
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

RESOLUTION WITH MERGING

Peter B. Andrews

Report 67-33

October, 1967

University Libraries
Carnegie Mellon University
Pittsburgh PA 15213-3890

This research was supported by NSF grants GP-4494 and GP-7660.

Resolution with Merging

by Peter B. Andrews

. Introduction.

In [2] it was shown that one can associate with any wff of first

order predicate calculus a certain set S of clauses such that the

given wff is unsatisfiable if and only if there is a refutation of

S, i.e. a deduction of the empty clause D from S. (A sequence

o,,...,o of clauses such that each clause in the sequence is either

a member of S or a resolvent of earlier clauses in the sequence

is called a deduction of a from S (by resolution).) We shall be

concerned with a method of increasing the efficiency of the search

for a refutation of a given set of clauses.

For convenience we shall broaden slightly the definition of

resolvent as given in [2] so as to permit one to combine a substi-

tution with the operation of forming a resolvent as in [2].

Definition. The clause y is a resolvent of the clauses a and £

if there are substitutions A and B, clauses 5 and e3 and an

atom p such that Aa = {p} U <5, Bj8 = {~p} 0 €, and y = 6 U e. We

call p (or its antecedent(s) in a) and ~p (or its antecedents in

j3) the literals resolved upon. In addition, if 5 and e contain a

common literal, we say that y is a merge of a and 8 ; any literal

of y which occurs in "both 5 and e is called a merge literal.

Clearly, a merge is an especially important sort of resolvent,
«

for in order to derive D from a given set of clauses one must

obtain successively shorter clauses, and merges provide one of the

This research was supported by NSF grants GP-4494 and GP-7660.
2
We shall write r = p U cr as an abbreviation for fT is the union

of the disjoint sets p and a .T Thus 0, unlike U , is not to be
regarded as an operator which can be applied to an arbitrary pair of
sets. Nevertheless we find this notation very convenient.

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSITY

2

principal means of progressing toward shorter clauses.

It is natural to ask whether one can require that all resol-

vents in a refutation actually be merges or resolvents involving

a one-literal clause. Unfortunately, the answer is negative, as

the following example shows. Let S be the set of ground clauses

with the following members:

(1) {p,q} (2) {p,r} " (3) {q,r}

(4) (~p,~q) (5) {~p,~r} (6) {~q,~r} .

Resolving (1) with (5), and the result with (3), we obtain {q}.

Similarly we can derive {~q }, and hence o . Hence S has a

refutation. However, no resolvent of a pair of clauses in S

is a merge.

Nevertheless, we shall discriminate against clauses which are

resolvents but not merges by requiring that no two such clauses

may be resolved with one another. A deduction satisfying this

condition will be called a deduction by resolution with merging.

We shall show that if S is any set of clauses which has a refuta-

tion, then S has a refutation by resolution with merging. When

one seeks to construct a refutation by resolution with merging,

one has fewer choices of possible resolvents than in an ordinary

refutation, so the ?search tree1 grows more slowly. Moreover,

one requires that merges occur frequently, and this tends to make

the refutation more efficient than it might otherwise be.

Of course, strategies which tend to increase the efficiency

of searches for refutations are of most value when they can be

combined with other such strategies. Therefore we shall show that

resolution with merging can be combined with the set of support

strategy [5]• •

Definition. Given sets K and S of clauses with K 5E SJ w e

define s(K,S) , the set of clauses derived from S with K-support,

as the smallest set of clauses satisfying the following conditions:

(i) K E s(K,S)

(ii) if a e s(K,S) and jS e S U s(K,S) and y is a resolvent

of a and jS, then y e s(K,S).

Informally, a deduction from S has K-support if every clause

in the deduction is in S U s(K,S).

We shall show that if K and S are sets of clauses such that

S has a refutation with K-support, then S has a refutation by

resolution with merging with K-support. To avoid any possible

confusion, we shall now define a deduction from S by resolution

with merging with K-support as a sequence of triples <y,p,r >,

where y is a clause, p is m or o (to indicate whether or

not y is either a merge or a member of S) and r is s or o

(to indicate whether or not y has been shown to have K-support).

Definition. Let K and S be sets of clauses with K £ S, A

deduction from S b^ resolution with merging with K-support is a

finite sequence of triples <>Sp,r >, where y is a clause, p

is m or o, and r is s or o, such that each triple satisfies

at least one of the following conditions:

(i) y e S, p is m, and r is s if and only if y e K.

(ii) <y,p,r > is preceded in the sequence by triples <a,p1,r1>
* 1 1

and <£,p r > such that y is a resolvent of a and £

and either p or p is m and either r1 or r2 is s;

moreover r is s, and p is m if and only if y is a

merge of a and 8.

Of course, if one wishes to use resolution with merging without

4

the set of support strategy, one can trivialize the set of support

by taking K = S in the definitions above. * .

5

§2. Resolution Trees,

Since we shall be concerned with transforming deductions into

deductions by resolution with merging, it will be convenient to

arrange our deductions in the form of binary trees, as in Figure 1.

This of course requires that a clause occur as many times in the

tree as it is used. Thus the nodes of our tree should be regarded

as occurrences of clauses, rather than clauses. It is convenient

to write $ < ^ if the node <£ is (strictly) below ^ on some

branch of the tree, and the relation < is irreflexive and tran-

sitive, so we may regard the tree as a partially ordered set. We

take this as the starting point for our formal definitions.

Definitions. Let JT be a partially ordered set (whose members

we call nodes) under the irreflexive and transitive relation < .

If $ < ^ we say that $ is below ^, and ^ is above $. If

$ < >£ and there is no node Q. such that <i> < (I < \£, we say that

^ is immediately above $. <£ is maximal [minimal] if there is

no node Q> such that $ < Q [Cl < <£] . 3* is a finite binary

tree if ? is a finite set, 3 has a unique minimal node, every

non-maximal node of 3' has exactly two nodes immediately above

it, and every non-minimal node has exactly one node immediately

below it. The maximal nodes will be called leaves, and the minimal

node will be called the root of 3*, and denoted root (J) .

Definition. A vine is a finite binary tree in which each node is

either a leaf or is immediately below some leaf. A node * of a

vine is a top-leaf if $ is above every node of the vine which is

not a leaf.

It should be noted that a finite binary tree always has an

odd number of nodes. Al$o, a vine which has more than one node

has exactly two top-leaves.

6

Figure 1.

•Jp.q) .

Definition, A resolution tree is a finite binary tree together

with a mapping c which associates with each node $ of the tree

a clause c$ (called the clause of <5) in such a way that if <£, \l>,

and Q are any distinct nodes of the tree with <J> and ^ immediately

above fi, then cfi is a resolvent of c$ and c^.

A node of a resolution tree will be called a merge if it is

not a leaf and its clause is a merge of the clauses of the two

nodes immediately above it. We shall let m(^) denote the number

of merges in a resolution tree 3*.

We remark that if <& is any node in a resolution tree 3",

. then the set of nodes ^ such that * < ^ (i.e. $ < ^ or

3> = $) may be regarded in a natural way as a .resolution tree; we

call this the sub-tree of 3 rooted in <£.

Definition. Given a set K of clauses, a node of a resolution

tree has K-support if it is < to a node whose clause is in K.

A resolution tree has K-support if each of its nodes which is not

a .leaf has K-support.

Clearly each deduction from a set S of clauses can be repre-

sented by a resolution tree whose leaves have clauses in S, and

the deduction has K-support if and only if the tree has K-support.

Conversely, each resolution tree (with K-support) represents a

deduction (with K-support).

It is easy to see that a vine represents a deduction by reso-

lution with merging. Also, any resolution tree which represents

.a deduction by resolution with merging has the property that the

sub-tree rooted in any maximal merge must be a vine. Moreover,

if one prunes away all nodes above a maximal merge in such a tree

(so that what was a maximal merge becomes a leaf of the pruned tree),

the pruned tree has the same property. Thus a resolution tree

• 8

representing a deduction by resolution with merging is in a certain

sense constructed from vines, with merges (as well as true leaves)

serving as leaves of the internal vines.

A mapping f from the nodes of a tree 3" to the nodes of a

tree «P will be called an order-isomorphism of 3* onto IP if

f is one-one with domain 3" and range 3'» 9 and for all nodes $

and ^ of %, f $ < f^ in ;jt iff $ < * in J, A mapping f

from a resolution tree 2T to a resolution tree IP is clause-

preserving if cf<£' = c$ for each node $ of 3*. If 3" and 3"f

are resolution trees such that there is a clause-preserving order

isomorphism from 3* onto IP, we may write IT = IP .

We shall establish certain facts about resolution trees. Our

task is simplified by the circumstance that for the most part it

suffices to consider ground resolution trees, i.e. resolution

trees whose clauses are all ground clauses (i.e., contain no in-

dividual variables). Of course, no substitutions are involved

in forming a resolvent of ground clauses. Thus theorems about

ground resolution trees can be regarded as theorems about propo-

sitional calculus. We remark that for our present purposes, there

is complete symmetry in the roles played by atoms and negated

atoms.

Clearly a literal may occur many times in a ground resolution

tree, i.e. in (clauses of) different nodes of the tree. It is

appropriate to regard certain occurrences of literals as descended

•from other occurrences of that same literal.

Definition. Given a ground resolution tree, the descendance

relation is the smallest binary relation between occurrences of

literals in the tree satisfying the following conditions(where

a,b, and c are occurrences of literals):

9

(1) a is a descendant of a.

(2) If a is a descendant of b, and b is a descendant of c,

then a is a descendant of c.

(3) If $j ̂, and fi are distinct nodes of the tree with $ and

\& immediately above O, with c<& = {p} U 6, c^ = {~p} U e,

and cfi = 5 U e, and if t is any literal in 6̂ then the

occurrence of t in Q is a descendant of the occurrence

of t in Q; if t is any literal in e3 then the occurrence

of t in O is a descendant of the occurence of t in ^.

Definition. a is an ancestor of b iff b is a descendant of a.

. 1 0

§3. Theorems.

Definition, Let K and S be sets of clauses with K. c s.

ms(K,S) is the set of all clauses y such that there is a deduction

from S by resolution with merging with K-support, the final triple

of which has the form <y,m,,s >.

Lemma 1. Let K and S be sets of clauses such that K c s. Then

ms(ms(K,S) , S U ms(K,S)) = ms(K,S).

Proof: It is easy to see that if K. <= K C: S C S O then
l — — — ^

ms(Ki:,S) c ms(K,S) £ ms(K,S2)• Also K£ms(K,S) so ms(K,S) £

ms(K,S U ms(K,S)) £ms(ms(K,S), S Ums(K,S)).
AA ,

To prove containment in the opposite direction, let K = ms(K,S)

and S = S U ms(K,S) and suppose a e ms (K ^S) . Let a particu-

lar deduction of ot satisfying the conditions of the definition

of ms (K .,S) be given. Let jS-i , . . ., jS be the clauses of this

deduction which are not resolvents of earlier clauses in the

deduction. Then the triple <j3._,p_,r > in this deduction has p=mj

and r is s if and only if jS. e K . Since j8. e S = SUms(K,S),,

there is a deduction of jS. from S by resolution with merging

n A A A A

with K-support, whose final triple <p.,m,r > has r = s if

jS. e msCKjS), but whose final (and only) triple has r = 0 if

6. / ms(K^S) . It is now easy to see that the deductions of

P.,...,P , and a mentioned above can be fitted together in

the obvious way to obtain a deduction of a. from S by resolution

with merging with K-support, whose final triple is <a,m, s >. Thus
a e ms(K^S).

The reader will recall that under the usual interpretation of

a clause as the disjunction of its literals, if a £ jS, then a

implies /?. Our next lemma states, roughly 3 that if we have a

11

deduction of 6 from clauses j8,,...j£ , and if o^ implies

8. for 1 < i < n, then from a . ..,a there is a deduction of
l — — i n

a clause y which implies 6. Moreover this new deduction is in

certain respects at least as simple as the given one.

Lemma 2. Let JT be a ground resolution tree and let d be a

mapping which associates with every leaf A of 3* a clause dA

such that dA c cA. Let X be a subset of the leaves of 3" such

that { A | d A / cA} c K and every non-leaf of 3* is below some

leaf in X. Then there is a ground resolution tree 3* and a one-

one map f from the set of leaves of JT» into the set of leaves

of 3 such that:

(1) cA = dfA for each leaf A of 3'';

(2) c(root 3') cc(root 3) ;

(3) A(irt) < m(ar)5

(4) each non-leaf of 3"T is below some leaf in f~~ (X H range f) ;

(5) either IP = 3 or root (3') is < some leaf in f"1(X fl range f)

Remark: Clearly (5) follows from (4) unless 3*f consists of

a single node_, so that its root is a leaf.

Proof: by induction on the number of nodes in 3'.

If 3 has just one node ^ let 3*-» be the tree with a single

node whose clause is d^. This makes 3"» the same as 3" unless

c^j in the latter case ^ e X9 so condition (5) is satisfied.

Verification of conditions (1)- (4) is trivial.

Suppose 3' has three or more nodes. Let 3> and $? be the

nodes immediately above the root of 3^ and let- 3 and 3 be

the sub-trees of 3" rooted in 0- and $ respectively. We

may assume . c ^ = [p] U a c$2 = [~p] 0 a. and c(root 3) =

al ^ a2' w^ e r e P ^ s some atom^ and a. and a are clauses.

For 1 = 1^ 2, we may apply the inductive hypothesis to 3'

12

to obtain a tree 3'. satisfying the conditions of the lemma;

we specify that 3. is to be 3". and f is to be the identity

Amap if dA = cA for every leaf A of 3*. .

If p does not occur in c (root 3T) 9 let 3'T be JT .

Similarly, if ~p does not occur in c (root 3) > w e m aY ±e~k ^T

be 3^ .

The only remaining case is that in which c (root 3) = [p]U <x.

and c(root 3) = [~p] 0 a:~ for some clauses a, and 0^ such
I T f t

that OL c a and ô c a~. We construct the tree 3>» from -̂i J^OJ
A t ? .

and a node ^ with c\&' = ^ 1 1 a , by letting V be the root of

3', and letting root (3\) and root (3) be the nodes immediately

above ^ in J . We define the map f for 3"! to agree with

the maps for 3 and 3 and see that condition (1) is satis-

fied.

To check condition (4), note that if 3\ fi 3. for either

i = 1 or i = 2, then rpot(^.) is <̂ some leaf in £~ (K n range f)

so ^ is below some such leaf in JTr . On the other hand if

= 3" and 3 = JT then since root (3") is below some leaf

A e Kj root (3') is below f~~ A. (Here we use the fact that a

resolution tree is finite, so A must be in range f since f

is one-one.) Thus (4) and (5) are satisfied. c(root 3*) =
t i

a, U «2 £j a, U a2 = c (root 3) . Now if '̂ is a merge of IP,-
f T

then a, and a2 contain a common literal, so QL and a^ do

also, and root (3) is a merge of 3. Since m^.) + m(3') <
m(3) + m(3) we see that m(3') < m(3) . Thus 3' is the desiredx z —•

tree.

13

Lemma 3. Let 3 be a ground resolution tree with c (root 3) =..

{q} U a, where g is a literal. Suppose the occurrence of q in

root (3) has exactly one ancestor which is in a leaf of 3. Call

this leaf >3>. Then there is a ground resolution tree 3'1 and an

order-isomorphism f • from 3 onto 3"l such that:

(1) cf$ = c^ - {q} if $ is any node of 3 such that $ <_ ^f;

(2) cf$ = c<P if it is not the case that $ < \&" in 3'.

(3) If •$ is any node of 3 which is not a leaf, the atom

resolved upon in obtaining c$ from the clauses of the nodes

immediately above <£ is the same as the atom resolved upon
A

in obtaining cf$ in 3"'. Moreover $ is a merge if and

only if f<& is a merge, and, if so, the merge literals are

the same.

Proof: by induction on the number of nodes in 3. If there

is just one node in 3, the lemma is obvious.

Suppose that 3 has at least three nodes. Let <&, and <£>

be the nodes immediately above root (3*) ; let 3* and 3 be the

sub-trees 'of 3 rooted in <*.. and <£> respectively. Without

loss of generality we may suppose that \£ is a leaf of 3* ,

c $ = [p,q] U o^, and c^2 = {— p} U a2, where p is an atom, and

o^ and a are clauses such that a ' U a - a. q must be dis-

tinct from p, but q may be ~p«~ Also q cannot occur in & 9,

since the occurrence of q in root (3) has no ancestors in clauses

of nodes in 3

Applying the inductive hypothesis to 3 we obtain a tree 3"

and an order isomorphism f from 3' onto 3* satisfying

conditions (1) - (3) . Let 3" t be the tree constructed from ff' 3

and a clause T with cT = a, by letting T = root (3*') and

14

letting root 3 and 3?9 be the* nodes immediately above T in

3* i . Since c (root 3".) = {p} 0 a, we see that 3" is a resolution

tree. Extend f to be an order isomorphism from 3 onto 3' by

letting f be the identity function on nodes of 3 and f(root 3*)

Clearly conditions (1) and (2) are satisfied^ and to check (3) it

.suffices to consider the node root (3) . But the atom resolved

upon in obtaining both c (root 3) and c(root 3'') is p, and in

each case the clause is a merge if and only if a, and G' contain

a common literal. Thus 3*T is the desired tree.

Lemma 4. Let J be a ground resolution tree,, and let A be a
A

leaf of 3. Let a be a clause disjoint from cA. Then there is

a ground resolution tree IP and an order-isomorphism g from

3 onto 3'' such that

A . A

(1) cgA = a U cA;

(2) if $ is any node of 3 which is below A^ there is a

(unique) clause y< c a such that cg# = y U c$? ; moreover,

either y = a or IP contains a merge;

(3) if $ is any node of 3 which is not < A, then cg$ = c3>
(4) if $ is any node of 3 which is a merge, then g$ is a

merge of «P .

Proof: by induction on the number of nodes in 3. if 3' has

just one node,, let IP be the tree with a single node whose clause

is a U cA .

Suppose 3 has three or more nodes. Let $. and <i> be

the nodes immediately above root (3') 3 and let 3 and 3 be the

trees rooted in <*> and $ 3 respectively. Without loss of gen-

erality we may assume that A is a leaf of 3 c$' = {p} U iS

c* = {-p} 0 &23 and c(root 3) = P± U ^ where p is an atom,

and #-, and j8 are clauses.

Applying the inductive hypothesis to 3 , we obtain a tree o

and an order isomorphism g. from 3 onto 3". satisfying the

conditions of the lemma. There is a 'clause y c a such that

c(root 3J) = cg£± = y U c ^ = 7 U({p) U ^) . Let 3*» be the tree

obtained from 3 and 3 by putting (as root (3')) a node

immediately below root (3') and root (3) , with clause y U j8 U jS .

Clearly there is an order isomorphism g from 3" onto 3*:

g$ = g $ if <£ e 3 • g<S> = <£> if <3> e 3* • g (root (3)) = root (3}) .

Hence cgA = a U cA. Clearly if $ is a node of 3 which is

not < A, then § e 3 or § e 3 but not <_ A; therefore it is

A , A
easy to see that cg<P = c$.

The clauses of 3' below A are root (3') and clauses below

A in 3 . Hence we need check condition (2) only for root (3') .

Let 5 = y - j8 . Then 5 c y c: a, and 6 is disjoint from

jS.. U i3 (since we already have y disjoint from {p} U j8) .

Hence eg (root 3) •= c(root 3») = .y U jSj, U J82 =. 5 0 ^ U j8) . We

must show that if 5 ̂ a then U' contains a merge. If y / a

we already know that 3 contains a merge, so 3' does also.

Hence we need only consider the case where y = a. Thus a. ^ 5 = a-

so a and jS contain a common literal q, which is distinct

from p (since y = a and p is not in y) and from —p (since

— p is not in j8) . Write a. = [q] 0 a and j8 = {q} U 6'

Then ^(root 3J = {p} U ({q} U a' U j8_) and c%= {~p}U({q}U P*),

so it follows from the definition- that root (3) is a merge.

Clearly g preserves merges of 3 (since g^ does) and

of 3 . So we need only check that if root (3) is a merge, then

root(3t) is. But this is clear, since if £ and fi contain

a common literal, then y U /3 and fi do also.

Thus 3*' satisfies the conditions of the lemma.

16

Our next lemma is the crucial one. Actually we shall not

need condition (5) of Lemma 5,, but we include it for the sake of

its own interest.

Lemma 5. Let 3 be a ground resolution tree in which no merge

literal has a descendant which is resolved upon. (More precisely^

suppose there is no merge $ of 3* with a merge literal q in

c$ such that some descendant of the occurrence of q in $ is

resolved upon.) Let T be any leaf of 3. Then there is a ground

resolution tree 3» such that:

(1) 3* is a vine;

(2) there is a one-one mapping h from the leaves of 3T»- into

the leaves of 3 such that chA = cA for each leaf A of ?';

(3) there is a top-leaf P of IP such that hi"1' = T;

(4) c(root JP) c c(root 3) ;

(5) either c (root 3f) = c (root 3') or 3' contains at least one

merge.

Proof: by induction on the number of nodes in 3". if the number

of nodes is 1 or 3, let 3'» be 3, and h the identity map.

Suppose 3 has more than 3 nodes. Let <&, and <!> be the

nodes immediately above the root of 3^ and let 3 and 3 be

the sub-trees of 3 rooted in <E>, and <£> respectively. Without

loss of generality we may assume that T is a leaf of 3 9

c\ = {p} 0 a c§ {pj U a and= {p} 0 a1, c§ 2 = {-pj U a2, and c(root 3") = a U a , where

p is an atom^ and ot, and a2 are clauses.

Applying the inductive hypothesis to 3 there is a vine 3

a clause-preserving one-one map h] from the leaves of 3 into

the leaves of 3 ^ and a top-leaf T' of 3^ such that h P = T;

also c(root 3*) £ {p} U a, . If the atom p does not occur in

17

c (r o o t ?!) , then c (root S'*) c o^ £ Ĝ U a 2 = c (root 3*) ,, and 3J
i

contains a merge, so le t IT' be 3 .

Next we consider the case where p does occur in c(root

Then * c (root JT) = [p] U a for some clause o^ £ o^. If

^ h 3"

t

, ^ Oi, then 3", contains a merge. The literal ~p in

<§> is resolved upon in 3 to obtain c (root JT) , so this occur-

rence of ~-p . has no ancestor which is a merge literal of U.

Hence there is a unique leaf ^ of 3" which contains an ances-

tor of the occurrence of ~p in $2. Write c ^ = {~p} U jS.

(See Figure 2.) (If P = • then ^ = 3> and ^ 2 has just one

node.) Hence we may apply Lemma 3 to obtain from 3\ a tree 3

and an order isomorphism f from 3' onto .3̂ satisfying the

conditions of Lemma 3, with c f ^ ~ ̂ a n d c (root IT) = cf^ = Oi .

By condition (3) of Lemma 3 we see that no merge literal of

3' has a descendant which is resolved upon (since 3 inherited

the same property from 3) 9 and 3" has fewer nodes than 3, so

we may apply our inductive hypothesis to 3" _, with \k' = f^

(definition) as the designated leaf of 3" . Thus we obtain a vine

3' a one-one clause-preserving map h from the leaves of 3

into the leaves of 3' and a top-leaf ty of 3* such that

h
4*4

 = *3
 s o ^xI4 = <^3 = i8- L e t a2 = ^ r o o t ^4) £ c(root 3^) =

a2' I f a2 ̂ ay theri ^ 4 contains a merge.

Finally we apply Lemma 4 to 3 with ^ as the designated

leaf of 3' and cc - j3 as the designated clause. Thus we obtain

a vine 3V and an order-isomorphism g from 3 onto 3 such

that there is a top-leaf \i> = g^ of 3" with ^
C 4r Z) !D r

(a| - p) U c*4 = a| U)3, but cgO = cQ, if Q is any leaf of

other than ^ . Moreover there is a clause a, c (a - jS) such

Fiqure 2:

18

r .

U

Fiqure 3: Proof of Lemma 5

U

•root clause: {~p} U a.

J8

i_^;r4fvimo? g

*2

.3*.

U j8

i

U a

Fiqure 4:

r>

U a , •

U J3

19

that c(root 3^) = eg(root 3^) = a± 0 c(root 3"4) = 0^0 a2> and

if a, ^ a, - £ then 3* contains a merge.

We summarize the relation between 3" and 3" (See Figure 3.)

3" has a leaf * with c % = {~p} U • |8, and root $, with

c<£ = {̂ p} 0 a . 3" is a vine with a top-leaf ^ ,, with c

aj U jS, and c (root 35) = o^ U G ^ where aj' c aj - j8 c o^ c o^

and G^ c a There is a one-one map h5 =. f" oh.og"" from the

leaves of IT into the leaves of 3^ such that ^ 5 % = % * a n d

ch H = cfi if O is any leaf of 3 other than ^ .

Now we construct the tree 3! from the trees 3 3 and a

node which we call ^ with c\!/ = {~p} U &, by putting the root

of 3 and \1/ immediately above the leaf ^ of ^c- (See

Figure 4.) Note that c (root 3) = {p} U a. and c# = {-p} U)8
» AU £» A

have as a resolvent the clause a, U £ = c^-, so the tree 3' is

a resolution tree. A node of 3' is a non-leaf of 3* if and

only if it is ^ 5 or a non-leaf of 3 or of 3 • hence it is easy

to see that 3'^ like 3 and 3 is a vine. (A node immediately

below ^j. in 3 is also immediately below the other top-leaf

of 3 9 which is still a leaf in 3"t#) »phe leaves of 3' are

the leaves of 3 3 _̂, and the leaves of 3 other than Sa-

lience we can define a one-one clause-preserving map h from the

leaves of 3* into the leaves of 3 by setting hA = h A if

A is a leaf of 3 ^ h\!> = ^2, and hA *= h 5A if A is a leaf of

3 other than ^_. Note that T' is a top-leaf of 3' with

= hir^ = T̂ and that c (root 3') = c (root IT) = a^ U a^ c

a2 = C

Finally we must check that 3' satisfies condition (5).
t r

If a± ^ ay then o contains a merge3 so 3' does also. Thus

we need consider only the case where a = QL . If a and /J

20

contain a common literal, then >I' is a merge of ^T . Thus we

need consider only the case where ĉ and # are disjoint, so

a, - j3 = a.. = a, . If a, ^ a, - 0 then ^ contains a merge,

so 3"' does also. Hence we need consider only the case where
f f T

QL = a, . If a = a then o contains a merge, so by clause
1 -A. /£ ^ ^1

(4) of Lemma 4, 3" does also, so 3"» contains a merge.
t

Thus we need consider only the case where a~ = G^. But then

A ti t A

c(root 2') = o^ U a = a U a^ = c (root S') , so JT« satisfies

condition (5) .

Thus IP is the desired tree.

Remark: As often happens in inductive proofs, we have essen-

tially given an algorithm for transforming the tree Z into the

vine 3*! . The reader may find it enlightening to carry out this

transformation on some examples.

Theorem 6. Let K and S be sets of ground clauses with K c s.
AA

Let K = ms(K,S) and S = S U K . Let J be a ground resolu-

tion tree with K -support such that c (root 3') = • and cA e S

for each leaf A of 3̂ . Then there is a ground resolution tree

3» such that:

(1) 3'» is a vine;

(2) 3"' has K -support; _
A

(3) cA € S Q for each leaf A of 3» ;
(4) ^(root 3't) = p .

Proof: The proof is by induction on m(JT) .

If 3 has just one node let -3*» be 3'. If 3' has more than

one node, then it has a leaf whose clause is in K . If 3 has
o

no merges, but T be such a leaf and apply Lemma 5 to obtain a

vine 3*T with root clause D and with leaves whose clauses are

21

in S > with a top leaf F1 whose clause is in K . Thus 3" f

has K -support, as desired.

It remains to deal with the case where 3 contains a merge.

Let ^ be a merge of 3 which is below no other merge. Let 3*

be the sub-tree of 3 with root ^. >& has K -support in 3,

so some leaf F of 3" has its clause in K . Clearly 3 • satis-

fies the hypothesis of Lemma 5, since its sole merge is its root.

Let 3 be a vine obtained as in Lemma 5 from 3 with 37 as

the designated leaf of 3'- . Note that 3 has a top-leaf Tf- . Note that 3

such that cF» = cF e K .
o

If 3 contains a merge, then (since 3 is a vine) it con-

tains a minimal merge 0. Since 3* is a vine with leaves whose

clauses are in S and a top leaf F! whose clause is in K ,
o o

it, represents a deduction from S by resolution with merging

with K -support. Since Cl is a merge of 3 9 we see that

cQ e ms(Ko,SQ) . But by Lemma 1, ms(Ko,SQ) = ms(As(K,S), S U ms(K,S)}=

ms(K,S) = K . Let 3" be the tree obtained from 3' by pruning

away all nodes above Q. (Of course root 3" may be O, in which

case 3' contains a single node) . If, however, 3 does not con-

tain a merge, let 3 be 3' . Then in either case 3 is a vinewith a top-leaf (Q or F») whose clause is in K , 3* contains

no merges, the clauses of the leaves of 3' are all in S , and

c(root 3") = c (root JT) c c (root 3) =

We wish to replace 3 by 3 within S', but we cannot do

this directly if c (root 3^) ^ c^. So let 3 be the tree obtained

from 3* by pruning away all nodes of JT which are above \&; thus

"£' becomes a leaf of 3" . We now wish to apply Lemma 2 to obtain

from 3^ a tree 3" in which the node ^ is replaced by a node

>£T v;hose clause is c (root 3) . So define d on the leaves of 3'

22

so that d^ = cfroot 3^) 3 and dA = cA if A is a leaf of %3

other than ^. Let K = {A| A is a leaf of 3" and A = $' or

cA e K } . Since 3' has K-support we see that 3 d, and K

satisfy the hypotheses of Lemma 2, so we obtain the desired tree

3 and map f as in Lemma 2 .

Thus if 3* has leaf ^' such that f\£" = ^ we see that

c^' = df\E" = d̂ ' •= c(root JT) ; let 3"* be the tree obtained by

grafting 3' onto 3̂ so that root (3") is identified with ^ .

If the leaf ^ of 3" is not in the range of f, let 3* be 3"

Note that the leaves of 3** are all leaves of 3* or leaves of

JT other than SI/1 3 so it is easy to see that cA e S for each

leaf A of S"*. By clause (4) of Lemma 2, each non-leaf of IT

is below ^' or a leaf whose clause is in K ; but (if there is

a node ^ in 3') î < the top-leaf of 3 in 3*, so 3*

clearly has K -support. Also c (root 3**) = c(root 3V) c: c (root 3*)
O ft — o

c (root JT) = D so c (root 3"*) = p. Now m(3''*) = mf?.) + m(3'-)

= m(3') <̂ m(3'̂) = m{3) - 1,, since >!' is a merge of 3' but not of

3* Hence m(3'̂) < m(3'):, so since 3** satisfies the hypotheses

of our theorem we obtain the desired tree 3*! .

Theorem 7. Let K and S be sets of ground clauses with K c s

such that there is a refutation of- S with K-support. Then there

is a refutation of S by resolution with merging with K-support.

Proof:

From the given refutation of S with K-support we can con-

struct a ground resolution tree with K-support with root clause Q

and with leaves whose clauses are in S. Let K = ms(KJJS) and

SQ = S U KQ. Since K S K o
 a n d s £ s o

 t h i s t r e e satisfies

23

the hypothesis of Theorem 6, so there is a vine 31 as described

in Theorem 6. Let K-. = K 0 (y|y is the clause of some leaf of 3"» } .

Then JT t represents a refutation by resolution with merging of S U K-.

with K,-support. Since K-, £^ms(K,S), for each clause y in K,

we can obtain a deduction of y from S by resolution with merging

with K-support, in which the final triple is <y,m,s >. K, is

finite, so we can place these deductions one after another^ and

add at the end the refutation represented by 3> » . This gives a

single deduction which is a refutation of S by resolution with

merging with K-support.

Having established our main theorem for the case where the

given clauses are ground clauses, we must extend it to the general
«-

case. The obvious approach is to transform a refutation of a given

set S of clauses to a refutation of a set S of ground clauses

obtained by instantiating the clauses of S, then apply Theorem 7

to get a refutation of S by resolution with merging,, and from

this construct a refutation of S by resolution with merging; all

this is to be done, of course, with due regard for the set of

support. However, unless the set of support is trivial (in which

case one can use the Ground Resolution Theorem of [2]),. the first

step in this process is not as simple as one might suppose. One

might suppose that if 3" is any resolution tree, then there is a

ground resolution tree JP order-isomorphic to JT, such that the

clause of each node of JT» is obtained from the corresponding

clause of JT by instantiation. However, the tree in Figure 5

shows that this is false. This tree also provides a counter-example

24

Figure 5.

{-Pxy} # f{Pzw, Rzw^ Pzz}

{Rzw,Pzz}

• Pzz

25

to the second part of Lemma 2 in [5]. Nevertheless, all we

really need is to obtain from J a ground resolution tree 3'» with

appropriate support, whose leaves have clauses in SQ. We shall

show that we can do this in Lemma 8.

In discussing substitutions we shall use the terminology of

section 5 of [2], with one minor change. A substitution can be

regarded as a function mapping literals to literals, or sets of

literals to sets of literals. In [2] these functions are written

to the right of their arguments, but to maintain consistency with

our previous usage we shall continue to write functions to the

left of their arguments.

Definition. A ground substitution is a substitution in which

the term of each substitution component is a ground term (i.e.,

contains no individual variables).

A

and

let K be a subset of the leaves of 3 such that every non-leaf

of 3* is below some leaf in K. Then there is a ground resolution

tree JP and a one-one mapping h from the leaves of "2P into

the leaves of 3* such that
A

(1) for each leaf A of 3! there is a ground substitution G

such that cA = GchA;

(2) every non-leaf of JP is below some leaf in h~" (K 0 range h)

(3) c(root IP.)' = n .
3 Let A = {HPxy}, B = [Izw 3 Rzw, P Z Z) , C = {Rzw^Pzz}, C = (Raa^Paa)
Then C is a resolvent of A and B, and C is obtained from C
by instantiation, but there are no clauses A1 and B1 obtainable
by instantiation from A and B, respectively, such that Cf is a
resolvent of A1 and B* . Fortunately only the first part of
Lemma 2 of [5] seems to be actually used in [5].

0 G\

Proof: by induction on the number of nodes in 3*.

If 3" has more than one node, let «T t be 3'.

Suppose 3T has more than one node. %Let f2 be a non-leaf of 3'

which is below no other non-leaf. Let $ and ^ be the leaves

immediately above £1 in 3*. Let JT-. be the sub-tree of 3"

obtained by pruning off <£ and ^ so that Q is a leaf of 3*

Let K' = {A| A is a leaf of ^ and Ae K or A = 0} . Clearly

every non-leaf of 3* is below some leaf in K 3 so we can apply

the inductive hypothesis to 3" to obtain a ground resolution

tree 3* and map h, from the leaves of 3* into the leaves

of 3'- satisfying conditions (1) - (3) . If Cl ji range h. then

K.. H range h.. c K so we can take IT' to be 3' .

Suppose H e range h.., so there is a leaf Q>} of 3 such

that h.. Cl] = Q. Then there is a ground substitution G such

that c£l] = Gchfi1 = Gcfi. There exist substitutions A and B,

an atom p_, and clauses 5 and e such that Ac$ = {p} U 6 and

£c* = {-p) 0 e and cfi= 6 U e, so cfl' = G(6 U e) . Let § be

the set of all variables which occur in p or occur in the term

of some substitution component of A or of B. Let H be the

substitution (- | x is an individual variable in S}_, where â

is a fixed individual constant. Clearly the composite substitu-

tions H°G°A and H«»Ĝ B are ground substitutions. Let <&! be

a node with c$T = HGAc<l> = {^Gp} U HG5 and let ^' be a node with

c^1 = A S B C * = [~&Gp] U ilGe. Since the literals in G(6 U €) are

in cfi1 they are ground literals, so HGS = G5 and HGe = Ge.

Clearly HGp is a ground literal. Thus c<£J and c^1 are ground

clauses. Although p does not occur in 5, certain literals in

6 may become identified with HGp when instantiated by G. There-

fore let 5! be the subset of 6 from which such literals have

27

Figure 6: Proof of Leinma 8

O O:6Ue O' :

28

been deleted, so that c$! = {HGp} U G6'. Similarly let e! 5 e

be such that c^' = {-HGp} 0 Ge'.

Now G5T U Ge1 = G(6! U e!) c G (6 U e) = cfi' . We wish to

replace 3 by a tree 3 in which Q] is replaced by a node.

A A »

with clause G-6.1 U Ge1 . So we apply Lemma 2 to 3 . Let

dA = cA if A is any leaf of 3 other than Q! , while dO,! =

G5' U GeT. Let K^ = h"1 (K n range h,) . ft1 e K^ and every non-

leaf of 3.. is below some leaf in X , so by Lemma 2 we obtain a

ground resolution tree 3 and a one-one map f from the leaves

of 3 into the leaves of IT such that cA = dfA for each

leaf A of 3 c root 3 = D , and each non-leaf of 3* is

below some leaf in f" (K (1 range f) .

Let h 0 = L o f . Then h is a one-one map from the leaves

of 3* into the leaves 3.. , and every non-leaf of 3" is below

some leaf in h"1 (^ n range h2) . If Q) e range f let 0^= f"1^

If A is any leaf of 3 other than fL then, since fA is a

leaf of 3' there is a ground substitution G such that cA =

df A = cf A = Gch-jf A = Gch A. Now suppose 0* is not in range i9 so

Q is not in range h^ • Then h^ maps the leaves of 3" into the

leaves of Z, so we let ff« be S' and h be h^.
On the other hand, suppose there is a leaf £L of 3 such

that 0' =• ffl̂ . Then ^2^2
 = hlf^2 = 0# A l s O ^°2 = df^2 =

G5r U Ge1. Let 3* be the tree obtained from 3 by placing the

nodes ^ and >̂! immediately above O! . Clearly 3' t is a

ground resolution tree with root clause n . Let h be the exten-

sion of h mapping the leaves of 3' into the leaves of 3, such

that h<£» = * and h^1 = \&. Since either $ or * must be in

K, it is easy to see that every non-leaf of 3' is below some leaf

29

in h~ (X fl range h) . Also it is easy to check that (1) is

satisfied, so the proof is complete.

Theorem 9. Let K and S be sets of clauses with K £ S such

that there is a refutation of S with K-support. Then there

is a refutation of S by resolution with merging with K-support.

Proof: *

From the given refutation of S with K-support we can con-

struct a resolution tree 3" with K-support with root clause •

and with leaves whose clauses are in S. We let K be the set of

leaves of 3 whose clauses are in K. Then we can apply Lemma 8

to obtain a ground resolution tree 3 with root clause Q and

a one-one map h from the leaves of 3* into the leaves of 3"

as described in Lemma 8. Let S~ be the set of clauses of the

leaves of S' and let K~ be the set of clauses of the leaves

in h~ (K 0 range h) . Then K~ C S?J S ? is a set of ground

clauses, and 3" represents a refutation of S 2 with K2-support,

For each clause (S e S« there is a clause a e S and a ground

substitution G such that & = Ga.

By Theorem 7 we see that there is a refutation of S 2 with

Kp-support by resolution with merging. For convenience we repre-

sent this refutation by a ground resolution tree 3" . Let 3"

be the tree obtained from 3 upon replacing each leaf A of S'

by a leaf Af with a clause a e S such that there is a ground

.substitution G such that Ga = cA. We must establish that 3T

is a resolution tree. We can ignore the trivial case where 3^

and 3^ have just one node. So let $ be any leaf of 3* let

Q> be the node immediately below ^ and- let \I> be the other node

30

immediately above Q. (\£' may or may not be a leaf of £T~) . There

are clauses 6 and e and an atom p such that c<& = {p} 0 6

and cSE' = [~p] U c and cCl = 6 U e. There is a ground substi-

tution A such that Ac$! = c<£> = {p} U 6, so cQ, is a resolvent

of c<£1 and c>£. (Take B as the trivial substitution in the

definition of resolvent.) If >£ is a leaf of 3^ then there is

a ground substitution B such that Bc\l/! ~. c^ = {̂ p} U e, so cQ.

is a resolvent of c<&! and c^1 . In either case we see that <S.

is a resolution tree. If a leaf A of ^ 3 has its clause in K

then cA1 e K^ so J has K-support. Since a merge of JT is

still a merge in H-, JT. represents a refutation of S with

K-support by resolution with merging.

31

Remarks.

In §1 we introduced a rather general definition of resolvent,

since we permitted the substitutions A and B to be chosen

arbitrarily. We should now like to point out that while this gen-

erality conveniently simplifies our theoretical discussion, it is

superfluous in practice, since the substitutions need only be

chosen to accomplish certain limited and specific purposes.

If a and jS are clauses to be resolved, we first apply

substitutions X and Y (the x- and y-standardizations of [2])

to obtain alphabetic variants xa and Y# of a and 8, respec-

tively, which have no variables in common. This assures that

occurrences of variables in the resolvent will not be occurrences

of the same variable without good reason, and permits us to define

just one further substitution Z to obtain A = Z©X and B = Z«Y.

We choose Z in such a way as to identify certain atoms of Xa U Yfl

with one another, namely, the atoms^of the literals we wish to

resolve upon, the atoms of the merge literals (if the resolvent

is to be a merge), and perhaps other atoms of literals which we

wish to factor (see [4]) .

In [2] it was proved that there is a most general unifier of

a unifiable set of well-formed expressions. We next prove a useful

corollary and extension of this theorem.

Definition. Let a.. be a finite set of well-formed expressions

for 1 < i < n. If W is a substitution such that Wa. is a
l

singleton for each i, then W simultaneously unifies ô , ..., and

a , and we say that a, , . . .a are siraultaneously unifiable . If
A
W simultaneously unifies GL ,..., and a , and for any substitution

Z which simultaneously unifies #.,,..., and OL there is a

32
A A A A A

substitution V such that W = V^Z^, then W is a most general

simultaneous unifier of #-, , . . ., and a .

Simultaneous Unification Theorem.

Let a^ ,..., and a be finite sets of well-formed expressions

which are simultaneously unifiable. Then there is a most general'

simultaneous unifier of # .#.^ and & .

Proof:

We prove the theorem by induction on n. For n = 1 we use

the Unification Theorem of [2].

Suppose CL, 9 . . . 3 a 9 and a . are simultaneously unifiable by

Z. and let A be a most general unifier for a, , and a. .
3 -* 1J ^ n

Since Z simultaneously unifies OL 9 . . ., and ot , there is a sub-
A A A A A AA

s t i tu t ion V such that Z = VoA. Now Za t 1 = VAo: f l is a smgle-
n+1 n+1

torij so v unifies Aa fl . Hence by the Unification Theorem there
n+1 -LA A A A

is a most general unifier B of Ka .. . We assert that BoA is

a most general simultaneous unifier for OL, ..., a , and a .

A AA AA
If l <̂ n, Aa. is a singleton so BAa. is also. But BAa .

A A
is a singleton^ so BoA simultaneously unifies G' ..._,& 9 and

a
n +l •

 N o w suppose Y is any simultaneous unifier of a , ...9a }
A

and tt
n+1• Then Y simultaneously unifies ai^•••> a n d a ^ s o

there is a substitution U such that Y = U«>A. Since Ya. ̂ =
n+1

AA A A A
UAQ̂ +1% U i s a unifier of Aa ^9 so there i s a substitution %

A A A * A A A A A • A A A A
such t h a t U = X°B. Hence Y = UoA =. (X«B)«»A = Xo(B«A), so the
required substitution X exists.

It should be noted that if w and W are two most general

simultaneous unifiers of a.-,,..., and a 9 then there are substitutions

33

and Y such that W 1 = X*W2 and W 2 = YoW^^. Hence it is clear

that if p is any well-formed expression, w^p and W2p are

alphabetic variants of one another. Thus the most general simul-

taneous unifier of a,,..., and o^ is essentially unique.

Implicit in our proof of the theorem above is an algorithm for

finding the most general simultaneous unifier of a-,,..., and a ,

which involves treating each of the o^ in turn. As a consequence

of the essential uniqueness of the most general simultaneous

unifier, it is clear that it does not matter in what order we treat

the a. .

Returning to our discussion of the resolvent of clauses a and

j8, once we have decided which subsets of X& U Y # we wish to unify,

we might as well take Z to be the most general simultaneous

unifier of these subsets, since the effect of using any other

substitution which simultaneously unifies these subsets could be

obtained by applying an additional substitution later. Thus even

with our liberalized definition of resolvent, there are essentially

only finitely many resolvents of a and 3 , since Xcc U Y8 has

only finitely many subsets.

In forming a resolvent of a and ff, one might as well first

unify the atoms of the literals in xa U Y8 which are to be

resolved upon, since we know we can treat the unifiable subsets

in any order we please.A One thus obtains the resolvent of a

and jS as defined [2], and one can make additional substitutions

to complete the merge (if the resolvent is to be a merge). It

may sometimes happen that the merge can be made in several differ-

ent ways (but not in all of these ways at once), but there is no

obvious criterion for deciding which is the best way of forming

34

the merge. In such cases it seems reasonable to defer the actual

merge until later, when it will occur as a factoring of the resolved

clause as it is resolved with some other clause. Thus a refutation

by resolution with merging may look exactly like a refutation as

defined in [2]. However^ the choice of resolvents is governed by

the requirement that certain of the resolvents must be at least

potential merges in accordance with the definition of a deduction

by resolution with merging.

In general, when one is concerned with the problem of search-

ing for refutations, it is advantageous to make the definition of

a deduction as restrictive as possible (without loss of complete-

ness, and without rendering deductions unnecessarily long or

awkward), so as to minimize the choices which must be made in the

search for a refutation. There is an obvious way of making the

definition of a deduction by resolution with merging with K-support

more restrictive; namely,, modify part (ii) of the definition to

require that both p1 be m and r be s, or that both p
•i- JL £

be m and r2 be s. However, this definition is actually too

restrictive, as the following example shows. Let S contain

the following clauses:

(1) {~p,~<i} (2) fp,r] (3) {q,r}

(4) {~s,~t} (5) {s,~r} (6) {t,~r}.

Let K contain just clauses (1) and (4) . Then it is easy to

check that S has a refutation by resolution with merging with

K-support under our present definition, but not under the modified

definition mentioned above.

Bibliography

[1] Peter B. Andrews, n0n Simplifying the Matrix of a Wff,l! to

appear in the Journal of Symbolic Logic.

[2] J. A. Robinson, T!A Machine-Oriented Logic Based on the Resolu-

tion Principle,n Journal of the Association for Computing

Machinery, vol. 12 (1965), pp. 23-41.

[3] J. A. Robinson, l!Automatic Deduction with Hyper-Resolution,"

International Journal of Computer Mathematics, vol. I (1965),

pp. 227-234.

[4] Lawrence Wos, Daniel F. Carson, and George A. Robinson,
11 The Unit Preference Strategy in Theorem Proving," AFIPS

Conference Proceedings 26, Spartan Books, Washington, D.C.,

1964, pp. 615-621.

[5] Lawrence Wos, George A. Robinson, and Daniel F. Carson,

"Efficiency and Completeness of the Set of Support Strategy

in Theorem Proving,n Journal of the Association for Computing

Machinery, vol. 12 (1965), pp. 536-541.

