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Of concern are complex valued .functions defined on. the lattice

points of the complex: plane* The lattice can. be the usual lattice of

square blocks but of main concern is an irregular lattice with squares

replaced by rhomfec A function is defined to be discrete analytic if

the difference quotient across one diagonal of a rhomb- equals the

difference quotient across the other diagonal* Based on this definition

discrete analogs of the following concepts in, classical function theory

are developed: Laplace eciuation5Cauohy-liic;;:a/nn equations, differentiation,

contour integration, llorera's theorem, and harmonic polynomials,, The

theory is more than an analogy because for a common class of boundary

value problems it -proves possible to obtain upper and lo^er bounds for

the classical Dirichlet integral in terms of discrete harmonic functions.
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POTENTIAL THEORY OK A iffiOIJBIC LATTICE

Carnegie~Iiellon University

!• I n t ro du c t i on. There is an.extensive literature treating a discrete

potential theory 021 the square lattice in the plane* The central problem

of concern in those studies is the properties of functions whose value

at a lattice point is the mean of the values at the four neighboring

lattice points. This gives a discrete analog* of harmonic functions. In

this paper a similar problem is studied, in which the lattice of squares

of side h is replaced by a lattice of rhombs of side h. Such a rhombic

lattice can be quite irregular and consequently the methods of difference

equations can not be used.

The rhombic lattice is embedded in the -complex plane* A discrete

analytic function is defined as a complex valued function on the lattice

points whose difference quotient across one diagonal of a rhomb is equal

to its difference quotient across the other diagonal. This leads directly

to analogs of the Cauohy—Riemann. equations a,nd the Laplace equation*

Functions defined on the lattice points can be extened to the lattice

lines by linear interpolation* This device permits defining the complex

line integral along an arbitrary path in the lattice. Then given, a dis-

crete analytic function the integral defines a lattice function P.

Moreover- F is discrete analytic. Repeated integration leads to functions

analogous to polynomials in the complex variable.

In the classical function theory the inverse of the integral operation

is differentiation. IIowever;in the discrete function theory on the square

lattice it was found that the inverse of the integral is another type

of integral termed "dual integration" £l]. In this paper it is shown

that this integral ojjeration extends to the rhombic lattice.

The finaJL section of this paper is, perhaps, the most interesting

part because it is shown that the discrete function theory is more than

a mere analogy. Actually the discrete tYieory bears a quantitative relation

to the classical theory after which it was modeled. This is brought out

by analysis of the classical Dirichlet Integra,! I)(u) of a harmonic

function U. The integral is to be evaluated over a region of the plane
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bounded by diagonals of rhombs and the assigned "boundary values are

assumed to vary linearly over the diagonals* Let u be a discrete harmonic

function- taking on the came boundary'values. Then a certain quadratic

form Q'(u) is shown to give an. .upper...bound for l)(l))» A similar quadratic

form gives a lover- bound •



supposed that the complex plane is paved

with rhombic blocks each of side lenth h. The sides of the blocks make

up, the lattice lines and the vertices of the blocks forirr the lattice

points. Thus each rhomb has four1 lattice lines and four lattice points.

The most common lattice of this type is, of course, the square lattice,

A rhomb will be regarded as a closed two-dimensional point set* A

jLaĴ J--,CS-,re.ff-LSS ^s defined as the union of rhombs. A simple lattice ^g

is a connected and simply connected set of a finite number of rhombs.

Such-a region is shown in Figure 1.

Figure 1« A simple lattice region

It is clear that a closed chain of rhomb: edges consists of an even

number of edges. Thus it follows that the lattice- points fall into two

disjoint classes: the even class and the odd class. These classes are

defined as follows: the neighboring lattice points of an odd point are

even points e.nd the neighboring lattice points of an even point are odd

points* Of course neighboring points are defined to be end. points of an

edge.

The lattice points are enumerated with the positive integers so that

the even integers name the even lattice points and the odd integers name

the odd lattice points. Thus one of the rhombs in Figure 1 has lattice



points designated 192§3?4* One diagonal of this rhomb is depicted

as a dotted line the other diagonal is depicted as a dashed line.

The diagonals connecting odd points are termed odd diagonals and

the diagonals connecting even points are termed even diagonals.

The.diagonals corresponding to the simple lattice region of

Figure 1 is shown in Figure 2 but the lattice lines are deleted,

The even diagonals of the lattice define the ê yen̂ jaetjrork and the

the odd diagonals define the ĵ dd network• Thus the dashed lines in-

Figure 2 correspond to the even network and the dotted lines

correspond to the odd network*
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Figure 2. Polygonal cells of the even network

It is seen that there is precisely one node of the odd network

in each polygonal cell of the even network and vice versa,. Clearly

the even a,nd the odd networks are what are termed dual graphs in

graph theory. Since the diagonals of a rhomb bisect each other per-

pendicularly it follows that the edges where the networks cross

are perpendicular "bisectors.

Since all the rhombs have the same length side it follows that

a polygonal cell of the even network is inscribed in a circle of
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of radius h. Moreover the center of the circle must lie inside the

polygonal cell.

The above statements are geometrically obvious and are given

whith out proof*. It shall be assumed that a rhomb can not have

arbitrarily small area in any finite portion of the plane* The .:.

lattice and the networks are all graphs. The terminology serves to

to distinguish the roles the lattice and the'networks will play.
: The reader will observe that some of-the theorems to follow

hold for a general lattice of quadrila-fcei*als. Some of the proofs

require only .that the quadrilaterals be parallelograms. Other

proofs are based on the diagonals being- perpendicular.



l^^ ^^ concern; in this paper1 are

functions f(z) defined on the lattice points of a rhombic lattice

If ?v is the complex nuinter giving the position* of the lattice point

k then let f, be a short notation for f(z }. i^J^-^^^.S^^ilSR^^.

said to be discrete analytic at a rhô ib if the difference Quotient

other. For example sup-pose 1S29354 s<"re lattice points of a rhomb.

Then f is analytic at this rhomb if

-P -P -P

(i) _lil i -
Z3 " Zl "4 "2

This is the discrete, analog of the property of the derivative of

a poorer series being independent of direction.

Let f(z) "be a function defined on the lattice points. Let G be

a chain of lattice points having comple3: values z- , z ? ...?z .

Successive points in the sequence are neighbors. Let z ~a and z ~b

then the J^^^^^l^i^^JlJ^SE^ °^ ̂ (z) on' '^e chain G is defined as

a f < > M

It is clear that this is equivalent to the ordinary complex line

integral along the lattice edges of the chain G if f(z) is defined

along an edge by linear interpolation.

The following statement is an analog of Korerafs theorem.

Proof. The line integral around the rhomb. (l,2,3>4) is "by definition

2 jf(z) da = (f2 + f1)(z2 - rs) + ( f + f2)(z3 - 32)

44 4 V
Reforming the right side gives

(3) 2 Jf(z) da « (^ - f3)(,2 - ,4) - (f2--.f4)(Bl ~ a3) .

It is obvious that the vanishing of this integral is equivalent

to f(z) being analytic on the rhombs

It is clear that the lino integral of a function around a simple

closed chain is the sum of the line integrals around the rhombs

contained inside the chain provided all the integrals are taken

in the same sense* This observation together "vrith the formula (3)
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completes the proof• The following corollary is now obvious •

Corollary 1* Let f(z) be discrete anaJytic ju\j\j?\iwr)le ^attice

# ̂ i2i a il(La point ̂of R thê n: â  î .otî oii F'(^)J i£Fm9^LJlVl,

l of f(z),-

(4) P(z) - J a f(a) dz
ând P(z) ig^^nde;nondent of ^tho^ath jof ^inte^ratio'tTi. ̂ if̂ t̂he JP '̂WI

is in iU
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Conjugate harmonic functions* Lot z 9 z 9 z 9 z to complex

numbers defining the lattice x>oints of a rhomb in counter clockwise
7> are endpointr; of a lino of the oc

this diagonal line is defined to be.

order. Then z and z are endpointr; of a lirxo of the odd

(>) V _ / o „

Since the diagonals of a rhomb.- are perpendicular the conductance

is a positive number*.The conductance of the even diagonals are

defined analogously and so

(6) g 2 4 g 1 3 - 1 •

In other nords crossing diagonals have reciprocal values of con-

ductance.

A function defined on the points of the even network is said to

"be. ̂dî scretc harjrionijc at a, given point if its value at that point is

the weighted mean of its values at the neighboring points of the

even network* The weights are the corresponding conductances, A

similar relation defines discrete harmonic functions on the odd

network.

Proof. First consider a special case depicted in Figures 1 and 2*

Thus the point .2 is an interior point of the region shown in Figure

I. In the rhomb (1,2,3*4) the condition for discrete analyticity is
B - Z

f „ f = ^ - ~ ; i (f - f

This can be written in terms of the conductance go/« This relation:

and the corresponding relations for the other rhombs surrounding the

point 2 become:

f3 " fl " i S?A (f4 " f2>

fl - f 7 - i e 2 6 (
f6 " f 2 }

f7 " f3 s i ff28 ^f8 ~ f 2 ^ *
Adding these equations gives

(7 } (s24 + "?.6 + G23 } f2 " S?A h + S26 % + g23 f8 *
This is precisely the condition that f bo discrete harmonic at the

point 2*
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The pattern of the proof when more than three rhombs meet at a

point is now clear and the proof is complete. An equation of the

form (7) will be termed the discrete Laplace equation.

Theorem 3* The real part u and the imaginary part v of a discrete

analytic function f satisfy the discrete Cauchy-Riemann. equations:

(8a) u, - u, m v4 - v2U 3
Z3

V3

"* 1

" z l

" v l(8b) v, - v, = _ u, ~

I z 3 - Z l ! I Z 4 " Z

where (1,2,3*4) denotes a rhomb in counterclockwise order. Moreover-

the functions u and v are discrete harmonic.

Proof. Equations (8) follow from the substitution f•« u + iv in:

equation, (l) and separation! of real and imaginary parts* The last

statement of the theorem results from the fact that the coefficients

of the discrete Laplace equationi are real.

The pair of functions u and v are termed conjugate functions

because they satisfy the analog of the Cauchy-Riemann equations.
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5* ^ r ' °u f l2rPo v ? o r jT^^^i£: i r : < ' ^ -*-G ^PP^rervt t h a t l i nea r functions of

the complex var iab le z. ai*o d i s c r e t e a n a l y t i c . This r a i s e s the ques t ion

about higher powers of &•

Tlieorein 4»Q*iarl;̂ Vk%xCI.̂ £H5Q."!*\Qj1:L_.P? z iH*cLJ^^l!P luJ^^

Proof• It is sufficient to consider the case f(z) ~ z . Then the

condition for discrete analyticity is

2 2 2 2

Thus z - z =- z - ?.̂  and this is true "because a rhomb is a
1 t- H 3

functions are disp:rp_tg

Proof. At first let f be an arbitrarily defined lattice function. Let

3 f dz denote the integral of f completely around the rhomb. (l,2,3j4)«

Rearranging the termr> gives

It is convenient to let

2 |f dz = (Zg - z4) Lf
 S o

(9) Lf = (fx - f3) - (f2 - f,) G where

G = Zl " Z3

Lot the function F "be defined by integrating f around the r ho rib. Thus
3

if dz ri 2 ( p
3 "

 Pi) = (fi + f 2 ^
Z 2 " 7 1 } + (f2 + f3 ) ( z3 ~ Z 2 ^

Cancelling and rearranging terns gives

(10a)

Clo-U'ly 2 J f dz is given by the analogous relation

(10b) 2(P 4-P 2) « ( f 2 - f 4 ) ( Z 3 - , 2 ) + (f3

Multiplying (lOb) by G gives

(11) 2 G (P4 ~ P2) = (fx - f3 -

Subtracting (lOa) from (ll) yield
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2 LP = Lf (z2 - z3) + (f1 - f3)(Zl -2z2 + z-3) + (f4 - f2)(z3 - zx

But (Z]L - z3)(f2 ~ f4) - (z2 ~ z 4 ) ( r x - f3 -Lf) so

(12) 2LP - Lf (z4 - z-3) * (fx - f3)(z3 - zg+ ^3 - z4) •

This is a general identity expressing a repeated line integral

around a block in- terras of the single integral . But since a rhomb

is a parallelogram z ~ z + z - ~ z ~ O and so

(13) 2 j P d 2 - J f d z (z -~ z ) .

It is then a direct consequence of Theorpml that-if f is dicrete

analytic at this rhomb so also is F.

/The higher powers of z are not disc>*ete analytic but analogous

functions termed pscudo-poorers may be defined which are discrete

analytic. The pseudo-power of degree zero is defined to be unity.

Then the pseudo-power of degree n relative to the "origin, point11

b is defined to be

(14) (* - b ) ( n > .- n J J . (* -
Theorem 6^ The k p s eudo -po vrei;s (z ~ b ) ^ , (z - "b) ̂  ,..«,(z - "b) ̂ w '

generate a complex vector^ .ŝ 9̂,,..,ôf ̂ i^CTe^^^ .

This space does not depend on the choice of the origini point b.

The proof is straightforward and so is omitted.
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6. Dual functions and dual integration. So far the analysis has

exhibited a close analogy between classical potential theory and

discrete potential theory. However* the next two theorems have no

direct analogy im the classical theory.

If f is an arbitrary lattice function let f be a function

termed the due,! and defined as

/ v f~ = f* at even lattice points,

f~ = - f * at odd lattice points.

Here f* denotes the complex conjugate. Clearly the dual of the

dual is the original function.

Theorem J. A lattice function f is .discrete analytic if and only

if f is discrete analytic.

Proof. Consider the rhomb (l,2,3*4) z-n& let L be the operation,

defined in (9) so

But G

Lf

- Lf

is pure

1 » f ~ G

~ = f - + G
1

imaginary

f 2 -

t*-
so

f3

f3

+ G

- G

f4

f4

(16) Lf = (- Lf" )* .

This completes the proof of the theorem because f is discrete

analytic if and only if Lf = 0.

A "biconstant is a function which has a constant value c OHL the

even lattice and a constant value - c on the odd lattice. It is a

corollary of Theorem 7 that a biconstant is a discrete analytic

function.

Theorem 8. Let f(z) be a discrete analytic function and let

(17) F(z): = [I f(z) &z + c.
Here a is an arbitrary lattice point^and c is an. arbitrary constant.

The the solution of the integral eriuation (l7) îs

(18) f(z) « ( 4 h""2 J^ P^(z) dz -H k )""

where b is an arbitrary lattice point and k is the constant k = f*"(b).

Proof. It follows from relation! (17) that if p and q are neighboring

points then

(19) F(P) - F(n) a f(p) H- f(a) .



The complex conjugate of relation! (19) is now formed. Since

(p - q ) * - h (p - q) and since p and q have opposite parity

it follows that

a f~(p) - f"(q)

h 2 2 P - q

This defines f (z) as an integral of the discrete analytic function.

4 h~2 F~(z). Thus

( f^(z) = 4 h""2 j ^ P~(z) dz -h f~(b) •

This is equivalent to (l8) and the proof is complete.

The operation defined by formula (lS) is inverse to integration/

and may be termed dual integration. It is analogous,but not closely

analogous,to the derivative operation of the calculus.



6# Relating the continuous and the discrete* This section concerns

the problem, of relating the discrete potential theory just formulated

to the classical continuous theory* Obviously the two theories are

qualitatively analogous but it is desired to make this analogy

quantitative in some sense* One approach would be to show that the

continuous theory is a limit of the discrete theory as cell size

vanishes. However what is needed in. applied mathematics is an estimate

of the error for finite cells* This is the phase of the problem, to

be treated here*

The classical potential theory may be regarded as describing

the steady flow- of electric current in a plane conductor having

unit specific conductance. The discrete potential theory may be

regarded as describing the steady flow of electric current in the

even network* The number g. . is interpreted as the electrical

conductance of the line of the network connecting points i and j.

Then a discrete harmonic function is the electric potential of the

junction points of the network* The discrete Laplace equation is

a simple consequence of the laws of Ohm and Kirchhoff.

The following classical boundary value problem is to be related

to a corresponding problem of the even network.

Problem I. Find the value of the Birichlet integral

(21) D(U) * 5 L (<! + U*) dx dy
where R is a region of the (x,y) plane composed of a finite number

of polygonal cells of the even network and U is harmonic in R*

U is continuous and takes on a prescribed linear variation on

Ibhe boundary edges*

An example of such a region is depicted by the dashed.lines of Figure

2. To relate the boundary values to a network problem the discrete

harmonic functions are interpolated linearly along the network lines*

The electrical interpretation of D is the power input to the region

R. The network analog of D is a quadratic form Q? giving the power

input of the network in R.

Theorem % The Dirichlet integral of Problem I has an upper bound

given by the relation

(22) D(u) * Q'(U)

vhere u is discrete harmonic at the -points of the even network interior
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to R and u = U on the boundary till . The quadratic form Q1 is defined as

(23) Q'(u) - 2

where the summation is over the lines of the even network. Here:

g! . _ u .

g = g. .

=i- g • ,
1 j

if the (i,3 ) is inside R,

z '0

C the line (i,j) is on ^R,

g! .. » 0 if the line (i,j) is outside R.

Proof. This theorem will be deduced from a similar theorem given,

in L2, p8O2J. That theorem concerned a region triangulated in an

arbitrary manner by triangular cells. To reduce the present problem

to the previous one let the polyhedral cells be triangulated by

connecting one of the vertices to the others by auxiliary lines.

For example Figure 3 shows a pentagon

of the even network With auxiliary ~

lines drawn from vertex 2 to vertices

6 and 8. To obtain an upper bound

network each triangle is regarded

as a conducting loop of wire. The

conductance of a side of a triangle

is given by the formula

(24) gf = -g- cot (angle opposite)

The total network is obtained by

connecting all the triangular

networks at the vertices. This

network was called an upper network

because it gave an upper bound to

the Dirichlet integral as stated

in Theorem 9»

Actually the upper bound network reduces to an even network defined

above. To see this note that the total conductance of auxiliary line

(2,6) is given by the formula

2 g:f = cot A + cot 3 .

But A + B =180 because of tao inscribed angle theorem of the circle.

It follows that gg- = 0 • Hence the auxiliary lines contribute

nothing to the quadratic form Q. Let L be the length of the side

(2,10) of the polygon. Let W be the length of the line (},3) of the

odd network. This line crosses the line (2,10) of the even network.

Figure 3* Triangulated polygon
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The conductance of the side (2,10) of the triangle (2,8,10) is

given as g|: = j% cot 0 • But a central angle of a circle is twice

the corresponding inscribed angle so cot C =

is a line on the boundary of R

. Thus if (2,10)

(25a) = T.f/2L

If (2,10) is a line in. tb,e interior of it it follows by symmetry that

(25b) g1 » H/L
This shows that the upper network and the even network are equivalent

and Theorem 9 is proved.

Theorem 10. The Dirichlet integral of Problem I has a lower bound

given by the relation

(26) D(U) ^ Q"(w)

yhere \r is discrete harmonic at the points of the odd network inside

R and w = U at the points where the odd network crosses the boundary

•*&#• The quadrat ic forig Qlf is defined as

(27) Q"(w) = £ g» (w - w ) 2

where the summation is over the lines of the odd network. Here:

13

siia it,

s?, »

6ij if the line (i,j) crosses ^R,

if the line (i,j) is outside H.

Proof. This theorem will be deduced from a similar theorem given

in 1.2, p8O4j . concerning a lower network, A lower network was defined

as a network whose power input gives a. lower bound to the Dirichlet

integral of Problem I for corresponding boundary conditions. To

apply this theorem the region R is triangulated as in the proof of

the previous theorem. For example Figure 4 shows a polygonal cell

triangulated by auxiliary lines. Then

the lower network is obtained by con-

structing the dual network to the

network of triangles. The dual network

is shown as dotted lines in Figure 4.

The resistance of the dotted line is

is taken equal to conductance of the

line of the upper network which it

crosses provided it crosses an

interior line. In particular the

Figure 4. The dual network

10

' • * ' * .
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line (b,c) is ascribed zero resitance because the auxiliary line

(2,6) has zero conductance. Likewise the line (a,b) is ascribed

zero resistance. Thus an equivalent network is obtained by shrinking

the points a,b,c into a single point placed at the center of the

circle of the polygon. If a line such as (2,4) is a boundary line

of the region R then the corresponding dotted line is terminated

at the midpoint of the boundary line and only half the resistance

is ascribed. It is seen that the geometry of the shrunken network

is the same as that of the portion of the odd network in R# Since

resistance is the reciprocal of conductance it follows that Qf|i is

the quadratic form giving the power input to the lower network.

These last two theorems permit various generalizations. Im

particular some of the boundary lines of the region R can be

given the Neumann boundary condition"^ u/Sn = 0 where n denotes

the normal. This generalization includes the standard problem of

the total conductance of a polygonal plate between two edges. Thus

an upper- bound to the conductance of the plate is furnished by

the joint conductance of an associated upper network. A lower bound

for the conductance is obtained by employing a lower network in the

same way. For details reference is made to V.2J •

Recent developments in the theory of a complex variable have

concerned the geometrical concept of "extremal length11. The electrical

interpretation, of extremal length is resistance. The concept of

extremal length ha,s been extended to the geometry of networks in [" 3 ] •

These concepts can be carried over directly to the present problem.

As an example of these ideas let "5 be the total conductance between

edge (12,14) and edge (20,22) of the polygonal plate shown in Figure

2; other edges being insula.ted. Then

(28) ? » £ "̂ £ ^ •

Here If f is the joint conductance of the even network between, points

(12,14) and (20,22) When line conductances g! . areas in Theorem 9.

Here$ n is the joint conductance of the odd network between points

a and b when line conductances g» . p,re as in Theorem 10.
1
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