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EXTENSIONS OF TOTALLY BOUNDED PSEUDOMETRICS

R. A. Alo and H. L. Shapiro

1. Introduction. The concept of extending to the topological

space X a continuous real-valued function defined on a subspace S

of X has been shown to be very useful. When every continuous real-

valued function on S extends to X, S is said to be C-embedded in X.

If bounded continuous real-valued functions are considered, then S

is said to be C*-embedded in X. Thus every completely regular

Hausdorff (Tychonoff) space is C-embedded in the real compactification

uX and is C*-embedded in the Stone-Cech compactification f3X.

Results in this line have been extensively studied in [5].

A similar problem is concerned with extending a pseudometric

defined on a subspace S to the space X. This problem was first

studied by .P. Hausdorff for the metric case in 1930 [6]. Hausdorff

showed that a continuous metric defined on a closed subset S of a

metric space X can be extended to a continuous metric on X. R* H,

Bing [2] and R. Arens [1] rediscovered this result independently.

Recently H. L. Shapiro [10] studied the problem by considering

subspaces S for which every continuous pseudometric defined on S has

a continuous pseudometric extension to X. Such subspaces S are said

to be P-embedded in X. Shapiro showed that if S is P-embedded in X,

then S is C-embedded in X, but not conversely. However^ S is P-embedded

in X if X is completely regular and S is a pseudocompact C*-embedded

subset of X.

In this paper we introduce the concept of T-embedding , a

-^ particular case of P-embedding. A subset S is T-embedded in X in case
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every totally bounded continuous pseudometric on S has a totally

bounded continuous pseudometric extension to X* In §2 we will

characterize T-embedding in terms of various types of open covers

of the space X. In addition we shall show that in order for a

subspace S to be T-embedded in X it is sufficient to extend every

totally bounded continuous pseudometric on S to a continuous

pseudometric on X. In §3* we show that a subset is T-embedded

if and only if it is C -embedded. Finally, using the concept of

T-embedding<, we give some new characterizations for a topological

space to be normal.

The notation and terminology in this paper will follow that 1

of Gillman and Jerison in [5]» Other terms used here are defined

below.

DEFINITIONS. If (u) = (U ) T is a family of subsets of a

topological space X, arid if S is a subset of X, then by U JS we mean

the family (U n S) T. We say that (u) is discrete at a point

x e X if there is a neighborhood G of X that meets at most one

member of (u). We say that X is a collectionwise normal space if

for every discrete family (u) - (U ) T of closed subsets of X •
^•^ CX CX £ _L

there is a family (G_,)_, c T of mutually disjoint open subsets of X
CX CX fc JL

such that ya c G Qfor each a e I. (This definition is due to R. H.

Bing [2].)

If ® is a cover of X and if (v) = (Vft)A r T is a cover of S,

then @ is an extension of © if I = J and if U n S = V for all

a e I. A sequence ((u)n)n € N of covers of a set X is said to be a

normal sequence in case (\j) 1 is a star refinement of (u) . A

cover fuj of X is said to be a normal cover in case there exists a



normal sequence (CD ) *T of open covers of X such that @n is a

refinement of (u) . (This definition is due to Tukey [11].) If

( (m ) is a normal sequence of open covers of a space X and

if d is a pseudometrie on X, then d is associated with ( €))„ „ M
U ————— J^ H £ ^

if the following three conditions are satisfied:

(1) d is bounded by the identity function 1L.

(2) If k e N and if d(x,y) < 2~( k + 1), then x e st(y, ©v) (the

star of y with respect to (U),) .

(3) If k e N and if x e st(y, ® v ) , then d(x,y) < 2"^k"3^.

For any real-valued continuous function defined on X^ the set,

Z(f), of all points x in X for which f(x) ^ 0 is the zero set of f.

The complement of Z(f) is called the cozero-set ojf f. The family

(jj) = (U^)^ T is a cozero-set cover of X if (u\ is a cover of X

and if each UQ is a cozero-set• A zero-set cover is defined in an

analogous manner.

If ( ® - I J •••* ® ) is a finite sequence of covers of a set X

and if (& ± = (A±(a))a g j for each i .= 1, ..., n, then by A J = 1 (K) ±

we mean the family

(A^^) n ... n

2. Equivalent formulations of T-embedding> We will now

characterize T-embedding in terms of finite cozero-set covers, finite

normal cozero-set covers, and finite normal open covers. To do this

we will need some preliminary results that are interesting in

•themselves. These first results are worthy of note since they state

the relationship between the topological structure induced by a

pseudometric and the given topology on the space.

PROPOSITION 2.1 If. (X, © ) is_ a topological space and if d is;



a, pseudometric on X then d ̂ is continuous j_f and only ±f_ @ c (?) ,,

where (FY îs the topology induced by d.

PROPOSITION 2o2 Let (X, (T}) be_ a, topological space and let d

be_ a, continuous pseudometric on X. . If G îs an £P£H subset of X

relative to © H * then G is a, cozero-set relative to © .

THEOREM 2.3 [11, Theorem 7.1] If. ( © ) ™ lJL §L normal
•̂̂  n n G IN

sequence of open covers of a, topological space X, then there exists

a continuous, pseudometric on X that is associated with ( (u) ) M.
rv

Since we will be considering totally bounded continuous pseudo-

metrics we will now make the necessary modifications of previously

known results. These will then be applied to obtain our desired result,

PROPOSITION 2.4 Let X be a topological space and let ( (g) ) M

be a, normal sequence of finite open covers of X. If d jjs _a continuous

pseudometric on X that i£ associated with ( © ) N, then d j_is

totally bounded.

We omit the proof of 2A.

PROPOSITION 2.5 Let X b£ a topological space, let S e x , and

let (tp = (U a) a j b_e an open cover of S. If; © i^ a normal open

cover of X such that ^ | S refines (§), then there j^ a. normal locally

finite cozero-set cover (̂) = (W ) of X such that

Wa n S c ua for each a € i.

The reader is referred to [10, Theorem 2.5] for the proof.
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LEMMA 2.6 rf (û ) = (U a) a g j is_ a finite normal open cover of the

topological space X, then there i^ a, normal sequence ( { v ) ) n N

jof open covers £f X such that Q^.. refines (f^ and such that (v}

is finite for each n e N.

Proof. By hypothesis, there exists a normal sequence (/Ul^)^ _ M
(V

of open covers of X such that (fj\ refines (\J) . Let d be a

continuous pseudometric that is associated with ( (u)^)^ - M (2.3).
^•^n n s IN

For each a £ I, let Wa = U{Sd(x, 2~
3) : Sd(x, 2~

3) c U Q ] . Then

(\P) = (W a) a j is a finite normal open cover of X relative to (?)d

(the topology on X determined by d) such that Aa c UQ for each a e I.

A repeated application of [8, Theorem 1.2], and the observation that

the covers constructed therein are finite, give us a normal

sequence ((vY) N
 of open covers of X, relative to /^ J s u c h

n € S
that (V) refines ^^ and such that, for each n e N, ftf\ is finite.

Since (T^d
 c C^ and since nf) refines (l^), the result now follows.

THEOREM 2.7 If S is a subspace of a, topological space X, then

the following statements are equivalent:

(1) S i£ T-embedded in X.

(2) Every totally bounded continuous pseudometric on S can b_e

extended to ^a continuous pseudometric on X.

(3) Every finite normal cozero-set cover of S has a, refinement

that can be extended to a, normal open cover of X.

(4) Every finite normal open cover of S has a, refinement that

can be extended to a_ finite normal cozero-set cover of X.

Proof. (1) implies (2). This implication is immediate.

(2). implies (3)* Assume (2) and suppose that (u) is a finite

normal cozero-set cover of S. By 2.6, there exists a normal sequence

e N of open covers of S such that (v)-j_ refines ^j) and such
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that, for each i t N, (v). is finite. Then,, by 2.3* there exists a

continuous pseudometric d on S that is associated with ( (V*).) . ^ N

and,, by 2.4, d is totally bounded. Therefore, by (2)<> there is a

continuous pseudometric d on X such that d|S x S = d. Let

® h —

» = (S-r(x, 2 )) x« Since (X5 d) is a pseudometric space,,

it is paracompact, so there is a locally finite open cover (̂ ) of

X such that (vh refines (w)f • By 2.1, 2.2, and the fact that a

locally finite cozero-set cover is normal, it follows that ^y is a

normal open cover of X relative to the given topology on X and one

easily verifies that (5f)lS refines H^«

(3) implies (4)o This implication follows from [9, Theorem 1.2]

and 2.5.

(4) implies (1). Assume (4). Let (̂ ) be the given topology

on X and suppose that d is a totally bounded continuous pseudometric

on S. For each m e N there exists a finite subset F of S such that
** m

covers So

Now consider any m c N* Note that Q?)m is normal relative to

therefore, by (4), there exists a refinement of fw) m

that extends to a finite normal cozero-set cover £ v ) m of X, Then

there exists a normal sequence (Cy\).m). N of open covers of X

such that (V^-L"1 refines @ m and such that @ . m is finite for

each i e N.

Now for all i, m e N, let

and
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Then for all i, m e N* one easily verifies that

(i) ©m and © . m are finite open covers of X,

(ii) (u])-+1
m <* ®i_m and © i ™ refines (u}"1,

(iii) ( O ) ^ 1 refines $T)± and (\p^^ refines (j/ 1, and

(iv) fiT/ IS refines QO •

Now again consider any m e N. It follows from (i) and (ii)

that (^^.m). is a normal sequence of finite open covers of X.

Then, by 2.3, there exists a continuous pseudometric r^ on X that

is associated with (uD.m)o M and, by 2.4, r is totally bounded.
v ̂ -̂  x ' l e IN m

By (ii) and (iv), we also have

(*) If x, y e S and if r (x,y) < 2~3, then d(x,y) < 2
rrr

-̂m
Define r: X x X - R by r(x,y) = sm € N 2 .^(x^y). Then r is a

continuous pseudometric on X. Moreover, r is totally bounded, for

if c > 0, let k e N such that 2'^'^ < e. Since r, is totally

bounded there exists a finite subset F of X such that

U Ŝ , (x, 2~(k+4)) = X. If z e X then z e S^ (x, 2'^^^) for

some x c F and it follows that z c st(x, ^ J w o ) • Furthermore,

l f 1 < m <. k* t h e n by (i:Li) w e h a v s (̂ )i + o
k refines ^ ) k + 3

m a n d hence

. z e st(x, (uX,Q
m)o Hence - (x,y) < 2"k < e/2, whenever 1 < m < k.

in

Then r(x,z) = E k
= 1 2^-rm(x,z) + s V ^ 2""m.rm(x,z) <

From (̂ ) it follows that

(**) If x, y e S, if i > 3, and if r(x,y) < 2"1, then d(x,y) < 2""^1"

Define a relation R on X as follows:

x R y in case r(x,y) = 0 (x, y c X)

Observe that R is an equivalence relation on X. Let X* = X/R be

the quotient space of X modulo R and let A: X - X* be the canonical

map. Then the formula r*(A(x), ?\(y)) = r(x,y) (x, y e X)
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determines a well defined map r*: X* X X* - R. One easily verifies

that (X*, r*) is a metric space., that (£} # is the quotient

topology on X*, and that the canonical map V. X -* X* is an isometry.

It follows that r* is totally bounded.

Let S* = A(S). By (**) it follows that we can define a map

d*: S* X S* - R as follows

d*(A(a), *(b)) = d(a, b) (a, b e S).

Then one easily verifies that d* is a totally bounded_pseudometric

on S*.

Let (u)* be the uniformity on X* generated by the metric

r*|S* X S*. Let @ * = (u) * | S* x S* and note that (S*, ® * ) is a

uniform subspace of (X*, (tf)*) . Using (**) and the fact that

A: X -* X* is an isometry one easily shows that d* is a uniformly

continuous pseudometric on S*. Therefore, by [7* page 42* Corollary

16], there exists a uniformly continuous bounded pseudometric e on X*

such that e|S* X S* = d. To show that e is totally bounded, let

e > 0 and let B* = [(x*, y*) e X* x X^ : e(x*, y*) < e}. Since e

is uniformly continuous, B^ e ^u)* and therefore there exists 5 > 0

such that £(x*, y*) e X^ x X^ : r*(x*, y^) < 5} c B*. NOW r* is

totally bounded, so there is a finite subset F* of X* such that

Ux* e F* Sr*( X*' 6^ ^ X^*' O n e e a s i ly shows that

U o TĤ . S (x̂ -, e) = X* and it follows that e is totally bounded.

Define "d on X x X by "d = eo.(A x ~h) . Since A is continuous

relative to Cl), d is a continuous pseudometric on X (2.1). Moreover,

if x, y e S, then d(x, y) = e(?v(x), A(Y)) - d*(A(x), A(y)) - d(x, y) .

Therefore cf | S x s = d. Since A is an isometry and since e is

totally bounded, it follows that d" is totally bounded. Therefore

(1) holds.

The proof is now complete.
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3. The equivalence of T-embedding and C -embedding for completely-

re gu la r Hausdorff spaces. We shall prove this equivalence in several

stages. In our final result we give several new necessary and

sufficient conditions for a topological space to be normal. (Note

that a normal space need not be Tj.)

PROPOSITION 3.1 ([5. 15E.1]) Suppose that X is a topological

space and that d jls a, continuous pseudometric on X. Then d jus

totally bounded if and only if for each e > 0, X jLŝ  a, finite union

°^ zero-sets of diameter at most e.

LEMMA 3.2 Suppose that S 3js T-embedded in X. If f € C*(S), i£
.̂

Zq(f) / fl3 and if f > 0, then there exists g e C (X) such that g|S = f.

Proof. Let f e C*(S) and suppose that f > 0 and that

Z = Zg(f) ^ 0. Define Yf: S >< S - R by

*f(x, y) = lf(x) - f(y)| (x, y € S).

Then Yf is a continuous pseudometric on S. To show that ¥„ is

totally bounded, let e > 0 and choose k e N such that f(x) < (k+l)«e

for all x e S. For n = 1, ..., k, let

Z = fx e S : n-e < f(x) < (n+l).e}.

Then (Z^, ..., Zfc) is. a finite number of zero-sets of diameter at

most € and one easily verifies that S = Uk -, Z . Since S is
n=i n

T-embedded in X, there exists a continuous pseudometric d on X such

that d | S >< S = Yf. Let g: X - R be defined by g(x) = inf z d(x',y)

(x e X). Then g e C(X) and gfs = f.

.THEOREM 3.3 Suppose that X JLS a topological space. If S is

T-embedded in X, then S is C*-embedded in X.
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Proof. Assume S / $ and let f e C*(S). Fix an arbitrary a e. B3

let f(a) = a, let g = (f v a) - a and h - -((f A a) - a). By

3.2/ there exist g, E e C(X) such that g|S = g and E|S = h. Let

k = ("g - E) + a. Then one easily verifies that k e C(X) and that

klS = f.

THEOREM 3.4 Suppose that X is a topological space, If S is
_ _ _ _ _ —

P -embedded In X (every separable continuous pseudometric on S can

jpe extended _to a separable continuous pseudometric on X)s then S JL£

T-embedded in X.

Proof. This follows Immediately from Theorem 2*7 and the fact

that a totally bounded pseudometric space is separable.

COROLLARY 3*5 Suppose that X jLjs & topological space. If S Isi

C-embedded In Xs then S jLsi T-embedded in X.

Proof. Since a C-embedded subset Is P °-embedded ([10^ Theorem

4.7])* the result follows from 3.1!-*.

REMARK. Actually, T. E. Gantner has shown that a subset S of a

topological space is P °«embedded if and only If it Is•C-embedded [

THEOREM 3«6 I f S is a dense C*-embedded subset of a topological

space X^ then S i^ T-embedded.

Proof. Let (G~, .„o, G ) be a finite normal open cover of 3.

Then there Is a cdzero-set cover (U-^ ..., U ) of S such that cla U.

is completely separated (in S) from 3~Gi for 1 = 1 , . .., n (['9,

Theorem 1.2]). Since S Is C*-embedded In X^ clo U. Is completely

separated (In X) from S-G±. Hence there is an f. e C(X) such that

f1(clg Uj) - fO] and f±(S-G1) - {!]. For each 1 = 1 , ..., n,



-11-

let Z± = Z(f±) and let V± = [x e X : f±(x) < 1/2). We note that

V± n S c G± and clx U± c clx Z± = Z± c Vio Therefore X = clx S -

cMui==l V = Ui=l clX Ui C Ui=l Vi and hence (~VV -•* Vn) is a

cozero-set cover of X that* on S5 refines (G,, . <> , * G ). It

follows that S is T-embedded in X.

THEOREM 3.7 Suppose that X ̂ s a completely regular Hausdorff

space and that S 3J3 a, subspace o£ X. _If S ̂ s C^-embedded in X, then

S i£ T-embedded in X.

Proof. Since S is C*-embedded in X^ clftV S = PS. Moreover^ S
pA

is C*-embedded in PS so^ by Theorem 3*&> S is T-embedded in PS.

But PS is a closed subset of the normal space px<, so pS is C-embedded

in PX and therefore by 3-5^ PS is T-embedded in PXO Since T-embedding

is transitive^ S is T-embedded in PX, It follows that S is T-embedded

in X.

G0RCLLA.RY 3.8 lf_ X îs a, completely regular Hausdorff space and,

if S îs a, subspace _of X^ then the following statements are equivalent;

(1) S i s C*-embedded in X e

(2) S jLs T-embedded iri X.

As an immediate result of Theorems 2.7 and 3.8 and known

characterizations of a normal space we have

THEOREM 3*9 JIf X i_s a, topological space,, then the following

statements are equivalent %

(1) X i_s normal.

(2) Every closed subset of X is -T-embedded in X,

(3) For every closed subset F o£ X, every totally bounded •contin-

uous pseudometric on F can be extended to a, continuous pseudometric on X.

For every closed subset F of X^ every finite normal cozero-set

cover of S has a, refinement that extends t£ a, normal open cover of X.


