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Carnegie Institute of Technology

ABSTRACT

The problem considered is that of maximizing the heat dissi-

pation of a cooling fin of fixed weight attached to a cylinder

with a convex cross-section by properly tapering the fin. It

is assumed that Newton1s law of cooling holds and that the

boundary of the cylinder has a constant temperature. In a pre-

vious paper R. J. Duffin (A Variational Problem Relating to

Cooling Fins, J. Math. Mech. J3 (1959) , 47-56) considered the

special case of cylinders of circular cross-section and proved

that for the optimum taper the temperature gradient is a constant,

Our method is to convert the differential equation for the heat

flow into a saddle point variational problem. The solution of

this variational problem shows that for the optimum taper the

temperature gradient vector again has constant magnitude. This

criterion leads to explicit formulae for the thickness of the

fin at each point.

^Prepared under Research Grant DA-ARO-D-124-G68O, Army Research
Office (Durham). Presented to the American Mathematical Society,,
September 2, 1966.
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Ill.

Optimum Shape of a Cooling Fin on a Convex Cylinder

1. Introduction. Cooling fins are used to conduct heat away

from machines to the ambient medium. A common example are the

fins on the cylinders of air cooled internal combustion engines.

It is not difficult to see that in order to economize on weight

the fin should taper, narrowing in the direction of heat flow.

This gives rise to a definite mathematical problem which may be

phrased in this way-~how should the thickness of the fin be

tapered so as to minimize the weight of the fin for a given rate

of dissipation of heat. This will be called Problem 0.

In a previous paper [1] one of us gave an exact solution of

this problem for the case of a disk fin on a circular cylinder

assuming Newton1s law of cooling. The solution proved to be

surprisingly simple; the thickness of the fin is tapered so as

to satisfy the following criterion—the temperature should be a

linear function of the distance along a radius. This criterion

had previously been proposed by E. Schmidt [2] but without convincing

proof.

The present paper concerns a cooling fin on a convex cylinder.

The two dimensionality complicates the problem because the equation

of heat conduction is now a partial differential equation instead

of an ordinary differential equation. Nevertheless, the criterion

for the optimum tapering is still simple--the temperature gradient

should be of constant magnitude. This results in the isothermal '

lines being a family of equidistant convex curves. The flow lines

are the straight lines normal to the cylinder. Explicit formulae

are found for the shape and tapering of the optimum fin.

The method of proof is to first consider an equivalent

problem in which it is desired to maximize the rate of heat
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dissipation for a fin of given weight. This question can be

transformed to a minimax problem of the calculus of variations.

This is not a problem of linear type but the proofs are simpli-

fied because an explicit solution is found.

Attention is focused on convex cylinders more or less as a

matter of convenience. It will be seen that many of the results

also hold for a non-convex cylinder. Hov/ever̂ , such questions will

not be treated here.



2. Formulation of a Minimax Problem

Consider a plane cooling fin having an inner boundary T

and an outer boundary F? defining a plane region S such as

is shown in Figure 1. The inner curve I" is also to be the

boundary of a convex

cylinder, the surface of

which has a constant

temperature T. If we

assume that the ambient

temperature is zero, that Figure 1

Newton1s law of cooling holds, and that the thermal conductivity

is unity, then the steady state heat flow in a thin fin is governed

by the equation

(1) T~(PT~") + ;\—(p>T~) - qu = 0 in S,

or in vector notation

(1») \7»(pVu) - qu = 0 in S,

Here (x,y) are the coordinates in the plane of the fin, u = u(x,y)

is the temperature of the fin, p = p(x,y) is the thickness of

the fin, and q = q(x,y) is the cooling coefficient. Of course,

p >_ 0 and q > 0. The boundary conditions to be satisfied are

(2)

(3)

u - T on P,

on r2.

Assuming Newton1s law of cooling the heat dissipated per unit

time by the fin is

(4) ^(u) = ([ qu dA.
S

The total weight of the fin (assuming a density of unity) is



(5) 7C(p) = j[p dA.

With' the temperature determined by (1), (2), and (3) we

can formulate the following optimization problem:

Problem 1: Find the maximum heat H that can be dissipated per

unit time by a fin subject to the constraint that the weight is

a constant K.

In order to solve this problem we find it desirable to

change its form. This change is motivated by the following

heuristic analysis.

First let us suppose that r, and T, are made up of

'regular arcs1 and that p,q, and u are sufficiently smooth

functions so that the application of Green1s theorem below is

valid. We can permit PL to be composed of a finite number of

simple closed curves. The following functional is basic in our

analysis

(6) E(p,u) = (f[p|Vu|2 + qu2jdA.

For reasons which will soon be evident E is called the saddle

functional. Let v be an arbitrary smooth function. Then

(7) E(p,u + v) = E(p,u) + E(p,v) + 2 | [ p V u « V v + quv]dA.

Applying Green1s theorem to the third term gives

(8) f((pVu -Vv + quv]dA = U[qu - V'(pVu)]vdA + \ vp™ ds
S S Pn

+ \ vp^— ds.

r2
The first integral on the right vanishes because u satisfies the



differential equation (1). The third integral vanishes because

the boundary condition on T^, p-̂ p = O, is satisfied. If we

impose the condition v = 0 on F, 3 then the second integral

also vanishes giving

(9) E(p,u + v) = E(p,u) + E(p,v) >_ E(p,u) .

It follows that E(p,,u!) is minimized^for the class of functions

satisfying the boundary condition (2) by., u satisfying (1) and

(3). This is a standard result of the calculus of variations.

In the calculus of variations (3) is termed a natural boundary

condition because it is satisfied automatically by the minimizing

function.

Now in the application of Green1s theorem, (8), let v = u.

This gives

(10) E(p,u) = ( p|^ u ds = ( p|a T ds.

r r
xi xi

Next let v = T in (8) . This gives

(11)

((qu T d A = \ p|^ T ds.

Lemma 0: If the function u satisfies the Euler differential

equation (1) correspondinq to the saddle function E(p_,u) and

p and u satisfy the boundary conditions (2) and (3) _, then

(12) W(u) = T ^ E ^ u )

where ~H(u) is the heat dissipated per unit time.

Proof: This follows directly from (10) and (11) »

Note that Lemma 0 is proved only for Newtonfs law of cooling

For any other mode of cooling this proof will not carry through.



In particular, it does not apply for the Stefan-Boltzmann T

cooling law.

In view of relations (9) and (12) we pose an equivalent

problem:

Problem 2: Find

(13) H = T"1 max min E(P,u)
' P U

subject to the constraints that U = T on F, and that the

4

4

weight 7C(P) is a constant K.

Thus the original maximizing problem has been replaced by

a minimax problem. We continue the heuristic analysis' and

investigate this minimax problem.

Again consider the smooth functions p and u which satisfy

the boundary value problem (1) , (2)\, and (3) in the region bounded

by the smooth curves 17, and PL. Given e > 0 let p(x^y)

be a smooth function satisfying

(14) (fpdA = 0

(15) p(x,y) = 0 if p(x,y) < e.

Define

(16) P(x,y,t) = p(x,y) + tp(x,y)

Clearly Cfp (x,y, t) dA = K and P(x,y,t) >. 0 for |t| sufficiently

small. Let u(x^y^t) be the solution of the boundary value

problem for the fin of thickness P. Differentiating E(P,u) , '

with respect to t gives

ft = \\p\^u\2dA + 2 UtP^7u -7u' + quu'JdA



where u1 = -S. For t = 0 let u1 = v and we have
at

dE
dt t=0 s

(f p| Vu|2dA + 2 [( [pVu -Vv + quv]dA

On F, u = T for all values of t and therefore v = uT = 0

on F, . It follows^ by the same reasoning as was applied to (8) ,

that the second integral on the right vanishes, and we have

(17) §
t=o s

If p and u solve the minimax problem then E is a maximum

for t = 0 and — I = 0 . Thus
dt I t=0

(18) «p|Vu|2dA = 0

s

It is then an easy deduction from (14) ̂ (15), and (18) that there

is a constant C such that

(.19) |Vu|2 = C2

wherever p(x,y) >_ e. Since e is an arbitrary positive number

it follows that (19) holds in all of S.

The above heuristic analysis suggests that the optimum

cooling fin has the thickness so tapered that the magnitude of

the temperature gradient is constant. A fin so tapered will

be called a constant gradient fin.

If the solution of the equation IV^I = C which satisfies

the boundary condition u = T on T* can be founds then it

can be substituted in the differential equation (1), and the

resulting differential equation can be solved for the thickness

function p. This is accomplished using standard methods of solving

first order partial differential equations in Appendix A.
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There is a common geometric construction which leads to a

constant gradient fin. We assume that the curve T is convex

and has a continuous curvature function. These hypotheses ensure

that an outward normal exists at each point of F, and that no

two of these normals intersect. Let p denote the distance along

a normal. Let v denote the counter-clockwise distance of a

point on F-, from some fixed point on T' . Then {p,v) constitute

a coordinate system for the region exterior to T* . We call the

straight lines inconstant streamlines and the curves p = constant

isothermals, Given a positive constant C we define the tempera-

ture as

(20) u = T - Cps

and u so defined satisfies l^ul = c and the boundary

condition u = T on I\ . Let V be the isothermal p = TC~

so that u = 0 on PU. The geometry insures that p- is a con-

vex curve with a continuous curvature function. The isothermals

and streamlines are shown as dotted lines in Figure 1.

We now choose p so that the differential equation (1) is satis-

fied. A simple analysis leads to the ordinary differential equation

(21) ^ + kp = -qtTCT1 - p)

where k is the curvature of the isothermal at the point in

question. From (20) we see that ^ = ^p- = -C on I\. In

order to satisfy the boundary condition on T', p^~ = 0, we must

have

(22) p = 0 on T2, i.e. p = TC*1.

The solution of (21) subject to the boundary condition (22) is

of the form



(23) p = L~ (p) \ L(r)q(m -r)dr

P

where m = TC~ and L(p) = exp( (k dp) .

Thus we see that for p £ TC~ P >. 0, p is a smooth

function, and the boundary condition on T2 is satisfied. This

is an outline of the proof of the existence of a constant gradient

fin. The explicit formulae in terms of parametric equations

for F, are given in Appendix A.

The constant C is a parameter in the equation for p, (23) .

It is chosen so that the mass of the fin, defined by (5),

is K. It is shown in Appendix B that there exists a unique

C for any K > 0.

We have shown that a constant gradient fin exists. The

heuristic considerations indicate that it is optimal, and this

will be proved in Section 3.
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3. Comparison Relations and the Main Proof.

In this section we propose to use rigorous arguments to

obtain the results obtained heuristically in the preceding

section. It is shown in Appendix A that a constant gradient

fin exists, and an expression for the thickness of the fin for-

which u = 0 on T-, the outer boundary of the fin, is obtained.

This particular constant gradient fin, with zero temperature on

the outer boundary, will be denoted hereafter as the CGO-fin.

It is also shown in Appendices A and B that the thickness function

for the CGO-fin is unique.

In general, given u = T - Cp, if F2 is any simple closed

curve, the interior of which contains 1^, and which is contained

in the region bounded by R and the curve u.= 0, then a thick-

ness function for a constant gradient fin may be determined just

as was done for the CGO-fin. Any choice of T2 satisfying

the above conditions will give a constant gradient fin, but

the following lemmas and theorems show that the CGO-fin is

optimum.

It is desirable to relax some of the restrictions of Problem 2

These relaxed restrictions are stated in the following problem:

Problem 3: Given T,, a simple, closed, convex curve with a.con-

tinuous curvature function, find

(24) H = T"1sup inf E(P,U)

P U

subject to the following constraints: P >_ 0; P has finite

support; P is continuous with piecewise continuous first deri-

vatives in its support; the region of integration is the support

of P, and the integral of P over this region is a constant K;
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the boundary of the region consists of a finite number of regular

arcs; the functions U are continuous, have piecewise continuous

first derivatives, and on F have a constant value T > 0.

Figure 2 shows the superposition of two cooling fins.

Region S^ the region between

curves F, and Y*3 corresponds

to the CGO-fin. Region R, the

region between curves F, and

F^, corresponds to another fin which

has R as support. Figure 2

LEMMA 1: Let p and u be the thickness and temperature
, X Q Q

functions for the CGO-fin for which the magnitude of the gradi-

ent is C. Let P be an arbitrary thickness function. Then

the saddle functional satisfies

(25) E(PO*
U
O) = E(P,uQ) + C

2 ffpdA .+

b a

where a = S - R , b = R - S J , S is the support of p - R is the

support of P, and u is defined to be zero outside of S.

Proof: Since |Vu j = C and Up dA = K we have
o1 . )} °

S
2

\P 3 U / — v, J\ T

Let d = S fl R so t h a t UPdA + UPdA = K.

d b

E(po,uo) = ffpjVuo|
2dA + C2 ffpdA

= E(P,uQ) + C2 \\PdA + \\qu^dA.

an

a
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THEOREM 1; The CGO-fin is optimum.

Proof: Suppose that Problem 3 has a minimax value H1 and

RT > Hj where H = T~ E(p ,u ) for the CGO-fin. Then there is a

sequence {P } such that inf E(P ,u)—*-H*J? Thus we can find

P = p for some n and a corresponding U such that

(26) "TH < E(P,U) < E ( P , U Q )

Then by Lemma 1 we have

2 UpdA +(27) E(po,UQ) = E(P,U) + [E(P,U Q) - E(P,U)] + C

b a

But by (26) all terms on the right are non-negative which con-

tradicts the assertion E(p ,u ) =TH < E(P,U). This proves

that the CGO-fin is optimum. :

Theorem 1, which proves the optimum property of the CGO-

fin, does not hold for an arbitrary constant gradient fin because

for such a fin u will not be zero on T' and extending u as zero

outside the support of the arbitrary constant gradient fin results

in a discontinuous temperature function. Therefore, it is not

a member of the class of functions over which the minimum is

sought, and the second inequality in (26) no longer follows.

Having shown that the CGO-fin is optimum we turn our

attention to demonstrating that it is the only optimum fin, i.e.,

the temperature function which gives the solution is unique.

THEOREM 2: The CGO-fin is the only optimum fin.

Proof: Let p Q and u be the thickness and temperature functions

for the CGO-fin. Assume that P is another admissible thickness

function, that U is the temperature function which minimizes
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E(P,u), and that E(P,U) = E(p o ,u Q ) . Then E(P,uo) > E(P,U)

and from (27)

[E(P,uQ) - E(P,U)] + C
2 | p d A +

B a!

where each of the three terms is non-negative. Hence

(28) E ( P J U Q ) = E(P,U)

(29) | P dA = 0

b

(30) Uqu^dA = 0

From (29) and (30) it follows that a = b = 0 so that P

and p have the same support S. Now consider E(P,u) as

a quadratic function for u defined in S. By the parallelogram

law for quadratic functionals

(31) E(P,U - uQ) = 2E(P,U) + 2E(P,uQ) - 4E(P,w) ^

where w = (U + u )/2. Clearly w satisfies the boundary

condition w = T on F, so that E(P,w) >TH, where H is the

optimum rate of heat dissipation. However, according to relation

(28) we h^ve E(P,uQ) = E(P,U) =TH so that (31) gives

E(P,U - uQ) < 0.

Since E is a positive definite quadratic form this implies that

U = u . It is shown in the Appendices that the thickness

function for the fin with temperature function u is unique.

Therefore, the CGO-fin is the only optimum fin.
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4. Formulae for the Optimum Taper.

It is a direct consequence of what was shown in the

preceding sections together with Appendices A and B that the

optimum fin has thickness defined by (11 a) (a- and b-equations

are in Appendix A and B respectively) and that the temperature

in the fin is given by (6a) / where the variables p and v are

defined by (3a) and (4a) .

The infimum and supremum in the formulation of Problem 3

are actually assumed for the thickness and temperature functions

of the CGO-fin. Hence the solution of Problem 3 is also a

solution to Problem 2. The thickness and temperature functions

and PL are sufficiently smooth that the use of Green1s theorem

in Section 1 is valid. It*follows that the solution of the mini-

max problem is the maximum heat which can be dissipated per unit

time by a fin of mass K and is given by V^

(4) H =

where S is the support of p . Substituting for u and

changing variables gives

(4t) H = ffq(T - Cp) (Fp + l)dpdi^.

S^

If q is constant the integrations in (lla) , (5) , and

(4*) can be carried out and explicit formulae obtained for

p , C, and H. The results for constant and arbitrary q are

summarized in the following theorem.

THEOREM '• Jk§Lt R be a simple closed curve with a continuous

curvature function which encloses a convex region and which is
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parameterized by x = £{v) , y = g{v)9 where v is the arc

length on T . The thickness function p for the fin which

dissipates the maximum amount of heat per unit time in the class

of all fins which have p. as their inner boundary, temperature

T OYI J\ i thickness functions with finite support which are

continuous and piecewise continuously differentiable in their

support and satisfy

(5) Ip dA = K,
where S is the support of p, is given by

,-1

(1.1a) PO(P» = J (Fp + 1)
TC

I 0,

- r) (FT + l)dT, 0 < p < TC

TC"1 < p

"1

Here p and u are coordinates defined by

(3a) - x(p,v) = g« {u) p + f{u)

y(p,v) = -f(4a)

and

F = f» (i/)g* » (v) - f' < (y)g' (i/)

The temperature function in this optimum fin is•

(6a)
O £ p <. TC

-1

TC"1 < p0

The value of C is determined by (5). The maximum rate of

heat dissipation is

(4*) H = f(q(T - Cp) (Fp + 1) dpdy
S

where

S =• { (p,v) I O < p < TC"*1, O < v < L}

and L is the arc length of 1^. If: q is constant these reduce to

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSITY



Ula') = q(Fp

H =

6C 2C'

m2

14

, F T - C \ 2. . F 3 ,
(—2c~) P + J p ]

and C i s the roo t of

(32) (T}4 + . L ( T } J _ 6K =
V C 7 ir V C ' q?r
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5. Solution of the Dual Problem.

The solution of the problem of tapering a fin of fixed mass

so that it dissipates the maximum amount of heat per unit time

from a convex cylinder with constant surface temperature is given

in Theorem 3. The dual problem, which is Problem 0, tapering

a fin so that it has the minimum mass of all those fins which

dissipate a fixed amount of heat per unit time, is now easily solved,

LEMMA 2: H is a decreasing function of C.

Proof: H = |q(T - Cp) (Fp + 1) dpdv.

If C increases the integrand decreases and the region of

integration decreases. Hence H decreases.

LEMMA 3: H is .an increasing function of K. .

Proof: From Lemma 2B (in Appendix B) C is a decreasing function

of K. By Lemma 2, H is a decreasing function of C. Therefore,

H is an increasing-function of K.

Define H as a function of K, H = h(K). Then h(K) is an

increasing function.

THEOREM 4: For a fixed rate of heat dissipation H , the mini-

mum weight of a fin which will have this rate of heat dissipation

is the unique solution of H = h(K).

Proof: The solution of H Q = h(K) is unique because h(K) is

an increasing function. Let K be this solution. Assume that

there exists a K, < K and an admissible thickness function p

such that the rate of dissipation is H . From the definition of
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h (K) y the maximum rate of heat dissipation for a given weight K, . JJ

it follows that h(Kx) > H Q = h (KQ) . But, since h (K) is an

increasing function of K, h(K,) < h (K ) . This is a contradition.

Therefore K , the solution of H = h (K) , is the minimum weight {

of a fin which will give the rate of heat dissipation H .

The thickness function for the optimum fin of the dual

problem is given by (lla), where C is determined by the condition

JpdA = Ko.
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6. Related Papers.

Various papers have been written on the problems related

to the optimum straight fin. Liu [4] considered the optimum fin

problem for a mode of cooling somewhat more general than Newton1s

law. Wilkins [5,6] solved the problem for an arbitrary cooling

mode. Minkler and Rouleau [7], Liu [8],, and Wilkins [6] considered

the straight fin with internal heat generation. A method of

determining upper and lower bounds for problems of this type has

been found by Appl and Hung [9].

All of the above papers consider a single fin. The inter-

action of a fin with other fins and with the base surface is

considered by Heaslet and Lomax [10], Sparrow, Eckert, and Irvine

[11], and Sparrow, Miller, and Jonsson [12].

It is sometimes thought that the constant gradient fin is

the optimum fin for an arbitrary cooling mode. However, Wilkins

[6] shows that for a straight fin Newton's law of cooling is the

only mode of cooling for which the constant gradient fin is

optimum. The results of our paper hold only for Newton1s law

of cooling because it is basic in our proof of Lemma 0.
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Appendix A: Constant Gradient Fins.

We wish to solve IV^I = C subject to the boundary

condition u = T on p.. In scalar notation, this is

da) ' ( | ^ + (|a,2 = C2.

Let P.. be described parametrically by

(2a) x = f (u) , y = g(u) , 0 < v < L

where i/ is the arc length measured counterclockwise from some

reference point, L is the length of P.. 5 and f and g periodic

functions of period L.

The application of a standard technique for solving first

order partial differential equations [3] leads to the consideration

of the change of variables

(3a) x = g' (u) p + f (u)

(4a) y = -ft (u)p + g(v)

where 0 <̂  v <. L, and p >. 0. It can be seen geometrically

in Figure 3.that this is a valid change of variables in the

exterior of P, .

= o

Figure 3
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Given a point (x,y) in the exterior of I\ the corresponding

(p^) coordinates can be determined by constructing the circle

with center (x,y) and minimum radius which intersects F, . The

intersection point will be unique because F-. is convex. Then

the value of v is the arc length from the point v = 0 on F,

to the point of intersection, and the value of p is the radius

of the constructed circle. Analytically, the validity is shown

by the fact that the Jacobian is never zero. When the calculations

are carried out we obtain

<5a) ffe^--" (fIg" " f"9'>P + *•
Noting that (f!g!l - ff!gf) is the curvature of PL, and that this

curvature is always positive for a convex curve with the arc length

increasing in the counterclockwise direction, we conclude that

d ( ) / 0 in the exterior of F . Hence the change of variables

(x,y)—*-{p,v) is valid and transforms the exterior of F, in

the x - y plane into R = { (p,v) \ p >_ 0, 0 £ v <. L} in the

p - v plane.

From (3a) and (4a) it is easily shown that a line of constant

V is a straight line perpendicular to T-* 9 and that a line of

constant p is a curve at a distance p from X\ .

Consider the function

{T - Cp, 0 < p < TC"1

0 p > TC"1"

The'function u is continuous, piecewise continuously differ-

entiable, satisfies (la) for 0 < p < TC , and satisfies the

boundary condition u = T on F, .
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We have a constant gradient temperature function, and we seek

an admissible thickness function p such that u minimizes

E(p ,u). Since u has continuous second partial derivatives for

0 < p < TC~ , it is a standard result of the calculus of variations

that the Euler equation of the functional E(p ,u) will be satis-

fied by u and p , and that the natural boundary condition,

p —^— = 0, will be satisfied on T2, the curve p = TC , where

n is the outward normal to I\ . For the given geometry

Su d'u
= -C j4 0, so that p = 0 on To. But the Euler

dp r ' ^o 2

equation is just the differential equation (1), and therefore,

we are looking for a function p satisfying

-v du >, Su

(8a) p o = 0 on T2.

Changing variables (x,y)——(p,v) transforms (7a) and (8a) into

<9a>

(10a) p = 0 on the curve p = TC"

where F(i>) = fT(^)gTI(i/)- fT ! (v) gf {v) , the curvature of T .

It can be shown that _, . is the curvature of the curve which

is a distance p from I\ so that (9a) agrees with (21) which

was derived heuristically. Solving (9a) subject to (10a) gives

STC""1qCrc""1 - r) (FT + i)dr
p

for 0 £ p <_ TC~ . For p > TC"1 we take p = 0.
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From the theory of ordinary differential equations the solution

of (9a) is unique for a given value of C. Hence we have found a

thickness function p , unique up to the choice of C, which has

the property that u minimizes E (p ,u) . C must.be chosen so

that the total mass of the fin is K^ i.e.,

L TC-1

(12a) \ p(p,^)dA = K.

v/o ^o

The question of a unique solution for C for any given positive

number K is discussed in Appendix B.
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Appendix B: The Determination of the Gradient Constant C.

Equation (lla) gives a thickness function for the constant

gradient fin and it is unique up to the choice of the constant C

The existence of a unique C determined by

(5) \( Po d A = Kj>

where S is the support of p , i.e., S = {{p,v) | 0 < p < TC" ,

0 <C v <, L}j is now shown.

LEMMA IB: At each point of S, p (p,v) is a decreasing function

of, C.

Proof: Differentiating (lla) w.r.t. C gives

dPo V 'TCrl
(lb) —rg = -^-^ \ q(FT + l)dr < 0 in S

C (Fp + 1)

since T > 0, F is non-negative^ and q is positive everywhere.

Therefore, at each point of S,, p is a decreasing function of C.

LEMMA 2B: C is a decreasing function of K.

Proof: If K is increased, Up dA must increase, and by Lemma IB

and the definition of S this can occur only if C is decreased.

LEMMA 3B: As C—'•CD, p (p,v) —*~ 0 for all (p,v) .

Proof: pQ(O,u) > pQ(p,u) for p > 0.

TC"1

Po(0,u) = \ qfTC"1 - r) (FT + l)dr

STC"1 qTC"1(FTC~1 + l)dr
o
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and this last integral approaches zero as C —«^oo. Hence

p (0>v)—^0 as C ~**~oo which implies p (p,i>)--*-0 as C-~s>~oo

LEMMA 4B: As C—*-0, p (p, ̂) —®~oo for all (p,v).

Proof: Choose an arbitrary point (p^P) . For C < Tp~ , (JO^PJG

and p (p,v) is given by (lla) . As C —&-0 the region of inte-

gration and the integrand becomes arbitrarily large. Hence

p (p,V) ~~s>-co . Since {p,T>) is an arbitrary point, it follows

that lim p (p3u) = oo for all (p,v) .

THEOREM IB: For every positive number K there exists a unique

C such that

|podA = K.

Proof: As C ~**~oo area S ~~«-0. From this and Lemma 3B, it follows

that lim up dA = 0. From Lemma 4B, it follows that

lim |p dA = oo . Hence for any positive K there exists

o

at least one C such that Up dA = K. By.Lemma 2B, this C

S^
is unique.
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