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1. Introduction

This paper presents a study of the mixed boundary Initial

value problem for the third-order partial differential equation

poUtt " a f ( ux ) uxx + X uxtx' (x,t) e<O,l)x(O,cp), (E')*>
w

where X and p are positive constants. It will be shown that if af(£) > 0

the problem Is well set In the sense that there exists a unique solution

which is stable with respect to perturbations in the initial data.

Moreover, it will be shown that the solution decays to zero as t tends to

infinity.

A physical prototype of the problem studied here arises when

one considers purely longitudinal motions of a homogeneous bar of uniform

cross-section and unit length. If we denote by x the position of a

cross-section (which is assumed to move as a vertical plane section) In

the homogeneous rest configuration of the bar, by u(x,t) the displacement

at time t of the section from its rest position, by T(X,t) the stress on

the section at time t, and by p > 0 the constant density of points in

the rest position, then the equation of motion becomes

poUtt " V <x,t> c <0,l)X<0,«). (1.1)

If one takes the ends of the bar (in our case the points 0 and 1)

to be clamped for all times t > 0, then the displacement u must satisfy the

#
"In the future (') will denote differentiation with respect to u .
Arguments of functions, if not stated explicitly, will be x and t.
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auxiliary conditions

u(O,t) - u(l,t) - 0, t > 0. (A)

One may now obtain a differential equation for the displacement

u by making a specific assumption about the dependence of the stress T on

the displacement u. The simplest such assumption is Hookeb law which

asserts that

T " E o V (1'2)

where E is a positive constant. In this case (1.1) becomes the linear

wave equation.

It would appear somewhat more realistic to allow for a nonlinear

dependence of the stress t on u . Thus one would assume that

t - O(u ). (1.3)

Equation (1.1) then yields the nonlinear wave equation

poutt " a'(ux)uxx' <x,t) c (0,1)x <0,«). (1.4)

For a bar with clamped ends it would seem reasonable to seek a solution

of (1.4) satisfying (A) together with the initial conditions

u(x,0) - f (x), 0 < x < 1, (B)

ufc(x,0) - g(x), 0 < x < 1. (C)



3.

The problem (1.4), (A), (B), and (C) were considered in [1].

It was assumed there that a satisfies the physically reasonable conditions

a(0) - 0, and a1 (I) > 0, U (-",«>). (*)

Moreover, a1 was taken to be monotone decreasing in |(|. Rather

surprisingly, the result was that the problem can have a global, smooth

solution only if a is a linear function as in (1.2). Otherwise, some

second derivative of the solution must somewhere become infinite after

a finite time.

In this paper we assume the material to be a nonlinear Kelvin

solid; that is we assume a stress relation of the following form:

T - <J(ux) + ̂ uxt, (1.5)

where X is a positive constant which may be interpreted as a viscosity
and (C) remain

coefficient. Then (1.1) yields equation (E!). The conditions (A), (B),* the same.

There are two considerations which suggest the modification

(1.5). First, the inclusion of the strain rate term Xu begins to
XL

reflect the past history of the strain u . Thus (1.5) can be considered

as a move toward the more general memory theories encountered in rational

mechanics (see for example [2]). it appears to be the simplest possible

model having this feature. Second,one can hope that (E1) will lead to a

"viscosity method" approach to equation (1.4). There is a conjecture

concerning non-linear hyperbolic equations such as (1.4). This is that
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although a smooth solution may not be possible, under certain conditions

there will always be a uniquely determined weak solution, that is one

containing shocks. The problem is how to find this preferred weak

solution. One idea that has been suggested is to add an artificial

higher order derivative multiplied by a small parameter X, solve the

problem for 0 < X < X,, and then let X tend to 0 . The conjecture is

that the limit function will be the appropriate weak solution. Here, we

simply solve the problem for fixed X > 0. We emphasize, however, that

many of our estimates would break down if we maintained the constant as

X and then let X tend to zero.

One can see that the stress law (1.5) has certain features which

are more desirable than (1.3) by making a very simple computation. Consider

the linearized version of (1.5); that is assume that the nonlinear term

a(u ) in (1.5) is replaced by E u . Then the equation becomes
X v X

PoUtt " EoUxx + Xuxtx> (x,t) e (0,l)x(0,«). (1.6)

Let us seek solutions by separation of variables in the form T (t)sin nrtx.

These clearly satisfy (A). The functions T (t) must satisfy the equations

P T"(t) - -n2tf2(E T + XT f).Ko nv ' v o n n'

It is easy to see that these T fs satisfy the relations

-Xn2rt2 + A 2 n 4 « 4 - 4 E p n2rt2

T (t) = O(ePn), S • — as t -»». (1.7)
n n 2p

o
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Thus the solution of (1.6) with conditions (A), (B), and (C) can be

approximated by functions which vanish exponentially in t. This is in

contrast to solutions of the linear wave equation which do not vanish as

t tends to <».

The calculation of the preceding paragraph strongly suggests

that solutions of (1.6), (A), (B), and (C) tend to zero as t tends to

infinity. Hence, the introduction of the term Xu in (1.5) appears to
XL

add a damping mechanism to the process. We shall see later that the

presence of Xu does indeed damp solutions of the general problem.
AL

See Theorem 1, equation (2.4).

It will be observed in the argument above that the sign of the

constant X is crucial. If X were negative, solutions of ths linear

problem would grow exponentially in time. Throughout the paper it will

be seen that our results depend heavily on the fact that X is positive.

It is important to remark that once one adopts the stress law (1.5) it

is possible to show that the second law of thermodynamics requires that

X be positive. The proof of this fact can be obtained by specializing

the results of [ 3].

For ease in writing we now set both p and X equal to one.

Hence we replace (Ef) by

Utt = Qf (ux)uxx + Uxtx' (X> t} e (0' 1} X (0>CO) •



2. Statement of the Main Results

Throughout this paper we shall assume that the function a is

3C (-cojoo) and that its derivative af satisfies (*). We shall also assume

that the functions f and g appearing in (B) and (C) are, respectively,

C and C on [0,1] and vanish together with their second derivatives at

zero and one.

Let T be any positive number. For functions U which are C on

the strip ST » (x,t | 0<x<l, te[0,l]} we let

2 i

I|u|||(t) = V y max
dx 1"*^

t e [0,T], (2.1)

2
and for functions A and SI which are C on [0,1] we let

J(A,fl) - )( max |A(x)| + max |fi(x)| . (2.2)

^ [ 0 , l ] xe[0,l] J

An (f,g) displacement in S_ will be any function u such that:

(i) all derivatives appearing in (2.1) are continuous on S_,

utxx « uxtx - Uxxt

(iii) u satisfies (E) in (0,1) X(0,T] and conditions (A), (B), and (C).

An (f,g) displacement on S is defined analogously.
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The principal results of the paper are contained in the

following two theorems.

Theorem 1. If u is an (f,g) displacement on S ^ then there exists a

constant M, which depends on J(f,g) and tends to zero as J(f,g) tends to

zero, such that

<M, t > 0 . (2.3)

Moreover,

lim HIuHI (t) « 0. (2.4)

Theorem 2. For any f and g there exists a unique (f,g) displacement on

S .

We here give a brief outline of the proofs of Theorems 1 and 2;

details appear in the following sections.

There are two main ideas used in the proof of Theorem 1. The

first involves viewing equation (E) as two different inhomogeneous

equations. That is if u is an (f,g) displacement on S ^ then:

def
(i) for any T and a > 0 the velocity field V(x,t) =SS ufc(x,t)

satisfies the following linear heat equation:

Vt(x,t) - V ^ ^ t ) - 0(u)(x,t), (x,t) e (T

V(X,T) - ufc(x,T), x e [0,11,

V(0,t) = V(l,t) = 0 , t e (T,

(2.5)



where

0(u)(x,t) ^ a'(u (x,t))u (x,t); and (2.6)
A XX

(ii) for each (X,T) e [0,1] X [0,«>) the function W(t) — u (x,t)
XX

satisfies the ordinary differential equation

- a(t)W(t)

where

(2.7)

W ( T ) - U _ ( X , T ) ,

def
a(t) SS4 a'(u (x,t)) > 0, and

X

ufct(x,t).

(2.8)

Now (2.5) and (2.6) imply the existence of a functional M such that

ut(x,t) = M(0(u)(.,.);ut(.,T)), (2.9)

while (2.7) and (2.8) guarantee the existence of another functional N

such that

uxx(x,t) •= N(ux(x,-), utt(x,-); uxx(x,T)). (2.10)

The second key idea arises as follows. In Section 4 we make

use of energy inequalities to derive uniform bounds for the spatial "L

norms of u and u . Then formulas (2.9) and (2.10) allow us to obtain
t xx *

pointwise bounds for all necessary derivatives. The latter process is

described in Section (5).
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We establish Theorem 2 in the following way. Setting T = 0

and using (2.9), (2,10), and the initial data we are able to show that

the derivatives u and u of an (f, g) displacement u must satisfy a
X L

certain pair of nonlinear functional equations. For sufficiently small

t (saY < <*) these equations are uniquely solvable. Moreover, they do

indeed give rise to a unique (f, g) displacement u in [0,1] x[0,a]

Next, setting T » a and using (2.9), (2.10), and u («,a) a new set

of functional equations for the first derivatives of an (f,g) displacement

are derived. Making use of the fact that u satisfies the a priori

estimates of Theorem 1, we may conclude that these new equations have a

unique solution in [0,1] x[a,2a]. Using this last pair of solutions
1 9

we may extend the function u to an (f,g) displacement u on [0,1]X [0,2a]

Proceeding inductively, we then extend the domain of existence

and uniqueness, in increments of a, to [0,1] X[0,«0.



10.

3* Results for the Linear Heat Equation

Our primary goal in this section is to establish certain

properties of the solution operator M for the inhomogeneous linear heat

equation (see (2.9)); thus, for any a > 0, we seek properties of the

function V satisfying

Vt(x,t) -Vxx(x,t) » 0(x,t), (x,t) e (0

V(0,t) « V(l,t) - 0, te(T,

V(x,t) « #(x), x c [0,1].

(H)

It is well known that if 0 satisfies a Holder condition jointly

in x and t and if T[/ is sufficiently smooth in x, then there exists a

unique representation of the solution of (H) in terms of the Green's

function G(x,£,t-T) (see Friedman [4]); this solution can be written as

V(x,t) - P(x,t,x;V) +Q(x,t,t;0), (3.1)

where

(3.2)
• / • •

0
and

/'/'•
f f , , i , | n (3.3)
T 0

In Sections 5 and 6 we shall have need of (3.1) under two

different sets of hypotheses, neither of which is quite standard. We
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shall also need a set of bounds for the potentials P and Q, some of which

are non-standard. In essence, the remainder of this section is devoted

to verifying that under two different sets of hypotheses solutions of (H)

are given by (3.1) and that P and Q possess certain boundedness properties.

Throughout this section we shall assume

(A-l) ^ is C on [0,1] and vanishes at zero and one; and either

(A-2) (i) 0 is continuous on [0,1]X [T,T+a],

(ii) 0(0, t) - 0(1, t) - 0 , t E: [x,T+a], and

(iii) 0 and 0 are continuous on [0,1]X [T,T+cd; or

(A-2)' (A-2)' is simply (A-2) with (iii) replaced by

(iii)' there exists a constant K < « such that

< K|t-Ti|1/2, ,t,Ti) e [0,1]X[T,T-KX]X[T,T-KX]. (3.4)

For functions h defined on [0,1]X [T,T+a] we let

|h|(t) max |h(x,t)|,
xe[O,l]

\l/2

| h | max M(t),
\

h'(x,t)dx) , and | h | ^ a

and for functions ft defined on [0,1] we let

max ||
[x,T+a]

r (3.5)

a max | fl(x) |, and || fi|| - / / f l 2 (x)dx j . (3.6)
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We can now state the main results of this section. Throughout

this section a will denote an arbitrary but fixed positive scalar.

Theorem 3. If a < a and if f and 0 satisfy (A-l) and (A-2) respectively,

then there exists a unique solution of (H) which can be represented by

(3.1). Moreover, there exists a constant C, independent of (X} <t>} and if/}

such that the potentials P and Q satisfy the following InequaliJt ies:

M(t) < \ ; (3.7)_1/4<t-T) l/%\\

-1, , (Xc l?J<t) - V ^ w J (3'8)
" 1 I ̂  I r . v ^ " 1 I

(3.10)

< (tt)kJT)a; (3.12)

and

C"110,1(0 < (t-Ol^J^+c" 1!*!,^ (3.13)
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Theorem 4. If a < a and if ty and 0 satisfy (A-l) and (A-2) % then there

exists a unique solution of (H) which can be represented by (3.1). Moreover,

the inequalities (3.7)-(3.10), (3.11)2 and (3.11)3 of Theorem 4 remain

valid, and, in addition, Q and Q satisfy

c"1|Qxx|(t) ^ *<t-T)1/2 + M T , a '
 (3-14)

and

C ^ I Q J O O < K(t-T)1/2 + (l+c" 1)!*!^^; (3.15)

where K is the constant appearing in (3.4).

An immediate consequence of the Theorems 3 and 4 is

Corollary 1. If a < a , if if/ satisfies (A-l), and if .0 satisfies both (A-2)

and (A-2)f, then all the bounds of Theorems 3 and 4 are valid.

Remark. The L« bounds of Theorem 3 appear to be new. These bounds,

when combined with energy estimates of the type to be derived in section 5,

should be of some use in the discussion of the existence and uniqueness

of solutions of semilinear parabolic partial differential equations.

Our first task in proving Theorems 3 and 4 is to obtain some

information about the Green's function G(x,£,t-T). We define functions

HUNT LIBRARY
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r and K by

T(a,b) -

and

K(a,b) * V(r(a+2m,b) + r(a-2m,b)). (3.16)2

Then r(x-£,t-T) is the fundamental solution for the linear heat equation

and the function

GCx^t-T) - r(x-lyt-x) - r(x+£,t-T) + K(x-£,t-T) - K(x+£,t-T) (3.17)

is the Green's function for problem (H). On occasion we shall use the

following notation:

G1(x-t,t-T) - r(x-£>t-T) + K(x-£>t-T), G2(xK>t-T) - -r(x+£,t-T) - K(x+!,t-T

1 2 ^(3-18)

and G(x,£it:-t) a G (x-^t-x) + G (x+!)t-T).

We first note some elementary properties of G.

(i) For each (£,T) e [0,1] X [0,oo) and each positive a

Gxx - Gt = 0, (x,t) e (0,1) X(T,T-KX],

9 ) 9 } 9 9 9 2

and

G ( x , £ , 0 ) » 0 , x e [ 0 , l ] w i t h x ^ | . ( 3 . 1 9 ) 3



(ii) For each (x,|,t-T) e [0,1] x [0,1] X (0,a]

and

( i i i ) For each (x, t) e [0,1] X [0,«>) and each positive a

15.

(3.20)

G(x,O,t-T) » G(x,l,t-T) - 0, T e [t-a,t), (3.21)2

and

G(x,|,0) - 0, | e [0,1] with i * x. (3.21)3

We now give some estimates for G.

Lemma. 3.1. Suppose a < a . Then there exists a constant C, independent

of a, such that

"1|c"1|Gx(x,|,t-T)| < |rx

< T(x-|,t-T)

r (x-i,t-T)|

< |r&(x-|,t-T)|
&

(3.22)x

(3.22)2

(3.22)3

and

(t-T)
1 + (t-T) (t-T) 1+ (3.22),

for all (x,S,t-T) e [0,1] x [0,1] X [0,a],
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Remark, It will be evident from the proof that the same bounds apply to

1 2G and G separately.

Proof of Lemma 3.1. Since

-m
r(x-|±2m,t-T) - r(x-£,t-T)e , m > 0,

2 2
and since m ± m(x-i) > (m-1) for all x-| in [-1,1] we have

2
oo -m xm(x-£)

k, ( 3. 2 3 )

It now follows from (3.16K and (3.18)- that

(3.24)

A similar calculation yields

|G2(x+|,t-T)| < (3.24)2

and hence (3.21)1 follows from (3.18)3, (3.24)x, and (3.24)2-

We now observe that for m > 0

>(x-g±2m)2

A direct consequence of the last formula and (3.18).. is the identity

-m -m(x-j) -m +m(x-4)
—Tn

(3.25)
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We now show that for a l l ( x , | , t - r ) e: [0,1] X [0,1] X [0,a] with x 4 £

-m

Z me^c

—-—
vx~

- T )

m=l

sinh m — - ) is uniformly bounded. We

observe that

m
-m

(t-T)

2
-m

.(t-T)
sinh

Noting that

| z | e " | z | < €'e 2 and H a s i n a w| < €"e | w |

for all z and w, we have

-m
m (t-T < Ce

2
-m 4-2m
2(t-T)

(3.26)

Since (t-T) e [0,a] and a < aQ, (3.26) implies that

-m

sinh m

m=2

< k' < oo

and hence incorporating the term with m = 1 we obtain

(3.27)

oo - m
m (t-T)

L
m=l

-1 / (x-Q -(x-4)N

f ) ) k«. (3.28)

It is easily verified that for (x,£) e [0,1]X [0,1]

_ e(t"T)
-1

_ (t-T)
(3.29)
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and hence it follows that the first term on the right hand side of

(3.28) is uniformly bounded for all (t-x) > 0. Equations (3.25), (3.23),

(3.28), and (3.29) now yield

|G*(x-£,t-T)| < k"|Fx(x-&,t-T)|, (3.30)x

A similar calculation shows that

|G2(x+S,t-r)| < k"|rx(x-S,t-T)|,. (3.30)2

and hence (3.18) and (3.30) establish (3.22)2 and (3.22)3<

Similar arguments yield (3.22),.

Our next result concerns integrals of G and its derivative.

Lemma 3.2. Suppose a < a . Then there exists a constant C, independent

of OL, such that

r1

J |G(x,t,t-T)|d| < C, (3.31)1
0

J |G(x,|,t-T)|2d| < C(t-T)"1/2, (3.31)2
0

J |Gx(x,&>t-T)|d£ < C(t-T)"1/2, (3.31)
3

J |G6(x,ft,t-T)|d£ < C(t-T)"1/2, (3.31)4

0

J |Gx(x,|,t-T)|
2d| < C(t-T)~3/2, (3.31)5
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J

J |G6(x^,t-T)|
2d| < C(t-T)"3/2,

and

0

< C(t-T)"1/2.

Remark. The remark following the statement of Lemma 3.1 implies that the

1 2
conclusions of Lemma 3.2 hold with G and G replacing G.

Proof of Lemma 3.2. The lemma is a direct consequence of equation (3.22)

2
and the boundedness of all moments of the function e"z .

We turn now to the proofs of Theorems 3 and 4. We begin with

Theorem 3. We observe first that the usual arguments (see for example

Friedman [4]) allow us to establish the following facts concerning P

under the assumption that f satisfies (A-l):

(i) P is continuous on fO,1]X [T,T4a],

(ii) lim P(x,t,x;^) * ̂ (x) uniformly in x on [0,1],
t->T+

(iii) P(0,t) * P(l,t) = 0 t G: (T,T4<*], and

(iv) for each (x,t) €L (0,1) X (T,T-KX], P ,P , and P exist, are
X XX I-
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continuous and are given by

Px(x,t) = J Gx(x,!,t-
0

nl

0

Pt(x,t) = J Gt(x,|,t-
0

(3.32)

0

One can also obtain, from standard arguments, the following results for Q:

(i) Q is continuous on [0,1] X [T,T+a],

(ii) lim Q(x,t) = 0,

t-»T+

(iii) Q(O,t) - Q(l,t) - 0, t e: (T,T-KX], and

(iv) for each (x,t) e (0,1) X (T,T+C*] Q exists, is continuous, and

is given by

it piJ J
0

J J Gx(x,|,t-Ti)0(|,Tl)d6dTi. (3.33)
T 0

Properties (i), (ii), (iii), and (iv) for Q are true under

either (A-2) or (A-2)f; in fact they require only the continuity of 0.

If, however, one wishes to calculate Q or Q y then additional conditions

must be placed on 0. As we have already noted the usual condition is that

0 is jointly Holder continuous in x and t. Our task is to show that this

condition can be replaced by either (iii) of (A-2) or (iii)* of (A-2)f.
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The results we want are the following:

Q and Q are continuous in (0,1)X (T,T+a), (3.34)

and

Qt - Q x x + 0 - (3.35)

Once these formulas are established it is clear that the function V(x,t),

defined by (3.1), does indeed yield a solution of (H). The uniqueness of

this solution is again a standard result.

Completion o£ the Proof of Theorem 3. We begin by obtaining the estimates

for P. We have by (3.31)1

r1

IPl(t) <J |G(x,|,t-T)||iK|)|d| < C\f\. (3.36)1

By (3.31)2 and Schwarz's inequality we obtain

|. (3.36)2

0 /

Next we observe that (3.32) implies that

r1
I^K*) 5 / |Gx(x,£,t-T) j |^(6)|d|. (3.37)

0

Equation (3.37) and (3.31)- now yield

(3.38)x
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while (3.37), Schwarz!s inequality, and (3.31)5 give

(3.38)2

1 2 1 2
If we note that G = G + G - -Ge + Gt and make use of the fact that

X X X 5 b

^ satisfies (A-l), then we obtain the following representation for P :
x

Px(x,t) = J [G1(x-^t-T)-G2(x+|,t-T)]^a)d£. (3.39)

1 2
Equations (3.39), (3.24), and (3.31)- with G replaced by G* and G now

yield

|Pxl(t) < C|^|. (3.40)

The above formulas establish equations (3.7)-(3.9). Equations

(3.10), (3.11)2, and (3.11)3 are established in the same way except that

now one must integrate with respect to r\ over (T, t).

We have now reduced the proof of Theorem 3 to the verification

that (3.34), (3.35), (3.11)^ (3.12), and (3.13) are valid under the

assumption that (ii) and (ill) of (A-2) hold. Making use of the vanishing

of 0 at zero and one (see (ii) of (A-2)) for all t in [x,t+a], we can use

the arguments employed in establishing (3.39) to obtain

f f lG1(x-e,t-T])-G2(x+|,t-Tl)]06(|,Ti)d|dT1. (3.41)

We can now differentiate Q again with respect to x to obtain

T
T 0

J J [Ĝ x-
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1 1 2 2 12 1 2
Since G « -G*, G * G*, and G - G + G , we have G - Gr • -G6. Integrating

X £ X £ X X 5
the last equation by parts and making use of (3.21)o, we find that

J J G(x,|,t-ij)06S(6,Ti)dfedri. (3.42)

Equations (3.11)1 and (3.12) now follow from (3.41), (3.42), (3.31K, and

(3.31) r

The treatment of Q is more involved. We calculate the difference

"quotient A h • h" [Q(x,t+h)-Q(x,t)], h > 0. We have

/

t+h pi

T 0

t+h pi

j j x' *

- h a pi

/ G(x,i,

T 0

t p 1 p t+hpz pi p
/ / /

00 T 0 t

Consider the first integral on the right hand side of (3.43).

The inner integral is P(x, t+h,TJ;0(•,!])) (see equation (3.2)). We write

L (3.43)

Property (ii) for the potential P implies that

0(x,t),

and thus we find

t + h

h ^ P(x,t+h,n;0(-,t))dTi = 0(x,t)+h ij
t t

t + h

P(x,t+,t;0(-,t))W
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Noting that P(x,t+h,Ti;0(*,t)) • P(x,t+h-ii>O;0(-,t)) and that the function

X -» P(x,X/);0(*,t)) is continuous in X for X > 0, we may conclude that given

any € > 0

,t+hif/ P(x,t+h,Ti;0(-, -0(x,t)

provided h is sufficiently small. On the other hand, we note that

+ n t+h - p t+h p 1

- h"y P(x,t+h,T1;0(.J,Tl)-0(-,t))dn » h"1/ / G(x,^t+h-T!)(0a,Tl)-0(&,t))d&dn.

t to

Since 0 < t+h-T] .< h, (3 .7^ allows us to conclude that for all h < a

|l| < C max
0<| <
t< TJ < t+h

Moreover, the continuity of 0 implies that for h sufficiently small

t)| < e/2c.max

t< T[ <t+h

Collecting all our estimates we deduce that

,t+h

and hence

, r t + h
h 'I P(x,t+h,n;0(-,Ti))di1 -0(x,t)

1 p t+h p 1
lim h" / / G(x,£,

< e

h-»0+
0(x,t). (3.4A)

t 0
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Now consider the second term on the right side of (3.43). Since

(^(X^X-TI) - -G (x,S,X-ri) - G^(X,|,X-TI),

(ii) and (iii) of (A-2) allow us to integrate by parts with respect to |

and obtain for the second term

1 nt+h pt pi

0
J J J
t T 0

Making use of property (ii) for P we can now pass to the limit in this expression

and obtain

J J G(x,ft,t-t|) ŝ(|,T|)dftdTi. (3.45)
T 0

J J
0

It follows that A. has a limit as h tends to 0 . Moreover if we compare

(3.44) and (3.45) with (3.42) we see that (3.35) holds. The case h < 0

can be treated in the same way and the proof of Theorem 3 is now complete.

Completion oj£ the Proof of Theorem 4. We shall now assume that (ii) and

(iii)1 of (A-2)f hold. Our goal is to show that under thfese hypotheses equations

(3.34), (3.35), (3.14), and (3.15) are valid.

We shall first establish that Q exists and is continuous. In

xx

the process we shall derive an explicit representation for Q . We take

as our starting point the formula

JJJ •Gx<x,g,
0T 0
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and We consider the difference quotient A - h [Q(x+h, t) — Q(x, t) ]. It is

easily verified that

t r» 1 p x-fh

J J
- p t r» 1 p

J J JA - h

T 0 X

By (3.19)- and (3.20) this can be written as

»t pi px+h

T 0 X

T 0 X

- p t p 1 P x+h
- l i / / J GTi(X,6,t-Ti)0(6,t)dXd6dTj. (3.47)

T 0 X

We can integrate the second term on the right side of (3.47) with respect

to TJ to obtain

plpx+h plpx4h
/ / G(X. ift-T)0(|.t)dXd£ — lim / / G(X. S.t-1

J J n->t-J J
O x ' O x

Observe that the second integral in (3.48) is simply

(3.48)

x+h

/
x

where again P is defined in (3.2). By property (ii) of P we have

lim P(X,t,T)j0(«,t)) » 0(x, t) uniformly in x, and hence it follows that

pi pX+h r>X+h
lim / / G(X,&,t-T})0(&,t)dXd| = / 0(X,t)dX.
1 0 x x
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We now have the second term on the right of (3.47) converging to

J G(x,S,t-T)0G, -0(x,t) (3.49)

as h tends to zero.

We now turn to the first term on the right side of (3.47).

Since

we have

.t.l.x+h

J J J n
T 0 X

i t p 1 p x+h

T 0 X

Equation (3.31)y implies that the right side of (3.50) is dominated by

^J J J |t-Tl|
1/2|GTi(X,|,t.T,)JdXd|dTi. (3.50)

-ll < CK(t-t)1/2. (3.51)CK|h

T X

It now follows from Lebesgue's dominated convergence theorem that we can

pass to the limit as h tends to zero in (3.47) and obtain

"f ff
T 0

f G(x,i,t-x)0a,
0

(3.52)
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Finally we have to verify the existence of Q and the validity

of (3.35). Again we work with the difference quotient h" [Q(x, t+h)-Q(x, t)]. We have

t A 1 p t+hp t A 1 p t+h

J J J GTl(X'^X"1»)0(6'
t 0 t

p t+h p 1 ^

+ J J G(x,|,t+h-n)0a>Tl)d|dnL (3.53)

t 0 J

As in earlier calculations we deduce that the limit of the first term as

h tends to zero is given by

'If GTi(x^^t"Tl)(0(^iri)""0(^t))d|dT1^ (3-54)
T 0

while the limit of the last term is 0(x,t). As for the middle term we

carry out the TJ integration and find that it is equal to

- p i p t+h

J J te&'t'*-*) -G(x,|,X-T^(|,t)dXd|. (3.55)
0 t

The limit as h tends to zero of the first term in (3.55) is -0(x,t),

while the limit of the second is

G(x,!,t-T)0(!,t)d|.

0
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Collecting all our results we see that the limit of the difference quotient

(3.53) exists and equals

-J J GT)(x,i,t-n)(0(i,T,)-0(i,t))dedn + J G(X,!,t-T)0«,t)d£.
O 0

J J ) J
TO 0

If we compare this with (3.52) we see that (3.35) holds.

The bound (3.14) is a direct consequence of (3.53), condition

(iii)' of (A-2)', and (3-31)1 and (3.31)?; while (3.15) follows from

(3.14) and (3.35).
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4. A priori Energy Estimates for the Solutions ojE (E)

In this section we shall derive certain energy estimates which

must be satisfied by (f, g) displacements u. These estimates, when

combined with the results of Section 3, will enable us to establish

Theorem 1.

We first record some results which will be of use later.

Remark 4.1.

2
(a) Suppose that $ is C on [0,1] X [0,«>) and vanishes at 0 and 1

for all times t > 0. Then,

< |»| (t) < ||*J(t) < |*J(t) < |*J|<t) < |*J<t), t > 0, (4.1)J
where || • | and |-| are defined in (3.13).

(b) Suppose that ¥ is uniformly continuous and integrable on [0,<»).

Then,

lim ¥(t) * 0* (4.2)

Now, and in the remainder of this section, u will be an (f,g)

displacement on S .

If we multiply (E) by u , integrate the resulting expression

over (0,1)X (t1,t2), and make use of the fact that u satisfies the edge
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conditions (A), we are led to the following identity:

( x ' t 2 ) t2 1 "x '̂V
J O(X)dX + 2j |uax|

2(T)dT = ||u tl
2( t l) + lj J o(\

o 'o

1 U x ( x ' t 2 )
 2

l|uti
2(t2) + lj J O(X)dX + 2j |uax|

2(T)dT = ||u tl
2( t l) + lj J o(\)dXdx. (4.2)

o o tL o 'o

Similarly, if we multiply (E) by u , integrate over (0,1) X (t.,,t-), and

note that the assumed smoothness of u and the edge conditions (A) imply that

utt(0,t) - utt(l,t) - 0, t > 0 , (4.3)

we find that u must satisfy
xx J

2f

h
•to

«uTx|2(t)dT. (4.4)

Lenma 4.1. There exists a constant M(J(f,g)) which tends to zero as

>g) tends to zero such that

# In the remainder of the paper all constants M, K^Hju etc. will be

functions of J(f,g) and will tend to zero as J(f,g) tends to zero.

l|utl
2(t) < M 2 and J JuTx||

2(T)dT < K2, t > 0. (4.5)
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Proof. Since 0 satisfies the monotonicity condition (*) given in the

i UX(X,T)

Introduction, i t follows that / / a(X)dXdx > 0, and hence (4.2), with

tx - 0, implies ° °

1 f ( 1 ) W
|u t | |

2( t) +2j luTx|
2(T)dT < ||g||2 + 2j J 0(X)dX < M2, t > 0 ,j j , , (4.6)

0 0 0

where

2 2S£ l l l l l l ' ^ l l l l l D I H l l l 2 ( 4 . 7 )

and where for any a > 0 E,(a) is defined by

E,(a) - . sup O'(X). (4.8)1 a I M }
sup

a}

Corollary 1. ||u || (•) is integrable on [0,«>) and

f Uutl
2(T)dT < M2. (4.9)

0

Proof. The assertion is a direct consequence of (4.5)2and (4.1) with O

equal to u •

Lemma 4.2. There exists a constant M* such that

l|uxxi2(t) <M2 and J ||uxJ|2(T)d-r <£, t > 0. (4.10)
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Proof. If we set t. • 0 in (4.4), apply Schwarz's inequality to

r1

/ u u (x,t2)dx, and make use of (4.5) and the fact that a
f is positive

0

on (-00,00), we see that

l|uxxi2(t) < 2M|uJ<t) + M2, t > 0 (4.11)
x x i ( ) M | J

where

= |||f|||2 + 2|||f||||||g||| + M
2 . (4.12)

It now follows from (4.11) that

l|uxxl|
2(t) < ( M + V V + M J ) = M?,, t>0, (4.13)

and hence (4.13) and (4.1) with $ = u yields

l"l (t) < |ux| (t) < M2, t > 0. (4.14)

Equation (4.13), (4.14), and (4.4) then imply that

0

where for any a > 0

E (a) = inf .a'(X) > 0. (4.16)

|X | |X|< aj

The lemma now follows with M * max(M«^M«).
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Corollary 2.

M < t ) < |ux|(t) < M*, t > 0. (4.17)

Proof. Equation (4.17) follows from (4.!())•• and (4.1) with u » 0.

Lemma 4.3.

lim 0 and lim u (t) = 0. (4.18)

Proof. We shall first show that the function ||u || (•) is uniformly

continuous on [0,<»). It will then follow from Corollary 1 and Remark 4,1 (b)

|2that lim ||ut||
2(t) = 0.

t o o

Equation (4.2) Implies that

,2,Iutl|
2(t2)-|ut||

2(tl)
1
ux(x't2>

0 (

a(X)dXdx • (4.19)

Since ||u || (•) is integrable on [0,w), it follows that given any e > 0
TX

there exists a 6 > 0 such that ̂  and t_ in [0,«>) and Ito""1^! < ^ implies

r
fc2
/ II u II (T)CIT < €1 hence it suffices to show that the second term in

(4.19) is uniformly continuous. We note that

rt2 rl , , XN
/ / a(u (X,T))U (X,J J x Tx

(4.20)
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Equation (4.17) implies that

|cr(X)| < (4.21)

where again E, (•) is defined by (4.8). Therefore equations (4.20) and

(4.21) imply that

/7 a(X)dXdx < E^Hjf 2|||ux|f(T)+||uTX|2(T)|dT. (4.22;

ii ii 2
The uniform continuity of ||u | (•) now follows from integrability of

||u || and uniform boundedness of ||u || (•) on [0,oo).
TX X

ry ry

We s h a l l n o w s h o w t h a t l i m | |u || ( t ) = 0 . . S i n c e | |u II ( • ) i s
X X X X

integrable on [0/°), we are guaranteed the existence of a sequence of

II II 2
time points {t, } such that lim t. • + » and lim ||u || (t.) • 0. Equation

(4.4) now tells us that

uxxl|
2(t) < i) +2«Uxx«(t)||ut||(t)

t > t r (4.23)

ry

The assertion that lim ||u | (t) = 0 now follows from (4.23). Lemmas 4.1
xx

ry

and 4.2, and the fact that lim ju || (t) = 0.
t-»<»
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« Completion of the Proof of Theorem 1

Throughout this section u will be an (f, g) displacement on S
n

and 6 will be some preassigned number in (0,a ]•"

n

''We take 6 e: (0,a ] so that we may later apply the results of Section 3.

Let us now treat equation (E) as an ordinary differential equation for

u (x,•)• If we multiply (E) by the factor exp// a1 (u (x,T]))dT]] andxx v
?l O'(U (x,Tl))dTl)

-1

integrate the resulting expression over (t-,t-), we see that the derivative

u of an (f, g) displacement u must satisfy the following identity:
x x • v^'

- e x p - / O'(u (x,n))diiU / u (x,T)a'(u (x,T))exp// a1 (u (x,Ti))dri dx I (5.1) -
\J X /!J T X J X I /
Vtl ^ h \h ) J

for all (x,t pt 2) in [0,1] X [0,oo) x [0,oo) with t± < t^

Setting t- - 0 in (5.1), noting that f and g are respectively

C and C2 on [0,1] and that a is G on (-«>,«>), and making use of the fact that ^

since u is an (f,g) displacement the derivatives u and u are by
CX LXX

hypothesis continuous on [0,1] X [0,«>) we obtain """
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Lemma 5.1. u has two continuous space derivatives on [0,1] x[0,»).

Moreover

Uxx (°* t ) " Uxx(1't) " °> t Z °* (5<2)

Our next result is

Lemma 5.2.

(a) The function 0(u) defined by

0(u)(x,t) « a'(ux(x,t))uxx(x,t), (x,t) e [0,1] x [0,oo), (5.3)

satisfies hypothesis (A-2) of Theorem 3.

(b) The velocity field u admits the following representationi

J J > > > J > > t > > > > > r
t-6 0 0

J J G(x,|,t-ri)0(u)(^T1)d6dn + J G(x,&,t)g(Od&, (x,t) e [0,1] x[0,6],
,00 0

where of course G is the Greenfs function for (H) (see (3.16)-(3.18)),

and g is the initial velocity field.

Proof. Assertion (a) follows immediately from Lemma 5.1.

Assertion (b) depends on the fact that we can regard (E) as the

heat equation (H) for u . Equation (5.4)- is an immediate consequence of part (a)

of the lemma, the fact that by hypothesis u has two continuous space
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derivatives on [0,ll X [0,«>) and vanishes at 0 and 1 for all times t > 0,

and Theorem 3; while (5.4). follows from part (a), the smoothness of the

initial data, and Theorem 3.

Equations (5.4), (3.7), (3.8), (3.10), and (3.11) now tell us

that

fo3/4||0(u)||t_M + 6-
1/4|ut||(t-6), t > 6,

C"1|ut|(t) < J ' (5.5)
jt3/4||0(u)«M+ |g|, t e [0,6],

and

Ut||(t-6), t > 6 ,

where ||-|| * c, l h l ( t - 6 ) , and | - | are defined in ( 3 . 5 ) . I t fol lows from

equation (5 .3) that

l*00ll A A < B J I U I c A^|u |L A A, (5.7)
11 v / nt-o,o - ] \ ' x't-o^o/11 xx"t-o,o7 v 7

and

ll*(u)l|0)t < H(^o,^'Jo,f (5-8)

where |*L and | • j . . are defined in (3.5 ), and where Ex(-) is defined

in (4.8). Lemmas 4.1 and 4.3 now imply

|ut|(t-6) <M, t > 6,

and (5.9)

lim |ut||(t-6) = 0,
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where M is the constant in (4.5), while Lemmas 4.2 and 4.3 and Corollary 2

yield

|u L s , < ||u I , , < *L- t > 6,1 x ' t - o , o — " x x " t - o , o — • ' * > — >
(5.10)

'Uxlo,t * HUxx»0,t ^ "*> t C [ 0 , f i ] ,

and

lira ||u L . « . - 0,t J xx»t-6,6

where M is the constant in (4.10).

Combining equations (5.5)-(5.10) we obtain

Lemma 5.3. There exists a constant M** such that

|ut| (t) < M** and |utxl(t) < M**, t>.0. (5.11)

Moreover,

lim|ut|(t) » lim |u |(t) - 0 . (5.12)
t<»

We shall now prove

Lemma 5.4. There exists a constant MM. such that

Moreover,

|vixxl(t) < ^ t > 0 . (5.13)

lim |u |(t) - 0. (5.14)
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Proof. An immediate consequence of (5.1) is the identity

for 0 < t- < t^ < «>, where

Eo(M^) and E± 2&£ E ^ ) (5.16)

and M. is the upper bound for u . Setting t~ = 0 in (5.15) and making use

of the fact that Lemma 5.3 implies

l u t l t t t i M** f o r a 1 1 ° < h < t 2 < ^

we see that

lUxxl(t) £ 3M**+ tlfj + lsll — M#.

Equations (5.13) and (5.15) now yield

and (5.17) and (5.12) x establish (5.14).

Our final task shall be to show that the function 0(u) defined

in (5.3) satisfies condition (iii) f of (A- 2 ) f . We shall prove

Lemma 5.5. For any t e [0,«>) and any fixed 6 e: (0,a ] there exists a

constant K f(t,6) < «> such that

-7-7= < K'(t,6), (X,TI) €: [0.1]x [t,t+6]. (5.18)
I 1/2 - 9 9
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Moreover,

and

K'(t,6) < K" < », t <=: [0,«>),

lim K'(t,6) - 0.

(5.19)

(5.20)

Granting the validity of Lemma 5.5, it then follows from

equations (5.4), (3.9)/ (3.14), and (3.15) that

,-1/21 L A A + 6 K (t-6), t > 6, and

K«(0,t)t1/2
(5.21)

, t e [0,6],

and

tt1
t > 0 . (5.22)

Since

< Ei(l"xl(t))|uxxl(t), j

(5.23)

Lemmas 5.3 and 5.4, when combined with equations (5.21)-(5.23), establish

Lemma 5.6. There exists a constant M H such thatM H

|uttl(t) < M # and |utxxl(t) < M##, t > 0. (5.24)
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In addition,

lim |u |(t) - 0 and lim |u. |(t) - 0. (5.25)

We now prove Lemma 5.5. Since

|0(u)(x,T))-<Ku)(x,t)| = |a'(u <x,n))u <x,ti)-o'(u (x,t))u.
XX

< |u (x,ti)l|af(u (x,ti))-
A A

0- (UX(X, t)) | | Uxx(x,Tl) - U x x ( X , t) | , (5.26)

since

|a'(ux(x,T1))-a
t(ux(x,t))| = |a"(ux(x,a))uxt(x,a)(n-t)|

for some a e: Ol,t), and since |u |(t), |u |(t), and |u .|(t) are uniformly

X XX XL

bounded on [0,») and tend to zero as t tends to infinity, we see that the

first term of (5.26) gives no trouble, and hence it suffices to show that

(5.18)-(5.20) hold with 0(u) replaced by u . Now (5.1) with t2 = f\ and t±

implies

= t

l - e x P M a'(ux(x,

utlW+lutlt.n-tl(1-e"E

for 0 < f < TJ < » where E is defined in (5.16). Since the sum

|u |(t) + |u |(t) + |u | is uniformly bounded and tends to zero as

t tends to infinity, it now suffices to show that (5.18)-(5.20) hold with

0(u) replaced by u •
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We now consider |u (X,T\)—u (x,t)| where t e [0,»), TJ e: [t, t+6],
t t

and 6 < a . Equation (5,4) with TJ replacing t and t replacing t-6 and

equation (3.10) imply that

|ut(x,iy)-ut(x,t)| < C|0(u)|t^-th-t| •

Remembering that

r1

lim / 6(x,6 }a)u (
a-»0"*"0̂

we have

J 6(x,

J G<x,6,ii-t)ut(6,t)«-ut(x,t) - J JT
0 t

r
0 t

Since u satisfies (A), we then have

J J Gu<x,ft,n-*>uttt,t)dXds

nl r>lnn
J G(x,£,Ti-t)ut(!,t)d!-ut(x,t) - J j G6(x,e,ti-X.)ut6

Equations (3.11)2, (5.27), and (5.29) then yield

|u t(x,T l)-u t(x,t) | < G|0(u)|t h - t | + C|u

(5.28)

(5.27)

(5.29)

(5.30)

where again C is the constant of Theorem 3. Equation (5.3) and

Lemma 5.4 tell us that |0(u)| is uniformly bounded and tends to zero
tjTJ-t
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as t tends to infinity, while Lemma 5,3 tells us the same conclusion is

true for |u !(•)• Hence, (5.30) establishes Lemma 5.5.
LA

Summarizing the results of Sections 4 and 5 we obtain Theorem 1.
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6. Existence and Uniqueness of Solutions of (E), (A), (B), and (C)

We introduce the following notation. For each pair of numbers

(i,a) in [0,«)x (0,a V we define DT _. C(D T J, and q(D J x C ( D T J as
o y ̂ * 9 ̂ ^ 9 ̂ ^ 9 ̂ ^

"a is the same constant appearing in Theorems 3 and 4 of Section 3.

follows:

T a

(continuous functions f on D
t,O!r

c<Dt,a>xC(DT,(P - {(fl'f2>

(6.2)

<6'3>

It is easily verified that C(D J) and C(D J x C ( D } are Banach spaces

under the norms

|f|̂ a - max |Jmax | f ( x , t ) | and

<fl'f2>U,a max

(6.4)

For each (x,a) in [0,<»)x(0,a ] and each pair of functions A

and ft in C [0,1] and C [0 ,1 ] , respectively, we define the operators h,

Tv and T2 mapping C(Dx

h(V,W)(x,t) =

into C(DT ̂  by

0'(W(X,n))dTi)(Avv(x)-fl(x))

t r*
— exp - / af (W(x̂

a'(W(x,7))d7jdTi , (6.5)
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ptpi pi
>t) - / / G(x,|,t-Tj)at(W(6,Ti))(V(i,Tj) +h(V,W)(|,Ti))d|dTi + / G(x,!,t-T0&(&)d|, (6.6)

T 0 U0
and

T2(V,W)(x,t) = J T1(V,W)(y,t)dy - J dif T ^ W ) (y, t)dy + F\(y,U) (y, t)dy

0 0 0 0

r1 r1

- J d&J h(v^w)(y>t>dy^ (x,t)eD ia, (6.7)
0 0 '

where of course a is defined in (1.5) and G is the Green's function for

problem (H).

If u is an (f,g) displacement in S^, then it is easily verified

that for any (T,a) €: [0,oo) x (0,aQ] the derivatives u and u satisfy

u (x,t) = T.(u ,u )(x,t) and u(x,t) = T(u.u)(x,t), (x,t)eD ^ (6.8)

provided we let A(*) = U(*,T) and fi(-) = u (^T).

Our first step is to show that for any i > 0 and any pair of

functions A and ft the equations

V(x,t) = T,(V,W)(x,t) and W = T.(V,W) (x, t), (x,t) e D T . (6.9)

have a unique solution provided a < aQ is sufficiently small.

We let L be any fixed positive number satisfying

J(A,ft) < L (6.10)^

FSee equation (2.2) for a definition of J(A,ft).

and we let (V,W) and (V!,Wf) be any two pairs of functions in C(D a)xC(D O



47.

obeying

I(V,W)| <4L and | < V , V ) | T < 4L (6.11)

Then, a straightforward calculation shows that

I C T j C V ^ ^ ^ W ) ) ! < Qk(L) (6.12)

and

IC^OW-T^VSW), T2(V,W)-T2(V',W))|-T^a < al<L)l(V-V,W-W)| • (6.13)

It now follows that for any L satisfying (6.10) we can choose

OL < aQ sufficiently small so that the mapping (V,W) -» (T1(V,W),T2(V,W))

maps the ball /(V,W) | |(V,W)| T a<4LV into itself and is contracting.

Hence, there exists a unique pair of functions (V,W) in C(D )xC(D }

with | O^W) | < 4L satisfying (6.9) .

In addition, we have

Lemma.6.1. Let (V,W) be the unique pair in C(DT a)xC(D T ^ satisfying

(6.9) and define t^ and U2 by

U^Xjt) = J W«,t)d£ and U2(x,t) « 8(x) + J V(x,T))dr) (6.14)
0 T

for (x,t) e D . Then:

(i) U. s U9 in D . Moreover,

U(x,r)=A(x), Ut(x,r) - Q(x), and U(0,t) = U(l,t) = 0, (6.15)

where now 11 = 11,
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(ii) The partial derivatives Vx, Vfc, Vxx, Wx, Wfc, W^, Wxt, Wfcx,

and W exist, are in C(Ji^ Q ) , and satisfy

Wfc = Vx, and V ^ = W ^ - Wxt in D ^ . (6.16)

Proof. The assumptions on A, &, and O} the fact that V and

W satisfy (6.9), and calculations similar to these employed in the proof

of Theorems 3 and 4 imply that W has three and V two continuous space

derivatives in D . The arguments used to establish Theorem 3, the

smoothness of the spatial derivatives of V and W, and equation (6.9)

allow us to conclude that V and hence W exist and are continuous in D
t L T • Cv

That W and W are in C(D^ ^ now follows from the representations for

W and W . The verification of (6,10)-(6.12) is also a straightforward

calculation.

Lemma 6.2. For any (f,g) there exists a number a < a and there exists a

unique (f,g) displacement undefined on DQ a » SQ^a. Moreover,

Illu1!!! (t) < M, t e [0,a] (6.17)

where M » M(J(f,g)) is the a'priori bound obtained in Theorem 1.

Proof. The existence of an OC < (X and the existence and uniqueness of an

(f,g) displacement on D ^ follow from Lemma 6.1 by setting A = f and SI » g.

The bound (6.17) follows from Theorem 1.
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Completion of the Proof £f Theorem 2. We extend the interval of existence

in the following way. We now take A ( 0 • u (-,a) and fl(-) = u 0,a) where

1 #
u denotes the function obtained in Lemma 6.2 and we solve (6.9) in D .a, a

''The fact that J(f,g) <M(J(f,g)) and equation (6.17) allow us to choose

a in Lemma 6.2 so that this may be done.

Using the solutions of (6.9) we employ the construction of Lemma 6.1 and

obtain a function U which extends the function u to the strip D . The

2
composite function u defined by

(V^t), (x,t)€iD I
u(x,t) = \ °>a\ (6.18)

|^J(x,t), (x,t) e D ^ a J

is an (f,g) displacement in D 2 and hence by Theorem 1 satisfies (6.17)

for all t in [0,2a].

Proceeding inductively, we may now extend the domain of existence

and uniqueness, increments of a, to [0,1]X[0,T] for any T > 0.
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