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1. Introduction

This paper presents a study of the mixed boundary initial

value problem for the third-order partial differential equation

#, 1

Pl = O'(udu_+hu ., (x,t) € (0,1) X (0,%), (E')

o tt

where A and P, are positive constants. It will be shown that if o' (t) > 0
the problem is well set in the sense that there exists a unique solution
which is stable with respect to perturbations in thé initial data.
Moreover, it will be shown that the solution decays to zero as t tends to
infinity.

A physical prototype of the problem studied here arises when
one considers purely longitudinal motions of a homogeneous bar of uniform
cross-section and unit length. If we denote by x the position of a
cfoés-section (which is assumed to move as a vertical plane section) in
the homogeneous rest configuration of the bar, by u(x,t) the displacement
at time t of the section from its rest position, by 7(x,t) the stress on
the section at time t, and by po >0 the.constant density of points in

the rest position, then the equation of motion becomes

P u = T

o tt x’ (x,t) = (0,1) X (0,). (1.1)

If one takes the ends of the bar (1h our case the points 0 and 1)

to be clamped for all times t > 0, then the displacement u must satisfy the

#iﬂ the future (') will denote differentiation with respect to u
Arguments of functions, if not stated explicitly, will be x and t.
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auxiliary conditions
u(,t) = u(l,t) = 0, t>0. " (A)

One may now obtain a differential equation for the displacement
u by makfng a specific assumption about the dependence of the stress T on
the displacement u. The simplest such assumption is Hookes law which

asserts that
T = Eoux, (1.2)

where Eo is a positive constant. In this case (1.1) becomes the linear
wave equation.
It would appear somewhat more realistic to allow for a nonlinear

dependence of the stress T on u_. Thus one would assume that
7 = o(ux). (1.3)
"Equation (1.1) then yields the nonlinear wave equation

o u (x,t) & (0,1) X (0,x). (1.4)

1
oV = O9'(u)u

xx’

For a bar with clamped ends it would seem reasonable to seek a solution

of (1.4) satisfying (A) together with the initial conditions

u(x,0) = £(x), 0<x<1, ®)
ut(x,O) = g(x), 0<x<1. (c)




The problem (1.4), (A), (B), and (C) were considered in [1].

It was assumed there that o satisfies the physically reasonable conditions
g(0) =0, and o'(§) >0, tE e (-o,), (%)

Moreover, O' was taken to be monotone decreasing in [e]. Rather
surprisingly, the result was that the problem can have a global, smooth
solution only if ¢ is a linear function as in (1.2). Otherwise, some
second derivative of the solution must somewhere become infinite after
a finite time.

In this paper we assume the material to be a nonlinear Kelvin

solid; that is we assume a stress relation of the following form:
T = o(ux) + Xuxt, (1.5)

where A is a positive constant which may be interpreted as a viscosity
. and (C) remain
coefficient. Then (1.1) yields equation (E'). The conditions (4), (B%,\the same.
There are two considerations which suggest the modification
(1.5). First, the inclusion of the strain rate term Xuxt begins to
reflect the past history of the strain u . Thus (1.5) can be considered
as a move toward the more general memory theories encountered in rational
mechanics (see for example [2]). It appears to be the simplest possible
model having this feature. Second,one can hope that (E') will lead to a

"viscosity method" approach to equation (l.4). There is a conjecture

concerning non-linear hyperbolic equations such as (1.4). This is that




although a smooth solution may not be possible, under certain conditions
there will always be a uniquely determined weak solution, that is one
containing shocks. The problem is how to find this preferred weak
gsolution. One idea that has been suggested is to add an artificial
higher order derivative multiplied by a small parameter A, solve the
problem for 0 < A { Xl’ and then let A tend to 0. The conjecture is
thét the limit function will be the appropriate weak solution. Here, we
simply solve the problem for fixed A > 0. We emphasize, however, that
many of our estimates would break down if we maintained the constant as
A and then let A tend to zero.

One can see that the stress law (1.5) has certain features which

are more desirable than (1.3) by making a very simple computation. Consider

the linearized version of (1.5); that is assume that the honlinear term

o(ux) in (1.5) is replaced by Eoux' Then the equation becomes

pu = Eu + Au

ott 0 xx xtx’ (x,t) € (0,1) x (0,). (1.6)

Let us seek solutions by separation of variables in the form Tn(t)sin nnx.

These clearly satisfy (A). The functions Tn(t) must satisfy the equations
0 T"(t) = -n’x>(E_T_+AT').
on on n

It is easy to see that these Tn's satisfy the relations

-lnzﬂz + /&?n4n4-4Eopon2n2

T (t) = 0(ePnty, B = - as t s, (L.7)
p
[o]




Thus the solution of (1.6) with conditioms (A); (B), and (C) can be
approximated by funcﬁions which vanish exponentially in t. This is in
contrast to solutions of the linear wave equation which do not vanish as
t tends to =,

The calculation of the preceding paragraph strongly suggests
that solutions of (1.6), (A), (B), and (C) tend to zero as t tends to
infinity. Hence, the introduction of the term Xuxt in (1.5) appears to
add a damping mechanism to the process. We shall see later that the

presence of Kuxt does indeed damp solutions of the general problem.

#

See Theorem 1, equation (2.4).

It will be observed in the argument above that the sign of the
constant A is crucial. If A were negative, solutions of the linear
problem would grow exponentially in time. Throughout the paper it will
be seen that our results depend heavily on the fact that A is positive.
It is important to remark that once one adopts the stress law (1.5) it
is possible to show that the second law of thermodynamics requires that
A be positive. The proof of this fact can be obtained by specializing
the fesults of [3].

For ease in writing we now set both po and A equal to one.

Hence we replace (E') by

1
u, = O (ux)ux +u

x xtx’ (x,t)  (0,1) x (0,). (E)




2, Statement of the Main Results

Throughout this paper we shall assume that the function O 'is
C3(-u5@) and that its derivative o' satisfies (¥). We shall also assume
that the functions f and g appearing in (B) and (C) are, respectively,
c* and ¢ on [0,1] and vanish together with their second derivatives at
zero and one.

Let T be any positive number. For functions U which are 02 on

the strip S, = (x,t | 0<x<1, te[0,T]} we let

2 1 .
Mulll ¢e) = max |—SU_ , t € [0,T], (2.1)
Lo Ly xe 10,11 |ox! Haek

and for functions A and Q which are c? on [0,1] we let

2 ) @
J(,Q) = X max |AE)| + max |Q@)]|]|. 2.2)
=0 xe [0,1] xe [0,1]

An (f,g) displacement in ST will be any function u such that:

(1) all derivatives appearing in (2.1) are continuous on ST’

(H1) ue = Uy =Y, in (0,1) x (0,T], and

(1i1) u satisfies (E) in (0,1) X (0,T] and conditions (A), (B), and (C).

An (f,g) displacement on S_ is defined analogously.




The principal results of the paper are contained in the

following two theorems.

Theorem 1. If u is an (f,g) displacement on S, then there exists a
constant M, which depends on J(f,g) and tends to zero as J(f,g) tends to

zero, such that

Mulll &) < m, t > 0. | (2.3)

Moreover,
ln [||lulll¢) = o. (2.4)
t—oo

Theorem 2. For any f and g there exists a unique (f,g) displacement on
S,
We here give a brief outline of the proofs of Theorems 1 and 2;
details appear in the following sections. |
There are two main ideas used in the proof of Theorem 1. The
first involves viewing equation (E) as two different inhomogeneous

equations. That is if u is an (f,g) displacement on S, then:

(1) for any T and @ > O the velocity field V(x,t) ut(x, t)

satisfies the following linear heat equation:
Velx,£) =V _{x,t) = ¢()(x,t), (x,t) = (v,7+al,
V(x,1) = ut(x,T),. x e [0,1], (2.5)

v(,t) = V(l,t) = O, t e (v,14+al,



where

o (5, t) L o' (u (5, 0))u_(x,t); and (2.6)

(i1) for each (x,7) € [0,1] X [0,o) the function W(t) def uxx(x,t)

satisfies the ordinary differential equation

%Q- + a(t)w(t) = B(t), t>n,

@.7
W(t) = uxx(x,T),
where
at) £ 5w (x,£)) > 0, and
x (2.8)

B(t) = utt(x,t).
Now (2.5) and (2.6) imply the existence of a functional M such that
u (x,£) = M@ (-, );u (-,1), (2.9)

while (2.7) and (2.8) guarantee the existence of another functional N

such that
u Gt) = N(u (x,-), u, (x,°); u_ (x,7). (2.10)

The second key idea arises as follows. In Section 4 we make
use of energy inequalities to derive uniform bounds for the spatial L2
norms of u, and u Then formulas (2.9) and (2.10) allow us to obtain
pointwise bounds for all necessary derivatives. The latter process is

described in Section (5).




We establish Theofem 2 in the following way. .Setting 1T=0
and using (2.9), (2.10), and the initial data we are able to show that
the derivatives u_ and u, of an (f,g) displacement u must satisfy a
certain pair of nonlinear functional equations. For sufficiently small
t (say < @) these equations are uniquely solvable. Moreover, they do
indeed give rise tb a unique (£f,g) displacement u! in [0,1])([0,&]
Next, setting T = @ and using (2.9), (2.10), and ql(-,a) a new set
of functional equations for the first derivatives of an (f,g) displacement

1 satisfies the a priori

are derived. Making use of the fact that u
estimates of Théorem 1, we may conclude that these new equations have a
unique solution in [0,1] X [, 2a]. Using this last pair of solutions

we may extend the function ul to an (f,g) displacement u? on [0,1]1x [0,2a]

Proceeding inductively, we then extend the domain of existence

and uniqueness, in increments of a, to [0,1] X [0,«).
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3. Results for the Linear Heat Equation

Our primary goal in this section is to establish certain
properties of the solution operator M for the inhomogeneous linear heat
equation (see (2.9)); thus, for any a > 0, we seek properties of the

function V satisfying

Vt(x,t) - Vxx(x,t) = ¢(x,t), (x,t) « (0,1) x (1, t+al,
v(,t) = Vv(,t) = 0, t € (1,1+al, (H)
V(x,t) = Y(x), x « [0,1].

It is well known that if ¢ satisfies a Holder condition jointly
in x and t and if ¥ is sufficiently smooth in x, then there exists a
unique representation of the solution of (H) in terms of the Green's

function G(x,&,t-7) (see Friedman [4]); this solution can be written as

V(x,t) = P(x,t,7;¥) + Q(x,t,T;9), (3.1)
where
1
Pyt ) = [ Gl bt (3.2)
0
and
t nl
Q(x,t,T;9) = ff G(x,&,t-n)¢(¢,n)dEdy. (3.3)
T O

In Sections 5 and 6 we shall have need of (3.1) under two

different sets of hypotheses, neither of which is quite standard. We
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shall also need a set of bounds for the potentials P and Q, some of which
are non-standard., In essence, the remainder of this section is devoted

to verifying that under two different sets of hypotheses solutions of (H)
are given by (3.1) and that P and Q possess certain boundedness properties.

Throughout this section we shall assume

2

(A-1) ¥ is C° on [0,1] and vanishes at zero and one; and either

(A-2) (i) ¢ is continuous on [0,1] X [t,t+c],

(i1) ¢(0,t) = ¢(1,t) =0, t e [1,7+al, and

(iii) ¢_and ¢ _ are continuous on [0,1]x [7,7+0]; or
(A-2)' (A-2)' is simply (A-2) with (iii) replaced by

(iii)' there exists a constant K < o such that

|o(x, t) = d(x,m)| < Klt-nlllz, x,t,m) € [0,1] x [1,71+a] x [r,1+al.  (3.4)

For functions h defined on [0,1] x [7,7+Q] we let

Inl(t) = max |n(x,t)l, Il ., = max |n|(o),
xe [0,1 ’ te [t,+al
(3.5)
1 2 1/2 '
Iy = [ eyoa], amd Il , = w6l
o ‘ ’ te [t,1+al
and for functions Q defined on [0,1] we let

2 1/2

lal = max |a&x)|, and ||Q] = Q(x)dx | . (3.6)

xe [0,1] o
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We can now state the main results of this section. Throughout
this section O will denote an arbitrary but fixed positive scalar.
Theorem 3. If o< a and if ¥ and ¢ satisfy (A-1) and (A-2) respectively,
then there exists a unique solution of (H) which can be represented by
(3.1). Moreover, there exists a constant C, independent of o, ¢, and ¥,

such that the potentials P and Q satisfy the followinginequalities:

cHeley < ¥l Aty (3.7)
(e=n) "yl
v,
-1 el
chlr ey < ; (3.8)
i (-0 4y
cHe_l@ = ¢l < i ; (3.9)
= 0 T ey
- (t‘T)ld)l f)
cHalwy < LAT (3.10)
G L/
(t-T)lquI'r,a ’
ol ® < (el (3.11)
ORI TN
oyl < elogl, o (3.12)
and
ol < ologl, ,+ ol (3.13)
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Theorem 4. If a < a and if ¥ and ¢ satisfy (A-1) and (A-2)', then there
exists a unique solution of (H) which can be represented by (3.1). Moreover,
the inequalities (3.7)-(3.10), (3.11)2 and (3.11)3 of Theorem 4 remain

valid, and, in addition, Q and Q. satisfy

Mo l® < x4 |9l (3.14)

)
1,0

and

(3.15)

el < e+ archiol

where K is the constant appearing in (3.4).
An immediate consequence of the Theorems 3 and 4 is

Corollary 1. If a< a, if Y satisfies (A-1), and if ¢ satisfies both (A-2)

and (A-2)', then all the’Bounds of Theorems 3 and 4 are valid.

Remark. The L2 bounds of Theorem 3 appear to be new. These bounds,
when combined with energy estimates of the type to be derived in section 5,
should be of some use in the discussion of the existence and uniqueness

of solutions of semilinear parabolic partial differential equationms.

Our first task in proving Theorems 3 and 4 is to obtain some

information about the Green's function G(x,&,t-t). We define functions

HUNT LIBRARY
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I' and K by
1 -a2 /4b |
F(a,b) = ——7=e (3.16)
’ 2/xbt /2. -t
and
K(a,b) = Z(I"(a-l-Zm,b) + T'(a-2m,b)). (3.16),

m=1
Then I'(x-£,t-1) is the fundamental solution for the linear heat equation

and the function
G(x,E,t-1) = D[(x-gyt-1) — I(x+E,t-1) + K(x-§,t-1) — K(x+f,t-1) 3.17)

is the Green's function for problem (H). On occasion we shall use the

following notation:

Gl(x-§',t-'t) = D'(x-g;t-1) + K(x-Eyt-1), ‘Gz(x+§ﬁ,t-'r)' = -['(x+E,t-1) — K(x+E,t-1),
and G(x,E,t-t) = Gl(x-g,t-r) + Gz(x+§)t-1).

We first note some elementary properties of G.

(i) PFor each (¢,7) € [0,1] x [0,0) and each positive

G = 0, (x,t) € (0,1) x(1,7+a], (3.19),

G(0,E,t-1) = G(l,t,t-1) = O, t e (1,74a], | (3.19),
and

G(x,8,0) = 0, xe [0,1] with x # E. (3.19),

(3.18)




e~

15.
(i1) For each (x,E,t-t)  [0,1] x [0,1] x (0,0l
G, = -6, and G =Gy, (3.20)
(1ii) For each (x,t) « [0,1] x [0,») and each positive
Ggg +G = 0, (¢,t) « (0,1) x [t-q,t), (3.21)1
G(x,0,t-7) = G(x,l,t-1) = O, T e [t-a,t), (3.21),
and
G(x,£,0) = 0, te [0,1] with ¢ # x. (3.21),

We now give some estimates for G.

Lemma 3.1. Suppose @ < @ . Then there exists a constant C, independent

of a, such that

c e, E, t-1)| < T(x-t,t-1) + C(xE;t-1), (3.22),
e x,t,e0)| < T Gt e-m)] + T Geitye-n)],  (3.22),
C-lng(x,Q,t-'t)l < Ir gyt | + T Gty e-m)],  (3.22),

and

-1 1/2 T(x-E,t-1) -t [ P(x+E, t-1) |zt
Cl(t-'\:) GT(x,g,t-T)] < Ty el T e M (3.22),

for all (x,t,t-1) « [0,1]1x [0,1] x [0,c].
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Remark. It will be evident from the proof that the same bounds apply to

Gl and G2 separately.

Proof of Lemma 3.1. Since

2
-m gm(x-£)

[(x-t+2m,t-1) = TI(x-f,t-1)e (t-7) ’ m >0,

and since n? + m(x-£) > (m--l)2 for all x-§ in [-1,1] we have

2
© -m ym(x-£) .
-z2
Xe (t-7) < 2(1*(1”7 e 2 d'z), < 2 +a(l)/2/:T def k., (3.23)
m=1 0
It now follows from (3.16)2 and (3.18)l that
|t (x-E,t-7)| < (2K+L)T(x-E,E-T). (3.24),
A similar calculation yields
|c? (x#t, t-1)| < (2k+L)T (xbEy t-1), (3.24),
and hence (3.21)1 follows from (3.18)3, (3.24)1, and (3.24)2.
We now observe that for m > 0
-gx-giZmzz -m Fm(x-£)
- (x-£+2m 4(t-1) 2m (t-7)
I' (x-8+2m,t-1) = —(x-f42m) e = T (x-&,t-1){1 == .
X 4/1?(t-1)3/2 x (x-¢t)

A direct consequence of the last formula and (3.18)1 is the identity

o0 -m2 -m(x-£) -m2+m(x-§)

-m
= (t-1) )
i(x"g;t"‘) = D (x-§,t-T1 + z<e (t-1) 4. (t-fr) )— z 9-’2_:;.:-57_ sinh m(-—-g-‘-_:__[ .

X

(7]

m=1 m=1

(3.25)

J
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We now show that for all (x,&,t-t) € [0,1] x [0,1] X [0,0] with x # ¢

2
o -m
me (£ x-£
and o< a, the series Z =) sinh m(t—_;> is uniformly bounded. We
m=1
observe that
2
-—n__ 2 i L _
-—E—— e(t-'r) sinh m(ﬂ) = -m——-— e(t-T) —ti—- sinh m E—g.
(x~¢) t=-1T (t-1) nlx-£) t-1
Noting that
-|=]
|z|e-|z| < e¢'e 2 and |w| "|sinh w| < (-:"elWI
for all z and w, we have
-m2 -m2+2m
ﬁe(tq)sinh m(%) < Cez(t-T) . (3.26)

Since (t-1) € [0,a] and & < o, (3.26) implies that

2
-m
> (E-T)
Z % sinh m(t—_-_é-). < k' < o3 (3.27)

m=2

and hence incorporating the term with m = 1 we obtain

2
-x-

2(x-£)

m=1

It is easily verified that for (x,t) « [0,1]x [0,1]

63
1 t-t t-T
&)\ - e

1 -1
L6 _ D

< (3.29)

o m_ ' B | (x-£)
Z-&%g—)— e(t-T)sinh maﬁi) < 1 e(t-T) (e(tq) - e(t-1)> + k'. (3.28)
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and hence it follows that the first term on the right hand side of
(3.28) is uniformly bounded for all (t-t) > 0. Equations (3.25), (3.23),

(3.28), and (3.29) now yield
1 '
le, (x-85t-)| < k"|T_(x-E,e-1)], (3.30),
A similar calculation shows that
| Geteye-r)| < KTIT, (x-8,e-0) | (3.30),,

and hence (3.18) and (3.30) establish (3.22)2 and (3.22)3.

Similar arguments yield (3.22)4.
Our next result concerns integrals of G and its derivative.

Lemma 3.2, Suppose O S,QB. Then there exists a constant C, independent

of a, such that

1
JF letx,t,t-1)|dt < ¢, (3.31),
0
1 2 -1/2
JF le(x,t,t-1)|“at < c(t-1) "%, (3.31),
0
1 -1/2
Jf lGx(x,ﬁ,t-T)|d§ < C(t-1) ’ (3-31)3
0
1 -1/2
JF |G§(x,§,t-1)|d§ < c(t-1) 4, : (3.31),
0
1 2 -3/2
JF IGx(x,E,t-T)I d¢ < c(t-1) , (3.31)
0




J

e
Rt

)

19.
1 2 -3/2
f IGE(X,Q,C'T)l d¢ < C(t-1) ) (3-31)6
0
and
1 1/2 -1/2
f I(t-‘l’) GT(x)E:t'T)Idg < C(t-1) . (3-31)7

0

Remark. The remark following the statement of Lemma 3.1 implies that the

1

conclusions of Lemma 3.2 hold with G~ and G2 replacing G.

Proof of Lemma 3.2. The lemma is a direct comsequence of equation (3.22)

2
and the boundedness of all moments of the function e~2 .

We turn now to the proofs of Theorems 3 and 4. We begin with
Theorem 3. We observe first that the usual arguments (see for example
Friedman [4]) allow us to establish the following facts concerning P
under the assumption that Y satisfies (A-1):
(1) P is continuous on [0,1] x [1,1+x],
(i1) lim P(x,t,T;¥) = ¥(x) uniformly in x on [0,1],
t-+1+

(iii) Pp(O,t) = P(L,t) =0 t € (1,7+x], and

(iv) for each (x,t) € (0,1) X (7,7+al, Px’fxx’ and Pt exist, are
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continuous and are given by

1
Pt = [ 66t v
0

1
Pxx(x’t) = f Gxx(x,g,t-'r)w(g)dé (3.32)
0

1
P, (x,t) f G, (x, &, t-T)P(E)dE.
0

One can also obtain, from standard arguments, the following results for Q:

(1) Q is continuous on [0,1] x [7,1+a],

(i1) 1lim Q(x,t) = O,
tott

(iii) Q(o,t) = Q(1,t) =0, t e (1,7+x], and
(iv) for each (x,t) € (0,1)x (T,'f+a] Qx exists, is continuous, and

is given by

tpl
Qx(x,t) = J[‘JF Gk(x,g,t-n)¢(§,n)d§dn. (3.33)
T 0

Properties (i), (ii), (iii), and (iv) for Q are true under
either (A-2) or (A-2)'; in fact they require only the continuity of ¢.
1f, however, one wishes to calculate Q, or Q4 then additional conditions
must be placed on . As we have already noted the usual condition is that
¢ is jointly HGlder continuous in x and t. Our task is to show that this

condition can be replaced by‘ either (iii) of (A-2) or (iii)' of (A-2)'.

)

L
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The results we want are the following:

Qxx and Qt are continuous in (0,1) X (t,7+0), (3.34)

and

Q. = Q_ + ¢. (3.35)

t XX

Once these formulas are established it is clear that the function V(x,t),
defined by (3.1), does indeed yield a solution of (H). The'uniqueness of

this solution is again a standard result.

Completion of the Proof of Theorem 3. We begin by obtaining the estimates

for P. We have by (3.31)1

1
|2l (t) < flc(x,g,t-r)llwcg)lds < clyl. (3.36),
U
0
By (3.31)2 and Schwarz's inequality we obtain

1
|2 (&) s(f Ic(x,g,t-w)|2d§>”zllwll < ce-0 9l @ae,
0

Next we observe that (3.32)1 implies that

1
le (&) < f le, (x,&,e-1) | [w(e) | at. (3.37)
0

Equation (3.37) and (3.31)3 now yield

2 le) < oy, (3.38),
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while (3.37), Schwarz's inequality, and (3.31)5 give

-3/4 ;
e ) < cee-n /. (3.38),
1 2 1 2
If we note that Gx = Gx + Gx = -G§ + Gg and ‘make use of the fact that

Y satisfies (A-1), then we obtain the following representation for Px:
1 2
Px(x,t) = u/\ [c" (x-&,t-T1) =G (x+§,t-1)]¢£(§)d§. (3.39)
0

Equations (3.39), (3.24), and (3.31)1 with G replaced by Gl and G2 now

yield

lp ey < cly,l. (3.40)

The above formulas establish equations (3.7)-(3.9). Equations
(3.10), (3.11)2, anq (3.11)3 are established in the same way except that
now one must integrate with respect to n over (t,t).

We have now reduced the proof of Theorem 3 to the verification
that (3.34), (3.35), (3.11)1, (3.12), and (3.13) are valid under the
assumption that (ii) and (iii) of (A-2) hold. Making use of the vanishing
of ¢ at zero and one (see (ii) of (A-2)) for all t in [1,7+a], we can use

the arguments employed in establishiqg (3.39) to obtain

tnl
oty = [ [ 16t et ey =6 oort, en) 10, ymctan. (3.41)
T 0

We can now differentiate Qx again with respect to x to obtain

t pl
Q. (x,t) = ff [Gi(x-§,t-ﬂ)-Gi(x-!-ﬁ,t-fl)]d)g(ﬁm)dﬁdﬂ-
T 0
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1 1 2 2
Since Gx = -Gg, Gx = G§ £

the last equation by parts and making use of (3.21)2, we find that

2

, and G = Gl+-G2, we have Gi -G = -G Integrating

tnl
Qu (x,8) = ff G(x, &, £-n)P; , (¢,n)dEdn. (3.42)
T 0

Equations (3.11)1 and (3.12) now follow from (3.41), (3.42), (3.31)3, and
(3.31)1.
The treatment of Qt is more involved. We calculate the difference

quotient Ay = h_llQ(x,t+h)-Q(x,t)], h > 0. We have

4| pthpl tpl
5 = h f f G(x,¢&, t+h-n)P(E,n)dEdn ——ff G(x,E,t-n)P(E,n)dEdy
T 0 T 0

[ prepl t Al pt+h
- v X[ et emmeemasan + [ [ [ e aemo ol 669
t 0 T 0 t

Consider the first integral on the right hand side of (3.43).

The inner integral is P(x,t+h,n;¢(-,n)) (see equation (3.2)). We write
P(x)t+h,n5¢(')n)) = P(x,t+h,fl3¢(',t)) + P(x)t+h)‘n5¢(';7l)'¢(':t))'
Property (ii) for the potential P implies that
+ .
P(X,t,t;¢(',t)) = ¢(x)t),

and thus we find

-1 t+h -1 t+h
JF P(?,t+h,n;¢(-,t))dn = ¢(x,t) +h \/P {P(x,t+h,n;¢(-,t))-' P(?,t+}t;¢(°,t))}dn.
t t
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Noting that P(x,t+h,n;9(-,t)) = P(x,t+h-n,0;0(-,t)) and that the function
A - P(x,A,0;9(-,t)) is continuous in A for A > 0, we may conclude that given

any € > 0

-1 t+h
h j P(x,t+h,n;0(-,t))dy — d(x,t)| < €/2
t

provided h is sufficiently small. On the other hand, we note that

.1 tth . ptthpl
I = h f P(x,t+h,n;0(:,n)-¢(-,t))dq = h f f G(x,&,t+h-n) (b(E,n) -9 (E, t))dEdn.
t t O
Since 0 < t+h-1 < h, (3.7)1 allows us to conclude that for all h < a

1] < ¢ ‘max [o(E,n)-0C,0)].
0<E<1
t<n <t+h
Moreover, the continuity of ¢ implies that for h sufficiently small
max |$(E,n)-0(E,t)| < e/2¢.
0<E<1
t<n <t+h

Collecting all our estimates we deduce that

-1 t+h
h f P(x, t+h,n;0(-,n))dny — d(x,t)| < €
t

and hence

L ptthpl
lim +h f G(x,E&,t+h-n)P(E,n)dEdn = o(x,t). (3.44)
h-0 t 0
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Now consider the second term on the right side of (3.43). Since
Gx(x,g,l-n) = -Gn(x,g,l-n) = Ggg(x,g,k-n),

(ii) and (iii) of (A-2) allow us to integrate by parts with respect to &

and obtain for the second term

-1 t+h ~t 1 .
w7 st ey, g nasaan
t T 0 '

Making ﬁse of property (ii) for P we can now pass to the limit in this expression
and obtain

t nl
ff G(x, &, t-n)¢ (¢,n)dEdn. (3.45)
T 0

It follows that Ah has a limit as h tends to 0+. Moreover if we compare
(3.44) and (3.45) with (3.42) we see that (3.35) holds. The case h < 0

can be treated in the same way and the proof of Theorem 3 is now complete.

Completion of the Proof of Theorem 4. We shall now assume that (ii) and

(iii)' of (A-2)' hold. Our.goal is to show that under these hypotheses equations
(3.34), (3.35), (3.14), and (3.15) are valid.

We shall first establish that Qxx exists and is continuous. In
the process we shall derive an expiicit representation for Qxx' We take

as our starting point the formula

tpl
Qx(x)t) = ff'Gx(xyf,t'ﬂ)¢(§,ﬂ)d§dn, (3.46)
T 0
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and we consider the difference quotient A = h-l[Q(x+h,t);-Q(x,t)]. It is

easily verified that

-1t pxth
A=hfff Gyp s &, £-1)B(E,n)dNdEdn.
T 0 x

By (3.19)1 and (3.20) this can be written as

_ t pl Ax+h
A = -h fff Gn(k,é,t-n)¢(§,n)d>\.d§dn
T 0 x

1 ptpl pxth
= h .jp Jf JF Gn(x’g’t'n)(¢(§:ﬂ)'¢(§,t))dkd§dn

T 0 x
-1 t nl Axth
—h J[‘J[‘Jf Gn(k,g,t-n)¢(§,t)dkd§dn. (3.47)
T 0 x

We can integrate the second term on the right side of (3.47) with respect

to n to obtain

1 1 px+h 1 ~Ax+h
h™ J[\JF G(A,E,t-1)P(E,t)dAdE — lim Jf‘/p G\, E,t-n)P(E,t)dAdE] . (3.48)
0 x Tl—”:-0 X

Observe that the second integral in (3.48) is simply

x+h
u/‘ P\, t,1;0(-,t)dr
X

where again P is defined in (3.2). By property (ii) of P we have

lim PO\, t,n;9(-,t)) = ¢(x,t) uniformly in x, and hence it follows that
n-t”

1l ~Ax+h _ x+h
lim Jf.]P G\ E,t-n)P(E,t)dAdE = P\, t)ar.
n-t” 0 ‘x
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We now have the second term on the right of (3.47) converging to

1
\/p G(x,E,t-T)P(E,t)dE — P(x,t) (3.49)
0

as h tends to zero.
We now turn to the first term on the right side of (3.47).

Since

loce,m-oe,0)| < ke /2 £ < [0,1],

we have

- t nl Ax+h
b f f f 6, O £, 1) (B(E, 1)~ B, £))dMdEcn
T 0 x

-1 t p1 Ax+h 1/2
< k|n Ifff le=n|™le, @8, eon) [ ardean. (3.50)
T 0 x

Equation (3.31), implies that the right side of (3.50) is dominated by
7

t nx+h
ck|n! ff e " 2ann| < cree-v)t72. (3.51)
T X

It now follows from Lebesgue's dominated convergence theorem that we can

pass to the limit as h tends to zero in (3.47) and obtain

tnl 1
Q. (x,t) = -ff Gn(x,é,t-n)@(&,n)-¢(§,t))d§dn +f G(x,E,t-T)P(E,t)dE — Pp(x,t). (3.52)
T 0 0
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Finally we have to verify the existence of Qt and the validity

of (3.35). Again we work with the difference quotient.h_l[Q(x,t+h)-Q(x,t)].

t+h
h™l [a(x, t+h) - Q(x, £)] = {fff 6, (% £, A1) (@(5,1) ~ 98, £)) dhdedn

t+h
fff G (x,E,A-n)$ (8, t)dAdEdn

t+h n1
+f f G(x,ﬁ,t+h-n)¢(§,n)d§dn}- (3.53)
t 0

As in earlier calculations we deduce that the limit of the first term as

h tends to zero is given by

tpl
-ff Gn(x,é,t-ﬂ)(¢(§,ﬂ)- ¢ (€, t))dEdn, (3.54)
T 0

while the limit of the last term is ¢(x,t). As for the middle term we

carry out the n integration and find that it is equal to
-1 1 ~nt+h .
-h ff [G(x,g,l-t:)—G(x,g,X-TZJJ(g,t)d)Ld&. (3.55)

The limit as h tends to zero of the first term in (3.55) is -¢(x,t),

while the limit of the second is

1
f G(x)g,t'T)(b(g’t)dg'
0
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Collecting all our results we see that the limit of the difference quotient

(3.53) exists and equals

t nl 1
:[f Gn(X,E,t'n)(¢(§m)‘¢(§,t))d§dn +f G(x,&,t-T)P(E,t)dE.
T 0 0
If we compare this with (3.52) we see that (3.35) holds.

The bound (3.14) is a direct consequence of (3.53), condition
(111)' of (A-2)', and (3.31)1 and (3.31)7; while (3.15) follows from

(3.14) and (3.35).
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4. A priori Energy Estimates for the Solutions of (E)

In this section we shall derive certain energy estimates which
must be satisfied by (f,g) displacements u. These estimates, when
combined with the results of Section 3, will enable us to establish

Theorem 1.

We first record some results which will be of use later.

Remark 4.1.

(a) Suppose that & is C2 on [0,1] x [0,©) and vanishes at O and 1

for all times t > 0. Then,
lelce) < lol ey <llo dce) <o fee) <lo_ llce) <lo l), t>o0,

where "'I and || are defined in (3.13).

(b) Suppose that ¥ is uniformly continuous and integrable on [0,x).

Then,
lim ¥(t) = 0. (4.2)

t—oo

Now, and in the remainder of this section, u will be an (f,g)

displacement on S_.

If we multiply (E) by u, integrate the resulting expression

over (0,1)X (tl,tz), and make use of the fact that u satisfies the edge

(4.1)

Yt
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conditions (A), we are led to the following identity:

u (x,t,) u (x,t.)
2 1 x 2 ta 2 2 1 x 1
fu 7 ¢e,) + %/F J/‘ o(yax + %/p lu N7 dr = Jlu ")) + {/\ \/P o(\)drdx.  (4.2)
o o t o 0

1
Similarly, if we multiply (E) by U integrate over (0,1) X (tl’tz)’ and

note that the assumed smoothness of u and the edge conditions (A) imply that
utt(O,t) =u.,(@Q,t) =0, t>0, (4.3)

we find that u must satisfy

€5 pl
lu P e + zf Zf o' (u, (x,)Juz, (x,7)dxds

t1 0
2 t2 A1

= Huxxl (tl) + %/\ JF uxquT(x,T)dxdT

t1 0

t2
= o Py + 2/t v o) —u u oe)ydx + 2 o |2)dr.  (6.4)
XX 1 xx t¥ 72 xx t¥771 < : ‘
0 t1

Lemma 4.1. There exists a constant M(J(f,g)) which tends to zero as

#
J(f,g) tends to zero such that

#

In the remainder of the paper all constants M, M*,M%y etc. will be

functions of J(f,g) and will tend to zero as J(f,g) tends to zero.

2 t . ‘
lu 1*() <M and f lo_IPyar <M, exo0. (4.5)
0
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Proof. Since 0 satisfies the monotonicity condition (%) given in the
uy (x,7)

Introduction, it follows that J[\ U/\O(X)d)\.dx > 0, and hence (4.2), with
0 0

t, = 0, implies
f(l)(x)
2 t 2 2 1 2
lolP@ + 2 u Peoar < sl +2[ [ oo <o, e20,
0 0 0
where
2 def 2 2
o = llell” + (M) N £, (4.7)

and where for any a > 0 El(a) is defined by

E, (2) o' (). (4.8)

{X' T;TSEﬂ

Corollary 1. "utuz(l) is integrable on [O,N) and

0
f Ju P (ar < w2 (4.9)
0
Proof. The assertion is a direct consequence of (4.5%Zand (4.1) with ©

equal to u_.

Lemma 4.2. There exists a constant My such that

t
2 2 2 2
"uxx“ (t) <M, and f Nu. I°¢r)dr < M,, t > 0. (4.10)
0

(4.6)
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=0 in (4.4), apply Schwarz's inequality to

Proof. If we set t1

1
d[\ uxxut(x,tz)dx, and make use of (4.5) and the fact that o' is positive
0 .

on (-»,o), we see that

fo JP0) < 2balice) +1e3, £>0 (4.11)
XX XX 1
where
2 | 2
e = ll£lll® + 2lllll gl + . (4.12)

It now follows from (4.11) that

2
lo, J2ce) < (M +4M2+M2> e, e20,  (413)

1

and hence (4.13) and (4.1) with ® = u yields

lul (&) < |ux|(t) <M, t > 0. (4.14)

Equation (4.13), (4.14), and (4.4) then imply that

t
: 2 2 2 2, def 2
f ”“xx” (t)dt < E_;('EZ)'(M + MM, + M) M3, t >0, (4.15)
0
where for any a > 0
E_(a) inf o'y > 0. (4.16)

{x ERERY

The lemma now follows with M_ = max(Mz,M3).
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Corollarz 2.

[u] (£) < |ux|(t) < M, t > 0. (4.17)

Proof. Equation (4.17) follows from (4.10)1and (4.1) with u = @,
Lemma 4.3,
. 2
lim [lu_ P¢¢) = 0 and Llim fu 17¢e) = o. (4.18)

t—oo too

Proof. We shall first show that the function "utuz(-) is uniformly

continuous on [0,o). It will then follow from Corollary 1 and Remark 4.1 (b)

that lim ||u I¢e) = o.

t—ooo

Equation (4.2) implies that
U t9)
lu Ilz(tz)—“u I (t1)| < zf lu n(T)dT+ zf f o(\)dhdx|. (4.19)

0 u (x, 1)

Since "uTxﬂz(-) is integrable on [0,»), it follows that given any € > 0

there exists a & > 0 such that t) and t, in [0,) and Itz-tll < d implies

t2
JF "uTXHZ(T)dT < €; hence it suffices to show that the second term in

t
1
(4.19) is uniformly continuous. We note that

u (x,tz)

t2 11
JF ‘jp o(A)dadx| = Jr \jp 0(ux(x,1))utx(x,1)dxdf . (4.20)

0 ux(x, 1) ty 0
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Equation (4.17) implies that
loy| < E )2l (4.21)

where again El(-) is defined by (4.8). Therefore equations (4.20) and

(4.21) imply that

ug (x,t3)
f f sO)aNdx| < E (M)f {Ilu |f<r)+|luml|2(r>} (4.22)
0 u (x, 1)

The uniform continuity of "utuz(-) now follows from integrability of
"utxﬂz and uniform boundedness of “u "2(-) on [0,).
We shall now show that lim "u "z(t) = 0.. Since "ux "2(') is
tow x
integrable on [0,0), we are guaranteed the existence of a sequence of
time points {t } such that lim t; =+ and lim "u "Z(ti) = 0. Equation

i i—00
(4.4) now tells us that

lo 20 < 2f b Peoar+ Jo [Pee) + 2l ol lice)
t
i
+ 2w llce) ll llCe ), £ty (4.23)

The assertion that lim "uxxﬂz(t) = 0 row follows from (4.23), Lemmas 4.1
toow ’

and 4.2, and the fact that lim lu || (t) =
t—oo
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5. Completion of the Proof of Theorem 1

Throughout this section u will be an (f,g) displacement on S,

and 0 will be some preassigned number in (0,0%].#

#We take & e:(0,0%] so that we may later apply the results of Section 3.

Let us now treat equation (E) as an ordinary differential equation for

t
uxx(x,°). If we multiply (E) by the factor exp</\ o'(ux(x,q))d€> and

Y

integrate the resulting expression over (tl’tz)’ we see that the derivative

U of an (f,g)'displacement u must satisfy the following identity:

t2
uxx(x,tz) = ut(x,tz) + exp(é/\ 0'(ux(x,n))dn [dxx(x,tl)—-ut(x,tl)]

Y

=) f t2 1
- exp(-f o' (u (x,1))dn !f uT(x,t)o'(ux(x,T))expf o' (u (x,n))dnjdr \ (5.1)

t Lt t

1 1 1

for all (x,t;,t,) in [0,1] x [0,») x [0,0) with £, Sty

Setting £, = 0 in (5.1), noting that f and g are respectively
c* and ¢ on [0,1] and that o is ¢ on (-»,©), and making use of the fact that
since u is an (f,g) displacement the derivatives u__ and u, ., are by

tx

hypothesis continuous on [0,1] X [0,x) we obtain
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Lemma 5.1. u . has two continuous space derivatives on [0,1] x [0,®).
— Moreover
_ uxx(O,t) = uxx(l,t) =0, t >0. (5.2)
— Our next result is
- Lemma 5.2.
—_ (a) The function ¢(u) defined by
— P(u) (x,t) = o'(ux(x,t))uxx(x,t), (x,t) « [0,1] x [0,x), (5.3)
satisfies hypothesis (A-2) of Theorem 3.
(b) The velocity field u, admits the following representation:
(' t pl - 1
f f G(x,E,t-1)P(u) (E,n)dEdy +f G(x,g,é)ut(g,t-é)dﬁ, (x,t) € [0,1] x [§,),
— -6 0
OIS 0 (5.4)
t pl 1 ‘
J/\ h/\ G(x,&,t-n)p(u) (E,n)dEdn +L/ﬂ G(x,E,t)g(E)dE, (x,t) « [0,1] x[0,0],
L0 0 0

where of course G is the Green's function for (H) (see (3.16)-(3.18)),

and g is the initial velocity field.

Proof. Assertion (a) follows immediately from Lemma 5.1.
Assertion (b) depends on the fact that we can regard (E) as the
heat equation (H) for u, - Equation (5.'4)1 is an immediate consequence of part (a)

of the lemma, the fact that by hypothesis u has two continuous space
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derivatives on [0,1] X [0,») and vanishes at 0 and 1 for all times t > 0,
and Theorem 3; while (5.4)2 follows from part (a), the smoothness of the

initial data, and Theorem 3.

Equations (5.4), (3.7), (3.8), (3.10), and (3.11) now tell us

that
3 -
5 /4||¢(u) "t-(5 st ¢ llalut"(t'é): t > 9,
-1 ’
¢ u ey < (5.5)
3
ol + lel,  c< oo,
and
1/4 -3/4
1 ol s 5+ 67 I dee-), £ 2,
¢ lule) < » (5.6)
et/ locall, | + lexl, t e [0,8],
)
where "'"t-é &’ "'I(t-é), and |-| are defined in (3.5 ). It follows from '
J
equation (5.3) that
|I¢(u)”t-5,5 < El(luxlt-é,é)lluxx"t-é,é’ (.7)
and
lowly o < Ex(luglo Moo, e (5.8)
where I.IO,t and l.lt-é,b are defined in (3.5 ), and where El(-) is defined

in (4.8). Lemmas 4.1 and 4.3 now imply

lu lce-8) <m, £ >,
and (5.9)
lim Ju ll(e-8) = o0,
too
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where M is the constant in (4.5), while Lemmas 4.2 and 4.3 and Corollary 2

yield
luxlt-é,é < "uxxut-é,é S My t29,
Aluxlo,t < "uxx“O,t < My t e:[O,é],
and
lim “uxx"t-é,b .= 0,
t—oo

*
where M is the constant in (4.10).

Combining equations (5.5)-(5.10) we obtain

Lemma 5.3. There exists a constant My, such that

lutl(t) < My, and |utx'(t) < My,

Moreover,

lim !utl(t) = lim |utx|(t) = Q.

t—o tooo

We shall now prove

Lemma 5.4. There exists a constant M# such that

I%Ja)g #, t > 0.
Moreover,

lim luxx'(t) = 0.
t—o

t >0.

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)



lu | (€))
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Proof. An immediate consequence of (5.1) is the identity

-E_(t,-t,) -E1(to-tq)
olt27ty _ -Ej(ea-ty
< lut'(tZ) + e [luxxl(tl)i-lutl(tl)] + Iutlt £ -t [1—-e
1772 71
for 0 < ty < t, < o, where
' def de
E, S5 E (M) and E =2 E (M) (5.16)

and M, is the upper bound for u - Setting t, = 0 in (5.15) and making use

of the fact that Lemma 5.3 implies

lutlt Jto-t < M** for all 0 < tl < t2 < o,
1’72 "1
we see that
def
lugl (© < 3, + De J+]el] S5 .
Equations (5.13) and (5.15) now Yield
-E,(to-tq)
o\t2°%17,
lu l(t)) < 4|ut|tl,t2-t1+M#e ; (5.17)

and (5.17) and (5.12)1 establish (5.14).

Our final task shall be to show that the function ¢(u) defined

in (5.3) satisfies condition (iii)' of (A-2)'. We shall prove

Lemma 5.5. For any t € [0,0) and any fixed 0 (0,05] there exists a

constant K'(t,0) < o such that

[#Cu) (x,n) = d(u) (x,t) |
1/2

e < K'(t,90), (x,m) € [0,1]x [t,t+0].  (5.18)
n-t

]

(5.15)
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Moreover,
K'(t,8) < K" < =, t € [0,0), (5.19)
and '
lim K'(t,8) = 0. (5.20)
to o

Granting the validity of Lemma 5.5, it then follows from

equations (5.4), (3.9), (3.14), and (3.15) that

1/2

K'(t-5,6)6"'“ + |<1>u|c_(,),<5 + 6'1/2|utx| (t-8), t >4, and

-1
¢ Hu l@® <

1
R0+ {6 lo  + legl, €< 0,0,
and

cMu doy < Mol + lo@l@), 20 (5.22)

u
txx

Since
ol 55 < El('“xlt-é,é)luxxlt—é,é’
9wy o < El(luxlo,t)luxxlo,t’ and (5.23)

ol < Ey(lu )l l@®),

Lemmas 5.3 and 5.4, when combined with equations (5.21)-(5.23), establish

Lemma 5.6. There exists a constant M## such that

|utt|(t) < My and '|utxx|(t) < My, t > 0. (5.24)

(5.21)
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In addition,

lim |utt|(t) = 0 and 1im|utxx|(t) = 0. (5.25)
t—oow . tfam

We now prove Lemma 5.5. Since

|6 (u) (x,n) = $(u) (x,t) |

lo" Cu, Gy ), (x,m) —0' (u, (%, £))u_ (x,t)]

IN

lu G o' (u (x,m)) =o' (u, (x,£))]

+ |o" (ke [ |u, ) —u_(x,0) ], (5.26)

since
lo" (u x,m)) = 0" (u %, £)] = | 0" (u, (x,00)u,, (x,0) (n-t) |

for some @ € (n,t), and since luxl(t), |uxx|(t), and qutl(t) are uniformly
bounded on [0,») and tend to zero as t tends to infinity, we see that the
first term of (5.26) gives no trouble, and hence it suffices to show that

(5.18)-(5.20) hold with ¢(u) replaced by Uyt Now (5.1) with t;, =17 and t} =t
implies

lu oM =u_(x,0)] < Ju (x,n)~u (x,0)]

+ {iuxxm) + luglce) + iut|t,,]_t} x

M
1- exp(:/ o' (ux(x,k))d)>

t

-Eq (n-t)

< lu = u 0] + {quxla) NICE: lutlt,n_t}a—e )

for 0 < t < n < » where E, is defined in (5.16). Since the sum
'uxxl(t) + Iutl(t) + |ut|t,n-t is uniformly bounded and tends to zero as
t tends to infinity, it now suffices to show that (5.18)-(5.20) hold with

¢(u) replaced by u, .
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We now consider |ut(x,ﬂ)"uc(x,t)| where t € [0,»), n « [t,t+6],
and 6 < a. Equation (5.4) with n replacing t and t replacing t-0 and

equation (3.10) imply that

1
\/n G(x,g,n-t)ut(g,t)dé —-ut(x,t)
0

lo, Gym)—u (x,8) | < clo)] In-t| + . (5.27)

t,n-t

Remembering that

1 .
éf?0+kéﬂ G(x,g,QDut(E,t)dg = ut(x,t),

we have

1
f 6(x,8,n-t)u_ (&, £)dE= u_(x, €)
0

1y '
[ [ e mnne ¢, o
0t :

1pn
= ff Gg (%, 6,1-Nu (§,£)dAdE |, (5.28)
t

0

Since u satisfies (A), we then have

1
f G(x,&,n-t)u, (E,t)dE~ u, (x,t)

1p
Jr‘jp Gg(x)gaﬂ'k)utg(gyt)dkdg . (5-2?)
0 0t '

Equations (3.11),, (5.27), and (5.29) then yield

lu, Gem) —u x,0)] < cléqw] n-t| + clu, | (©)|n-t|*72, (5.30)

t,n-t
where again C is the constant of Theorem 3. Equation (5.3) and

Lemma 5.4 tell us that |¢(u)|t n- ‘is uniformly bounded and tends to zero -
2

t
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as t tends to infinity, while Lemma 5.3 tells us the same conclusion is
true for lutxl(o). Hence, (5.30) establishes Lemma 5.5.

Summarizing the results of Sections 4 and 5 we obtain Theorem 1.
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6. Existence and Uniqueness of Solutions _gf._ (E), (A), (B), and (C)

We introduce the following notation. For each pair of numbers

(1,0) in [0,) x (O,OLO]# we define D'r,a’ C(DT,a), and C(DT,Q)XC(DT,O) as

#ao is the same constant appearing in Theorems 3 and 4 of Section 3.

follows:
D, o = {x,t | o<x<1, 15t<_r+a}, 6.1)
C(DT,Q‘) = icontinuous functions f on D'r,a}’ (6.2)

O, )X, ) = {(fl,fz) | geco, ), 1..1,2}, 6.3)

It is easily verified that C(D'r,oz) and C(D'r,a)x C(D'r,a) are Banach spaces
under the norms
| £] = max |£(x,t)| and

T,Q (x,t)ED,r o
’ (6.4)

l(fl’fz)l'r,oz - max(“l'r,o:“ler,a)

For each (1,0) in [0,®) X (O,Cto] and each pair of functions A

and Q in C* [0,1] and C [0,1], respectively, we define the operators h,
T,, and T, mapping C(D'r,oc)xc(n'r,a) into C(D'r,a) by

t
B(V,W) (x,¢) = exp(—f 0'(W(x,f\))dn>(Ax'x(x)~R(X))

T

t t \’ n .
‘exP(:[ o' (W(x,n))dn fV(X,ﬂ)U'(W(X,ﬂ))exPU 0'(W(X,'Y))d')>dn, (6.5)

T T T
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tol 1
T, (V,W) (x,t) = ff G(x,&,t-n) 0" (W(E,n)) (V(E,n) +h(V,W) (&,n))dEdy +f G(x,E,t-T)Q(E)dE, (6.6)
T 0

0

and

X 1 13 b4
T,(V,W) (x,t) = f T, (V,W) (y, t)dy -f déf T, (V,W) (y, t)dy +f h(V,W) (y, t)dy
0 0 0 0

1
—f d%/gh(V,W) (y, t)dy, (x,t) DT’O‘, (6.7)
0 0
where of course ¢ is defined in (1.5) and G is the Green's function for
problem (H).

If u is an (f,g) displacement in S, then it is easily verified

that for any (1,0) « [0,) x(0,0to] the derivatives u, and u, satisfy
ut(x, t) = Tl(ut,ux) (x,t) and ux(x, t) = 'l‘z(ut,ux) (x,t), (x,t) € D'r,a (6.8)

provided we let A(*) = u(+,7) and Q(-) = ut("T)'
Our first step is to show that for any 7 > 0 and any pair of

functions A and Q the equations

V(x,t) = Tl(V,w) (x,t) and W = TZ(V,W) (x,t), (x,t) DT o’ (6.9)
J
have a unique solution provided O < a, is sufficiently small.
We let L be any fixed positive number satisfying
J,9) <L (6.10)#

#See equation (2.2) for a definition of J(A,Q).

and we let (V,W) and (V',W') be any two pairs of functions in C(D o:)XC(D 0:)
T, T,

—
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obeying

' !
I(V,W)IT’O‘SAL and | (V',W )I_[,aglpL (6.11)
Then, a straightforward calculation shows that

| (z, (v, W),T, (v,wnlw < ok(L) (6.12)
and

|(T1(V,W)—T1(V',W'), TZ(V,W)—TZ(V',W’))I'T’a < az(L)I(v-v',w-w')lT’a. (6.13)

It now follows that for any L satisfying (6.10) we can choose
a< a sufficiently small so that the mapping (V,W) — ('1‘1 (V,W),TZ(V,W))
maps the ball {(V,W) l I(V,W)[T a§_4L} into itself and is contracting.

J
Hence, there exists a unique pair of functions (V,W) in C(D (x)x c( OL)
T, T,
with |(v,w>|T o S 4L satisfying (6.9).
2

In addition, we have

Lemma 6.1. Let (V,W) be the unique pair in C(D a) X C(D 0:) satisfying
IS ’[’ T’

(6.9) and define U, and U2 by

1

X t
Ul(x,t) = f W(E,t)dE and Uz(x,t) = Q(x) +f V(x,m)dn (6.14)
0 _ T
for (x,t) D. o Then:

1]
[e=]
e
=]
(=]

(i) U1 2 T, Moreover,

u(x,7)

]

A(x), U (x,7) =2(x), and U(0,t) = U(l,t) =0,  (6.15)

where now U = U1 = UZ'
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(ii) The partial derivatives V_, Vi Viys W, Weo LA W Wego

and W__exist, are in C(D o?’ and satisfy
XXX T,

Ve " Vg = 9 WDV We =V and Vo = W = ¥t 7,0
Proof. The assumptioms on A, &, and 0, the fact that V and

W satisfy (6.9), and calculations similar to these employed in the proof

of Theorems 3 and 4 imply that W has three and V two continuous space

derivatives in D

Sy The arguments used to establish Theorem 3, the
v

smoothness of the spatial derivatives of V and W, and equation (6.9)
allow us to conclude that Vt and hence Wt exist and are continuous in DT o
J
That W, and W__ are in C(D O) now follows from the representations for
tx xt T,

W and wt. The verification of (6.10)-(6.12) is also a straightforward
X

calculation.

Lemma 6.2. For any (f,g) there exists a number Q < ab»and there exists a

unique (f,g) displacement u1 defined on Do;a = So,a' Moreover,
el ey < m, t e [0,0] (6.17)

where M = M(J(f,g)) is the afpriori bound obtained in Theorem 1.

Proof. The existence of an @ < a, and the existence and uniqueness of an

(f,g) displacement on D0 a follow from Lemma 6.1 by setting A = £ and Q = g.

)

The bound (6.17) follows from Theorem 1.




49.

Completion of the Proof of Theorem 2. We extend the interval of existence

in the following way. We now take A(:) ul(-,QO and Q(-) = ut(-,oo where

u1 denotes the function obtained in Lemma 6.2 and we solve (6.9) in Da a.#
'y

#The fact that J(f,g) < M(J(f,g)) and equation (6.17) allow us to choose

Q in Lemma 6.2 so that this may be done.

Using the solutions of (6.9) we employ the construction of Lemma 6.1 and

obtain a function U which extends the function ul to ‘the strip D The

o,
composite function u2 defined by

1
u(x,t), (x,t) €D,

fye

w(x,t) = (6.18)

u(x,t), (x,t) Da’a

is an (f,g) displacement in Do 2 and hence by Theorem 1 satisfies (6.17)

40
for all t in [0,20].
Proceeding inductively, we may now extend the domain of existence

and uniqueness, increments of @, to [0,1] x[0,T] for any T > 0.
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