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R. J. Duff in and Elm or L. Peterson

Abstract

Discrete analytic functions are coinplex valued functions defined

at points of the z-plane with integer coordinates. The real and imagi-

nary parts of these functions are required to satisfy difference equa-

tions analogous to the Cauchy-Riemann equations. The pseudo power

z(n) is a discrete analytic function which is asymptotic to the ordinary

power zn for large z. The central topic of this paper is the corres-

pondence between the pseudo power series f =/L cnz(n) and the ordinary

power series F =£~ cnzn. The coefficients are restricted by the rela-

tion lim sup | n! c n | *<C 2 and this insures that both series converge

at all points. The correspondence defines a linear transformation T

such that f = TF. It is shown that T can be expressed as a contour

integral and that T has a unique inverse. By virtue of the transforma-

tion various operations on the entire function class (F) induce corres-

ponding operations on the discrete function class (f). In particular a

ring of discrete analytic functions can be formed by defining the

product of the functions f and g as T(FG).
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1. Introduction. This paper is concerned with complex functions

defined at the nodes of a square mesh 771, that lies in the complex
n

plane and is depicted in Figure 1. 1. The theory of these functions

was initiated by R. Isaacs [1, 2, 3 ] , J. Ferrand [ 4 ] , and A.

Terracini [5 , 6 ] , and has been further developed by R. J. Duffin

[ 7 ] , C. S. Duris [ 8, 9 ] , E. L. Peterson [ 10 ] , A. Washburn

[ 11 ] , and J. Rohrer [ 12, 13 ] . The functions investigated are said

to be "discrete analytic" and are discrete analogues of analytic func-

tions of a continuous complex variable. A complex function f is

discrete analytic on a square S belonging to WL if the difference
h

quotient of f across one diagonal of S is equal to the difference

quotient of f across the other diagonal of S ,



- 2 -

—

Figure 1. 1

G. J. Kurowski I 14, 15, 16, 17 ] has defined and investigated a

class of complex functions that have domain consisting of parallel

lines in the complex plane. Functions in this class are said to be

"semi-discrete analytic11 and are semi-discrete analogues of analytic

functions of a continuous complex variable. Semi-discrete analytic

functions have many properties in common with discrete analytic

functions, but they will not be considered in this paper.

The results obtained in [ 1 - 13 ] include discrete analogues of

the Cauchy Riemann equations, Laplace's equation, the maximum

principle, conjugate harmonic functions, differentiation, integration,

the residue theorem, Cauchy's theorem, Morera's theorem, Cauchy's
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integral formula, polynomials, the Laplace transform, analytic

continuation, and differential equations. Results concerned with

letting the mesh width h approach zero have also been obtained.

Some of the concepts studied, including those of "duality" and

"bipolynomials", have no direct analogy in the classical continuous

theory.

This paper developes a theory for a family ^ of "entire discrete

analytic functions" that have "discrete Maclaurin series representa-

tion". Each function f in ^f has an analogue f in a family ^

of entire functions of a continuous complex variable. A mapping

T that takes ^ onto xzr in one-to-one fashion and preserves most

of the operations involved is found. The image f under T of an

arbitrary f belonging to y<f shows properties similar to those of f .
c c c

It is easy to show that pointwise multiplication does not always

preserve discrete analyticity. R. J. Duffin and R. Isaacs have inves-

tigated operators that correspond to multiplication of analytic functions

of a continuous complex variable, but these operators preserve dis-

crete analyticity only if one of the factors is a polynomial. The

approach taken here is to use the transformation T to define a "pro-

duct" for functions belonging to rz? . This "product", which is analogous

to the usual product for functions in
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is commutative, associative, and distributive, and preserves discrete

analyticity.

Other "products" have been defined and studied by R. J. Duffin

and C. S. Duris [ 8 ] , A. Washburn [ 11 ] , and R. J. Duffin and

J. Rohrer [ 13 ] . These "products" are commutative, associative,

and distributive, and preserve discrete analyticity. Precise con-

nections between all of the various products have not been completely

determined.

In Section 2 we review the basic concepts and theory needed for

studying functions in ^ . Detailed proofs for most theorems are

omitted because they can be found in [ 7 ] . In Section 3 we state and

prove the main results of this paper.

2. Basic Concepts and Theory. The mesh 777 , as shown in

Figure 1. 1, consists of a union of squares, each of whose sides has

length h . The lattice o\, (or discrete complex plane) is composed

of the points that fall on a vertex of a member of V71 . Each member
n

z of c\ can be represented as z = xh + iyh where x and y are

appropriate integers. The even lattice o consists of those lattice

points for which x + y is even, and the odd lattice O*. consists of

those lattice points for which x + y is odd.
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A chain is an oriented set of lattice points z , z , . . . , z with

the property that | z. - z | = h for i = 1 ,2 , . . . , n . A chain

z , z , . . . , z for which z^ = z is called a simple closed chain
0 1 n O n —

when its elements, exclusive of z and z , are distinct.
0 n

A discrete region in the discrete complex plane ^ h consists

of the nodes of a union of squares fromTT?, . The discrete region
h

is said to be constructed from these squares, and the union of the

closed planar sets bounded by these squares is called the associated

region. The boundary of a discrete region consists of those lattice

points that belong to the discrete region and lie on the boundary of

its associated region. The union of all lattice points that belong to

the discrete region but do not belong to its boundary is called the

interior of the discrete region.

A discrete region is said to be finite if it consists of a finite

number of lattice points. A simple discrete region is a finite discrete

region whose boundary can be represented by a simple closed chain.

We begin our discussion of complex lattice functions by defining

a finite difference operator L .

Definition 2.1. Let f be_ â  complex lattice function and suppose that

^ * s a square belonging to VYl . Then the residue L(f,S) of f

at the square S is defined by
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L(f ,S) = f(z

where z , z ,z , and z have the orientation depicted in Figure
0 1 Z J •

2.1 and i =

Figure 2.1

The quantity L(f ,S) is termed the residue of f at S , because in

"discrete contour integration" it plays a role analogous to the role

played by the residue of a complex function of a continuous complex

variable in the classical theory of contour integration.

Discrete analyticity can be defined in terms of the operator L

as follows.

Definition 2. 2. A lattice function f is discrete analytic on a square

S belonging to T7K if its residue L(f,S) at S is zero. A lattice
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function f is discrete analytic in a discrete region JC if it is

discrete analytic on each square used in the construction of Vc .

The reader should have no trouble showing that this definition of

discrete analyticity is equivalent to the one given in the first para-

graph of Section 1.

We shall adopt the following definition for "discrete line integrals1

Definition 2. 3. Let C : z^ , z. , . . . , z be a chain and suppose that
0 1 m :

f is a lattice function. Then the discrete line integral

z
m

(C) / f ( z ) 6 z of f from z to z over C is defined by
z o ~~ ~~

Z m m [ f ( z ) + f ( z . ) ]
( C ) / f ( z ) 6z = S 3—j 3- [ z . - z ] .

The following "residue theorem" is an elementary consequence

of the preceding definition. Its proof can be found in [ 7 ] and will

not be repeated here.

Theorem 2.1. If f is a lattice function defined on a simple discrete

region T^ and the chain 8)2 representing the boundary of Ĉ is

oriented so that Vc is on the left as the chain is traversed, then

L(f,S j)
j =
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s
where {S } is the set of squares used to construct fC .

j = i ""•

!ICauchy!s theorem" and "Morera's theorem" are immediate

consequences of the "residue theorem". They are stated in the

following corollary.

Corollary 2.1.1 Suppose that f is a lattice function defined on

a simple discrete region ^J2 . Then f is discrete analytic on

Smfz, if, and only if, (C) ^ f(z)6z = 0 for each simple closed

chain C lying în ^K •

As in the classical theory of a continuous complex variable,

"Cauchyfs theorem" leads to the generation of discrete analytic

functions by discrete line integration. The main theorem follows*

Theorem 2.2. If f is discrete analytic in a simple discrete region

a € n~ then

z
F(z) = / £(t) 6t

a

is single-valued and discrete analytic on

The function F is single-valued on A- by virtue of Corollary 2.1.1.

The proof that F is discrete analytic on r^ follows from computing
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L ( F , S ) in t e r m s of L ( f , S ) . The resul t is L ( F , S ) = - L ( f ' S )

The analogy between continuous complex var iable theory and

d i sc re t e complex var iable theory b reaks down in the study of an t i -

in tegra t ion. Given a d i sc re t e analytic function F , it i s not

general ly t rue that

z
F ( z ) = f f ( t ) 6t + F ( a )

a

for some d i sc re t e function f obtained by taking difference quotients

of F . The next definition and theorem c h a r a c t e r i z e , in t e r m s of

F , those functions f that satisfy the preceding functional equation.

Definition 2 . 4 . Let y be the lat t ice function defined by

1 M z i^. ItB e v e n la t t ice point (z c A , )

"^ M z i s an odd lat t ice point ( z e - ^ i . )

Then the dual f of a lat t ice function f is defined by

f D ( z ) = y(z) f*(z)

where f*(z ) is the complex conjugate of f (z)
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A lattice function f is discrete analytic if, and only if, its dual

f is discrete analytic. This can be seen by computing L(f , S)

in terms of L ( f , S ) . The result is L(f ,S) = y (z ) [ L (f , S ) ]

where z has the position shown in Figure 2.1. The notion of

duality is important because of the following theorem.

Theorem 2.3. Suppose that F is discrete analytic on a simple

discrete region c/c and let a and b be fixed points of ^/c • If

k is an arbitrary constant, then the discrete function

= <4 /*
h b

is d i sc re t e analytic on %~fd. and

F ( z ) - F ( a ) = (C) / ~ ( t ; k ) 6 t
a

for e a c h cha in C : a = z , . . . , z = z lying in r i . C o n v e r s e l y ,

— ^ i s a l a t t i c e function on 7C with the p r o p e r t y tha t

z
F ( z ) - F ( a ) = (C) / f ( t ) 5t

a

for each chain C : a = z , . . . , z = z lying in '<* , then
— . w m _ — _ _ - _ _ _ _ _
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for some complex constant k . .

The preceding theorem shows that the discrete derivative, unlike

continuous differentiation, is not unique and can be given an

arbitrary value at a fixed point of the discrete region re/ .

We shall give a detailed proof of the second part of Theorem

2.3, because the second part is new; a proof for the first part is

given in [ 7 ] . Thus suppose that f is a function defined on r^

with the property that

z
(2.1) F(z) - F(a) = / f(t) St

a

for each z belonging to */2 . Then (C) W f(t) 6t = 0 for

each simple closed chain C lying in rC * By Corollary 2.1.1

we see that f is discrete analytic on r^ . We infer from the first

conclusion of Theorem 2.3 that the function

6fD 4 Z

(2.2) — ( z ; F ( a ) ) = ( — / f (t) 6t + F (a)
h b

has the property
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z 6f
( 2 . 3 ) f D ( z ) - f D ( b ) = / — ( t ; F ( a ) ) 6t .

b

E q u a t i o n ( 2 . 2 ) s h o w s t h a t

6 f D 4 Z

( 2 . 4 ) — - ( z ; F ( a ) ) = - p ( J f ( t ) 6 t ) + F * ( a )
5 z h * b D

a n d m a n i p u l a t i o n of e q u a t i o n ( 2 . 1 ) g i v e s

z
r f ( t ) st + F t b ) ) ,

D

b

H e n c e

/ f ( t ) 6 t ) = F ( z ) - F * ( b ) v ( z )
b

w h i c h , w h e n s u b s t i t u t e d i n t o e q u a t i o n ( 2 . 4 ) , g i v e s

6 f D 4 4
• g j - ( z ; F ( a ) ) = " 2 F D ( z ) - — F * ( b ) y(z) + F * ( a )

h h

S u b s t i t u t i n g t h i s e x p r e s s i o n i n t o ( 2 . 3 ) s h o w s t h a t

4 Z 4 Z

f ( z ) - £ ( b ) = -r f F ( t ) 6t + ( F * ( a ) - - = • F ^ ( b ) ) / v ( t ) 6t
U U h b ^ h b
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z
It is c lear from Definitions (2 .3 ) and (2 .4 ) that / \ ( t ) 6 t = 0

b
Hence

4 Z

f D ( z ) = ~2 / F D ( t ) 6t + v (b) f*(b) ,
h b

and thus

f(z) = ( - 1 - / F D ( t ) 6t + V (b ) f * ( b ) ) D = ~ ( z ; k ) ,
h b

where k = y(h) f*(b) . This completes our proof of Theorem 2 . 3 .

The following theorem provides a d i sc re te analog e (z ; t ) lof

zt
the exponential function e . We use a semi-colon r a the r than a

comma between the independent var iab les z and t in e ( z ; t ) to

indicate that z is a d i sc re te complex var iable and t is a continuous

complex va r i ab le .

Theorem 2.4. Let z = xh + iyh be a discrete variable that is

r e s t r i c t ed to <^ ( i . e . x and y must be i n t e g e r s ) , and suppose
ii i •••'I. »i > • t • . . '• n — — — ' ' ' ' — — — — — — — —

that t is a continuous complex variable restricted so that t •£ +_ r-

and t ^ + i ~ . Then the discrete exponential function
fa ' — —, ~—̂  : —

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSITY
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(2 .5) e ( z ; t ) = , . .
- - t / \ - - it

is a d iscre te analytic function of z for fixed t and an analytic

function of t for fixed z . Moreover ,

z
(2 .6) e ( z ; t ) = l + t (C) / e ( z ; t ) 6 z

0

for each chain C : 0 = z , z , . . . , z = z lying in ^ .—_ _ _ u 1 n " — n

The validity of (2 .6) can be demonstrated directly from the defini-

tions for a d iscre te integral and e ( z ; t ) ; the details can be found

in [ 7 ] . It is c lear that e ( z ; t ) is a rational function of t for

fixed z , with possible poles only at the points t = + — and

— fa
t = + i - ; hence e ( z ; t ) is analytic in t for fixed z , except

— h

possibly at these points . The d iscre te analyticity of e ( z ; t ) as

a function of z for fixed t is a direct consequence of (2 .6) and

"More ra ' s theorem" (Corollary 2 .1 .1) .

The d iscre te exponential function e ( z ; t ) was introduced by

Fer rand [ 4 ] and plays a fundamental role in our study of "discrete

Maclaurin s e r i e s " . F r o m its defining formula (2 .5) it is c lear that

e ( z ; t ) can be expanded as a Maclaurin se r ies in t , with absolute

_2
h

convergence for | t | < —• . The se r ies coefficients
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generated by this expansion are, of course, functions of the discrete

variable z . These observations justify the following theorem and

definition.

Theorem 2.5. The discrete exponential function e ( z ; t ) has a

Maclaurin series expansion in t given by

°° z ( n ) n
( 2 . 7 ) e ( z ; t ) = S r t ,

n = 0 n '

which converges absolutely for each z in Q̂ and all t in the
. -__--________—--_-——--____ - — — _ _ _ _ . _ _ _ _ _ _ _ _ _ _ — _ _ _ _ _ _ _ _ _ _ _ _ _ _ jr^ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

disk I t I < 7- . The generated coefficients z , n = 0 ,1 , 2 , .

are called pseudo-powers.

The pseudo-powers z are discrete analogs of the powers

z of a continuous complex variable; the pseudo-powers z are

generated by e ( z ; t ) , and the powers z are generated in the

zt
same manner by e . The following theorem brings out further

analogies between z and z

Theorem 2.6. The pseudo-powers z , n = 0 , 1 , 2 , . . . are

discrete analytic on c?C i • Moreover,

< 2 . 8 ) s<°> H 1
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and

z
(2 .9 ) z = n (C) / z ( n " ' 6z , n = 1 , 2 , . . .

0

for an a r b i t r a r y chain C : 0 = z , z , . . . , z = z lying in ^f .z 0 1 m — — - — h

Equations (2 .8 ) and (2 .9 ) come from substituting (2 .7 ) into (2 .6 )

and equating the coefficients of t that appear on each side of

the resul t ing equation. The d i sc re te analyticity of z follows

by induction from ( 2 . 8 ) , ( 2 . 9 ) , and Theorem 2 . 2 .

In the next section we study a c lass of pseudo-power s e r i e s

S c z in which the coefficients c a r e complex cons tan ts .
n n n

n = 0
It is an e lementary consequence of Theorem 2.6 and the definition
of d i sc re t e analytici ty that a convergent pseudo-power s e r i e s con-

oo
verges to a d i sc re te analytic function f . The s e r i e s 2 c z

n = 0 n

is said to be a d i sc re te Maclaurin s e r i e s representa t ion of f .

(0)
It is c lea r from (2 .8 ) that z is equal to i ts continuous

0 y

counterpar t z for z r e s t r i c t ed to cA- . Moreover , it is easily

seen from (2 .9 ) that z equals z and z equals z for z

in ĉ Xi • However, an e lementary computation shows that z , for
z r e s t r i c t ed to dC- , is not even d i sc re t e analytic on the square with

n

ver t i ces ( 0 , 0 ) , ( h , 0 ) , ( h , i h ) , and ( 0 , i h ) . Hence z' ' i s not

3 ^fi
identical to z for z in ^ , • I n [ ? ] > f ° r each posit ive integer
n it is show/that there exis ts a complex polynomial r ( x , y ) of

n-1
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degree (n - 1) in the real variables x and y such that z =

n ^T

z + r (x ,y ) when z = xh + iyh is restricted to cÂ  . Thus,
oo oo

2 c z isnft necessarily equal to 2 c z for z in <5C, ,
n n ' n n h

n = 0 • n = 0
but we shall see in the next section that

oo oo
2 c z is useful in the study of its "discrete analog" 2 c z

n = 0 n n = 0 n

3. Discrete Maclaurin Series. In this section we study pseudo-

power series

(3.1) £(») = 2 ^ z ( n )

n = 0 n -

where z is a discrete complex variable. Corresponding to the pseudo-

power series (3.1) is the power series

00 a

(3.2) fe(q) = 2 -£ qn

n = 0

in which q is a continuous complex variable. Series (3. 1 ) is said

to be the discrete analog of series (3. 2), and series (3. 2) is said to

be the continuous analog of series (3 .1) . In our study of (3. 1) and its

relation to (3. 2) we shall find use for the Borel transform

oo a

n = 0 t
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of s e r i e s (3. 2 ) ; here t is a continuous complex var iab le . We shall

always use the subscr ip t s c and B to dist inguish between a pseudo-

power s e r i e s (3 .1) , its continuous analog ( 3 . 2 ) , and their Bore l

t r ans fo rm (3. 3 ).

Instead of formulating, in t e r m s of the coefficient sequence

{ a } , conditions that a r e both n e c e s s a r y and sufficient for the con-
n

vergence of (3 .1) , we place a condition on { a } that guarantees the

convergence of (3.1) for each z in <£, > and then we investigate the

re la t ions between s e r i e s (3.1) and s e r i e s (3 . 2 ) and (3. 3). The con-

dition is that

( 3 . 4 ) a = l im sup ' \ j | a_n | < | ,

where h is the mesh width of ^ L . .
h

Theorem 3. 1. If a = lim sup / s s J | a | sa t isf ies re la t ion (3. 4 ) ,

then

(I) Se r i e s (3.1) converges to a d i sc re t e analytic function f on

(II) Se r i e s (3 . 2) converges to an ent i re function f of o rde r

O(e ' ' ) for each p > a ( i . e . f is analytic on the

whole complex plane, and for each p > a there exis ts a
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positive constant A such that | f (q) | < A eP ' q

for all complex q ) .

(Ill) Series (3.3) converges to an analytic function f for

| t | > a .

Proof. From (3. 4) we see that

(3.5) a < § +
 l- < I .

and this implies the existence of a positive integer N such that

( 3 . 6 ) <•=• + - f o r n > N ,

because a is the largest limit point of {^N^/. | a | } • It is then

a consequence of(3.5 ) and (3.6) that

(3.7) | a | < ( £ + L) < ( 1 ) for n > N ,

C O I a
n I / x

w h i c h i m p l i e s t h a t S ;— | z | i s m a j o r i z e d b y
N n <

) ? ( t + ĥ  . (n)
2 j — - — | zt | - j . *-,^w — ry<Cl , c o n v e r g e s

N n - N n -

f o r e a c h z i n * 3 \ b y v i r t u e o f T h e o r e m 2 . 5 a n d r e l a t i o n ( 3 . 5 ) , s o
n

o o a
S —- z c o n v e r g e s a b s o l u t e l y f o r e a c h z i n d \ u . T h e l i m i t
o n#
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function f is discrete analytic because z is discrete analytic,

finite linear combinations of discrete analytic functions are clearly

discrete analytic, and the limit of a. sequence of discrete analytic

functions is easily seen to be discrete analytic. This completes the

proof of conclusion (I).

Conclusions (II) and (III) are well-known results from the theory

of entire functions. In fact these two conclusions are known to be

valid under the weaker hypothesis that a = lim sup / s \ ] | SL | be

finite. The proofs are similar to, and no more difficult than, the

proof of conclusion (I). The details can be carried out by the reader

or can be found in [ 19 ] .

The preceding theorem states that series (3.1), (3.2), and (3.3)

converge to functions f , f , and f_ respectively, when (3. 4) is

satisfied. We now concentrate on the functions themselves rather

than on their series representations. The next two theorems give

formulas for f(z) in terms of f_(t) and f (q) respectively.

B c

T h e o r e m 3. 2. If a = l i m sup ̂ v j | a | s a t i s f i e s r e l a t i o n ( 3 . 4 ) ,

t h e n f ( z ) , def ined by ( 3 . 1), can b e e x p r e s s e d in t e r m s of 1 ^ ( 0 ,

def ined by ( 3 . 3 ) , a s

~ r B I ^ > e ( z ; t ) [ f B ( t ) - - ^ ] d t i + a Q ( 3 . 8 )
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w h e r e 3D ( t . ) i s the b o u n d a r y of the c lo sed d i sk D ( t . ) tha t i s
P J ~ P J

2 2
c e n t e r e d a t the point t . wi th r a d i u s p . H e r e , t = r- , t = i — ,
__——_——— • j — — — 1 ri £ n

Proof. Fix z , and choose r so that a < r < — . Then Theorems
h

°° z ( n ) n
2 . 5 and 3.1 imp ly tha t e ( z ; t ) = 2 r t and f ( t ) • =

n B
n = 0

n •
oo a

n = 0 t

1

n
converge uniformly in t for t € 3D (0) . Hence

r

. ( t i -^ i * .

(n )
n-m-11

dt
3D (0 )\ n = 0 m =

0 0 o o a z
Z Z J

n = 0 m = l

(n)
c x » a . .
Z - ^ z ( n ) = f { z ) - a

n =

Since t , tyi t . , and t are the only possible singular points of

e (z ; t ) and since f_j(t) is regular for | t | > a , we can deform

the contour 3D (0) to obtain

3D (t.)
P J

a
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where R > — + p . Hence, it is sufficient to show that

9 D ^
R

iO
Letting t = Re and making use of defining formula (2. 5) for

e (z ; t) , we see that

R( '

dt

2ir

2 + hRe
iO

2 - hRe
iO

2 + ihRe
iO

2 - ihRe
iO

Re 1 9
iRe i 9dO

n - l

It is clear that the last expression approaches zero as R approaches

infinity. By Cauchy!s theorem we conclude that (3. 9) is valid, and

this completes the proof of Theorem 3. 2.

The following theorem gives a formula for f(z) in terms of

f (q) . This theorem is the main result of this paper.
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T h e o r e m 3 . 3 . If a = l i m sup ^ x j | a | s a t i s f i e s r e l a t i o n (3 . 4 ) ,

then f ( z ) , defined by ( 3 . 1 ) , can be e x p r e s s e d in t e r m s of f (q) ,

defined by ( 3 . 2 ) , a s

(3'10) - 1
 + °° -I* i

f ( z ) = + U ( x - 1 ) S X . ( x , y ) / [ f c ( q ) - a o ] e q J d q
j = 0 o

- X - l -CO 7"<

2 X.'(x.y) X [ f ' "
j = 0 J o

y - 1 i o o i-q

2 Y . ( x , y ) X [ £M) " a
o 1 e <l

j = 0 J o

-y-1 -ioo -i-q

Z Y . " ( x , y ) X [ f
c t a ) - ' a

o ] e <1 d 1
j = 0 J o

where U is the unit step function,

0 if p < 0
(3.11) U(P) =

1 if p > 0 ,

and X . , X . , Y . , Y . are defined as
J J J J
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(3.12)

X . ( x , y ) = (-D j+l 4

dw

— 2

. 2

2
+ h

2
" h

—

- w _

)
/

/ w = 0

X ( x . y ) (-1) j+l
- . 2

2 2 w = 0

Y?(x,y)
J

(-1)
—I x

w = 0

Y . ( x , y . ) =
(-1) ,-y-i-J

t- h " X h

- | X

w = 0

Proof. The proof consists of several parts. First, we express f• . jg

in terms of f (q) , which enables us to use Theorem 3. 2 to express
c

f(z) in terms of f (q) . Then, we interchange the orders of inte-

gration in the resulting expression for f(z) and make use of Cauchyfs

formula for the derivatives of an analytic function. Finally, we apply

LeibnitzTs formula for the derivative of a product of functions to obtain

(3.10).

The first step is accomplished with the following lemma.
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Lemma 3.1. If p = ( 77 - a )/2 and if a = lim sup / " \ J I a I
— n n

satisfies relation (3. 4) , then f_(t) , defined by (3. 3 ), can be
B

expressed in t e rms of f (q) , defined by (3. 2), as

^ t
(I) The integral f e [ f (q) - a ] dq converges uniformly

o
a o 2

to f-Jt) - — on the disk D (t ) where t = — .
— B t p 1 1 h

-co
(II) The integral f e [ f (q) - a ] dq converges uniformly

o
2

to f_(t) - on the disk D (t ) where t = - 7- .
—— J3 t p 3 —__— 3 k

-ico
(Ill) The integral f e [ f (q) - a ] dq converges uniformly

o
a ?

to C ( t ) on the disk D (t ) where t = i ~ .

100

(IV) The integral / e [ f (q) - a ] dq converges uniformly
o

a o 2
to £ (t) on the disk D (t ) where t = - i - .

Proof. To prove conclusion (I), let r be an arb i t ra ry positive number.

Keeping Theorem 3.1 and relations (3.2) and (3.3) in mind, we observe

that

(3.13)

n = l t
n + 1 n = i n - o n = 1 n •' t

n + 1

oo / I a r a
^ T- - i r " t c l n j n • I . ^ i n I i. " t c l n ^ I n '< S ——r- I f e na da I + S I — f e \ dq U

n = 1 o t n = M+l
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for each positive integer M . Now suppose that t and t represent
x y

the real and imaginary parts respectively of t . Then

r oo -t q f

| / e" t q q11 dq | £ / e X qR dq = **' , which, along with
t x

n

inequality (3.13), gives the inequality

oo a \ oo a

(3.14) 1/ .-*»[ * -* , » U - r
n = l / n = l t

M a r ^ r 0 0 / a a
2 n I f e

 q on dq n ' I + S n + n

i n - 4 4 + 1 I I + 1 n+1
n = 1 o t n = M+l\ t t

x • '

Now, given e > 0 , choose M so large that

for t € D (t ) . Integration by parts shows that

M

n = 1

a I r
n ' • I A - t q n , n i i , _ . . €
;— f e q dq r- can be made less than ~ by

n I ' J n+1 ' 2 J

t

choosing r large enough. Hence, choosing sufficiently large M
r / oo a \

and r , we see from (3.14) that | / e " q | S - ^ q | dq -
o I n = 1 /

oo a \ /
2 —-̂ -r I < T + T = ^ for t € D (t.) . This completes the

n+1 ' — L c pi
n = 1 t • r

proof of conclusion (I) . Proofs for the other three conclusions

are similar to the proof of conclusion (I), hence are omitted.

In completing the proof of Theorem 3.2 we will assume that

z = xh + iyh is in the first quadrant of ^f ; that is , x and y
h
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are non-negative integers. Proofs for the other three cases are

similar and are left to the reader. Under this assumption we see,

from defining formula (2.5), that e ( z ; t ) has possible singularities

2 2
only at t = r and t = - i - . This fact and conclusion (III) of

h h

Theorem 3.1 show that the second and third terms of formula (3.8)

are zero, by virtue of Cauchy's theorem. The first and fourth terms

of formula (3.8) can be reformulated by applying the first and fourth

conclusions of Lemma 3.1. The result is

. r oo
f(z) = -yj ty e ( z ; t ) / e" q [ f (q) - aQ ] dq dt

3D (t ) o
P l

(3 .15 )
/• ioo

( z ; t ) J e" q [ f (q) - aQ ] dq dt +
, /• ioo

— y . e
8 D ( t )

Now, we show that the order of integration can be reversed in

each term of the preceding sum. Letting r be a positive number

and considering the first term, we see that
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f c ( q ) - a o ] d q d t - / [ c . . . Qe ( z ; t ) / e " t q [ f ( q ) - a ] d q d t - / [ f ( q ) - a ] ^ e ( Z ; t ) e ' t q d t d q
9D co

oo r
e ( z ; t ) { / e " t q [ f c ( q ) - a Q ] dq - J e" q [ f c ( q ) - a Q ] dq } dt

I o o

oo
< 2-iTp m a x | e ( z ; t ) | m a x \j e [ f ( q ) - a ] dq |
~ t € 8D (t, ) t € 8D ( t . ) r

pi pi

oo
Since / e [ f (q) - a ] dq converges uniformly on D (t ) ,

o oo
the max | / e [ f (q) - a ] d q | can be made arbitrarily

t c 8D (t.) r °
pi

smal l by making r sufficiently l a r g e . Hence the order of integrat ion

can be r eve r sed in the f i rs t t e r m of (3 .15) . A s imi la r a rgument shows

that the order of integrat ion can be r eve r sed in the other t e r m . Using

these facts with defining formula (2 .5 ) for e ( z ; t ) , we rewr i te

equation (3.15 ) as
(3.16)

0 0 ioo
* ( z ) = / [ f ( q ) - a ] i L ( q , z ) d q + / [ f ( q ) - a 1 4^^(q > z ) dq + a

^ C O i _ c p 4 op

w h e r e
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and

-1 tf\ -tq . 2 + ht x 2 + iht y

«D (t4)

Making changes in the integration variables gives

4 + hw.x , 2 + i2 + ihw y

and

2̂
h ' " /V1

 t 2 - i2 + hw x y 4 + ihw xy

8D (0) 2 + 1 2 - h W

P

Hence

4 2 2
-e Jfn - c lw n xx / h h

p n n

and ?

i{q 2 . 2 . 4
) h h xx / h

T2
— + I — -
n n

Using the unit step function U and Cauchy!s formula for the

derivatives of an analytic function gives
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h / " I I A

.U^Xje—. J* e"qW[4-
v x 1 . x-1 I L h

dw

2 2

2 2 w = 0

and

•U(y-l) —
-qw

y - l 2̂
h

2
x--w

x

[ i - - w ]
w = 0

Making use of Leibnitz's formula for the derivative of a product,

we see that

:-!)'.
2 2
h h

and

. X h q y - l x

2 2
+ i

w=0

Substitution of these two express ions into (3.16) es tabl i shes equation

(3.10) in the case that x and y a r e non-negatiye i n t e g e r s . This

completes our proof of Theorem 3 . 3 .

If (3 .4 ) is satisfied, we know from Theorem 3.1 that f (z) , defined

by (3 .1) , is d i sc re t e analytic on ^ and that f (q) , defined by ( 3 . 2 ) ,
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is ent i re and of order O(e ' ' ) for some r < — . Moreover ,
n.

Theorem 3.3 shows that f (z) can be expressed in t e r m s of f (q)

by (3 .10) . The next theorem is a converse of these s t a t emen t s .

Theorem 3 .4 . If f (q) is an a r b i t r a r y ent i re function of order

r i a l 2
O(e ' ' ) for some r < — , then

——__— • n — — — ~

(I) Formula (3.10) defines a function £(z) that is d i sc re te

analytic on ^ £ u and can be expanded in a pseudo-Maclaur in
—_«—_____—_— • n — — — — — — - —--—-—--—-————.

s e r i e s (3.1) such that (3 .4 ) _i£ sat isf ied.

(II) Ser ies (3 .2 ) converges to f (q) and f is of o rde r

O ( e P ' q I ) for each p > a .

(Ill) Ser ies (3O 3) converges for | t | > a to the Bore l t r ans -

form f of f .
" J3 —— Q,

Proof. It is a well-known result of the theory of entire functions

that f has a Maclaurin expansion (3. 2) such that a =

lim sup '*S\J | a. | <̂  r and such that conclusions (II) and (III) are

valid. In fact this is known to be true under the weaker hypothesis

that f be entire and of order O(e ' ^ ' ) for some finite r . A

proof can be based on CauchyTs integral formula and Stirling's formula

for n J , and can be found in [ 19 ] . Since a <£ r , it follows that

2 2
a < -- because r < — by hypothesis. The proof of Theorem 3. 4
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can now be easily completed by applying Theorems 3.1 and 3. 3.

The preceding theorem justifies the following definition.

Definition 3.1. The analog mapping T : <7 —>< / r has domain

rjf = { f I f (q) is ent i re and
c c 1 c

(3-17)

f (q) = O ( e r ' q I ) for some r < |-

and range

<f = { f | f (z ) has a pseudo-Maclaurin

(3.18)

expansion (3.1) for which (3. 4) i^ valid } ,

and is defined by

(3.19) f = T(f )

where f (z ) is given by (3. 10 ) in t e r m s of f (q) ...

It is c lea r from (3.17) that < / forms a vector space, and it is

a well-known fact that the powers { q } a r e a bas i s for <y* . A

close inspection of (3.10) shows that T is a l inear t ransformat ion on
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4i ; hence ^ / is a vector space. Moreover, it is clear from

Theorem 3. 3 that z = T(q ) for n = 0 , 1 , 2 , . . . ; hence

{ z } spans^ . Among other things, the next theorem shows

that { z } is actually a basis

Theorem 3. 5. The family ^ forms a vector space with basis

{ q } , and the family ^ forms a vector space with basis { z } .

Moreover, the analog mapping T is a one-to-one linear transformation

from *& onto <r such that z = T (q ) for n = 0 , 1 , 2 , . . . .
••• c — — — — —

Furthermore, a function f that is in ^ and is identically zero

o n tke non-negative real .axis i^ identically zero on the whole complex

plane, and a function f that is in x^ and is identically zero on the

non-negative real discrete axis is identically zero on the whole

discrete complex plane pC , .
Yi

Proof. To show that T is one-to-one and that { z } is a basis

for <f , we need only prove that the kernel of T contains only the

identically zero function. Thus suppose that f(z) = 0 . Then

a = f(0) = 0 , and hence equation (3.10) reduces to
o

x - 1 oo - 7- q
f(x) = 2 X . ( x , 0 ) / f (q) e qJ dq for x > 0 ,

j = 0 J o °

where
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In particular, we have

f( l ) = £ / £c(q) e dq ,
o

which means that

2
co - - q

/ fc(q) e dq = 0 .

Employing the second principle of induction, we assume that

oo - - q
/ f (q) e qJ dq = 0, 0 < j < k .
•* c — —

Then, by (3.10), we have

2
GO - — a

h H k+1f (k+2) = X k + 1 (k+2 ,0) / f j q ) e q " " dqco

o r

A k+2 ob - — q
4 % ^ „ , , h k + 1
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and hence

2
°° ~ h q k+1

/ fc(q) e qK+ dq = 0
o

Thus we have shown that

_2

( 3 . 2 0 ) / f ( q ) e h q j d q = 0 , j = 0 , 1 , . . . .
o

B e c a u s e f ( q ) i s O ( e ' ' ) f o r s o m e p < r - ( s e e T h e o r e m 3 . 4 ) ,

2
co - — q

the improper integral / e f (q) e dq converges uniformly
o ..

to a function F ( s ) on the interval [ — - r- , + oo) . Equation (3. 20)

states that all derivatives of F vanish at the origin; hence F ( s ) 5 0

From the uniqueness theory for the Laplace transform it now follows

2

that f (q) e 5 0 , and hence f (q) = 0 . Thus the kernel of T

contains only the identically zero function, which implies that T is

one-to-one and that { z } is a basis for

It is a well-known result of function theory that f is identically

zer-o on the whole complex plane when it is identically zero on the

non-negative real axis. In fact this is known to be true under the

weaker condition that f be zero on an infinite set of distinct points.

c r
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To prove that f is identically zero on the whole discrete complex

plane when it is identically zero on the non-negative real discrete

axis, we first repeat the reasoning of the preceding paragraph to

show that its continuous analog f is identically zero. It then follows

that f = T (f ) is identically zero because T is linear. This com-

pletes the proof of Theorem 3. 5.

The following corollary is easily proved from Theorem 3. 5.

Corollary 3.5.1. The pseudo-powers {z } are linearly inde-

pendent, and the pseudo-Maclaurin series representation (3.1) for

an arbitrary function f î n x5* i_ŝ  uniquely determined by the values

of f on the non-negative real discrete axis.

The analog transformation T leads quite naturally to a definition

for multiplication of functions in ^ . The. following notation will prove

useful for defining multiplication and stating the remaining theorems

of this paper:

(3.21) f(z) = 2 where a = lim sup

and
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here h is the mesh width of c?C , . As the following definition and

theorem shows, mult ipl ication is defined only on a p rope r subset r

of J<

Theorem 3. 6. Let f in ^ be given by (3. 21), and let g in ^ be

given by (3. 22) . If ( f , g ) is in

( 3 . 2 3 ) ^ = { ( f . g ) | f . g € ̂  and a + b < £ } ,

t h e n

( I ) The p o i n t w i s e p r o d u c t funct ion f X g , w h e r e f = T (f)
_: x c c c

and g = T (g) , i s in <?
'" C —— Q

(II) The discrete product function f Q g = T(f X g ) of f
— _ _ _ _ _ _ _ — » _ , _ • — — — ~ - — - - * — • Q Q —

and g is in ^ .

(Ill) The discrete product function f 0 g has a discrete Maclaurin
~~ a.b.

series representation with coefficient sequence { 2 . t .] } ,
i+j = n 1 - J*

where {a } and {b } are the coefficient sequences of f
—r _ n n : : a

and g respectively.

The discrete product ® is commutative, associative, and

distributive over point-wise addition.
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Proof. Using (3.21), (3.22), and (3.23), we deduce from conclusion

(II) of Theorem 3.1 that f X g is O ( e P ' q ' ) for each p > a + b .
c c

r l q I
Hence, by vir tue of (3 .23 ) , the function f X g is O(e •. ' ) for

some r < T- , and it is then a consequence of (3. 17) that f X g
ri c c

is in ^ . This proves conclusion (I) and establishes conclusion (II).
c

Conclusion (III) results from multiplying the Maclaurin expansions

for f and g , and then applying T to the resulting function in

^f . Commutativity, associativity, and distributivity of ® are

inherited from the corresponding properties of the pointwise product

X for functions in c^ . This completes the proof of Theorem 3. 6.

The analog transformation T can also be used to define differen-

tiation on

<P ,Theorem 3.7. If f ij^i-n <P , then

df
(I) - ~ is in ^ , where f = T~ (f) .

dq — c c
df

(II) The discrete derivative — = T(-r^) of f is in
" ' oz dq — • —• —

(III) T— is a linear operator on
o z • — —-—«—

-I - GO a
(TV* — - y n (n"l) , r i

6z " (n-l")f" ' w h e r e ^ a ) is the coefficient

sequence of f .
— " 6nf |

txr\ n \ m OZ ' U (n) , 6(V) i(z) = ZJ z , where is the composition
n.' n r

6 n = 0 6z
T~" ^w^h itself n times.
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(VI)
S ( f ® g ) = f^ © g + f 0 I s - , p r o v i d e d t h a t ( f , g )

oz oz ozoz

. is in r as given by (3. 23 ).

Proof. Conclusion (I) is a well-known result from the theory of

entire functions. Its proof can be based on the Cauchy integral for-

mula and won't be given here. Conclusion (II) is justified by conclu-

sion (I), and conclusion (III) follows from the linearity of -7— and T

Conclusion (IV) results from applying T to the Maclaurin expansion
df

of —— , and conclusion (V) comes from repeated application of con-
dq

elusion (IV). Conclusion (VI) is an immediate consequence of the

linearity of T and the corresponding formula for functions in

This completes the proof of Theorem 3. 7.

The following theorem relates discrete integration, as defined

by Definition 2. 3, to continuous integration.

Theorem 3. 8. If f i£ in <T , then

(I) / f (q)dq i s i n j f , where f = T ^ f ) .
o
z q

(II) / f(z) 6z i s ^ u i ^ and equals T ( / f (q) dq) .
o o
z

(III) f 6z is a linear operator on
o

Z cx> a
(IV) / f(z) 6z = S n z\ ' , where (a } is the

0 ( n T 1 ) . —————. j^ ——

coefficient sequence of f .
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Proof. The proof of conclusion (I) is a well-known application of

Cauchy 's in tegra l formula and won !t be given h e r e . To prove con-

clusion (II) , f i rs t es tabl ish conclusion (IV) by "integrating1 1 (3 . 21)

and applying Theorem 2. 6. Then let T operate on the in tegra l of

z q
(3 .2 ) and use conclusion (IV) to show that / f (z) 6z = T ( J f (q) dq)

q o o
The function T ( / f(q) dq) is in ^ by virtue of conclusion ( I ) .

z o
Finally, f 6z is a l inear operator on the family of al l d i sc re te

o

analytic functions, as can be seen from its Definition 2. 3. This com-

pletes the proof of Theorem 3. 8.

The preceding theorem provides the machinery needed to re la te

the operator -— to the operator -— ( ; k ) defined by Theorem 2 . 3 .
oz 6z

J 5f 5f * - *
Theorem 3. 9. If f is in x?1 , then —- = —- ( ; an ) where a. is— 5 z § z i i —

the complex conjugate of the coefficient a ' appearing in (3. 21).

Proof. Using Definition 2. 3 for d i sc re te integration, with conclusion

(II) of Theorem 3. 8 and with the fact that T is l inear , we see that

for a r b i t r a r y latt ice points a and z
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J 6z J 6z J

a o o

q df q df
- ^ d q K z ) - T [ / -^~ d q ] ( a )

o o

= T [ f c ( q ) - f c ( 0 ) ] ( z ) - T [

= T [ f c ( q ) ] ( z ) - T [ f c ( 0 ) ] ( z ) - T[ f c ( q ) ] ( a )

= f(z) - a Q - f ( a )

= f(z) - f(a) .

This relation and the second conclusion of Theorem 2. 3 show that

= ,4 /
h o

for some complex number k . This identity and Definition 2. 4 for

the dual of a lattice function show that k = --—>(:0 ) . But, according
oz

to conclusion (IV) of Theorem 3.7, we know that 7—(0) = a_ ; hence
oz 1

k = a and the proof of Theorem 3. 9 is complete.



- 42 -

In concluding this paper we discuss the discrete analog of

integration by par ts .

Theorem 3.10. If ( f ,g) € JP as given by (3. 23 ), and if a and b

are lattice points, then

b b

- / g
a a

Proof. According to conclusion (VI) of Theorem 3.7

Hence

a
6S . ; | l

and thus

b b b
f ® g ] = ; | 1 ® g 6 z + / f 0 f

a a 5 Z a 6 z

by vir tue of T h e o r e m s 3.9 and 2 . 3 . This comple tes the proof of

T h e o r e m 3.10.
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There are, no doubt, many more interesting properties of the

family ^ that can be found by employing the analog transformation

T .
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