\mathrm{y}$. Then x is a level one point with respect to $\mathrm{I}(\mathrm{y})$ which is homeomorphic to S_{ω} by the inductive assumption, and hence $I(x) \cong S_{\omega}$ by the level one argument.

Denote the level one points of S_{ω} by O_{i}. Then S_{ω} is the sequential sum of the family $<I\left(O_{i}\right), O_{i}>$ and so S_{ω} is the sequential sum of countably many copies of itself with the level zero point of each as base point.

It is easily verified that a sequence $\left\{x_{n}\right\} \subseteq s_{\omega}$ of distinct points converges to $x_{0} \in S_{\omega}$ if and only if eventually $l\left(x_{n}\right)=$ $l\left(x_{0}\right)+l$ and eventually $x_{n} \leq x_{0}$. We will write $x \sim y$ if $1(x)=l(y)$ and for some $z, l(z)=1(x)-1, x \leq z$, and $y \leq z$. Hence $x_{n} \rightarrow x_{0}$ implies that eventually $x_{n} \sim x_{m}$ or $x_{n}=x_{0}$. In fact, in order that a sequence of distinct points in S_{ω} converge, it is necessary and sufficient that it be eventually composed of points pairwise related by \sim. Using this characterization of sequential convergence and the fact that S_{ω} is sequential, one sees that not only is each $I(x)$ clopen but given any family $\left\{x_{i}\right\}$,
no infinite subfamily of which is related by $\sim, U I\left(x_{i}\right)$ is clopen. It then follows immediately that S_{ω} is zero-dimensional.

Let $x, y \in S_{\omega}$ be distinct points. If x and y are not comparable, then $I(x)$ and $I(y)$ are homeomorphic disjoint clopen neighborhoods of x and y respectively. If $x \leq y$, then $I(x)$ and $I(y) \backslash I(x)$ are such neighborhoods and so S_{ω} is homeogeneous.

We will now recursively imbed each K_{α} in S_{ω}. Suppose this has been accomplished for each $\beta<\alpha$, so that the base point O_{β} of K_{β} is the level zero point of S_{ω} whenever β is not a limit ordinal. For each such β, let L_{β} be a copy of ${ }_{\omega}{ }_{\omega}$ with K_{β} so embedded. If α is a limit ordinal K_{α} is the disjoint topological sum of the K_{β} and is homeomorphic to a subset of any sequential sum of the L_{β}. If $\alpha=\beta+1, \mathrm{~K}_{\alpha}$ is the sequential sum of some sequence $\mathrm{K}_{\beta i}$. Then K_{α} is embedded in the sequential sum of the corresponding $<\mathcal{L}_{\beta i i^{O}} \beta_{\beta_{i}}>$ which is again S_{ω}.

Since for each non-limit ordinal α, K_{α} is homeomorphic to a closed subspace of $S_{\omega}, \sigma\left(S_{\omega}\right)=\omega_{1}$ and the proof is complete.

Dudley has shown ([6] Theorem 7.8) that the sequential closure (i.e., the smallest sequential topology containing the given one) of the weak topology of a separable, infinite dimensional Banach space is the 'bounded topology' (see [7] 425-30). We shall apply 5.1 to show that $\sigma\left(\ell_{2}\right)=\omega_{1}$ if ℓ_{2} is provided with its bounded topology. The authors are indebted to C. V. Coffman for a key idea in the proof.
5.2 THEOREM. S_{ω} can be embedded as a sequentially closed subset of ℓ_{2} taken with its bounded topology. Hence, $\sigma\left(\ell_{2}\right)=\omega_{1}$. Proof. Using the second description of S_{n} in section 3 , we will
embed recursively each S_{n} into l_{2}, via $\Theta_{n}: S_{n} \longrightarrow l_{2}$, in such a way that for each $m<n, \theta_{m}=\theta_{n} \varphi_{m}{ }^{n}$. Since S_{ω} is the inductive limit of the S_{n}, this will map S_{ω} into ℓ_{2}.

We first represent each S_{n} as a collection of finite sequences of natural numbers as follows. Represent the single point of S_{o} by the empty sequence. Let $S_{1}=S_{0} U\{(i) \mid i \in N\}$. Supposing that S_{n} has been defined, and for $x=\left(i_{1}, i_{2}, \ldots, i_{n}\right) \in S_{n}$ and of level n, let $S_{x}=\{x\} \cup\left\{\left(i_{1}, \ldots, i_{n}, j\right) \mid j>i_{n}\right\}$. Now consturct S_{n+1} as in section 3. S_{ω} can be thought of as the union of the S_{n} in this representation, i.e., the collection of all finite strictly increasing sequences of natural numbers.

Convergence of sequences in S_{ω} (or in any S_{n}) can be easily described in terms of this representation: essentially a sequence converges if andonly if it is eventually of the same level (i.e., length), say n, and eventually constant in each of the first $n-1$ co-ordinates, and further is either unbounded in it's eventual last co-ordinate or eventually constant there. In the first case the limit point is represented by the sequence of the first $n-1$ eventual values, and in the second case the sequence is eventually constant. We shall now embed each S_{n} as a sequentially closed subset of ℓ_{2} via θ_{n}. in such a way that sequential convergnece in $\theta_{n}\left(S_{n}\right)$ has this same description. Hence each Θ_{n} will be a homeomorphism (see for example Moore [11] Theorem 6.13), and so will their limit θ. Let $\left\{b^{i}\right\}$ be the standard orthonormal basis for l_{2} defined by $b_{k}^{i}=0$ if $i \neq k$ and $b_{i}^{i}=1$. Define θ_{0} by $\theta_{0}(0)=0$, the origin in ℓ_{2}. Define θ_{1} by $\theta_{1}(i)=b^{i}$ and $\theta_{1}(\phi)=\theta_{0}(\phi)=0$. Having defined Θ_{n} as an extention of Θ_{n-1}, let, $\Theta_{n+1}=o_{n}$ on S_{n} and for $\left(i_{1}, \ldots, i_{n}, i_{n+1}\right) \in S_{n+1} \backslash S_{n}$, let $\theta_{n+1}\left(i_{1}, \ldots, i_{n}, i_{n+1}\right)$ $=\theta_{n}\left(i_{1}, \ldots, i_{n}\right)+i_{n} b^{i_{n+1}}$. We must show that each θ_{n} is a sequential
homeomorphism onto $\theta_{n}\left(S_{n}\right)$, and that $\theta_{n}\left(S_{n}\right)$ is sequentially closed in ℓ_{2}.

It is clear from the fact that $\theta_{n}\left(i_{1},,,, i_{n}\right)$ is non-zero only in the $i_{1}, i_{2}, \ldots, i_{n}$ th places, that each θ_{n} is one-to-one. That Θ_{1} is a sequential homeomorphism follows from the well known fact that the sequence $\left\{b^{i}\right\}$ converges weakly to zero. Clearly $\theta_{1}\left(S_{1}\right)$ is sequentially closed in ℓ^{2}. If we suppose that Θ_{n} has been shown to be a sequential homeomorphism and that $\left\{x_{k}\right\}$ is a convergent sequence in S_{n+1}, then we may assume all x_{k} to have the same level. If $l_{n+1}\left(x_{k}\right) \leq n, \Theta_{n+1}\left(x_{k}\right)=\theta_{n}\left(x_{k}\right)$ and the convergence is preserved. If $l_{n+1}\left(x_{k}\right)=n+1$, we may assume that $x_{k}=\left(i_{1}, \ldots, i_{n}, j_{k}\right)$ with the j_{k} unbounded. (Otherwise $\left\{x_{k}\right\}$ is an eventually constant sequence and convergence is preserved.) Then $\lim x_{k}=\left(i_{1}, \ldots, . i_{n}\right)$ and $\theta_{n+1}\left(x_{k}\right)=\theta_{n}\left(i_{1}, \ldots, i_{n}\right)+i_{n} b^{j_{k}}$ which converges weakly to $\theta_{n}\left(i_{1}, \ldots, i_{n}\right)=\theta_{n+1}\left(i_{1}, \ldots, i_{n}\right)$. Thus θ_{n+1} is sequentially continuous.

Conversely, suppose $\left\{\mathrm{x}^{\mathrm{k}}\right\}$ is any sequence in $\theta\left(\mathrm{S}_{\omega}\right)$ which converges weakly to x^{0} in ℓ_{2}. Since $\left\{\mathrm{x}^{k}\right\}$ must be bounded in norm there is a uniform bound, say q, on the number of non-zero co-ordinates of the x^{k}. Thus $\left\{x^{k}\right\} \subseteq \Theta_{q}\left(S_{q}\right)$. Hence if each $\Theta_{n}\left(S_{n}\right)$ is sequentially closed, so is $\theta\left(S_{\omega}\right)$. Since weak convergence implies pointwise convergence, and since each co-ordinate of each x^{k} is an integer, the sequence $\left\{\mathrm{x}^{\mathrm{k}}\right\}$ must be eventually constant in each coordinate. Let r be the number of eventually non-zero coordinates and suppose the theorem proved for $r<n$. If $r=n$ we may assume that $x^{k}=\theta_{n}\left(i_{1}{ }^{k}, \ldots, i_{n}{ }^{k}\right.$) where eventually $i_{1}{ }^{k}=i_{1_{k}}, \ldots, i_{n-1}=i_{n-1}$. Then $x^{0}=\theta_{n}\left(i_{1},,,, i_{n-1}\right) \in \theta_{n}\left(S_{n}\right)$ which is therefore sequentially closed. Clearly $\left\{i_{n}{ }^{k}\right\}$ is unbounded and so ($i_{1}{ }^{k}, \ldots, i_{n}{ }^{k}$) converges
in S_{n} to (i_{1}, \ldots, i_{n-1}). This completes the proof.
Note that 0 is in the weak closure of $\theta_{2}\left(S_{2}\right) \backslash \theta_{1}\left(S_{1}\right)$ but is not the weak limit of any sequence therein. This is the well known example of von Neumann.
6. SOME REMARKS AND QUESTIONS. As suggested by Theorem 5.2, the functions σ and k can be extended to the category of all topological spaces and continuous maps by means of the co-reflective functors s and k which assign to each space X, the spaces $s X$ and $k X$ where the underlying set is the same and the new topologies are the smallest sequential and k-space topologies containing the original. We may then define $\sigma(X)=\sigma(s X)$ and $k_{1}(X)=k(k X)$. Propositions 1.5 and 1.6 extend immediately. What else can be said?

Proposition 3.1 establishes the S_{n} as 'test spaces. for spaces X with $\sigma(X)=n$. It would seem that permitting all possible choices of the β_{i} (see the second paragraph of Section 4) the K_{α} could be used as 'test spaces' for $\sigma(X)=\alpha$. Are there 'test spaces' for \mathfrak{K} ?

The disjoint topological sum K of the K_{α} for $\alpha<\omega_{1}$ satisfies $\sigma(K)=\omega_{1}$ but contains no copy of $S_{\omega^{\bullet}}$ Can this happen with a countable space, or with a homogeneous space?

Is there for each $\alpha>\omega_{1}$ a space K_{α} with $K\left(K_{\alpha}\right)=\alpha$. More particularly, if α is an ordinal corresponding to a cardinal $\tau(\alpha)>\bigcup_{1}$, is there a k-space K_{α} with $k\left(K_{\alpha}\right)=\alpha$ and $\overline{\bar{K}}_{\alpha} \leq \tau(\alpha)$ $\left(\mathrm{K}_{\alpha} \leq 2^{\tau(\alpha)}\right)$? Is there for each $\alpha<\beta \leq \omega_{1}$ a space $\mathrm{x}_{\alpha, \beta}$ with $\left.k\left(\mathrm{x}_{\alpha, \beta}\right)=\alpha, \sigma\left(\mathrm{x}_{\alpha, \beta}\right)=\beta\right\}$

What are the permanent properties of space with $\sigma(\mathrm{x})=\alpha$ or $k(X)=\alpha$?
S_{ω} is something of a topological curiosity in itself. Are there
other countable Hausdorff k-spaces with no point of first countability? If so are there other such which are homogeneous and sequential? It is easily seen that the proof of Theorem 5.2 depends only on the existence of a sequence bounded away from O which converges weakly to 0. For what linear topological spaces do such exist?

REFERENCES

[1] R. Arens, Note on Convergence in Topology, Math. Mag. 23 (1950) 229-34.
[2] A. B. Arhangel'skir, Bicompact Sets and the Topology of Spaces, Dokl. Akad. Nauk, SSSR, 150 (1963) 9.
[3] A. B. Arhangel'skiY, Some types of factor mappings and the relations between classes of topological spaces. Soviet Math. Dokl. 4 (1963) 1726-9.
[4] D. E. Cohen, Spaces with weak topology, Quart. J. Math., Oxford (2) (1954) 77-80.
[5] M. Dolcher, Topologie e strutture di convergneza, Ann. Scuola Norm. Sup. Pisa, 14 (1960) 63-92.
[6] R. M. Dudley, On Sequential Convergence, Trans. Amer. Math. Soc. 112(1964) 483-507.
[7] N. Dunford and J. Schwartz, Linear Operators, New York, 1958.
[8] S. P. Franklin, Spaces in which sequences suffice, Fund, Math., 57 (1965) 107-15.
[9] S. P. Franklin, Spaces in which sequences suffice II, Fund. Math., to appear.
[l0] M. A. Maurice, Compact Ordered Spaces, Mathematical Centre Tracts 6, Amsterdam, 1964.
[ll] R. C. Moore, Some Multiplicative problems in $C(X)$, Thesis, Penn State University, 1965.
[12] R. Vaidyanatheswamy, Set Topology, 2nd ed., Chelsea, New York, 1960. Chapter IX.

