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The Discrete Analogue of a Class of Entire Functions

R. J. Duffin and Elmor L. Peterson
Abstract

Discrete analytic functions are complex valued functions defined
at points of the z-plane with integer coordinates. The real and imagi-
nary pal:ts of these functions are required to satisfy difference equa-
tions analogous to the Cauchy-Riemann equations. The pseudo power
z(n) is a discrete analytic function which is asymptotic to the ordinary
power z™ for large z. The central topic of this paper is the corres-

" pondence between the pseudo power series f =2 cnz(n) and the ordinary

power series F -2 cpz™.

The coefficients are restricted by the rela-
tion lim sup l n! cnilln< 2 and this insures that both series converge
at all points. The correspondence defines a linear transformation T
sucl; that f = TF. It is shown that T can be expressed as a contour
integral and that T has a unique inverse. By virtue‘ of the transforma-
tion various operations on the entire function class (F) induce corres-
ponding operations on the discrete function class (f). In particular a

ring of discrete analytic functions can be formed by defining the

product of the functions f and g as T(FG).
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1. Introduction. This paper is concerned with complex functions

defined at the nodes of a square mesh mh that lies in the complex
plane and is depicted in Figure 1.1. The theory of these functions
was initiated by R. Isaacs [1, 2, 3], J. Ferrand[ 4], and A.
Terracini [ 5, 6 ], and has been further developed by R. J. Duffin
[7], C. S. Duris [ 8, 9], E. L. Peterson[ 10 ], A. Washburn
[11], and J. Rohrer [ 12, 13 ]. The functions investigated are said
to be ''discrete analytic' and are discrete analogues of analytic func-
tions of a continuous complex variable. A complex function f is
discrete analytic on a square S belonging to \‘n’lh if the difference

quotient of f across one diagonal of S is equal to the difference

quotient of f across the other diagonal of S
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Figure 1.1

G. J. Kurowski [ 14, 15, 16, 17 | has defined and investigated a
class of complex functions that have domain consisting of parallel
lines in the complex plane. Functions in this class are said to be
"sémi—discrete analytic'' and are semi-discrete analogues of analytic
functions of a continuous complex variable. Semi-discrete analytic
functions have many properties in common with discrete analytic
functions, but they will not be considered in this paper.

The results obtained in [ 1 - 13 ] include discrete analogues of
the Cauchy Riemann equations, Laplace's equation, the maximum
principle, conjugate harmonic functions, differentiation, integration,

the residue theorem, Cauchy's theorem, Morera's theorem, Cauchy's




integral formula, polynomials, the Laplace transform, analytic
continuation, and differential equations. Results concerned with
letting the mesh width h approach zero have also been obtained.
Some of the concepts studied, including those of '"duality' and
'"bipolynomials', have no direct analogy in the classical continuous
theory.

This paper developes a theory for a family J’ of "entire discrete
analytic functions'' that have ''discrete Maclaurin series representa-
tion'. Each function f in J’ has an analogue fc in a family Jc
of entire functions of a continuous complex variable. A mapping
T that takes J‘c onto g in one-to-one fashion and preserves most
of the operations involved is found. The image f under T of an
arbigrary fc belonging to Jc shows properties similar to those of fc .

It is easy to show that pointwise multfplication does not always
preserve discrete analyticity. R. J. Duffin and R. Isaacs have inves-
tigated operators that correspond to multiplication of analytic functions
‘of a continuous complex variable, but these operators preserve dis-

" crete analyticity only if one of the factors is a polynomial. The
approach taken here is to use the transformation T to define a '"'pro-
duct' for functions belonging to J/ . This "product', which is analogous

to the usual product for functions in J s
c




is commutative, associative, and distributive, and preserves discrete
analyticity.

Other 'products' have been defined and studied by R. J. Duffin
and C. S. Duris [ 8], A. Washburn[ 11 ], and R. J. Duffin and
J. Rohrer [ 13 ]. These "products'' are commutative, associative,
and distributive, and preserve discrete analyticity. Precise con-
nections between all of the various products have not been completely
determined.

In Section 2 we review the basic concepts and theory needed for
studying functions in J . Detailed proofs for most theorems are
omitted because they can be found in [ 7 ] . In Section 3 we state and

prove the main results of this paper,

2. Basic Concepts and Theory. The mesh ‘777h , as shown in

Figure 1.1, consists of a union of squares, each of whose sides has

length h . The lattice th (or discrete complex plane) is composed
- of the points that fall on a vertex of a member of mh . Each member
z of Xh can be represented as z = xh + iyh where x and y are
appropriate integers. The even lattice 5h consists of those lattice
points for which x + y is even, and the odd lattice &  consists of

h

those lattice points for which x + y is odd.




A chain is an oriented set of lattice points ZgrZyre- 1B with
the property that z, - 2 = h for i = 1,2,...,n. A chain
zZ_ ,%Z ,...,%z for which z_ = z 1is called a simple closed chain

0 1 n 0 n
when its elements, exclusive of Zg and z . are distinct.

A discrete region in the discrete complex plane Xh consists

of the nodes of a union of squares frommh . The discrete region

is said to be constructed from these équares, and the union of the

closed planar sets bounded by these squares is called the associated

region. The boundary of a discrete region consists of those lattice

points that belong to the discrete region and lie on the boundary of
its associated region. The union of all lattice points that belong to
the discrete region but do not belong to its boundary is called the

interior of the discrete region.

A discrete region is said to be finite if it consists of a finite

number of lattice points. A simple discrete region is a finite discrete

region whose boundary can be represented by a simple closed chain.
We begin our discussion of complex lattice functions by defining

a finite difference operator L .

Definition 2.1. Let f be a complex lattice function and suppose that

S is a square belonging to Vﬂh . Then the residue L(f,S) of f

at the square S is defined by
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L(£,8) = f(zg) +if(z)) + izf(zz) +if(z,)

where Zor 2%, and z, have the orientation depicted in Figure
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Figure 2.1

The quantity L(f,S) is termed the residu'e of f at S, because in
""discrete contour integration'' it plays a role a.nélogous to the role
played by the residue of a complex function of a continuous complex
variable in the classical theory of contour integration.

Discrete analyticity can be defined in terms of the operator L

as follows.

Definition 2. 2. A lattice function f is discrete analytic on a square

S belonging_tz_g_"h’[h if its residue L(f,S) at S is zero. A lattice




function f is discrete analytic in a discrete region ‘Q if it is

— —

discrete analytic on each square used in the construction of w .

The reader should have no trouble showing that this definition of
discrete analyticity is equivalent to the one given in the first para-
graph of Section 1.

We shall adopt the following definition for 'discrete line integrals'.

Definition 2.3. Let C:z ,z  be a chain and suppose that

0'%1’ " "m 222

f is a lattice function. Then the discrete line integral

z
m
(c) [ f(z)6z of f from Z4 to z over C is defined by
z — = m T
o
z
m m [f(z,)+ f(Z’—l) ]
(cy [ f(z) 62z = X J J [z, -2, ]
: . 2 j j-1
Zg j=1

The following ''residue theorem'' is an elementary consequence

of the preceding definition. Its proof can be found in[ 7 ] and will

not be repeated here.

Theorem 2.1. If f is a lattice function defined on a simple discrete

region § 2 and the chain 8P representing the boundary of \"e is

oriented so that ")Q is on the left as the chain is traversed, then

. S .
(89 §6f(z) 6z = Q—f—)—h = L(f,s’)
. i=1




. S
where {SJ } is the set of squares used to construct 7? .
j=1

"Cauchy's theorem' and '""Morera's theorem' are immediate
consequences of the '"residue theorem'. They are stated in the

following corollary.

Corollary 2.1.1 Suppose that f is a lattice function defined on

a simple discrete region ¥ . Then f is discrete analytic on

‘fe if, and only if, (C) ‘¢ f(z) 6z = 0 for each simple closed

chain C lyingi_n.\)e .

As in the classical theory of a continuous complex variable,
"Cauchy's theorem'' leads to the generation of discrete analytic

functions by discrete line integration. The main theorem follows,

Theorem 2.2. If f is discrete analytic in a2 simple discrete region

‘eé_rﬁ ae% then

V4
F(z) = [ £(t) 6t
a

is single-valued and discrete analytic on "‘Q

The function F is single-valued on VQ by virtue of Corollary 2.1.1.

The proof that F 1is discrete analytic on \ﬂ follows from computing




h

L(F,S) interms of L(f,S) . The resultis L(F,S) = > L(f,S) .

The analogy between continuous complex variable theory and
discrete complex variable theory breaks down in the study of anti-
integration. Given a discrete analytic function F , it is not

generally true that

for some discrete function f obtained by taking difference quotients
of F . The next definition and theorem characterize, in terms of

F , those functions f that satisfy the preceding functional equation.

Definition 2.4. Let y be the lattice function defined by

1 if z is an even lattice point (z e £h)
v(z) =

-1 if z is an odd lattice point (z e e’h)

Then the dual f 9_]‘;3 lattice function f _13 defined EX

£5(2) = v(z) £5(z)

where f*(z) is the complex conjugate of f(z) .
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A lattice function f is discrete analytic if, and only if, its dual

fD is discrete analytic. This can be seen by computing L(f_,S)

D
in terms of L(f,S) . The resultis L(fD,S) = y(zo)[L(f,S)]*

where Z4 has the position shown in Figure 2.1. The notion of

duality is important because of the following theorem.

Theorem 2.3. Suppose that F 1is discrete analytic on a simple

discrete region Y and let 2 and b be fixed points of £ . 1f

k is an arbitrary constant, then the discrete function

s5F .. 4 °
- (z3k) “;Z{) F(t) ot + k)

is discrete analytic 9_2"@ and

4
F(z) - F(a) = (C) [ o= (t;k) bt
a

for each chain C:a = z .,z = z lying in \Q— . Conversely,
n kit Al A

0’ -

if f is a lattice function on “‘Q with the property that

4
F(z) - F(a) = (C) [ £(t) &t
a

for each chain C:a = =z ,zm = z lying 1_n \IQ, , then

0’
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f(z)

1]

oF
5 (73

for some complex constant k . .

The preceding theorem shows that the discrete derivative, unlike
continuous differentiation, is not unique and can be given an
arbitrary value at a fixed point of the discrete region % .

We shall give a detailed proof of the second part of Theorem
2.3, because the second part is new; a proof for the first part is
givenin [ 7 ] . Thus suppose that f is a function defined on “ﬁ
with the property that

zZ
(2.1) F(z) - F(a) = [ £(t) 6t
a

for each z belonging to VQ . Then (C) ¢ f(t) 6t = 0 for
each simple closed chain C lying in L. By Corollary 2.1.1
we see that f is discrete analytic on ‘?e . We infer from the first

conclusion of Theorem 2.3 that the function

6fD ' 4 z
(2.2) 3. (z:F(@)) = (— [ £(t) 6t+F(a))D

5z h b

has the property
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z 6fD
(2.3) fD(z)—fD(b) = _L 57 (t;F(a)) o6t .
Equation (2.2) shows that
6fD 4 2
(2.4) == (z:F(a)) = ([ £(t) 8t)+ F*(a) y(2) ,

h b
and manipulation of equation (2.1) gives

z
Fo(z) = (f £(t)8t+F(b))

b D

Hence

Z
(f  £(t) 8t)y = Fp(z) - Fx(b) v(z),
b

which, when substituted into equation (2.4), gives

&f
6z

(2:F(a)) = 3 F_(2) -3 F*(b) y(2) + F¥(a) y(z) -
h : h

Substituting this expression into (2.3) shows that

z z

4 4
£ (z)-f_(b) = — [ F_(t)6t+(F#(a) -— F#(b)) [ vy(t) 6t .
D D w'p D n? b
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z
It is clear from Definitions (2.3) and (2.4) that [ y(t) &t = 0.
b
Hence
4 7
fD(z) = = I FD(t)6t+y(b)f=-<(b),
h b
and thus
4 " 5F
f(z) = (3 [ F(t)st+y(b) £(b)) = 2 (z:k),
h b
where k = y(b) f*(b) . This completes our proof of Theorem 2.3.

The following theorel.'n provides a discrete analog e(z;t) 'of
the exponential function eZt . We use a semi-colon rather than ;a
comma between the independent variables z and t in e(z;t) to
indicate that z is a discrete complex variable and t is a continuous

complex variable.

Theorem 2.4. Let z = xh + iyh be a discrete variable that is

restricted to gfh (i.e. x and y must be integers), and suppose

that t is a continuous complex variable restricted so that t # +T21-

— — —

2
and t # +i T Then the discrete exponential function

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSITY
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(2.5) e(z;t) =

is a discrete analytic function of z for fixed t and an analytic

function_g_{ t _fo_rfixed z . Moreover,
z
(2.6) e(z;t) = 1+t(C) [ e(z;t) 6z
0
for each chain C: 0 = ZgrZyr 0B = z lyin Eo‘fh.

The validity of (2.6) can be demonstrated directly from the defini-
tions for a discrete integral and e(z;t) ; the details can be found
in[ 7] . Itis clear that e(z;t) is a rational function of t for

fixed z , with possible poles only at the points t = + and

2

h
t = + i—; hence e(z;t) 1is analytic in t. for fixed z , except
possibly at these points. The discrete analyticity of e(z;t) as
a function of z for fixed t is a direct consequence of (2.6) and
""Morera's theorem' (Corollary 2.1.1).

The discrete exponential function e(z;t) was introduced by
Ferrand [ 4 ] and plays a fundamental role in our study of "discrete
Maclaurin series'. From its defining formula (2.5) it is clear that

e(z;t) can be expanded as a Maclaurin series in t , with absolute

2
convergence for |t| < P The series coefficients
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generated by this expansion are, of course, functions of the discrete

variable z . These observations justify the following theorem and
definition.
Theorem 2.5. The discrete exponential function e(z;t) has a

Maclaurin series expansion in t given by

© (n)
(2.7) e(z;t) = Z z

which converges absolutely for each z in Xh and all t in the

2
disk |t] < 5 The generated coefficients z(n) , n = 0,1,2,...

are called pseudo-powers.

n)

The pseudo-powers z( are discrete analogs of the powers

n
z of a continuous complex variable; the pseudo-powers z(n) are
n
generated by e(z;t), and the powers z are generated in the
zt
same manner by e . The following theorem brings out further

n)

analogies between z( and z"

Theorem 2.6. The pseudo-powers z(n) , n = 0,1,2,... are

discrete analytic on Xh . Moreover,

(2.8) 20 =
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and
z
-1
(2.9) 2 = nicy 2 V62, =n =1,2,
o .
for an arbitrary chain C:0 = 2o %y 0By TOF lylngﬂxh.

Equations (2.8) and (2.9) come from substituting (2.7) into (2.6)

i n .
and equating the coefficients of t= that appear on each side of

(n)

the resulting equation. The discrete analyticity of z follows

by induction from (2.8), (2.9), and Theorem 2.2.

In the next section we study a class of pseudo-power series
> (n)
Z ¢ z in which the coefficients c are complex constants.
n ,
n=0

It is an elementary consequence of Theorem 2.6 and the definition

of discrete analyticity that a convergent pseudo-power series con-

©
. n
verges to a discrete analytic function f . The series X <, z( )
n=20
is said to be a discrete Maclaurin series representation of f .

(0)

It is clear from (2.8) that z is equal to its continuous

counterpart z for z restricted to ‘Ih . Moreover, it is easily

(1) (2)

seen from (2.9) that =z equals z2 for =z

equals z and =z
in L : 3
in h However, an elementary computation shows that z , for

z restricted to xh , is not even discrete analytic on the square with

vertices (0,0), (h,0), (h,ih), and (0,ih) . Hence z(3) is not
identical to z for z in W In[ 7], for each positive integer

n .
n itis show/that there exists a complex polynomial r l(x ,y) of
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(n)

degree (n - 1) in the real variables x and y such that z =

z0 +r 1(x,y) when z = 2h + iyh is restricted to xh . Thus,
. n- .
oo
Z c z(n) isn't necessarily equal to > ¢ z" for z in i )
n n h
n=0 . n=20
but we shall see in the next section that
oo (oo} (n)
%~ ¢z is useful in the study of its ''discrete analog' X c 2 5
n = n n=0
3. Discrete Maclaurin Series. In this section we study pseudo-
power series
© a (n)
(3.1) f(z) = Z 7 2

where z is a discrete complex variable. Corresponding to the pseudo-

power series (3.1) is the power series

(3.2) | fla) =" = T 4

in which q is a continuous complex variable. Series (3.1) is said

to be the discrete analog of series (3.2), and series (3.2) is said to

be the continuous analog of series (3.1). In our study of (3.1) and its

relation to (3. 2) we shall find use for the Borel transform

(3.3) f o (t) =
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of series (3.2); here t is a continuous complex variable. We shall
always use the subscripts ¢ and B to distinguish between a pseudo--
power series (3.1), its continuous analog (3.2), and their Borel
transform (3.3).

Instead of formulating, in terms of the coefficient sequence

{an }, conditions that are both necessary and sufficient for the con-
vergence of (3.1), we place a condition on {an } that guarantees the
cbnvergencé of (3.1) for each z in Xh » and then we investigate the
relations between series (3.1) and series (3.2) and (3.3). The con-

dition is that

=l W)

(3. 4) a = lim sup‘\nllanl <

where h is the mesh width of Z h

Theorem 3.1. If a = lim sup ‘\n l | anl satisfiés relation (3. 4),

then

(I) Series (3.1) converges to a discrete analytic function f on

_a_l_l__g_f__e‘fh . _ bR

(I1) Series (3.2) convergeé to an entire function fc of order

O(ePIQI) for each p > a (i.e. fC is analytic on the

whole complex plane, and for each p > a there exists a
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plal

positive constant Ap such that ,fc(q)l < Ap

for all complex q).

(III) Series (3.3) converges to an analytic function fB for

Itl > a.

Proof. From (3.4) we see that

g Ko
A
ol

(3.5) a <

N
-+

and this implies the existence of a positive integer N such that

: - ' 1
3. 2 < 2 - > )
(3.6) l anl <zt h for n > N
because a is the largest limit point of { 2 l a_ | } . Itisthen

a consequence of (3.5) and (3. 6) that

a 1 " 2 "
< = - -
(3.7) |an|_(2+h) < (gf) for n> N,
® |a |
. . . n (n) ) ..
which implies that X . Iz I is majorized by
N .
a 1 n a n
© (5 + =) © (= + =)
2 h
z - Iz(n) | . But Z —2——'—}-1—— |.z(n) | converges
N n,. ) N n.

for each =z ina(h by virtue of Theorem 2.5 and relation (3.5), seo

o a
z z(n) converges absolutely for each z in Xh . The limit
0

1

2la




- 20 -

(n)

function f is discrete analytic because z is discrete analytic,
finite linear combinations of discrete analytic functions are clearly
discrete analytic, and the limit of a. sequence of discrete analytic
functions is easily seen to be diécrete analytic. This completes the
proof of conclusion (I).

Conclusions (II) and (III) are well-known results from the theory
of entire functions. In fact these two conclusions are known to be
valid under the weaker hypothesis that a = lim sup ’ \nl I a_ | be
finite. The proofs are similar to, and no more difficult than, the
proof of conclusion (I). The details can be carried out by the reader
or can be found in [ 19] .

The preceding theorem states that series (3.1), (3.2), and (3. 3)
converge to functions f, fc , and fB respectively, when (3. 4) is
satisfied. We now concentrate on the functions themselves rather

than on their series representations. The next two theorems give

formulas for f(z) in terms of fB(t) and fC(q) respectively.

Theorem 3.2. If a = lim sup ~ l | anl satisfies relation (3. 4),

then f(z) , defined by (3.1), can be expressed in terms of fB(t) R

defined by (3.3), as

f(z) = -

4 a
.3 qs e(z;t)[fB(t)-—to-]dt ta_ (3

8)
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where BDP(tj) is the boundary of the closed disk D (t.) that is

p )
. . . 2 2
centered at the point tj with radius p . Here, t1 = 5 t2 = iq
2 2
t, = - t = -i—,and p = (—-a)/2

3 h’' 4 h’® == h

2
Proof. Fix z, and choose r sothat a < r < 5 Then Theorems

® z(n) n
2.5 and 3.1 imply that e(z;t) = z — t and f_(t) =
. -0 M B
(o) a
converge uniformly in t for t e 3D (0) . Hence
n=0 tn+1 r

1 %o 1 ® ® amz n-m-1
-— ¢ e(z;t)[ fB(t) -—t—]dt = - ¢ zZ = —I-;-r-—t dt

2™ 5D (0) 2™ b (Of\n=0m=1
r r
(n)
x ® A 1 n-m-1 ® ®n (n)
= X z = [2, qS t dat ] = 2;—,—z =f(z)—ao
n=0m =1 ' "‘aDr(O) n=1""

Since t, t,, t,, and t, are the only possible singular points of

I 2 3 4

e(z;t) and since fB(t) is regular for ltl > a, we can deform

the contour BDr(O) to obtain

1 ¢ %o
- 35T e(z;t) [ £ (t) -— ]dt+
21r1j 13Dp(tj) B t

f(z) =

"M

Y

1 ¢ ao
- e(z;t) [f (t) -— ] dt +a
2wi BDR(O) B t o
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2 .o ..
where R > 5 + p . Hence, it is sufficient to show that

a

1 o

(3.9) oy 3D§io) e(z;t)[fB(t) e ] at = 0.
R .

Letting t = Relg and making use of defining formula (2.5) for

e(z;t) , we see that

1 ¢ ’ %o
5 570) e(z;t)[fB(t)-—t—] at| =
R
. X . Yy
2T i0 i i0 a
2 . 0 .
E1__ I s + hReig 2 + 1hReig [fB(Rel ) - ;)O 1 iRelQ do
T o |2-nhRe 2 - ihRe Re
o |a_]|
< I 2+hR] ||x|+|y| -~ n 1.
h 2 - hR n-l1 | R~

n=1 R

It is clear that the last expression approaches zero as R approaches
infinity. By Cauchy's theorem we conclude that (3.9) is valid, and
this completes the proof of Theorem 3. 2.

The following theorem gives a formula for f(z) in terms of

fc(q) . This theorem is the main result of this paper.
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Theorem 3.3. If a = lim sup '\nl Ianl satisfies relation (3. 4),

then f(z) , defined by (3.1), can be expressed in terms of fc(q) ,

defined by (3.2), as

(3.10) ' 2
. X“l + o -Eq j
f(z) = +U(x-1) = X(x,y) [ [f(q)-a ]e q” dq
) j c o
i=0 o
2
-x-1 _ -0 Eq j
+U(-x-1) T X.(x,y) [ [f (q) -a e q” dq
) j c o
j=0 o)
) .2
y-1 + ico ita j
+U(y-1) Z Y. (x,y) f [f(qa)-a_ ]e q” dq
. j c o
i=0 o
2

-y-1 -ioco -i—q j

+UGy -1 2 Y eoy) Jo[ffa)-a le  dlda+a,
o

j=0?

where U is the unit step function,

0 if <O

1 if g >0,

+ - -
and X, X., Y. ,Y. are defined as
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(3.12) -
) .2, 2 'y
+ (-13tt FH £ SRRV
X.(x,y) = 5 ; ; A [ -7 -w
j jix-1-j)!x x-1-j h s 22 =
d lh o W w=20
(-1)"* g ¥l 4 -x ‘iE'%J’W Y
XAx,Y) = 7 oo R [+ -w] |
j -1 (x) g -x-1-j | " h _IE+%_W w=0
. . 2 .2 x
+ (-t g R iRt 4 y
Y.(x,y) = iN(y-1-j)! -1-j 2 2 [i-ﬁ-W] '
J J\y J)y dWY J — t+i— - W w =20
h h
j+1 1 / 22w
Yoy) = — 0 a’y J. ntlh (a2 w7y '
j BTCy-1-1) 1 (-y) dW'Y"l‘J\ 2 .2 b =
h 'h B

Proof. The proof consists of several parts. First, we express fB(t)
in terms of fc(q) , which enables us to use Theorem 3,2 to express
f(z) in terms of fc(q) . Then, we interchaﬁge the orders of inte-
gration in the resulting expression for f(z) and make use of Cauchy's
formula for the derivatives of an analytic function. Finally, we apply
Leibnitz's formula for the derivative of a product of fupctions to obtain
(3.10).

The first step is accomplished with the following lemma.
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2 .
Lemma 3.1. 1If p = (;-2a)/2 andif a = 1imsup,n| la_|

satisfies relation (3.4), then fB(t) , defined by (3.3), can be

expressed in terms of fc(q) , defined by (3.2), as

@ .
(I) The integral [ et [ fc(q) - ao] dq converges uniformly

o
a

o ) _ 2
to _fB(t) T on the disk Dp(tl) where ’c1 =5

-
(II) The integral [ et [ fc(q) -a ] dq converges uniformly
_ as ° 2
to fB(t) e on the disk Dp(tS) where t3 = -5
' -ioco _t
(II1) The integral [ e 4 [ fc(q) -a, ] dqg converges uniformly
o

a
o . _ .2
to fB(t) - on the disk Dp(tz) where t2 = i

ioo
(IV) The integral [ et [ fc(q) -a ] dq converges uniformly
o

a
o . _ . 2
to fB(t) -T on the disk Dp(t4) where t4 = ig-

Proof. To prove conclusion (I), let r be an arbitrary positive number.

Keeping Theorem 3.1 and relations (3.2) and (3. 3) i‘n mind, we observe

that
(3.13)
T © a @® a a T o
-t ©o - a
[ J e q<2 -I—:qn>dQ‘ z r:_1|=| Z'v——r:-fetqqndq- 2_2'_11__'_
-0 n=1n’ n=1 n nzln"o n=1n. tn+
M |a_| \ o fla | = la_|
< >3 . n l f e‘tqqn q -—— n l f e" qq dq I + n
n=1 ™' o Bt M+l M o lt|n+1
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for each positive integer M . Now suppose that tx and ty represent

the real and imaginary parts respectively of t. Then
Tt oo —txq n n'!

| [ e 14" dq| < J e q dq = n:l-l , which, along with

o o ‘ t

X
inequality (3.13), gives the inequality
o © a oo} a_
(3.14) |f e =z =5 q"|dq- = |
n! n+l
o n=1 n=1
M |a_| r ® la_| la_|
n -tq n n.! n n

<z n! I [ e q dq - n+l | + z n+l ¥ n+l ’

n=1 o t n=M+1\ t [t |

o (lal la]
Now, given € > 0, choose M so large that Z
: n+l n+l
n=M+l\ t [ t]
X

for teD p(tl) . Integration by parts shows that

Mo fa | ro L n ¢

z — | e 94" dq - ==~ | canbe made less than ~ by
n=1 " o ¢ 2

choosing r large enough. Hence, choosing sufficiently large M

ro, © a
and r, we see from (3.14) that Ij‘ e 4 = o7 4 dq -
o n=1""°
® a
€ €

-_— < = - = :

] | 3 t3 ¢ for te Dp(tl) . This completes the
n=1t A : )
proof of conclusion (I). Proofs for the other three conclusions

are similar to the proof of conclusion {(I), hence are omitted.
In completing the proof of Theorem 3.2 we will assume that

z = xh + iyh is in the first quadrant of ih ; that is, x and y

(ST




- 27 -

are non-negative integers. Proofs for the other three cases are

similar and are left to the reader. Under this assumption we see,

from defining formula (2.5), that e(z;t) has possible singularities
2 2 : .

only at t = 5 and t = -i oo This fact and conclusion (III) of

Theorem 3.1 show that the second and third terms of formula (3. 8)

are zero, by virtue of Cauchy's theorem. The first and fourth terms

of formula (3.8) can be reformulated by applying the first and fourth

conclusions of Lemma 3.1. The result is

1 ® i
f(z) = - 2 8D¢t ) e(z;t) [ e [fc(q) -a ] dqadt
p(l o
(3.15)
. ico )
-_Z-TIE- ¢ e(z;t) S etQ[fC(q)_ao] dth+ao
9D (t,) o :

Now, we show that the order of integration can be reversed in
each term of the preceding sum. Letting r be a positive number

and considering the first term, we see that
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r

o |
| D ctmt) f e i (a)-a, dadt - [ [£la)-a,] P e(zme Yaag
o ¢ o oD _(t,)

© r ;t
I ¢ e(z;t){f e q[fc(q) -ao]dq -f e q[fc(q)-a0 ]dq }dt |
8Dp(t1) o o

oo
-t
< 2mp max |e(z;t)| max |J e q[fc(q)-ao]dql ]
tedD (t) tedD (t.) r
p 1 p 1

© A
Since [ et [ fc(q) -a, ] dg converges uniformly on Dp(tl) ,
o oo
the max | r et [ fc(q) -2 ]da| canbe made arbitrarily
te aDp(tl) T

small by making r sufficiently large. Hence the order of integ;c'ation
can be reversed in the first term of (3.15). A similar argument shows
that the order of integration can be reversed in the other term. Using
these facts with defining formula (2.5) for e(z;t) , we rewrite

equation (3.15) as

(3.16)
o o) ioco
f(z) = o[fc(q)-aol ¢1(q,Z)dq+fo [fc(q)-ag] byla,2z) dg +a_
where
_ -1 -tq , 2+ ht x 2+ iht y
Waz) = o5 ‘§6 e e Tme) (zTime) 9

aDp(tl)
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and

2+ht)x(2+1ht
ht 2

. et
¢4(q,z) = 2

oD p(t4)

) at .

Making changes in the integration variables gives

: (- tw)q
-1 h 4+hw.x 2+i2 + ihw y
b(q,z) = : e (——) (5—F—F72) dw,
) - 2 -1i2
1 2wi 8D (0) , hw i ihw
P
and
i 2 )
v (q Z)_-l e(lhwq( -12+hw)x(4+1hw)
’ - 2 2 2_ -
4 i 9D (0) + i hwv ihw
P
Hence
2
= 4

_ehq C ew BV« —i%+g+w v
y(q,2z) = —S—— ¢ e d ( )y ) dw ,
1 211'1 aD (0) w _'_Z._E_

o " Th
and 2 , .

—elhq -qw h K+W X i-}-{—w y
$,a,2) = 1) ( ) ( )Y dw
4 2ri 8D " (0) E_*_,E_ w

0 n o t'h Y

Using the unit step function U and Cauchy's formula for the

derivatives of an analytic function gives

dw
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2
h x-1 “i=t — 4w
dla,z) = V) S S [T 2w 15—
! Xt gt h L w=0
w T =
and
2
i-q 2 .2 X
y-1 = -i—+w
. e d -qw| h h
byla.z) = -Uly-1) 2 o G e [ig-w]”
Yy - y- : -
dw '1-_1-+1K—W w=0

Making use of Leibnitz's formula for the derivative of a product,

we see that

2, 2 2 y
)=-U(x-1)2 : };1 (1) (.q)] . [-i-W]x hTRTY
byla, z)=-U(x-1)— R CE T I TRR NS S R 422y w
j= w h h
and
i=q i yiiej ([ -4 * |
h -1 -1- = -i—+w
=-U(y-1)>—o [ e D - R U J{ h_h [ -w]Y
bylq,2)=-Uly-1) e i y-1-j)" y-1-j{| 2, .2 Y °
j=0 T dw \ Rtip v w=0

Substitution of these two expressions into (3.16) establishes equation
(3.10) in the case that x and y are non-negatiye integers. This
completes our proof of Theorem 3. 3.

If (3.4) is satisfied, we know from Theorem 3.1 that f(z) , deﬁned

by (3.1), is discrete analytic on and that f (q) , defined by (3.2),
. y h c y
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lql)

for some r < — . Moreover,

is entire and of order O(er n

Theorem 3.3 shows that f(z) can be expressed in terms of f (q)
c

by (3.10). The next theorem is a converse of these statements.

Theorem 3.4. If fc(q) is an arbitrary entire function of order

2
O(erlql) for some r < P then

(I) Formula (3.10) defines a function f(z) that is discrete

analytic on ofh and can be expanded in a pseudo-Maclaurin

series (3.1) such that (3.4) is satisfied.

i . i f
(II) Series (3.2) converges to fc(q) and fc is of order

O(eplql) for each p > a.

(III) Series (3,3) converges for | t , > a to the Borel trans-

form fB 2{ fC

Proof. It is a well-known result of the theory of entire functions

that fC has a Maclaurin expansion (3.2) such that a =

lim sup '\n l Ianl < r and such that conclusions (II) and (III) are
valid. In fact this is known to be true under the weaker hypothesis
that fc be entire and of order O(er' 1 l) for some firﬁte r. A
proof can be based on Cauchy's integral formul# and Stirling's formula
for n! , and canbe found in[ 19]. Since a < r, it follows that

2 2
a < a because r < a by hypothesis, The proof of Theorem 3. 4
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can now be easily completed by applying Theorems 3.1 and 3. 3.

The preceding theorem justifies the following definition.

Definition 3.1. The analog mapping T : é’c ——>J has domain

J

C

{fc | fc(q) is entire and
(3.17)

O(erlql) for some r < —12; }

£ (q)
and range

J = {fl f(z) has a pseudo-Maclaurin

(3.18)

expansion (3.1) for which (3. 4) is valid } ,

and .1_5 defined l_al

(3.19) £= T(f)

h f is gi {3.10) i .
where f(z) is given by (3.10) in terms of fc(q)

It is clear from (3.17) that Jc forms a vector space, and it is
n i J
a well-known fact that the powers {q } are a basis for . A
c

close inspection of (3.10) shows that T is a linear transformation on
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J ; hence J is a vector space. Moreover, it is clear from
c

Theorem 3, 3 that z(n) = T(qn) for n = 0,1,2,...; hence

{z(n) } spansJ’ . Among other things, the next theorem shows

(n)}

that {z is actually a basis foré’ .

Theorem 3.5, The family Jc forms a vector space with basis

{qn } , and the familyJ forms a vector space with basis {z(n) Y.

Moreover, the analog mapping T 1is a one-to-one linear transformation

from Jc ontoJ’ such that z(n) = T(qn) for n = 0,1,2,... .

Furthermore, a function fc that is in J‘c and is idehticallz zero

on the non-negative real axis is identically zero on the whole complex

plane, and a function £ thatis in J and is identically zero on the

non-negative real discrete axis is identically zero on the whole

discrete complex plane x h*

(n)}

Proof. To show that T is one-to-one and that {z is a basis
for é , we need only prove that the kernel of T contains only the

identically zero function. Thus suppose that f(z) = 0. Then

a = f(0) = 0, and hence equation (3.10) reduces to
5
x -1 (e 0] -l—l'q .
flx) = = X/(x,0) [ f(q)e @dq for x > 0,
i=0 . o ¢ .

where
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(_1)x+3+1(x_1)! 4 j+l

X(x,0) = TGy ()

In particular, we have

which means that

"
o

J fc(q) e dq

Employing the second principle of induction, we assume that

w  -Zq |
Fofla)e @?dg = 0, 0<j<k.
o
Then, by (3.10), we have
2
' °° "R k4l
or
k+2 o Eq
_ 1 4 “hT ktl
fk+2) = rey () J flale T oad

’
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and hence

2
o -4
k+l1
J fla)e q dq = 0.
o .
Thus we have shown that
2
Qo -Eq .
(3.20) [ f(a)e © aldg =0, j=0,1,....
o

2
Because fc(q) is O(ep'ql) for some p < — (see Theorem 3,4),

h
2
-sq "nd
the improper integral [ e fC(q) e dq converges uniformly
o
to a function F(s) on the interval [?2; - —1}; , + ®) . Equation (3.20)

states that all derivatives of F vanish at the origin; hence F(s) = 0.

From the uniqueness theory for the Laplace transform it now follows

2

that fc(q) e h

0, and hence fc(q) = 0. Thus the kernel of T
contains only the identically zero function, which implies that T is
one-to-one and that {z(n) } is a basis for'é’ .

It is a well-known result of function theory that fc is identically

e 1
i

zero on the whole complex plane when it is identically zero on the
non-negative real axis. In fact this is known to be true under the

weaker condition that fC be zero on an infinite set of distinct points.
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To prove that f is identically zero on the whole discrete complex
plane when it is identically zero on the non-negative real discrete
axis, we first repeat the reasoning of the preceding paragraph to
show that its continuous analog .fc is identically zero. It then follows
that f = T(fc) is identically zero because T is linear. This com-
pletes the proof of Theorem 3.5,

The following corollary is easily proved from Theorem 3.5,

Corollary 3.5.1. The pseudo-powers {z(n) } are linearly inde-

pendent, and the pseudo-Maclaurin series representation (3.1) for

an arbitrary function f in I is uniquely determined by the values

of f on the non-negative real discrete axis.

The analog transformation T leads quite naturally to a definition
for multiplication of functions in 2 . The.following notation will prove

useful for defining multiplication and stating the remaining theorems

of this paper:.

©® a
- n (n) 9. n 2
(3.21) f1f(z) = nZ_)o;l—! z where a = lim sup \ / |an| < I
and
C Pn o (m \n /T 2
. n
(3.22) g(z) = Z_‘: o Z where b = lim sup ]bnl < i

0
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here h is the mesh width of o{ e As the following definition and

theorem shows, multiplication is defined only on a proper subset 70

of J’ X.J' ..

Theorem 3.6. Let f in J be given by (3.21), and let g in J be

given by (3.22). If (f,g) isin
(3.23) "70= {(f,g)lf,geétfig_c_i_a+b<%},

then

(I) The pointwise product function fc X g, where fc = T (f)

and g_ = Tg) . isin J’c-

(II) The discrete product function f @ g = T(fc X gc) of f

and g isin & .

(III) The discrete product function f @ g has a discrete Maclaurin

a.b
. . . . i
series representation with coefficient sequence { = 1—'—],}- },
i+j=n "7

where {an} and {bn} are the coefficient sequences of {

and g respectively.

N1

(IV) The discrete product ® is commutative, associative, and

distributive over point-wise addition.
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Proof. Using (3.21), (3.22), and (3.23), we deduce from conclusion

(II) of Theorem 3.1 that fC X g, is O(epl d I) for each p > a+b.

Heljlce, by virtue of (3.23), the function fc X g, is O(erl 1 ') for

some r < % , and it is then a .consequence of (3.17) that fc X g,

is in J‘c . This proves conclusion (I) and establishes conclusion (II).

Conclusion (iII) results from multiplying the Maclaurin expansions |

for fc and g, and then applying T to the resulting function in

J’c . Commutativity, associativity, and distributivity of @ are

inherited from the corresponding préperties of thé pointwise product

X for functions in J - This completes the proof of Theorem 3. 6.
The analog transformation T can also be used to define differen-

tiation on vJ’ .

Theorem 3. 7. _I_f f is in J, then
df

(1) —dis is in Jv , where f_ = ) .
‘ of dfc |
(II) The discrete derivative — = T(—) of f is inj .
6z dq' — ——
(II1) -56; is a linear operator on J’ .
&f > 2
(Iv)y = = = n (n-1) . .y
5z . (n-1)! Z , where {an } _1_s_the coefficient
sequence of f .
o n n
O .
(V) f(z) = = éf_n_‘___ z(n) , where is the composition
n=20 : ,5zn

9_{ —6—2— with itself n times.
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(VI) E%E_) - %5_2. ®g+f®-g-§ , provided that (f,g)

. is in ")D i_s_given_‘l_)_y_(?:.Z?;).
Proof. Conclusion (i) 1s a well-known result from the theory of
entire functions. Its proof can be based on the Cauchy integral for-
mula and won't be given here. Conclusion (II) is justified by conclu-
sion (I), and conclusion (III) follows from the linearity of 4 and T'.

dq

Conclusion (IV) results from applying T to the Maclaurin expansion
df

of —dqc- » and conclusion (V) comes from repeated application of con-
clusion (IV). Conclusion (V1) is an immediate consequence of the
linearity of T and the correspondiﬁg formula for functions in Jc .
This completes the proof of Theorem 3. 7.

The following theorem relates discrete integration, as defined

by Definition 2. 3, to continuous integration,

Theorem 3. 8. ;[__f_ f _1_5_111_ é’ , then

a -1
(1) [ £(a)dq i_si_nérc,where £ = T (f) .

o
z : q

(Ix) [ f(z) 62 E_S__lgj' and equals T(f fc(q) dq) .
o o
z

(Iir) 6z is a linear operator on-J’ R
s 22 2n
z (o'} a S

(IvV) [ f(z) 6z = = -————I-l-———, Z(n+1) , where {a } is the
o n=0 (n +1)! — ' n —_—

coefficient sequence of f .
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Proof. The proof of conclusion (I) is a well-known application of

Cauchy's integral formula and won't be given here. To prove con-
clusion (II), first establish conclusion (IV) by "integrating' (3. 21)

and applying Theorem 2.6, Then let T operate on the integral of

z q
(3.2) and use conclusion (IV) to show that [ f(z) 6z = T([f fc(q) dq) .
‘ q o o
The function T(J £(q) dq) is in < by virtue of conclusion (I).
z o
Finally, [ 6z is a linear operator on the family of all discrete
o

analytic functions, as can be seen from its Definition 2.3, This com-

pletes the proof of Theorem 3, 8,

The preceding theorem provides the machinery needed to relate

the operator 6—62- to the operator Eéz_ ( ;k) defined by Theorem 2. 3,

Theorem 3.9. If f is inJ’, then & = & is
= == —= %z 5z

1

o
%
;al) where a

the complex conjugate -<_)_£ the coefficient al' appearing in (3.21).

Proof. Using Definition 2, 3 for discrete integration, with conclusion
(II) of Theorem 3. 8 and with the fact that T is linear, we see that

for arbitrary lattice points a and z
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of 6f of
f—s—z-éz-j‘ Zéz—faéz
a o o
qdfC qdfc
= T[f ——dal(z)-T[[ —— dq](a)
° dq ° dq

= TLE@) - (O T(=) - TLE(@) - (0 ] (=)

= Tl (@) ] (2) - TL£(0)](2) - T[ £ ()] () +T{ £,(0) ] (a)
= f(zf -a_ -f(a) +a

= f(z) - f(a) .

This relation and the second conclusion of Theorem 2.3 show that

Z

&6f of . _ 4
52 (z) = 6Z(z,k) = > J fD(t) 6t+k)D
h o
for some complex number k . This identity and Definition 2. 4 for

‘ *
the dual of a lattice function show that k = -Z—E-,(O) . But, according

to conclusion (IV) of Theorem 3.7, we know that g—i— (0) = a,; hence

sk

k = a; and the proof of Theorem 3.9 is complete.
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In concluding this paper we discuss the discrete analog of
integration by parts.

Theorem 3.10. If (f,g) ¢ Y as given by (3.23), and if a and b

are lattice points, then

- b sg b b 5f
ff®626z=f®g] -fg@-g;éz.
a a a
Proof. According to conclusion (VI) of Theorem 3.7
5(f@g) _ &f b
52 5, D8t O .
Hence
b b b
PEBe) 4, F el @gszrs £t @26z,
6z 6z 85z
a a a
and thus

b

| ) .
t@el =7 L @goz+s t@Lss
aﬁz a Sz

a

by virtue of Theorems 3.9 and 2.3. This completes the proof of

Theorem 3.10.
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There are, no doubt, many more interesting properties of the
family J’ that can be found by employing the analog transformation

T .
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