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Abstract

Of concern is a network in which the conductance of certain
branches are variable. The problem posed is the maximization of
the input conductance of the network under the constraint that the
sum of the branch conductances has a fixed bound. It is shown
that at the optimum state the conductance of the variable brahches
should be proportional to the current through them. This property
leads to inequalities which serve to give a numberical estimate

of the maximum input conductance.
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Optimum Heat Transfer and Network Programming

1. Introduction

A general problem of heat transfer is the design of machinery
so that the structure can carry away excess heat without exceeding
weight limits. For example cooling: fins are used on the cylinders
of air cooled engines and the design problem is to determine the
optimum shape of the fins. This problem was studied in two
previous papers [2] and [7]. 1In this paper the machine is treated
‘as a lumped network having a finite number of conducting branches.
Certain branches are allowed to vary but the.total weight must not
exceed a given limit, The problem is to maximuze the joint con-
:ductance I' of the network subject to the constraints.

The resulting mathematical problem may be characteriied as
a maximizing problem of non-linear programming. This suggests

~ that thére is a dual minimizing problem, Following such a line
of investigation leads to inequalities giving upper and lower
bounds for the joint conductance I\ These bbunding inequalities
are suitable for giving an estimate of I

A continuous system ﬁay be regarded as a limiting case of a
lumped network and there should be analogies between the properties
of the continuous systems and the properties of the discrete systems.
For example it was shown in reference [2]_and [7] that the optimum
cooling fin has the property that the magnitude of the temperature
gradient is a constant. 1In this paper an analogous property is
found to hold for the optimum networks. The analogy is that the

temperattre difference across the variable branches is constant.
Vgl\&{i ‘




Analogy is a two-edged sword and so there is expectation
that network analysis should bring to light new properties of
the continuous system. This question is examined in the 1last
section of the paper. It is found that the bounding inequalities
for the maximum conductance of the network can be carried over
to give bounding ihequalities for the maximum efficiency of a
cooling fin.

The mathematical model for the steady flow of electricity is
essentially the same as the model for the steady flow.of heat.
However, the concepts and terminology are better developed for
‘electrical flow. For this reason electrical terminology will now

be adhered to.
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2. Some network properties.

An electrical network may be depicted as a graph diagram with
m nodes and n arcs. An 'arc' corresponds to a 'branch' of
the network. Suppose each arc connects two distinct nodes. Let
the nodes be designated by the integers (1,...,m) and let the
arcs be designated by the integers (1,...,n). A direction is
assigned to each arc. Suppose arc s connects nodes i and J

and that the positive direction is from i to 3j. If u, and

uj are the potentials of node i and node j then the branch
voltage Ve of branch s is defined as the potential difference
(1) v, = ug - uj

Thus, assigning potentials to the nodes automatically assigns

voltages tothe branches, .

Let currents Yyseres¥y be assigned to the branches. Then

. the current source W at node i 1is defined as

(2) Wi T Zi Yg - Zéys
Here Zi denotes a sum over the arcs starting at node i, and
%

assigning currents to the branches uniquely assigns current

denotes a sum over the arcs terminating at node 1i. Thus,

sources to the nodes. The following lemma is seen to be a direct

consequence of equations (1) and (2).

Lemma 1. Let.[ui} be an arbitrary assignment of node potentials

and let [yi} be an arbitrary assignment of branch currents. Then

(3) ZFLI Wiy T lem YsVs

The common value is termed the power.




The network inequality stated in the following lemma was

proved in [3] but the proof is simple and will be repeated here.

ILemma 2. Let the voltages (Vl’VZ""’Vn) of the branches arise

from an arbitrary assignment of node potentials (ul,uz,...,um).

Let the current sources (wl,w2,...,wm) at the nodes arise from

an arbitrary assignment of currents (yl,yz,...,yn)- through the

branches. Then

@ eep® < ovi ol

where (gl,...,gn) is a set of positive constants. This is an

equality if and only if Ye and gsvS are proportional.

Proof. Making use of Lemma 1 and the Cauchy inequality gives

(B wu)? = (2 gt M2y

S

2 2 -1 2
5.2? gsvsz}; gs Y-

There is an equality under the condition stated so the proof

S)

is complete.
It is to be noted that the inequality (4) is valid if some of

the Ig vanish provided the corresponding Yg also vanish. The

constants [gs} are termed branch conductances. Ohm's law is
satisfied if

5 =

(5) Yg = 9 V-

If this relation holds for all branches we shall say that there

is an equilibrium state. In an equilibrium state it is seen that

relation (4) is an equality rather than an inequality. Moreover,

it is a corollary of Lemma 1 that

(e) AN 9svi =% g;lyi

at equilibrium.
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In the equilibrium state it follows from (2) and (5) that

(7) wi = u,Zigg - Zjuy 90

where Zﬁ denotes a sum over thése arcs s meeting node i and
u; o is the potential at the other node of such an arc. If
w, = O then it is said that node i is insulated. It follows
from (7) that if node 1 is insulated and ngs # O then
_ s

@ T,
In other words the potential at an insulated node is an arithmetic
mean of the potentials of other nodes.

A situation of central interest in this paper arises when the
potential of nodes 1 and O are given the values u, =1 and. u, = 0

1

and all other nodes are insulated., Then the input conductance

between nodes 1 and O is defined as VY = Wy - It then foliows
from (6) that
_ 2
(9) Y= Z 9 Ve
The solution of the input conductance problem can be obtained

from a minimum principle of Maxwell which is stated here as

the following lemma.

Lemma 3. Suppose that some of the nodes of a network have pre-

scribed potentials and that other nodes are insulated. Then there

is an equilibrium state in which the potentials of the insulated

nodes take on values to minimize the power function

(10) E = Z? gsvz

Moreover, the branch power gsvi is uniquely determined for each

branch.
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Proof. Clearly E has a minimum and at the minimum relation (8)

is satisfied. The uniqueness statement can be deduced from Lemma 2.

Lemma 4. The input conductance v(g) as a function of the branch

coﬁductancé gj satisfies the following conditions:

(a) It is a homogeneous function of degree 1.

(b) It is a concave function.

(c) iflis non-decreasing.
Eiggﬁ. Property (a) ié a direct corollary of Lemma 3.

.To prove (c) let v¥(g') and %¥(g'') be the joint conductaﬁces
corresponding to branch cohductances g' and g!'!' respectively.
‘Let g = pg!' + gg'! where p+ g=1, p> 0, and g2> 0. Let
u be an equilibrium state of potential such that u, = o aﬁd
u, = 1, then the joint conductance ¥%¥(g) is gi&en by vY(g) =

1
E(g,v). Thus

¥(g) = E(pg' + qg'',v) = pE(g',v) + qE(g'',v).
But E(g',v) > ¥(g') and E(g",v) > Y(g'') by virtue of Lemma
‘3. Thus

Y(pq' + qq'') 2 pY(g') + qr(g'')

and this proves that Y¥(g) is concave.

To prove that ¥(g) is non-decreasing the above proof is
repeated for p = g = 1. This gives

ylg' + g'') > v(g") + v(g'")

Since 7Y(g'') > O for arbitrary g'' > O the proof is complete.

Two nodes of a network arc said to be positively connected
if it is possible to travel from one to the other along a chain
of branches with positive conductance. A network is said to be

positively connected if any two nodes are positively connected.




ﬁéﬁﬁé 5. If'é.ﬁetwork is positively connected
. 3y (q) _ 5
(11) ags (VS)

where v 1is an equilibrium voltage corresponding to unit input

voltage.

Proof. Let u, = O then it is clear that E 1is a positive
definite quadratic form in the potentials Upseeesuy if the
network is positively connected. Thus equations (8) may be solved
giving the potentials of the insulated nodes as rational functions
of the branch conductances. 1In particular, it follows that

Bvs/agt exists. So

' ~dv
oY _ 2 s .,
—ggz = Vi + 22? gsvs agt ‘

The second.summation vanishes by virtue of Lemma 3 because
BVS/ng' may be regarded as a perturbation of voltage which
does not change the input voltage.
It is worth noting that since Vg is given as a rational
function of g it follows from Lemma 5 that By/BgS is a 'perfect

square'., This leads to interesting algebraic guestions [1].




3. Maximization of the input conductance.

The central question of this note may be phrased as follows.

Préblem I. Lét Y(g) be the joint conductance of a network with

n branches. Let the branch conductances be fixed for a set of the

branches denoted by A. Let B be the set complementary to A,

Find

(12) I' = max 7(9)
subject to the constraints gs > O and
(13) _ Lg, <K

where K 1is a positive constant.

The constraints of this problem restrict g to a compact
convex set S, By virtue of Lemma 4b the function Y(g) is con-
tinuous and so there is a point g' where ¥(g) takes on the
maximum value in S. This proves the first part of Theorem 1 to
follow.

In the remainder of the paper it shall be assumed that the

network is positively connected by'the A Dbranches alone. This

simplifies the discussion but entails no essential loss of generality
because disconnected networks can be treated a posteriori by con-

tinuity arguments,

Theorem 1. (a) Problem I always has a solution g'.

(b) If there are two solutions g' and g!'' then

g =g'/2 + g''/2 is also a solution.

(c¢) Branch voltages are unique.

Proof. To prove statement (b) abserve that g is in the convex

set S. Then by virtue of Lemma 4b
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y(gt/2 + g'1/2) > v(g')/2 + v(g'')/2 =T
and so g 1is a solution.
To prove statement (c) let wv,v!', and ‘v" be the equilibrium

voltages corresponding to g,g', and g"w respectively. Then

I'=E(g'/2 + g''/2,v) = E(g',v)/2 + E(g'',v)/2

> E(g',v')/2 + E(g't,v'1)/2 = T,

Hence it is clear

that E(g',v) = E(g',v'). Let u, = O then E is a positive

definite quadratic form in the potentials UqsUgsee.,Uy if the
network is positively connected. Thus v o= v, Similarly, we
find v = v'' so v' = v'' and the proof is complete,.

Theorem 2. If g' solves Problem I then there exists a constant

A such that for the equilibrium voltage V!

(14). vyl £ N for seB.

Moreover this is an equality if gl > o.

Proof. Suppose that p and g are in the set B and that

gé > O and q& > O. Let g_ = gl for s #p or q. Let
= g! - t and = g! + t. Then by use of Lemma 5
gp gp gq qq y
ay _ 2 2
at (Vq) - (vp) .
But ¥ is a maximum for t = 0O so dy/dt < 0. This shows that
v < jv |. 1If ' > 0 it follows by s etry that |v = (v |,
[vgl < vl Iy y symmetry A gl
This proves the theorem with A = |v_]|.

P

Theorem 3. Let I be the maximum input conductance and let v

be a voltage resulting from a potential which is arbitrary except

for a unit potential difference at the input. Then
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r 2 4 2
(15) ' S.Zigsvs K max v

Mdreover this becomes an eqguality for the eguilibrium voltage.

Proof, Let g' Dbe a solution of Problem I then according to
Lemma 3

, 2 : 2 2
T< Holvg = 49,7+ 3oLV

2 , 2 2 . ' . .
But Zﬁgévs 5.(Z§gs)mavas < K maxpv . This proves the inequality

of the theorem.

The case of equality is a direct consequence of Theorem 2.

Corollary 1. If g is an arbitrary set of conductances which

satisfy the constraints then

'(16) | I'< y(g) - zggs gg + K maxy %g_-
S S

This is an equality if g = g', an optimum solution.

Proof. 1In relation (15) let v be the equilibrium solution

according to the choice g. Then

- 2
(17) Y= Z;Agsvs + zégsvi and
oY _ .2
(18) ags = vy

Substituting (17) and (18) into (15) proves (16). The case of

equality follows as in Theorem 3 and the proof is complete.
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4, Aﬁpiicétion of electrical duality

As is well known there is a duality in the properties of

electrical networks which comes about when current and voltage

interchange roles. For this duality conductance and resistance
must also interchange roles because conductance and rééistance
are reéiprocals.

The previous section was concerned with upper bounds for
input conductance., In this section the duality principle is
applied to obtain upper bounds for input resistance. Of course
this is equivalent to obtaining lower bounds for the conductance
which is the main goal.’

The following lemma is the electrical dual of Lemma 3.

Lemma 6., Let {wi} be prescribed current sources of a network.

Then the equilibrium branch currents [ys} are uniquely detefminédm

by requiring that the power function

(19) H = Z{’g"ly2

S S

be a minimum over the class of branch currents having the same

currents sources [wi}.

Proof. Of course it is required that yg =0 if g, = 0. The
proof that H is a minimum follows from the fact that inequality
(4) of Lemma 2 becomes an equality if Yo = 9 Vg- The proof of
uniqueness is also deduced from Lemma 2,

Theorem 4. Let I be the maximum joint conductance in Problem I.

Then

(20) rt< ZAg;lyi + K"l(fB!ysl)z
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Wﬁéfé {ys} ié.any set of branch currents such that the current

source has unit magnitude at the input nodes and vanishes at the

other nodés.i Moreover this becomes an equality for the equilibrium

state.
Proof. It follows from Lemma 6 that

-1 -1 2 -1 2
(21) '™ < Zﬁgs yg * Zégs Yg
for any choice of gg and Y consistent with the constraints.
In particular, choose Ig to satisfy
(22) g4 lvgl = Klygl |
with the understanding that gg = 0 1if Yo = 0. Summing (22)
gives

Lo Ll = x4y |,
This shows that Zﬁgs = K or Zégs = O so the constraint is
satisfied. Substituting (22) in (21) proves the inequality (20).
If g and y solve Problem I it follows from Theorem 2 that (22)

is an equality. Thus (20) is an equality and the proof is completed,

Corollary 2, If g 1is an arbitrary set of conductances which

satisfies the constraints then

1/2 2

, --1 -1 -2 Y, -1.-2 QY
(23) I'" <y " - ¥ g9, ags+1< 14 (ZBqS(ags) )

This becomes an equality if g solves Problem I.

Proof. 1In relation (20) let y be the equilibrium solution

corresponding to the choice g. Then

-1 -1 2 -1.2
4 =
(24) Y ;Ags vg Zﬁgs Yg and
. 92
oY 2
(25) | = &L = 7.
y2 Bgs s

HUNT LIBRARY
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Substituting (24) and (25) into (20) proves (23). The case of
equality follows as in Theorem 4 and‘thé proof is complete,
There is another application of the duality principle which
is worth noting. Thus it is to be expected that the relationships

developed for Problem I will have analogs for the following problem.

Problem II. Find the maximum input resistance of a network

subject to the constraint that the sum of the branch resistances

in a certain set is bounded by a constant.

A general treatment of the electrical duality principle
is given in a paper by Bott and the writer [l1]. Presumably that
paper gives the necessary machinéry to extend the relationships
develped here to networks which do not obéy Kirchhoff's laws.
The work of Dennis [4] and Minty [5] is also pertinent in this

‘connection.
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5. Cdolinq fins.

The‘lumped network pfoblems just discuésed are analogous to
conduction problems for éontinuous systems. 1In particular this
analogy will be develped here for cooling fins. Such fins are
used to conduct heat away from machines to the ambient media.

Thevcodling_ fin problem is to maximize the conductance
of a fin of limited weight K. This is to be accomplished by
suitably tapering the fin. This problem has been treated rigor-
ously in two previous papers [2], [7].’ Here it is proposed to
give a heuristic treatment based on the network model. This gives
further insight which would be of value in a numerical estimation.

Again it is found convenient to employ electrical rather than
thermal termindlogy and to treat the equivalent electrical
problem. Consider a thin conducting plate R in the plane,

Then the power input to the plate is
2 2
(26) E = [p(Vu)” + qu-lds.
) R

where u 1is the electric potential, p 1is the specific con-
ductance, and g 1is the leakage conductance to ground. It is
supposed that ground is at zero potential. The boundary con-
ditions are that u = 1 on the part ,aRl of the boundary of

R and pdu/on = O on the complementary part 3R2 of the
Aboundary. Then E 1is equal to the conductance 7Yy of the plate,

Of course this assumes that u is the equilibrium potential which

satisfies the differential equation
(27) V(pVu) - qu = 0.

Problem‘IIi. Maximize the conductance I’ éubjeét to the constraint
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(28) SSdes < K.

Without loss of generality it may be assumed that the variation
in p is due to a variation in thickness of the plate. Thus
we may interpret K as a measure of the weight of the plate. It
is assﬁmed that g may be a function of position but is not
subject to variation.

Reasoning by analogy from Theorem 2 the optimum plate should
be tapered so that |

(29) |Vu|l =n if p>o0

for some constant 2A. By analogy with Theorem 3 the optimum

conductance will have the following upper bound,

(30) _ < 5§ qu2ds + K malev u|2.
R

Here the shape of the region R 1is arbitrary except that its
boundary includes the part BRl. The function u 1is arbitrary
except that u =1 on aRl,

A lower bound for I is furnished by the following analog
of Theorem 4
(31) rt < SK i-jz;XLi ds + K1 SS |y|ds)2.

R q R

Again R is an arbitrafy region and y is a vector field
corresponding to a current flow. The net flow across boundary

OR

1 is unity and the current flow across 5R2 vanishes at all

points. Otherwise y 1is an arbitrary vector field. Presumably

rigorous proofs of (30) and (31) could be given by methods employed

in references [2] and [7].
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