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Abstract

Of concern is a network in which the conductance of certain

branches are variable. The problem posed is the maximization of

the input conductance of the network under the constraint that the

sum of the branch conductances has a fixed bound. It is shown

that at the optimum state the conductance of the variable branches

should be proportional to the current through them. This property

leads to inequalities which serve to give a numberical estimate

of the maximum input conductance.
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Optimum Heat Transfer and Network Programming

1. Introduction

A general problem of heat transfer is the design of machinery

so that the structure can carry away excess heat without exceeding

weight limits. For example cooling.fins are used on the cylinders

of air cooled engines and the design problem is to determine the

optimum shape of the fins. This problem was studied in two

previous papers [2] and [7]. In this paper the machine is treated

as a lumped network having a finite number of conducting branches.

Certain branches are allowed to vary but . the . total weight must not

exceed a given limit. The problem is to maximuze the joint con-

..ductance F of the network subject to the constraints.

The resulting mathematical problem may be characterized as

a maximizing problem of non-linear programming. This suggests

that there is a dual minimizing problem. Following such a line

of investigation leads to inequalities giving upper and lower

bounds for the joint conductance F. These bounding inequalities

are suitable for giving an estimate of F.

A continuous system may be regarded as a limiting case of a

lumped network and there should be analogies between the properties

of the continuous systems and the properties of the discrete systems,

For example it was shown in reference [2] and [7] that the optimum

cooling fin has the property that the magnitude of the temperature

gradient is a constant. In this paper an analogous property is

found to hold for the optimum networks. The analogy is that the

difference across the variable branches is constant.
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Analogy is a two-edged sword and so there is expectation

that network analysis should bring to light new properties of

the continuous system. This question is examined in the last

section of the paper. It is found that the bounding inequalities

for the maximum conductance of the network can be carried over

to give bounding inequalities for the maximum efficiency of a

cooling fin.

The mathematical model for the steady flow of electricity is

essentially the same as the model for the steady flow of heat.

However^ the concepts and terminology are better developed for

electrical flow. For this reason electrical terminology will now

be adhered to.
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2. Some network properties.

An electrical network may be depicted as a graph diagram with

m nodes and n arcs. An 'arc' corresponds to a !branch! of

the network. Suppose each arc connects two distinct nodes. Let

the nodes be designated by the integers (l,...,m) and let the

arcs be designated by the integers (l,...,n). A direction is

assigned to each arc. Siippose arc s connects nodes i and j

and that the positive direction is from i to j. If u. and

u. are the potentials of node i and node j then the branch

voltage v of branch s is defined as the potential difference
s

(1) v s = u. - u.

Thus, assigning potentials to the nodes automatically assigns

voltages tothe branches..

Let currents y1, ..., y be assigned to the branches. Then

current source w. at node i is defined as

(2) w. = 2^ y s - E2ys .

Here 21 denotes a sum over the arcs starting at node i, and

2^ denotes a sum over the arcs terminating at node i. Thus,

assigning currents to the branches uniquely assigns current

sources to the nodes. The following lemma is seen to be a direct

consequence of equations (1) and (2) .

Lemma 1. Let.fu.} be an arbitrary assignment of node potentials

and let {y.} be an arbitrary assignment of branch currents. Then

(3) 2» w.u. = 2? ysvs .

The common value is termed the power.
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The network inequality stated in the .following lemma was

proved in [3] but the proof is simple and will be repeated here.

Lemma 2. Let the voltages (v ,,v , . . . ,v ) of the branches arise

from an arbitrary assignment of node potentials (ul;uoj ,, Mu ).. l ^ in

Let the current sources (w. ,w ', . . . ,w ) at the nodes arise from_ . i ^ m

an arbitrary assignment of currents (y ,y ,... ,,y ) through the

branches. Then

(4) (^w.u.)2 <£} g vl f1 g"1
X l l 1 O »D 1 O

where (g19 •..,g ) is a set of positive constants. This is an

equality if and only if y and g v are proportional.
s s s

Proof. Making use of Lemma 1 and the Cauchy inequality gives

ẑ in ,2 /vn 1/2 -1/2 ,2 ^ JI 2 ^ - 1 2
(^ w i U.) = (^ g / v sg s ys) < 2" ggVsZf1 gg yfi.

There is an equality under the condition stated so the proof

is complete.

It is to be noted that the inequality (4) is valid if some of

the g vanish provided the corresponding y also vanish. The
s s

constants (g } are termed branch conductances. Ohm!s law iss

satisfied if

(5) y s = gsvs.

If this relation holds for all branches we shall say that there

is an equilibrium state. In an equilibrium state it is seen that

relation (4) is an equality rather than an inequality. Moreover,

it is a corollary of Lemma 1 that

at equilibrium.
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In the equilibrium state it follows from (2) and (5) that

(7) w. = u . £. g - L. u . g *

w ' I i î s l IS^S

where L. denotes a sum over these arcs s meeting node i and

u. is the potential at the other node of such an arc* If
is r

w. = 0 then it is said that node i is insulated. It follows
l

from (7) that if node i is insulated and S.g ^ 0 then
1 S

In other words the potential at an insulated node is an arithmetic

mean of the potentials of other nodes.

A situation of central interest in this paper arises when the

potential of nodes 1 and 0 are given the values u.. = 1 and u = 0

and all other nodes are insulated. Then the input conductance

between nodes 1 and 0 is defined as y = w . It then follows

from (6) that

(9) 7 = 2 ? g v2
v ' T. ys s

The solution of the input conductance problem can be obtained

from a minimum principle of Maxwell which is stated here as

the following lemma.

Lemma 3. Suppose that some of the nodes of a network have pre-

scribed potentials and that other nodes are insulated. Then there

is an equilibrium state in which the potentials of the insulated

nodes take on values to minimize the power function

(10) E = Z? g v2

JL o o

2
Moreover, the branch power g v is uniquely determined for each

s s
branch.
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Proof. Clearly E has a minimum and at the minimum relation (8)

is satisfied. The uniqueness statement can be deduced from Lemma 2

Lemma 4. The input conductance y(g) as a function of the branch

conductance g. satisfies the following conditions:

(a) It is a homogeneous function of degree 1.

(b) It is a concave function.

(c) It is non-decreasing.

Proof. Property (a) is a direct corollary of Lemma 3.

To prove (c) let y(gf) and y(g t !) be the joint conductances

corresponding to branch conductances gr and g!* respectively.

Let g = pg! + qgr « where p + q = 1, p >_ 0,, and q >_ 0. Let

u be an equilibrium state of potential such that u = 0 and

u, = 1, then the joint conductance 7(g) is given by y(g) =

E(g^v) , Thus

y(g) = E(pgt + qg",v) = pE(g»,v) +

But E(g!,v) >_ y(gT) and E(g'^v) >_ r(gft) by virtue of Lemma

3. Thus

y(pqT + qqff) > pr(gT) + qr(gt!)

and this proves that y(g) is concave.

To prove that 7(g) is non-decreasing the above proof is

repeated for p = q = 1. This gives

y(g» 4- gi i) > y(gt) + y (g i i) .

Since 7(g ! f) >_ 0 for arbitrary g' ' >_ 0 the proof is complete.

Two nodes of a network arc said to be positively connected

if it is possible to travel from one to the other along a chain

of branches with positive conductance. A network is said to be

positively connected if any two nodes are positively connected.
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Lemma 5. If a network is positively connected

S

where v is an equilibrium voltage corresponding to unit input

voltage.

Proof. Let u = 0 then it is clear that E is a positive

definite quadratic form in the potentials u.^..._,u if the

network is positively connected. Thus equations(8) may be solved

giving the potentials of the insulated nodes as rational functions

of the branch conductances. In particulary it follows that

hv /dg. exists. So

V + 2 J ? g v ^ , .
gfc t 1 ^s s eg.

The second summation vanishes by virtue of Lemma 3 because

dv /SgJ "' may be regarded as a perturbation of voltage which

does not change the input voltage.

It is worth noting that since v is given as a rational
s

function of g it follows from Lemma 5 that Sy/Sg is a Tperfect
ss

square'". This leads to interesting algebraic questions [1] •
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3. Maximization of the input conductance.

The central question of this note may be phrased as follows.

Problem I. Let y(g) be the joint conductance of a network with

n branches, Let the branch, conductances be fixed for a set of the

branches denoted by A. Let B be the set complementary to A.

Find

(12) T = max y(g)

subject to the constraint^ g_ >_ 0 and
s

(13) 2^gs < K

where K is a positive constant.

The constraints of this problem restrict g to a compact

convex set S. By virtue of Lemma 4b the function 7(g) is con-

tinuous and so there is a point g! where 7(g) takes on the

maximum value in S. This proves the first part of Theorem 1 to

follow.

In the remainder of the paper it shall be assumed that the

network is positively connected by the A branches alone. This

simplifies the discussion but entails no essential loss of generality

because disconnected networks can be treated a posteriori by con-

tinuity arguments.

Theorem 1. (a) Problem I always has a solution g!.

(b) If there are two solutions g* and gT' then

g = g T/ 2 + g? !/2 is also a solution.

(c) Branch voltages are unique.

Proof. To prove statement (b)' abserve that g is in the convex

set S. Then by virtue of Lemma 4b
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y(gt/2 + g"/2) > y(g')/2 + y(gM)/2 = r

and so g is a solution.

To prove statement (c) let v,v', and v1' be the equilibrium

voltages corresponding to g,g^ and gTl respectively. Then

r = E(g'/2 + gt«/2,v) = E(g',v)/2 + E(g",v)/2

>E(g',v')/2 + E(g" ,V »)/2 = I\

Hence it is clear

that E(g',v) = E{g],v'). Let u = 0 then E is a positive

definite quadratic form in the potentials u1,u9J...,u if the

network is positively connected. Thus v = v1. Similarly, we

find v = v!t so v1 = v!* and the proof is complete.

Theorem 2. JEj£ g! solves Problem I then there exists a constant

A such that for the equilibrium voltage v!

(14) |v* | < A for seB.

Moreover this is an equality if g! > 0.— s

Proof. Suppose that p and q are in the set B and that

g' > 0 and q1 > 0. Let g = g< for s j£ p or q. Let
P c[ —
g = g! - t and g = q1 + t. Then by use of Lemma 5yp ^p ^q Hq y

But y is a maximum for t = 0 so dy/dt <_ 0. This shows that

|v I < |v I. If g1 > 0 it follows by symmetry that |v I = I v I •.I qi — i pi ^ q i i i i pi I gi

This proves the theorem with A = |v |.

Theorem 3. Let T be the maximum input conductance and let v

be a voltage resulting from a potential which is arbitrary except

for a unit potential difference at the input. Then



11

(15) r < I^gsv
2 + K ma ^ v 2 .

Moreover this becomes an equality for the equilibrium voltage.

Proof, Let g! be a solution of Problem I then according to

Lemma 3

. , •, y — . r ^ , y> i ^

JL 2^ *3 A \ fc? 2^ X3 ^? ^3

2 2 2But ILg!v <̂  (Eg !) max v < K max_v . This proves the inequality
J 3 S S J J S 1 3 S r > S

of the theorem.

The case of equality is a direct consequence of Theorem 2.

Corollary 1. I_f g is an arbitrary set of conductances which

satisfy the constraints then

(16) r < y(g) - I^gs §£- + K maxB .
s s

This is an equality if g = gT^ an optimum solution.

Proof, In relation (15) let v be the equilibrium solution

according to the choice g. Then

(17) y = 2^s
Vs + V s V s and

(18) | V

Substituting (17) and (18) into (15) proves (16). The case of

equality follows as in Theorem 3 and the proof is complete.
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4. Application of electrical duality

As is well known there is a duality in the properties of

electrical networks which comes about when current and voltage

interchange roles. For this duality conductance and resistance

must also interchange roles because conductance and resistance

are reciprocals.

The previous section was concerned with upper bounds for

input conductance. In this section the duality principle is

applied to obtain upper bounds for input resistance. Of course

this is equivalent to obtaining lower bounds for the conductance

which is the main goal.

The following lemma is the electrical dual of Lemma 3.

Lemma 6. Let {w.} be prescribed current sources of a network.

Then the equilibrium branch currents {y } are uniquely determined

by requiring that the power function

(19) H =

be a minimum over the class of branch currents having the same

currents sources (w.}.

Proof, Of course it is required that y = 0 if g = 0 . The

proof that H is a minimum follows from the fact that inequality

(4) of Lemma 2 becomes an equality if y = g v . The proof of
s s s

uniqueness is also deduced from Lemma 2.

Theorem 4. L.et T be the maximum joint conductance in Problem I

Then

(20) r l s W ^ ' 2
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where {y } is any set of branch currents such that the current
* S

source has unit magnitude at the input nodes and vanishes at the

other nodes, Moreover this becomes an equality for the equilibrium

state.

proof, It follows from Lemma 6 that

for any choice of g and y consistent with the constraints.
s s

In particular, choose g to satisfy
s ̂

(22) <3S^\YS\ = K|ys|

with the understanding that g = 0 if y = 0 . Summing (22)

gives

This shows that 2Lg = K or 21 g = 0 so the constraint is

satisfied. Substituting (22) in (21) proves the inequality (20).

If g and y solve Problem I it follows from Theorem 2 that (22)

is an equality. Thus (20) is an equality and the proof is completed.

Corollary 2. JEJ: g is an arbitrary set of conductances which

satisfies the constraints then

s

This becomes an equality if g solves Problem I.

Proof. In relation (20) let y be the equilibrium solution

corresponding to the choice g. Then

(24) y'1 = ^9~\l + ^ g ^ y 2 and

2

(25) - |

y

HUKT LIBRARY
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Substituting (24) and (25) into (20) proves (23). The case of

equality follows as in Theorem 4 and the proof is complete.

There is another application of the duality principle which

is worth noting. Thus it is to be expected that the relationships

developed for Problem I will have analogs for the following problem,

Problem II. Find the maximum input resistance of a network

subject to the constraint that the sum of the branch resistances

in a certain set is bounded by a constant.

A general treatment of the electrical duality principle

is given in a paper by Bott and the writer [1]. Presumably that

paper gives the necessary machinery to extend the relationships

develped here to networks which do not obey Kirchhoff's laws.

The work of Dennis [4] and Minty [5] is also pertinent in this

connection.
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5. Cooling fins.

The lumped network problems just discussed are analogous to

conduction problems for continuous systems. In particular this

analogy will be develped here for cooling fins. Such fins are

used to conduct heat away from machines to the ambient media.

The cooling fin problem is to maximize the conductance

of a fin of limited weight K. This is to be accomplished by

suitably tapering the fin. This problem has been treated rigor-

ously in two previous papers [2], [7]. Here it is proposed to

give a heuristic treatment based on the network model. This gives

further insight which would be of value in a numerical estimation.

Again it is found convenient to employ electrical rather than

thermal terminology and to treat the equivalent electrical

problem. Consider a thin conducting plate R in the plane.

Then the power input to the plate is

(26) E = [[ [p(7u)2 + qu2]ds,
R

where u is the electric potential, p is the specific con-

ductance, and q is the leakage conductance to ground. It is

supposed that ground is at zero potential. The boundary con-

ditions are that u = 1 on the part 5R1 of the boundary of

R and p^u/Sn = 0 on the complementary part 5R of the

boundary. Then E is equal to the conductance y of the plate.

Of course this assumes that u is the equilibrium potential which

satisfies the differential equation

(27) V (pVu) - qu = 0.

Problem III. Maximize the conductance T subject to the constraint
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< K.
R

Without loss of generality it may be assumed that the variation

in p is due to a variation in thickness of the plate. Thus

we may interpret K as a measure of the weight of the plate. It

is assumed that q may be a function of position but is not

subject to variation.

Reasoning by analogy from Theorem 2 the optimum plate should

be tapered so that

(29) |Vu| = A if p > 0

for some constant A. By analogy with Theorem 3 the optimum

conductance will have the following upper bound,

'R

Here the shape of the region R is arbitrary except that its

boundary includes the part SR-. . The function u is arbitrary

except that u = 1 on SR .
1

A lower bound for T is furnished by the following analog

(30) r £ jj qu ds + K max | V u | .

of Theorem 4

(31) •" L< \\ ( ^'V> 2 ds + K - 1 ^ |y|ds)2.
R q R

Again R is an arbitrary region and y is a vector field

corresponding to a current flow. The net flow across boundary

^R is unity and the current flow across c)R2 vanishes at all

points. Otherwise y is an arbitrary vector field. Presumably

rigorous proofs of (30) and (31) could be given by methods employed

in references [2] and [7].
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