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by
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1. Introduction. In this note we use variational methods to

prove the existence of a non-trivial solution to an integral equation

of the form

(1) y(x) =1 K(x,t)y(t)F(y2(t),t)dt,

where Q is a bounded region in Euclidean space and K(x,,t) is

symmetric., square integrable over Q x R, and positive definite: The

kernal K(x,t) need not be bounded but beyond square integrability,

a further, and fairly strong, restriction on its singularities is

assumed here. The conditions on F(?7,x) are set down in detail in

Section 2; here we mention at least that F is assumed to be non-

negative and a strictly increasing function of rj for fixed x. Thus

we are imposing a condition of strict non-linearity on the problem

(1)y and it is obvious that some such condition is necessary for the

sort of existence theorem obtained here.

Theorems 1 and 2 below are suggested by results of Nehari, [3],

for an integral equation of the same form with a continuous kernel.

Except where we deal with the difficulties resulting from the unbound-

edness of the kernel, the proofs of our results parallel those of the

analogous results in [3]. In particular we have followed Nehari in

the choice of the variational problem to be used in the investigation

of (1). This variational problem is not an analogue of the variational

problem used to treat the linear case, in fact the functional which

minimize here (with respect to a certain side condition) is identic-

ally zero in the linear case. Finally we remark that we impose a
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polynomial growth condition (see (6), (7) below) on F which is not

required in [3]. While we know that some polynomial growth condition

on P is necessary in Theorem 1 we do not know whether the limit on

y in (7) can be increased.

In Section 6 we apply our results to the boundary value problem

Ay + y F(y ,x) = 0 in 0, y|^Q = 0,

where A is the Laplace operator and Q is a region in the plane.

The polynomial growth condition (6)3 (7) limits the applicability of

our results essentially to the case where fi is a plane region. We

mention that an existence theorem for eigenfunctions of the eigen-

value problem

(3) Ay + AyF(y2,x) = 0 in Q, ^ d O 5 * 0 '

is contained in results of Berger [1]. A boundary value problem of

the form (3) is also treated by Levinson, [2] and by Pohozaev [4].

Berger gives conditions in [1] under which the positive spectrum

of (3) has a cluster point at oo and conditions under which it has

a cluster point at zero. The theorems of Section 6 establish condi-

tions under which the positive spectrum of (3)fills an interval.

2. Statement of the Theorem . Let Q be a bounded region in

Euclidean n-space and let K(x,t) be a real valued symmetric function

of (x.,t) defined on £2 x fi which is measurable in t for almost

all fixed xefi, square integrable over Q X Q, and positive definite.

Assume furthermore that for some number q: 2 < q < oo

f rr V q '
(4) M = ess supx€n(J |K(x,t) |

 qdt) < oo .

Let F(77,x) be a function defined for real 77 > 0, xe£Jr and which



satisfies the following conditions i) the Caratheodory hypothesis

(i.e. for almost all fixed xefi; F(rj^x) is continuous in t] for

T| > 0, and F(r)jK) is measurable in x for each fixed 77 >^ 0,

ii) there is a positive constant e such that for almost every xedj

when x is fixed,,

(5) 0 < 7^€F(T?,x) < r?2€F(T?2,x), for 0 < 7^ < T]^

iii) there exist positive numbers c ,c-.,y such that for almost all

when x is fixed,

(6) F(7? ,x) < c r j y + c l s f o r 0 < r\ < 0 0 .
—* o x —

Theorem 1. Let fi,K(x,,t) and F(?7_,t) be as above. If_

(7) 7 < (q - 2)/2,

then the integral equation (1) has at least one non-trivial essentially

bounded solution«

3. Formulation of the Variational Problem. We define a function

G(rj,x) with the same domain as that of F(r),x)

(8) G(Thx) = I F(s,x)ds.

'o

l.x) = 1 F(s,:

The variational problem is formulated in terms of functionals

J(u,v)j N(y), H(y) which are defined/ for u,v,y€L°° (Q , as follows

(9) J(u,v) =] \K(x,t)u(x)F(u2(x),x)v(t)F(v2(t),t)dxdt,(u,v) = f f K
J0J0

(10) H(y) =f [y2(x)F(y2(x),x) - G (y2 (x) ,x) ] dx,

(11) N(y) =J y2(x)F(y2(x),x)dx - J(y,y) .

Q



The functionals H and N are continuous on L (Cl) , in fact the

following stronger result is valid.

(*) The functionals H and N are continuous on bounded subsets

of L00 (Q with respect to the L topology.

For the proof of (*) we shall require the following.

Lemma 1. Let f (y,x) be^ <a Caratheodory function on R X £2.

If B ijŝ  a^ subset of L (Q) and if there is a^ constant p such

that for yeB

(12) |f (y(x),x) | < P a.e. in 0,

then the mapping y(x)—>-.f (y(x) ,x) is continuous from B tô  L (Q)

2
with respect to the relative L topology on B. Moreover,
F 2
J f (y (x) X) dx is continuous on B with respect to the L

2
f (y (x) jX) dx is continuous on B with respect to the L topology.

2

Proof. With respect to the relative L (Q) topology on B suppose

that the mapping in question is discontinuous at y eB. Then there

exists a sequence {y } in B such that lim \ fy (x)- y (x)I dx= 0
n n^-oo °Q n °while

(13) lim sup f | f (y (x) ,x) - f (y (x) ,x) | 2dx > 0 .

We can assume that {y } converges to y almost everywhere in Q,

therefore because of the Caratheodory hypothesis and (12) it follows

from the Lebesgue bounded convergence theorem that (13) is impossible

The last assertion follows from SchwarzTs inequality and the first

part of the Lemma.

2

Proof of (*). Because of (6)3 f(y,x) = yF(y /x) satisfies the

hypothesis of Lemma 1 for any bounded subset B of L00 (U) . The

operator K defined by

(14) [Ku] (x) =f K(x,t)u(t)dt,
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is continuous on L (f2) 3 so it follows from the continuity of the

inner product that J(u,v) is a continuous function on B X B with

respect to the L topology for any bounded subset B of L (ft) .

The continuity of J y (x) F (y (x) ,x)dx and of I G (y (x),x)dx on

bounded subsets of i/̂ fft) with respect to the L topology follows

from (6) and the last assertion of Lemma 1. This completes the proof

of (*) .

It is clear from (4) and the Holder inequality that K (defined

by (14)) is a bounded operator on L (0) . We shall say that a

function y€L (Q) is admissible if it is not almost everywhere equal

to zero and can be represented in the form
(15) y = Xu, U G L ° ° (fi) .

Observe that^ because of (6), y(x)F(y (x),,x) is essentially bounded

if y(x) is . Thus from the positive definiteness of K(x,t) and

from (5) it follows that if y€L°° (flj > y is not almost everywhere

equal to zero and v(x) =1 K(x,t)y(t)F(y2(t),t)dt, then v is

admissible.

We now summarize certain properties of the functionals H(y) and

N(y) which are derived in [3] and whose derivations there remain

valid under the hypotheses of this paper.

(**) If y is an admissible function then there is a positive

constant ex. such that

(16) N(ayQ) = 0.

If y _is_ admissible and satisfies

(17) N(y) = 0,

and if

(18) v(x) = a\ K(x,t)y(t)F(y2(t) ,t)dt
J



where a > O ijŝ  chosen so that

(19) N(v) = 0

then (v is admissible and)

(20) C? \y2 (x) F (y2 (x) , x) dx < J v 2 (x) F (y2 (x) , x) dx,

ft Ch

and

(21) H(v) < H(y) .

Equality holds in (21) _if and only if y i.s_ a_ solution of (1) .

Finally,if yeL°° (Q) , then

(22) H(y) > e(l + e) ~X y2 (x) F (y2 (x) ,x) dx

where e .is. the constant in (5) . ,

For proofs of the assertions in (**) see [3].

The variational problem which we shall now consider is that of

minimizing the functional H(y) within the class of admissible functions

and subject to the side condition N(y) = 0. It is clear from (**)

that a solution y of this variational problem must be a solution

of the integral equation (1).

4. Solution of the Variational Problem, In this section we .

prove the existence of a solution to the variational problem posed

above. We assume throughout that the hypotheses of Theorem 1 are

satisfied.

Lemma 2. There is si positive constant m such that if y is

an admissible function satisfying (17) then

(23) I y2(x)F(y2(x),x)dx > m.



Moreover there are positive constants k,, k« such that

(24) | I K(x,t)y(t)F(y2(t),t)dt| < (k^k,, f y2 (t) F (y2 (t) , t) dt) p ,

where — + — = 1; q i_s the number in (4) .

Proof. By the Schwarz inequality it follows that when (17) holds

then

(25) J y2(x)F(y2(x),x)dx

0 f ~ f f ~
< ( U2(x)F(y2(x)Jx)dx)

2( I (I K(x,t)y(t)F(y2(t),t)dt)2F(y2(x),x)dx)2

By Holders inequality

(26) | 1 K(x,t)y(t)F(y2(t) ,t)dt| < M( f |y (t) F (y2 (t) , t) |Pdt) P ,

where M is the constant in (4). Thus we have

(27) (| y2(x)F(y2(x),x)dx)2 < M( 1 |y (t)F.(y2 (t) ,t).|pdt)p'( F(y2 (t) , t) dt) 2p'(

By another application of Ho'lder's inequality we obtain

(28) |y(t)P(y2(t),t) |pdt < (I |F(y.2(t),t)Irdt)2r(|y2(t)P(y2(t),t)dt)2

where r = q/(q-2). Combining (27) and (28) we get

,t) | r d t ) 2 r ((29) 1 < M ( | |P(y2(f),t) | r d t ) 2 r ( F(y2(x),x)dx)2,

(it follows from (5) and the definition of admissibility that the

term on left in (27) is positive). For simplicity we shall assume

that the measure of fl is 1^ we then have
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F(y2(x),x)dx < ( [ |F(y2(x),x)

and using this in (29) we get

(30) 1 < M( f |P(y2(x),x) | rdx) r .

The proof of the first assertion now follows by contradiction. Suppose

that {y (x)} is a sequence of admissible functions satisfying (17)

and

2 2
yn(x)F(yn(x) ,x)&x*-*~0J as

We can then conclude, using (5) , that a subsequence of {y (x)} which

can be assumed to be the full sequence converges almost everywhere

to zero. Let A denote the subset of SI where |y (x) |>_ 1. Since

= 2y/(q-2) < 1^ we have on A n,

^ x ) | r |F (x) F (y^

where c2 = (c + c^)r"* . Thus

as n->~oo.

If Bn = Cl\A^ then since yn (x)->< 0 almost everywhere in Q, it

follows from (6) and the bounded convergence theorem that

1 as n ~-̂ - oo .

B n

Thus our supposition has led to a contradiction of (30) and (23) is

proved.

Let y be an arbitrary function in LCO (£i) , then, by an argu-

ment similar to that used above, we obtain the following inequality



for almost all

|F(y2(x),x) |r < c2y
2F(y2(x),x) + (cQ + Cj)

 r. .

By integrating this inequality over Q and using the resulting in-

equality in (28) we obtain (24) from (26). This completes the proof

of Lemma 2.

We now show that the problem

(31) H(y) = min., N (y) = 0,

has a non-trivial solution in the class of admissible functions. Let

y^ v and OL be as in (**) . The function F(77_,x) is increasing in

7] for almost all x therefore

0 < f (v2 (x) -y2 (x) ) (F (v2 (x) ,x) -F (y2 (x) ,x) ) dx

and this implies., in view of (21) and (22) ,

Y2(x)F(y2(x),x)dx < f (v2(x)F(v2(x)Jx)+y
2(x)F(y2(x),x))dx

< 2e"1(l+e)H(y) .

Using (20) this gives

a2 y2(x)F(y2(x),x)dx < 2e~X (X+e) H(y) .

From (23) follows

(32) <* 2<CH(y), C = 2 (me) ~1(l+e),

and finally from (18), (22), (29) and (32) we have

(33) Hvll^ < C

Let B be a set of admissible functions such that (17) holds

for all yeB. Let 0(B) denote the set of all functions v of the
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form (18) where yeB and a is chosen so that (19) holds. Then

0(B) also consists of admissible functions satisfying (17)• It

follows from (**) that for B as above

(34) inf{H(y) :ye0(B) } < inf[H(y) :yeB} .

Again,, if B is as above, and H(y) remains bounded for yeB then

from (33) it follows that 0(B) is bounded in L (Q) norm; from

(**) , H(y) is bounded on 0 (B) if it is bounded on B. Suppose

finally B is as above, H(y) is bounded on B and B is bounded

in L°° (0) normr. Then from (32) and condition iii) on P it

follows that 0(B) is of the form K B, where B, is a bounded

set in L°° (£1) . Hence, in this last case, 0(B) regarded as a subset
2 0

of L (Q) has compact closure in L (ft) .
From (22) and (23) it follows that

A = inf{H(y):y admissible, N(y) = 0} > 0.

Take A-.> A and let B = [y:y admissible, N(y) = 0, H(y) < A,).. Then
1 —• 1

from the results of the paragraph above, 0 (B) = 0(0(B)) is condi-

tionally compact in L (0) . Since 0 (B) is bounded in the L°° (0)
2 2

norm so is B2, the closure of 0 (B) in L (fi) . Consequently by

(*), the functionals H and N are continuous on B^, in particular

N vanishes identically on B2• Since B2 is a compact subset of

L (Q) there is an element Yo
eB2 s u c h t:hat H(y ) = min{H(y) :yeB ) .

From the definition of B2 and the continuity of H, H(y ) =
2 2

inf{H(y) :ye0 (B)]. Since 0 (B) consists entirely of admissible
functions satisfying (17) we must therefore have H(y ) >_ A, On the

2
other hand inf[H(y) :ye0 (B) } < inf(H(y) :y€B}*= A. Thus H(y ) = A

and since A > 0, y is not almost everywhere equal to zero. It

remains to show that yQ is admissible. This is seen as follows,

0 (B) has the form K B , where B̂ . is bounded in L°°norm. Since
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2

B, is therefore a conditionally weakly compact set in L (fi) 3 and

as1 K is weakly continuous, B~ = KB- where B~ is the weak closure

of B, in L (£2) . It follows that y is admissible. Thus we

have proved that under the hypothesis of Theorem 1 the problem
(35) H(y) = min., y admissible, N (y) = 0,

has a solution. As has already been pointed out a solution of (35)

must satisfy (1). Since an admissible function is not almost every-

where equal to zero this completes the proof of Theorem 1.

Remarks.1. Let C denote the cone of almost everywhere non-

negative functions, or some other closed convex cone in L (£2) , and

suppose that K and F are such that j K(x,t)y(t)F(y2(t),t)dt

is in C whenever y is. Then one can adcf to the definition of

admissibility the condition that yeC; with this definition of admissi-

bility the argument given above implies that (1) has a non-trivial

solution in C.

2. Solutions of the integral equation studied in [3]

are obtained as cluster points (in the topology of uniform convergence)

of a certain sequence. We could have used such a sequence here to

obtain a solution of (1). The construction is as follows. Let

y = y-ĵ  be any admissible function satisfying (17) and., for each n.,

let Yn+1(x) = ctn f K(x,t)yn(t)F(y
2(t) ,t)dt where a is chosen so

as to make y = Y n + 1 satisfy (17) . It is clear from the proof of

2
Theorem 1 that any such sequence lies in a compact subset of L (fit)

and that each of its cluster points is a solution of (1) .

5. A More General Equation. The following theorem is the analogue

of Theorem II of [3].

Theorem 2. Let K, F, Cl be a£ iin Section 2 and assume that the
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hypothesis of Theorem 1 iŝ  satisfied. If P(x) is_ real valued,

measurable, non-negative and essentially bounded on Q and if the

least eigenvalue A o_f the symmetrizable linear integral equation

(37) u(x) = -k[ K(x,t)P(t)u(t)dt

is larger than 1, then the integral equation

(38) y(x) = /K(x,t)y(t) (P(t)+F(y2(t),t))dt,

has a^ non-trivial essentially bounded solution.

The only place in the proof of Theorem 1 where the argument can

2 2 2

break down when F (y ^x) is replaced by F, (y ,x) = P (x)+F (y ,x)

is in the demonstration (for which the reader was referred to [3])

that the normalization (16) is possible for any admissible function
2 2 2

y • However if F (y ,x) is replaced by F, (y ,x) = P (x)+F (Y ,x)

in (9) and (11) then the normalization (17) is still possible provid-

ed the least eigenvalue of (37) exceeds 1• For a proof of this we

again refer the reader to [3]• All of the rest of the arguments

used above remain valid as they stand when F is replaced by F,.

It should be noted that H(y) remains unchanged when F is replaced

by Px.

6. Application to a Non-linear Elliptic Boundary Value Problem,

We consider the boundary value problem

(39) i-£ + .£-£+ y2F(y2,x) = 0 in - O, yk

where x = (x^xJ and Q is a bounded region in the x-plane for

which the Diriclit problem is solvable. If G(x^t) denotes Green's
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function for the Diriclit problem in Q, we have then for suitable

positive contants a^b,

0 < G(x,t) < -a log|x-t| + b, x.teQ,

Thus for any q > 2 there is a constant M such that

11
( F |G(x,t) |qdt)q < M, for all
^0

Using Theorem 1 and Remark 1 following that theorem we therefore

obtain the following result.

Theorem 3. Let F(y,x) satisfy conditions (i) 3 (ii) and (iii)

of Section 2, where y iri (6)i^ any positive number. Suppose also

that F(T),x) satisfies <a local Holder condition in (̂ ?̂ x) cm the

region { (r),x) iV > 0^ xeCij . Then (39) has a^ solution y (x) which _is

2 4*-*

positive and of class C rn Of and is continuous in Q.

We have also the following theorem.

Theorem 4. Let F(7^x) be as in Theorem 3. Let P(x) satisfy

<* local Holder condition in Q,. Îf the least eigenvalue of the

problem

—^ + £-| + A P ( x ) u = O in Q, u

is larger than 1, then the problem

rir f l + p(x)y + yF^2^ = ° in ̂  y
1 X2

2
has a solution y (x) which is positive and of class C in. Q and is
continuous in O.
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