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1. | nt roducti on. In this note we use variational nmethods to

prove the existence of a non-trivial solution to an integral equation

of the form

3
(1) y(x) =1 K(x,t)y(t)F(y*(t),t)dt,

where Q is a bounded region in Euclidean space and K(x,,t) is
symetric., square integrable'over Qx R 'and positive definite: The
kernal K(x,t) need not be bounded but beyond square integrability,
a further, and fairly strong, restriction on its singularifies 'S
assumed here. The conditions on F(?7,x) are set down in detail in
Section 2; here we nention at least that F is assuned to be non-
negative ahd a-strictly increasing function of rj for fixed x. Thus
we are inposing a condition of strict non-linearity on the problem
(1)y and it is obvious that sone such condition is necessary for the
sort of existence theofen1obtained here. |

Theorens 1 and 2 bel ow are suggésted by results of Nehari, [3],
for an integral equation of the sane forn1mnfh a continuous kernel .
Except where we deal with the difficulties resulting fromthe unbound-
edness of the kernel, t he proofs of our results parallel those of the
anal ogous results in [3]. In particular we have foll owed Nehari in
the choice of the variational problemto be used in the investigation
of (1). This variational problemis not an anal ogue of the variationa
problemused to treat the linear case, in fact the functional which
we hininize here (with respect to a certain side condition) is identic-

ally zero in the linear case. Finally we remark that we inpose a

]
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pol ynomal growth condition (see (6), (7) below on F which is not
required in [3]. Wile we know that sone pol ynomal growth condition
on P is necessary in Theorem1l we do not know whether the limt on
y in (7) can be increased.

In Section 6 we apply our results to the boundary val ue probl em

Ay +y Hy",x) =0 in O, yl"q=0,

where A is the Lapl ace operator and Q is a region in the plane.
The polynomal growth condition (6)s (7) limts the applicability of
our results essentially to the case where fi is a plane region. W
mention that an existence theorem for eigenfunctions of the eigen-

val ue problem
(3) Ay + AyF(y%4,x) =0 in Q AdOocr 0

is contained in results of Berger [1]. A boundary value probl em of
the form (3) is also treated by Levinsoh, [2] and by PohoZ?aev [4].
Ber ger gives conditions in [1] uhder whi ch the positive spectrum
of (3) has a cluster point at oo and conditions under which it has
a cluster point at zero. The theorems of Section 6 establish condi-
tions under which the positive sbectrun1of (3)fills an interval.

2. Statement of the Theorem . Let Q be a bounded region in

Eucl i dean n-space and let K(x,t) be a real val ued symetric function
of (x.,t) defined on £2 x fi which is measurable in t for alnost
all fixed xefi, square integrable over QX Q and positive definite.

Assume furthernore that for some number q. 2 < g < 00

f rr VQ
(4) M= ess Supyxen(J |K(x,t) |%t) < 00 .
(9]

Let F(77,x) be a function defined for real 77 >0, xefJ, and which




satisfies the following conditions i) the Caratheodory hypothesis
(i.e. for alnmost all .fixed xefi. F(rj”x) is continuous in t] for
T|_3'O, and F(r)jK) is measurable in x for each fixed 77 >0

i) there is a positive constant e such that for alnmost every xed;

when Xx is fixed,,

(5) 0 < 7MF(T2,X) < r?2%F(T?,x), for 0 < 70 < T]A

ii1) there exist positive nunmbers Cor Gy such that for alnost all

xefd, when x is fixed,

(6) F(72,x) < crj¥ + ¢c;s for 0 < r\ < 00.
—* 0 X —

Theorem 1. Let fi,K(Xx,,t) and H?77_t be as above. I

(7) 7<(q- 2)/2,

then the integral equation (1) has at |least one non-trivial essentially

~ bounded sol ution«

3. Fornmulation of the Variational Problem W define a function

drj,x) wth the same domain as that of F(r),Xx)

(8 G(Thx) =1 F(sx) ds.
"0

The variational problemis formulated in terns of functionals

J(u,v)j N(y), Hy) which are defined/ for u,v,y€L°° (Q, as foll ows

(9) J(ug) =1F EKox, t) ux) F(ua(x), x) v(t) F(v3(t), t) dxdt,
7070

(10) Hly) =f  [y(x)F(y*(x),x) - G(y*(x) ,x) ] dx,

(11) N(y) =3 y2(x) F(y2(x), x) dx - J(y.y) .

Q




The functionals H and N are continuous on L cPCJ), in fact the
follow ng stronger result is valid.

(*) The functionals H_and N are continuous on bounded subset s
2

t opol oqy.

JFor the proof of (*) we shall require the follow ng.

of L% (Q with respect to the L

Lemma 1. Let f (y,x) he! xa_Carat Heodory function on Rl X £2

If B ijs" a*_subset _of L® (Q and if there is a*_constant p such

that for yeB

(12) TE(y(¥), %) | <P ae. in 0

t hen the mappi ng  y(x)—=-.f (y(x) ,x) is conti nuous from B to" 'LZ(Q)
5 o _
vlgi-ﬂﬂ-respett-t-o-t-h-era-at-i-ve L topotogy o B. fvb-r-e-o-v%r- _
JF(y(®) | X dx ~Ts coRtinUoUs 6n ‘B "W Th TESpest To The (L ~TOporogy.
2 _

Proof. Wth respect to the relative L (Q topology on B -s'uppo'se
. o
that the mapping in question is discontinuous at “y eB. Then there
- exists a sequence {y } in B such that Fim-\ fy (x)- vy (x)l dx= 0
n

whi I_e n- 00 o_Q n . )
(13) IimSU£f|f(y(>Q,x) - f(y (%) . x) |2dx>0.

W can assune that {yn} converges to Yo al nost evé_ryvvhere in Q

‘therefore because of the Carathé&odory hypot-hejsi S énd (12) it follows
fromthe Lebesgue bounded convergénce theoremthat (13) is inpossible,
The last assertion follows from Schwarz's inequality and the fi rst.

part of the Lemma.
L2 .

Proof of (*). Because of (6)s f(y,x) .= yF(y /x) satisfies the
hypot hesis of Lemma 1 for any bounded subset B of L% (U . The

oper at or K defined by :
(14) [Ku] (x) =f K(x,t)u(t)dt,




2

is continuous on L (f2 3 so it follows fromthe continuity of the
inner product that J(u,v) is a continuous function on B XaB with
respect to the L t6pology for any bounded subsét B of L (ft) .
The continuity of Jy(x) F(y (x) ,x)dx and of -I"_G(y (x),x)dx on
bounded subsets of i/Mft) with respect to the L topology follows -
from (6) and the last assertion of Lemma 1. This conpletes the proof
of (¥ .

It is clear from (4) and the Hagler inequality that K (defined
by (14)) is aohounded operator on L (0) . W shall say that a

function y€L (Q is admissible if it is not al rm'st ever ywhere equal

"to zero and can be represented in the form
(15) y = Xu, UGL®® (fi) .

Cbserve that” beca.use of (6), y(x) F(y2 (x),,X) 1is essentially bounded
if y(x) is . Thus fromthe positive definiteness of K(x,t) and
from (5 it follows that if y€L°% (fj > y is not al nost everywhere
equal to zero and v(x) :1;K(x,t)y( )F(y?(t),t)dt, then v is
adni ssi bl e. AL |

W& now surrmariie certain properties of the functionals H(y) and
N(y) which are derived in [3] énd whose derivétions there renain
valid under the hypotheses of this paper.

(*) If_ y. is an admssible function then there is a positive

constant ex. such that

(16) N(ayq = 0.

1fy s adm ssible and satisfies

(17)- - N(y) =0,
and if
(18) a\. K(x, t)y(t)F(y?(t) ,t)dt

<
—~
X
~
11

'




where a > O ijs" chosen so that

(19) N(v) =0

“then (v is adnissible and)

) C?\yZ(jiF(yZ(x),x)dx<J_v5(x)F(y2<x),x>dx,
ft th

and

(21) Hv) <HY) .

Equality bolds. io (21) if. and anly if y i< o solution of (1) .
ELnaLLy,Li_ yeL°°((®', Lhen
(22) Hy) >_e(l +e) ~* LZ(X) F(y?(x) ,x) dx

where e s, the constant in (5) .

For proofs of the assertions in (*) see [ 3].

The vari ati onal problen1mhfch we shall now consider is that of
mnimzing the functional H(y) wthin the class of adm ssible functions

| and subject to the side condi tion N(y) =0. It is-clear from (**)

that a solution y of this variational problemnust be a solution

of the integral equation (1).

4. Solution.of the Variational Problem In this section we.

prove the existence of a solution to the variational problem posed
above. W assune throughout that the hypotheses of Theorem 1l are
satisfied.

~Lemma 2. There is si_positive_constant m such that if y is

n adni ssible function satisfying (17) then

(23) I yA(x)F(y*(x), x)dx 2 m




Moreover there are positive constants ky kg such that

- (24) | IfK(X,t)y(t)F(yz(t),t)dtl < (khk,, Fy? (1) F(y2 (1), 1) db)P,
wher e l;Jr-l:l;q nghenwmm UL(@-
N q

Proof. By the Schwarz inequality it follows that when (17) hol ds
t hen
(25) J y*(x)F(y*(x),x)dx

0 f < f -
< bé}Z(X)F(yz(x)JX)dX)Z( IJQ(%K(x,t)y(t)F(yz(t),t)dt)zFﬁyz(X),X)dX)z‘

By HOl ders inequality

. i
(26) | 1K(x, t)y(t)F(y*(t) ,t)dt] <M f [y(t) F(y*(t),t) |"dt) P,

where M is the constant in (4). Thus we have

(27) (I:yz(X) F(y*(x), x)dx)? <M 13Iy(t)F-(y2(t) )L 1P PP (Y2 () L t) dt) ?
Q _ a - |

By another application of HYIlder's inequality we obtain

(28) 1 [y(t)P(y*(t),t) [Pdt < (1 [F(y.2(t),t)1"dt)* (1y*(t)P(y*(t),t)dt)?,

where r =q/(g-2). Conbining (27) and (28) we get
L 1

(29) 1 < MC| [PCY2(f), ) 17dt)® (8 F(y*(x), x)dx)?

LY : (Y]
(it follows from (5 and the definition of admssibility that the
termon left in (27) is positive). For sinplicity we shall assune

that the neasure of fl is 1 we then have




K=

SF(YZ(X),X)dX < (L TRYH), x) [Fam &,
Q 2

and using this in (29 we get
1

(30) L <M f TPy H(x),x) | "dx)
" _

The .pr'oof of the first assertion now follows by contradiction. Suppose
t hat '{yn(x)} is a sequence of adm ssible functions satisfying (17)
and "
‘.\‘Ynz(X)F(YnQ(X) , X) &X* - *~0; as n—-oo

0
We can then concl ude, usi.ng (5 , that a subsequence of {yn(x)} whi ch
can be assumed to be the full sequence converges al nost everywhere
to zero. Let An denote the subset of SI where |yn(x) |> 1. Si nce

(xr-1}Y = 2y/(g-2) < 1™ we have on An,

IFrn ) 17 = 1P, L FE ) ,0 [T < eyl (0 F(ya () ,%)
‘where C, = (c°+ b“)r"*l. Thus
I 1F(Y§(X);X)|rdx**0: ‘as  n->-~o00.
B,
n

If B, = \A* then since Yy,(x)-><0 alnpost everywhere in Q it

follows from (6) and the bounded _convergen'ce t heorem that

;1 [F(yi(x) ,x) |Fdx =0, o as n~-A 0o .
®n
Thus our supposition has led to a contradiction of (30) and (23) is
proved.-
Let y be an arbitrary function in L% () , then, by an argu-

ment simlar to that used above, we obtain the follow ng inequality




for alnost all xe&,

| F(Y*(x), %) |" < cay®F(y*(x), x) + (cq+g)".
By integrating this inequality over Q and using the resulting in-
equality in (28 we obtain (24) from (26). This conpletes the proof

of Lemma 2.

We now show that the problem
(31) | Hy) =min., N(y) =0,

has a non-trivial solution in the class of adm ssible functions. Let
y» v and QL be as in (*) . The function K77,x) is increasing in

7] for alnost all x therefore
0 < fdgy® (%) -y (%)) (F(VZ(X)_ ,X) -F(y?* (%) ,x) ) dx

and this inplies., in viewof (21) and (22) ,
() F(y*(x), x)dx < £ (vA(x) F(v?(x)ax) +y*(x) F(y*(x), x) ) dx
< 2e" Y1 +e) H(y) .

Using (20) this gives

a’ jyz( x) F(y?(x), x) dx <_2e~*(X+e) H(y) .
Q )

From (23) follows

(32) <*2<CH(y), C = 2(m) ~*(l+e),
and finally from (18) ,. (22), (29) and (32) we have

(33) | HITA < Crmgy)) (2R)/28

Let B be a set of admi ssible functions such that (17) holds

for all yeB. Let O0(B) denote the set of all functions v of the
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form (18) where yeB and a is chosen so that (19) holds. Then
0(B) also consists of admssible functions satisfying (17)e It

follows from (**) that for B as above
(34) inf{Hy) :ye0(B) } <.inf[HYy) :yeB} .

Again,, if B is as above, and H'y) renains bounded for yeB then
from (33) it follows that O(B) is bo-unded in LYQ norm from
(*) , Hy) is bounded on 0(B) if it is bounded on B. Suppose
finally B is as above, Hy) is bounded on B and B is bounded
in L°° (0) normm. Then frlom (32) and condition iii) on P it

foll ows that O(B)_ is of the form K B,l wher e B,l i s a bounded

set in L°° (£1) . Hence, inthis |ast case, 0O(B) regarded as a subset

2 Q
of. L (Q has conpact closure in L (ft) .

From (22) and (23) it follows that
A= inf{l—(y):y admssible, Ny) =0} >-0.
Take A.> A and let B = [y:y admssible, Ny) =0, Hy) <A,).. Then
— 1

1

2 _
fromthe results of the2 par agr aph abO\{?e, 0 (B =0(0(B)) 1is condi-

tionally conpact in L (0) . Since O (B is bounded in the L°° (0)
2 2 '

normso is B,, the closure of 0 (B in L (fi) . GConsequently by
(*), the functionals H and N are continuous on B" in particular
N vanishes identically on B> Since B, is a gonpact subset of 2

L (Q thereis an elenent Y 82 sucht:hat Hoy )y = min{Hy) :yeB) .
Fromthe definition of B, and the continuity of H Hy ) =
2 2 -
inf{fHy) :ye0 (B)]. Since 0 (B consists entirely of adm ssi bl e
functions satisfying (17) we nust therefore have Hy§ > A n the
2 - o
other hand inf[Hy) :ye0O (B } <inf(Hy) :y€B*=A Thus Hy ) =A
[»]

and since A>0, y is not alnost everywhere equal to zero. It
remains to showthat yqo is admssible. This is seen as follows,
1

_ _ L '
0 (B has the form KB, where B. is bounded in L°°norm Since
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2
Bf Is therefore a conditionally weakly conpact set in L (fi) s and
as’ K is weakly continuous, Bi = KB? wher e Bi is the weak cl osure

. 1 (&)
of B, in L (£ . It follows that y is admssible. Thus we

have proved that under the hypothesis of Theorem 1 the probl em
(35) Hy) = mn., y adm ssible, N(y) =0,

has a solution. As has already been pointed out a solution of (35)

must satisfy (1). Since an adnissible function is not al nbst every-
where equal to zero this conpletes the proof of Theorem 1.

Remarks. 1. Let C denote the cone of thDst ever ywhere non-
negative functions, or sone other closed convex cone in L9 , and
suppose that K and F are such that f K(x,t)y(t)F(y?(t),t)dt
iIs in C whenever y is. Then one can a&g to the definition of
adm ssibility the condition that yeC, with this definition of adm ssi-
bility the argunment given above inplies that (1) has a non-trivial
solution in C

2. Solutions of the integral equation studied in [3]
are obtained as cluster points (in the topol ogy of uniforn1convergénce)
of a certain sequence. W could have used such a sequence here to
obtain a solution of (1). The construction.is as follows. Let
y = yj“ be any admi ssible function satisfying (17) and., for each n,
let Yna(x) =ct, f K(x,t)yn(t)F(Xj(t) ,t)dt where a is chosen so

as to make y = Y,y satisfy (17) . It is clear fromthe proof of

2
Theorem 1 that any such sequence lies in a conpact subset of L (fit)

and that each of its cluster points is a solution of (1) .

5. A Mre CGeneral Equation. The followng theoremis the anal ogue

of TheoremlI| of [3].

Theorem 2. Let K F, O be af iin _Section 2 and assune that the




hypothesis of Theorem 1 is" satisfied. 1f P(x) 1is real valued,

measurabl e, non-negative and essentially bounded on Q and if the

| east eigenvalue A of the symetrizable linear integral equation

(37) u(x) = -k K(x-,t)P(t)u(t)dt
0

is larger than 1, then the integral equation

| (33) y(x) =IK(X,t)y(t) (P(t)+F(y*(t),t))dt,
Q

has a™ non-trivial essentially bounded solution.

The only place in the proof of Theorem 1 where the argunent can
2 2 2

L
break down when F(y *x) is replaced by F, (y ,x) = P(xX)+F(y ,Xx)
is in the dennnstratioh (for which the reader was referred to [3])

that the normalization (16) is possible for any adm ssible function
o 2 1 2 2

Yy ¢ However if F(y ,x)  is replaced by F, (y ,x) = P(X)+F(Y ,X)

in (9 and (11) then the normal i zation (17) is still possible provid-
ed the | east eigenval ue of (37) exceeds 1l¢ For a proof of this we
again refer the reader to [3] Al of the rest of the argumentsi
used above remain valid as they stand when F is replaced by F,.

It should be noted that H(y) remains unchanged when F is replaced

by Py.
6. Application to a Non-linear Elliptic Boundary Val ue Pr obl em

We consi der the boundary val ue probl em

(39) £+ £-£+ Y F(y4x) =0 in- Q ykqg=o.

N
Bxl ox

where x = ()(Axg, and Q is a bounded region in the x-plane for

which the Diriclit problemis solvable. [If Gx*t) denotes Geen's

12
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function for the Diriclit problemin Q we have then for suitable

positive contants a”b,
0 < Qgx,t) < -alog|x-t| + Db, x.teQ

Thus for any gq > 2 there is a constant M such t hat

- i
( F1@xt) [%t)L<M for all xef.
O
Using Theorem 1 and Remark 1 followi ng that theoremwe therefore

obtain the follow ng result.

Theorem 3. Let F(y,x) satisfy conditions (i)s (ii) and (iii)

of Section 2, where y iri_ (6)i” any positive nunmber. Suppose also

that F(T),x) _satisfies:<a |ocal Holder condition_in (" cmthe

region { (r),x) iVv>0" xeCGj ._Then (39)_has a" solution y(x) which is
2 . Ak

— —— ——

positive and of class C rn O and is continuous in Q

We have also the follow ng theorem

——— e E—— e ———————————— ———

Theog,em 4. Let F(77x) be as in Theorem 3. Let P(x): - satisfy

—— —r——

<* |ocal Holder conditionin Q. If the |east eigenvalue of the

probl em
— + £-] + AP(x)u=0 in Q Ufyg = 0,

Is larger than 1, then t he pr'ob'l em

26 Py FA2 i
+f y NEN =0 1IN A -5
ELf f 4 y Y lsa=0,

1 X2
h‘a‘s*am_y’(x)l'whi—cﬁ“i*sm‘andnf‘ﬂ—ass C m Q =and ts
continuous in O '
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