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§0. INTRODUCTION. In recent years the category of k-spaces

has come to occupy a fairly central place in topology (see

for example Whitehead [20], Gale [15], Michael [18], Cohen [9],

Morita [19], Arhangel1skii [l], Bagley and Yang [5], Duda [10],

Whyburn [21], Arhangel1skii and Franklin [3] and many others).

R. Brown suggests this category may serve all the major pur-

poses of topology [8]. Of more recent vintage is the interest

in sequential spaces (see for example Kisyn'ski [17], Dudley

[11], Aull [4], Franklin [I3],[l4], Boehme [7], Baron [6],

Arhangel1skii and Franklin [3], Fleischer and Franklin [12]).

Several people have noted (and exploited) the similarity of

the theorems which can be proved about k~spaces and sequential

spaces. In this paper we offer a general theory which en-

compasses the common aspects of the theories of k-spaces

and sequential spaces and of others also. The ideas involved

can be traced from Michael1s generating collections [18],

thru Cohen's weak topologies [9] and Brown's natural covers [8].

We strengthen Brown's concept slightly, retaining his terminology.

Section 1 is devoted to the statements of some preliminary

facts and lemmas due either to Brown [8] or to Cohen [9] .

The theory is then developed in sections 2 and 3.

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSITY



§1. THE WEAK TOPOLOGY OF A COVER.

Let E be a cover for a topological space X with

topology T . The family E(T) of those subsets of X

which intersect each S e £ in an S-open set (i.e. open in

S with the relative topology from T ) is a topology for

X finer than T . The restriction of £(T) to S yields

the same topology on S (i.e., E(T)/S = T/S) , and repetition

of the process leads to no new open sets (i.e., £ ( £ ( T ) ) = S(r))

One key fact is given in the following.

1.1 LEMMA. A function out of X is E(r)~continuous if and

only if̂  its restriction to each S e £ ijs continuous.

If we let 0 £ denote the disjoint topological sum of

the spaces S e £ , the inclusion maps S c x combine to

yield a quotient map <p: ^ E—>.X . Suppose S! is a cover

for a space Xf with topology T* and that <p! : © E I ~ > X I

is the associated quotient map. Then . X X £' = (S X S'|S e S, S

is a cover of X x Xf and

1.2 LEMMA^ with X X Xf topologized by (S X ZJ1 ) (T X T! ),

<p X <p» : i'+} E X Q S1 —>X XX' is a quotient map.

Further we have

1.3 LEMMA. E(T) x S' (T» ) c (E x Ef ) (r x r) . if: each x e X

iŝ  â  £(r)~interior point of some S e E ^ and similarly for

each xf e Xf , then equality holds.

The next lemma will prove central to our theory as it

allows the construction of a coreflexive functor.



1.4 KEY LEMMA. rf for each S e £ , f : X -> Y satisfies

i) there is an Sf e £f with f(S) 5 ST and ii) f |S:S~>S'

is continuous,, then f ±s^ continuous with respect to £(T)

and £ ' ( T > ) .

Now suppose both £ and £' are covers of X . If

L 5 X1 or if £ is a refinement of £? , then Ef (r ) c £( T ) .

Hence if each is a refinement of the other £(T) = £T (r) .

If A c X , let £|A = {A 0 s|S e £} , and let T|A

be the relative topology on A .

1.5 LEMMA. £(T) |A <== (£|A)(T|A) . Further, if. A and each

S G ^ ^^^ T-clbs'edj then equality holds and A i^ E ( T )

closed.

Refering to Example 5.1 of [13] , let E be the collection

of all convergent sequences (with limit points) in M and let

A = M \ N . Each S e £ is closed but A is not, and {0}

€ (£|A)(r|A) but not to £(T) |A .

For another example^ let I be the closed unit interval

[0,1] with the usual topology, and let S be the collection

of all connected subsets of I . Let A be the Cantor set .

A , being compact, is closed but each S need not be. Since

I G £ , T = £(r) . But r|A is compact while (£|A)(T|A)

is discrete. Thus the conditions of lemma 1.5 are needed.

§2. NATURAL COVERS AND THEIR SPACES.

By a natural cover we shall mean a function £ which

assigns to each topological space X a cover IL satisfying

1) if S e 2L and S is homeomorphic to a subset T to Y ,



-then T e L , and 2) if f: X~*Y is continuous and

S € £ there is a T G L with f (S) 5 T . For example we

may choose £ v to be the compact subsets of X , or the

connected subsets, or the countable subsets, or the convergent

sequences. The first and last of these are the notivating

examples which lead to the k~spaces and the sequential spaces

Now to each space X with topology T we may associate

the space cxx , the same set of points topologized by

We may also assign to each continuous function f : X—~>Y ,

the continuous (by Lemma 1.4) function f = erf : crx—^aY. .

Since of = f , a preserves compositions and identies, i.e.,

0 1*L 1L f^nctor from the category \Tj of topological spaces

into itself.

Let us call a space X a S~space whenever aX = X

(i.e. T = E ( T ) ) . If L is the natural cover which assigns

to each space its compact subsets, the S-spaces are precisely

the k-spaces. If E assigns the convergent sequences, the

£-spaces are the sequential spaces. (This is almost immediate.)

2.1 LEMMA. For each space X , aX jls a, 2>space (acrX = aX) .

Hence a iŝ  a, retraction from ^ onto the category

S-spaces.

Proof. Clearly £ X ( T ) E
S a X ( £ X ( r ) ) * N o w i f S G T*X > S

is a subspace of o*X and hence belongs to S v , i.e.,

x̂ E Eax • Hence E a x ( E x ( r ) ) E hShS7^ = E x ( r ) and the

lemma is proved.

2.2 LEMMA. (g) i£ a. coreflexive subcategory of T) .



Proof. lv : X—>X is continuous. If f : Y ~~ ̂>X is continuous

and Y is a S-space the following diagram commutes.

Ar
Y- ^ ->X

Y
 T^^T^

 r*
Hence f \ Y—>aX is continuous and uniquely factors f thru

1Y . This completes the proof.

2.3 PROPOSITION. The category (§} o£ S~spaces i£ closed

under quotients and disjoint topological sums.

Proof. This is a direct consequence of Lemma 2.3 and Theorem

A of Kennison [16] since the disjoint topological sum is the

coproduct in @ . It is not at all difficult to give a direct

proof.

2.4 COROLLARY. Every open or closed image of _a &-space is

a TJ- space*

2.5 COROLLARY. When a, product space îs â  £-space,, so

is each of its factors.

2.6 COROLLARY. The continuous image of a compact S-space

in a Hausdorff space is ^ 2>space.

2.7 COROLLARY. The inductive limit o«f any system o£ I^spaces

is again ji 2>space.

2.8 COROLLARY. Any adjunction space of S~spaces is a E-space.

Of course Proposition 2.3 and its corollaries may be

immediately asserted for k-spaces and sequential spaces.



2.9 LEMMA. For each X , © E is, a, E-space.
X

Proof. If S e L , then S 5 S implies S e S g and there-

fore S = OS . Hence by 2.3 ±> £ x is a E-space.

This allows a characterization of E-spaces as follows.

2.10 PROPOSITION. X isi a. E-space if and only if the

natural mapping <P : ® ^ x ^ x — fL quotient mapping.

Proof. Since 1+) IL is a S-space and S is closed under

quotients, if cp is a quotient map, X is a E-space.

The converse has already been noted.

Hence we get the sequential spaces as quotients of

zero-dimensional, locally compact metric spaces and the k-

spaces as quotients of locally compact spaces.

(Lemma's 1.2 and 1.3 together with Proposition 2.10

provide a criterion for the product of two E-spaces to again

be a E-space. Although possibly useful in particular cases,

it is clumsy to state and we shall omit it.)

This characterization is in fact more useful than it

would appear. For example, with it we can say something

about subspaces of 22-spaces..

2.11 PROPOSITION. If X and every open subset of each

^ € ^Y ifL IL E~space, then every open subset of X is a

E-s-pace.

Proof. Suppose U is open in X and <p : gi E y ̂  X is

the natural mapping. Then for each S e L , <p (U) H s is

open in S and hence is a E-space. Thus their topological sum

<P~ (U) is a E-space and ^ = <p|<p~ (U) maps (p^CU) onto



U . By 2.10 it is enough to show ^ to be a quotient map.

For V 5 U , if ^rl(V) is open in ^""1(U) , then for each

S e £v , ̂
rl(V) 0 S - ^"1(V) (1 (p^OJ) n S is open in S .

A

Since X is a ID-space, V is open in X and hence U , and

we are done.

From 2.11 one sees at once that open subsets of sequential

spaces and k-spaces are again sequential spaces and k-spaces.

It is also true that being a sequential space or a k-space

is a local property. This follows from

2.12 PROPOSITION. Ij[ each x e X has an open neighborhood

which is _a S-space, then X jLs a. S~space.

Proof. Let A e £Y(r)
 a n d choose x e A . Let U be an

A O
open £-space neighborhood of x. . If S e L c L , then

O U ~-~ A

S fl (n 0 A) = Sfi A € T|S . But since S <= U e T 3 r \ S - (T |U) | S

Thus A fi U is open in U and hence in X . But A is the

union of the A 0 U , and we are done.

Let us call a function f : X—>Y %~continuous just in

case f|s is continuous for each S G L . It follows from

Lemma 1.1 that f ±s^ S-continuous if and only if f : crx—>Y

is continuous. The £-spaces can be characterized in terms

of the £-continuous functions.

2.13 PROPOSITION. X is; a. £~space ije and only if every

^-continuous function out of X Is continuous.

Proof. If each ^continuous function is continuous, then

lx : X —~>aX is continuous and X is homeomorphic to aX .

Conversely f being £-continuous implies that f :

is continuous. But X = aX since X is a a-space.
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Following 3 we may assign an ordinal number to each S-space

in a topologically invariant manner. Let X be any space and

A a subset of X . Define A = U(ci(A n S)|S e SY} . Now

let A° = A;Att = (A^> if a = j8 + 1; A a = U{AP|jS < a] other-

wise. The S-characteristic of X is the least ordinal a (if

a
it exists) such that for each subset A of X , A = c^x^ '

(See [3] for the existance of sequential and k characteristics.)

Again we may characterize the S-spaces.

2.14 PROPOSITION. X i_s a Z-space JLf and only if_ jU has a_

^" characteristic.

Proof. If X is a £~space, it suffices to show that for each

OL

A ^ X there is an ordinal a such that A = cl^A . (One

simply takes the sup of such ordinals.) Clearly for each

OL , A c: A ^ clYA . If A is not closed, there is some
S e ZL with A p H s not closed in S , i.e. there is some

point in A P \ AP . Hence by cardinality, some A is

closed and hence equals clYA . Conversely if X has £-
A

characteristic OL and A fl S is" closed in S for each S e
A OL

then A ^ A and hence A c A and A is closed. Thus X

is a £~space.

For any natural cover E , a S-space has ^characteristic

0 if and only if it is discrete. In the case of sequential

spaces and of k-spaces, those of characteristic < 1 (called

Frechet spaces and kr-spaces respectively) have received

special study. We formalize the common part of these theories

in the next section.

§3. ST-SPACES AND HEREDITARY QUOTIENT MAPS.

A mapping f : X—VY is an hereditary quotient map

if and only if for each subspace YJ of Y , the mapping
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f = f |f~~ (Y.j)is a quotient map. Arhangel1 skii showed that

°P e n maps and closed maps are hereditary quotient

and characterized them as follows: a mapping f : X >Y ±s^

an hereditary quotient map if and only if for each y e Y and

for each open neighborhood U of_ f~ (y) , y i^ ail interior

point of f(U) ([2]).

X is called a £T-space if its L-characteristic is < 1 .

3.1 PROPOSITION. If X i s a Sf - space and f : X—^Y i£

an hereditary quotient map, then Y ijs JEI Sf-space.

Proof. Suppose A c y and y e cl A . We claim that

f""1(y) 0 cl f"1(A) ^ 0 . (If it were empty, U = X \ cl f"1(A)

-1 v

would be an open neighborhood of f (y) and by Arhangel1skii1s

characterization of hereditary quotient maps, y would be an

interior point of f(U) . But X \ cl f"1(A) <~X \f~1(A) and

hence f (U) c Y\A contradicting y e cl A.) Choose

x € f^Cy) n cl f"1(A) . Then for some S eZ^ , x € clg(S fl f""
1(A))

Since E is a natural cover, there is some S'e L with

f(S) c s1 . Then y e f [clQ(f
 1(A) n S) ] c clQf [f (f"

1(A) 0 S) ] ,

since f : S—>ST is continuous. Thus y e cle. (A flf(S))

c clg, (A (1 ST ) and we are done.

The preceeding proposition and the suceeding lemmas are

aimed at characterizing E'-spaces in terms of hereditary

quotient maps.

3.2 LEMMA. Every disjoint topological sum <o£ Sf - spaces

is again _a Sf -space.
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3.3 LEMMA. Ijf X € 2^ , then X i£ a S'-space.

3.4 LEMMA. Each S e ZL .is «* £'- space.

3.5 LEMMA. For each X , (& IL- is a L1-space.

3.6 PROPOSITION. X i£ a. £f - space if_ and only jLf <P : S

is an hereditary quotient map.

Proof. Proposition 3.1 and Lemma 3.5 yield one direction

immediately. For the converse we will again use Arhangel*skii1s

characterization. Suppose X is a Lf-space , x e X 5 and

U is an open neighborhood of <p~ (x) in <£> 2L- . If

x € cl(A<p(U))) „ then for some S e Z^ , x e clg(S n(xVp(U))) .

Hence^ regarding S as a subspace of IB 2L 5 x e cl(SMJ)

contradicting cp~ (x) ̂  U and U open. Hence x is an

interior point of <p(U) and we are done.

Since the Frechet spaces are precisely the hereditary

sequential spaces ([14] Proposition 7.2), one might look for

a similar result for any natural cover. Unfortunately., using

the connected sets to generate the natural cover,, an example

can be constructed of a S!-space with a subspace which is

not a £-space. However something can be said in the general

case.

3.7 PROPOSITION. If each subspace of X i s a £-space, then

^ iiL -BL S* -space.

Proof. Let tp : y£ T^~>X be the natural mapping, X^ be

1

a s u b s p a c e of X and <p = <p <p~ (Xn) . Le t <pn : •+»
J.

be the natural mapping. If U <= x and <p "1(U) is open in
— o

V (X ) , then <P ~1(U) = <P~1(U) n ±s ZL. is open in
1 J. O A,
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But <p- is a quotient map and so U is open in X^ . Thus

<p is a quotient map and <p an hereditary quotient map ,

and 3.6 completes the proof.

3.8 COROLLARY. rf every subspace o£ a. Z)r - space .is _a S-space,,

then every subspace is a ST - space.
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