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poi nts of the conplex: plane* The lattice can. be the usual lattice of
square blocks but of main concern is an irregular lattice with squares
replaced by rhomfec A function is defined to be discrete analytic if
the difference quotient across one diagonal of a rhomb- equals the
difference quotient across the other diagonal* Based on this definition
discrete analogs of the following concepts in, classical function theory
are devel oped: Laplace eciuationsCauohy-liic;;:a/nn equations, differentiation,
contour integration, llorera's theorem and harmonic polynomals,, The
theory is more than an anal ogy because for a common class of boundary
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the classical Dirichlet integral in terms of discrete harmonic functions.
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le Introduction. There is an.extensive literature treating a discrete

potential theory 2L the square lattice in the plane* The central problem
of concern in those studies is the properties of functions whose val ue

at a lattice point is the nean of the values at the four neighboring
lattice points. This gives a discrete analog* of harmonic functions. In
thisfpaper a sinmlar problemis studied, in which the lattice of squares
of side h is replaced by a lattice of rhonbs of side h. Such a rhonbic
lattice can be quite irregular- and consequently the nethods of difference
equations can not be used.

The rhonbic lattice is enbedded in the -conplex plane* A discrete
anal ytic function is defined as a conplex valued function: on the lattice
poi nts whose difference quotient across one diagonal of a rhonb is equal
to its difference quotient across the other diagonal. This leads directly
to anal ogs of the Cauohy—R emann. equations and the Lapl ace equation*

Functions defined on the lattice points can be extened to the lattice
lines by linear interpolation* This device pernits defining the conpl ex
line integral along an arbitrary path in the lattice. Then given, a dis-
crete analytic function the integral defines a lattice function P
Moreover- F is discrete analytic. Repeated integration |eads to functions
anal ogous to polynomals in the conplex variabl e.

In the classical function theory the inverse of the integral operation
is differentiation. ilomevenin the discrete function theory on the square
lattice it was found that the inverse of the integral is another type
of integral termed "dual integration" £1]. In this paper it is shown
that this integral ojjeration extends to the rhonbic lattice.

The finaJL section of this paper is, perhaps, the nost interesting
part because it is shown that the discrete function theory is nore than
a nere anal ogy. Actually the discrete tYieory bears a quantitative relation
to the classical theory after which it was nodel ed. This is brought out
by analysis of the classical Drichlet Integra,! 1)(u) of a harnonic
function U The integral is to be evaluated over a region of the plane
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bounded by diagonals of rhonmbs and the assigned "boundary val ues are
assumed to varylinearly over the diagonals* Let u be a discrete harnonic
f.uncti on- taking on the cane boundary'val ues. Then a certain quadratic
formd(u) is shown to give an. .upper...bound for I)(1))» A simlar quadratic

formgives a lover- bound -
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2. The rhombic lattice. It is supposed that the conplex plane is paved
with rhombic bl ocks each of side lenth h. The sides of the blocks nake
up, the lattice lines and the vertices of the blocks forirr the lattice
poi nts. Thus each rhonb has four! lattice lines andfour lattice points.
The most common lattice of this type is, of course, the square l|attice,

A rhonb will be regarded as a cl osed two-di mensi onal point set* A
jLN--, S, e ff-LSS ~° defined as the union of rhombs. A sinple lattice “ggion
is a connected and sinply connected set of a finite nunber- of rhonbs.

Such-a region is shown in Figure 1. L4

20

Figure 1« A sinple lattice region

It is clear that a closed chain of rhonb: edges consistsof an even
nunber of edges. Thus it follows that the lattice- points fall into two
disjoint classes: the even class and the odd. class. These classes are
defined as follows: the ‘neighboring lattice points of an odd point are
even points end the neighboring lattice points of an even point are odd
pointé* O course neighboring points are defined to be end. poi nts of an
edge.
The lattice points are enunerated with the positive. integers so that
the even integers nane the even lattice poi nts and the odd integers nane
the odd lattice points. Thus one of the rhonbs in Figure 1 has lattice
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poi nts designated 15253?4* One diagonal of this rhonb is depicted
as a dotted line the other diagonal is depicted as a dashed |ine.
The. di agonal s connecting odd points are ternmed odd di agonal s and
the diagonal s connecting even points are terned even di agonal s.

The. di agonal s corresponding to the sinple lattice region. of
Figure 1 is shown in Figure 2 but the lattice lines are deleted,
The even diagonals of the lattice define the e'yemyjaetjrork and the
the ‘odd di agonal s define the j”dd networke Thus the dashed lines in
Figure 2 correspond to the even network and the dotted |ines

correspond to the odd network*
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Fygure-z. Pol ygonal cells of the even network

It is seen that there is precisely one node of the odd network
in each polygonal cell of the even network and vice versa,. Oearly
‘the even and the odd networks are what are termed dual graphs in
graph theory. Since the diagonals of a rhonb bisect each other per-.-
pendicularly it follows that the edges where the networks cross
are perpendi cul ar "bisectors

Since all the rhonbs have the sane length side it follows that
a polygonal cell of the even network is inscribed in a circle of
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of radius h. Moreover the center of the circle nust lie inside the

pol ygonal cell. _

The above statenents are geonetrically obvious and are given
whith out proof*. It shall be assuned that a rhomb can not have
arbitrarily small area in any finite portion of the plane* The ..
lattice and the networks are all graphs. The term nol ogy serves to
to distinguish the roles the lattice and the networks wll play.

" The reader will observe that sonme of-the theorens to follow
hold for a general lattice of quadrila-fcei*als. Some of the proofs
require only .that the quadrilaterals be parallelograns. Qher’
proofs are based on the diagonal s being- perpendi cul ar.
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3. Analytie T Anieny end intorrrals. AN concern; in this paper1 are

functions f(z) defined on the lattice points of a rhonbic |attice
If ?v is the conplex nuinter giving the position* of the lattice point

k then let f  be a short notation for f(z.}. i7"J"-"AN ST SR,
said to be discrete analytic at a rhotib if the difference Quotient

acrons one diasonal ir equnl to the difforcnce aquotient seropn the

a s mm———

thQL; For exanpl e sup-pose 1529354 X're lattice points of a rhonb.
Then f is analytic at this rhonb if

PP L £,
(i) il - 5
_23 n Zl . n4 " 2

This is the discrete, analog of the property of the derivative of
a poorer series being independent of direction

Let. f(z) "be a function defined on the lattice points. Let G be
a chain of lattice points having conpl e3: val ues Z]J §2? ...?zn.

Successive points in the sequence are nei ghbors. Let z,~a and zn~b

then the JAAAAA] AjANT] JASEA °A A(Z) O ' AC chain G is defined as
b n-1

(2) -fa t<4 dz = 1 (f};-i-l * 'fk_)(zlc-l\/l - Zk;)/g'

It is clear that this is equivalent to the ordinary conplex |line

integral along the lattice edges of the chain Gif f(z) is defined

along an edge by linear interpolation.
The followi ng statenent is an anal og of Korera's theorem

Theorcnn 1. A Tun 7 lattice

repion if and only if the digcrete line intesral srvound every simple

closed chain venicher,

Proof. The line integral around the rhonb. (1,2,3>4) i® "by definition

2jf(z) da = (f2+ f1)(z2- r1rs) +(f, + f2)(z3 - 32)
(£ 2300 - z;) LG I ICHESRY?

Reforming the right side gives

(3 2Jf(,) da « (M- f3)(,2- ,4) - (for-.f3)(m ~ az)

It is obvious that the vanishing of this integral is equivalent

to f(z) being analytic on the rhonbs

It is clear that the lino integral of a function around a sinple

closed chain is the sumof the line integrals around the rhonbs

contai ned inside the chain,provided all the integrals are taken

in the sane sense* This observation together "with the formula (3)




conpl etes the proofe The follow ng corollary is now obvious e
Qorollary 1* Let f(z) be discrete analyticjWj\jAiw)le tattice
region BY Ai2i 201 (L2 poi nt Nof R thedn ail otifoii g (M3 i£F92LI'Y,

S - o e

intesesl of f(z),-

(4 P(2)-J. f(a) dz

~ad P(z) _ig™Mndenondent of ~tho”athjof Nintetratio'tTi. Nfthe v

is in iy




A. Conjugate harmonic functions* Lot z.9g z.9 Z g Z .to conplex

nunbers defining the lattice x>ints of a rhomb in counter clockw se
order. Then z, and 23 are endpointr, of a lirno of the add netiverl:.
The conductayee of this diagonal line is defined to be.

->) v Y 410 .
Since the diagonals of a rhonb.- are perpendicul ar the conductance

I's a positive nunber*. The conductance of the even diagonals are
~defined anal ogously and so

(6) 9240913 - 1

In other nords crossing diagonals have reciprocal values of con-
duct ance.

A function defined on the points of the even network is said to

"be. Adiscretc harjrionjc at a,given point if its value at that point is
the wei ghted nean of its values at the neighboring points of the
even network* The weights are the correspondi ng conductances, A
simlar relation defines discrete harmonic functions on the odd

net wor k.

Theereir 2. Let a2 lattico function

Proof. First consider a special case depicted in Figures 1 and 2*
Thus the point .2 is an interior point of the region shown in Figure

. In therhonb (1,2,3*4) the condition for discrete analyticity is
B- - Z-
2) )

'_f-') ,,f-e-:/\-“‘;i. (f ff
This can be witten in ternms of the conductance gor« This relation:

and the corresponding relations for the other rhonbs surrounding the
poi nt 2 becomne:

f3llf| lliSt?A(f4llf2>
I -T7- i ezs('6""2!

f7 nf3 S iff28/\f8~f2/\ *
Addi ng these equations gives
(7} (spa+"96%0231 T2  S)AR*S2E 0692378 *
This is precisely the condition that f bo discrete harnonic at the
poi nt 2*
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The pattern of the proof when nore than threerhonbs neet at a
point is now clear and the proof is conplete. An equation of the
form (7) will be termed the discrete Lapl ace equati on.

Theorem 3* The real part u and the inaginary part v of a discrete

anal ytic function f satisfy the discrete Cauchy-R enann. equati ons:

(8a) Uy oo g m Ve - V2

IZ3 n le 124 - ZZ'
(8b) Wig v W = _ Uy~
| 23- 2] | | 24" L)

where (1,2,3*4) denotes a rhonb in counterclockw se order. Mreover-

the functions u and v are discrete harnbonic.

Proof. Equations (8) followfromthe substitution fe« u + ivin:
equation, (I) and separation! of real and imagi nary parts* The | ast
statement of the theoremresults fromthe fact that the coefficients
of the discrete Laplace. equationi are real.

The pair of functions u and v are terned conjugate functions .

because. they satisfy the anal og of the Cauchy-Ri emann equati ons.
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G ANl o povPoriTAAATEAT < A %S AppArervt that linear functions of

the complex variable z. a*o discrete analytic. This raises the question

about higher powers of &«

Tlieorein_4»Qi?l;AVK® I AEHEQ. \QJ L _.P? Z iH* SL M Py il ytic,
Proofe It is sufficient to con3| der the case f(z) Zz . Then the
condition for discrete anal yt| city is

2 2 2 2
2.
2:3 - %y ?4 - Zy
Thus z -2z,= g - ?" and this is true "because a rhomb is a
paral]élom%ﬁ. : s
Theoren 5. Tuae 11"1'.0'*1'(4]“ of discrete analytic functions are digorp tg

analytic, _
Proof. At first let f be an arbitrarily defined lattice function. Let
5 f dz denote the integral of f conpletely around the rhonmb. (I,2,3j4)«
2lras - (5, + £z = 7))+ (£, + £)(zy = 3y) +
(;3 + f4)(z4 - ?.3) + (i4 + fl)(zl - 2.4) .
Rearrangi ng the termm> gives :
o{ras = (£, - £3)(z, = 5,) =~ (£, = £,)(z; - =,).
It is convenient to |et
2| f dz = (zg- z4) Lf So

(9) Lf = (fy-fs) - (f2-f,) G  where

Lot the function F "be defined by integrating f around the r horib. Thus
3

2 Sifdzri 2(p3.. Pi) — (fi +f2/\22 n 79} + (fp+tg)(z3 L Z9on
Cancel ling and rearranging terns gives

(10a) 2By = 1)) = (8 = 7 (e, = 2y) x5, 4 1) (5, - 3)
4

do-Uly 2 J f dz is given by the anal ogous rel ation

(10b) 2(P4s-P2) « (fo-1f4)(z3-,2) + (fz + f4)(z4 - z?) .

Mil tiplying (I Qo) by G gives
(11) 2G(Pa~P2) = (fa- fo- L0)(zy = 3,) + (£, + £,)(z, =
Subtracting (1Ca) from (I1) yields

1)
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2 LP =Lf (z2- z3) +(f1 - f3)(z1 -222 + 229 + (f4- f2)(2z3- Z_>_<)

But (o - z3)(f2 ~ fa) - (z2 — z4)(r«x - f3 -Lf) SO

12) 2P - Lf (z4a - z9 * (fx - f3)(z5 - Zg+ "5 - 24) =
This is a general identity expressing a repeated line integral
around a block in- terras of the single integral. But since a rhomb

is a parallelogram Zl ~Zt 23— ~ z4-—O and so

(13) 2ifPd2 - Jfdz (z 7

It is then a direct consequence of Theorpml that-if f is dicrete

analytic at this rhonb so also is F.
/The higher powers of z are not disc>*ete analytic but anal ogous
functions termed pscudo-poorers nmay be defined which are discrete

anal yti c. The pseudo- power of degree zero is defined to be unity.
Then the pseudo- power of degree n relative to the "origin, point'!
b is defined to be

(14) (F-0)1" o Jl () gy

. ! ! ' '\
Theorem 6" The k pseudo-powe;s (z ~b) ’\0), (z - "b) A) ,..« (z - "b kw'l'_

generate a conplex vector” .g'9\,..,df "i AClerM~ analytic functions
Thi s space does not depend on the choice of the origini point b.
The proof is straightforward and so is omtted.




13
6. Dual functions and dual integration. So far the anal ysis has

exhibited a close anal ogy between classical potential theory and
discrete potential theory. However* the next two theorens have_no
direct analogy imthe classical theory:.

I'f f is an arbitrary lattice function |et f~ be a function
ternmed the due! and defined as
(15)/ f~ = f* at even lattice points,
f~ = - f* at odd lattice points.
Here f* denotes the conplex conjugate. Cearly the dual of the
dual is the original function.

TheoremJ. A lattice function f is .discrete anal ytic if and only

if f~ is discrete analytic,
Proof. Consider the rhomb (I,2,3*4) z-"& |l et L be the operation
defined in (9) so

Lf' » fg ~Gi,. f3+Gf4

y

_ S— . _ * ki M
Lf ];L +Gt§ f3 Gf4

But Gis pure inmaginary so

(16) Lf = (- Lf" )*

This conpletes the proof of the theorembecause f is discrete
analytic if and only if Lf = O.

“A "biconstant is a function which has a constant value ¢ OH the
even lattice and a constant Value_- c on the odd lattice. It is a
corollary of Theorem 7 that a biconstant is a discrete analytic
functi on.

Theorem 8. Let f(z) be a discrete analytic function and Ief
(17)  Fz2): =[I f(z) & +c.

Here a is an arbitrary lattice pointfand ¢ is an. arbitrary constant.

The the solution of the integral eriuation (17) "Ns
(18) f(z) « (4h"2J~PM(z) dz -H k)"
where b js an arbitrary lattice point_and k is_the constant_k = f*"(b)

Proof. It follows fromrelation! (17) that if p and q are nei ghboring

poi nts then

(19) E(P) - F(n) . ff(p) H f(a),




The conpl ex conjugate of relation! (19) is now formed. Since
(p-qg)*>-n1 (p- g~ and since p and g have opposite parity
it follows that

(20) A Fip)+¥F(q) ., _f=m - f(a

h?. 2 P -q
This defines f (z) as an integral of the discrete analytic function.
4 h~2 F~(z). Thus |
( fr(2) = 4 h"? j AP~(z) dz -h f~(b) =
This is equivalent to (18) and the proof is conplete.

The operation defined by formula (1S) is inverse to integration/
and may be ternmed dual _integration. It is anal ogous, but not closely

anal ogous,to the derivative operation of the cal cul us.
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6# Rel ating the continuous and the discrete* This section concerns

the problem of relating the discrete potential theory just formulated
to the classical continuous theory* Cbviously the two theories are
qualitatively anal ogous but it is desired to make this anal ogy
gquantitative in sone sense* (ne approach would be to show that the
continuous theory is alimt of the discrete theory as cell size
vani shes. However what is needed in: applied mathematics is an estinmate
of the error for finite cells* This is the phase of the problem to

- be. treated here*

The classical potential theory may be regarded as descri bing
the steady flow of electric current in a plane conductor: having
unit specific conductance. The discrete potential theory nmay be
regarded as describing the sfeady flow of electric current in the
even network* The nunber gij is interpreted as the electrica
conduct ance of the |line of the network connecting points i and j.
Then a discrete harnonic function is the electric potential of the
junction points of the network* The discrete Laplace equation.is
a sinple consequence of the laws of Chm and Kirchhoff.

The following classical boundary value problemis to be related
to a correspondi ng probl em of the even network.

Problem|. Find the value of the Birichleét integra
(21) D(U) * 5L (<!'+U*) dxdy

where Ris a region of the (x,y) plane_ conposed Qf a finite nunber

of polygonal cells of the even network and Uis harnonic in R

Uis continuous and takes ona prescribed |inear variation on

Ide boundary edges*

An exanpl e of such a region is depicted by the. dashed.lines of Figure
2. To relate the boundary values to a network problemthe discrete
harnoni ¢ functions are interpolated linearly-along the network |ines*
The electrical interpretation of Dis the power input to the region

R The network analog of Dis a quadratic form @ giving the power

i nput of the network in R

Theorem % The Dirichlet integral of Problem | has an upper bound
given by the relatjon

(22) D(u) * Q (v

vhere u is discrete harnobnic at the -points of the even network interior
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to Rand u = Uon the boundarytill. The quadratic formQ is defined as
o . _
(23) QW - L ohy (uy )2
where the sunmation is over the lines of the even network. Here:
gij = g.. If the line (i,3) is_inside R
\ . . . Ly R
gij S-ge, %glthe [lne (|,J) is_on R,

:g!”.. » B if the line (i,j) is outside R

Proof. This theoremwill be deduced froma similar t heorem gi ven

1
in 12, p82J. That theorem concerned a region triangulated in an
arbitrary manner by triangular cells. To reduce the present problem

to the previous one |et the pol yhedral

cells be triangul ated by

connecting one of the vertices to the others by auxiliary |ines.

For exanple Figure 3 shows a pentagon
of the even network Wth auxiliary
lines drawn fromvertex 2 to vertices
6 and 8. To obtain an upper bound
network each triangle is regarded

as a conducting loop of wire. The
conductance of a side of a triangle'
is given by the formul a

(24) o = -4 cot (angl e opposite)

The total network is obtained by
connecting all the triangul ar
networks at the vertices. This
network was called an upper net wor kK

because it gave an upper bound to
the Dirichlet integral as stated

in Theorem 9»

3

Figure 3* Triangul ated pol ygon

Actual ly the upper bound network reducestoan even network defined

above. To see this note that -the tota
(2,6) is given by the fornul a
2 g" = cot A + cot 3

conduct ance of auxiliary line

[ +] .
But A-+ B =180 because of tao inscribed angle theoremof the circle.

It follows that 99 = 0 ¢ Hence the auxiliary lines contribute
nothing to the quadratic formQ Let L be the length of the side
(2,10) of the polygon. Let Wbe the length of the line (},3) of the
odd network. This line crosses the line (2,10) of the even network
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The conductance of the side (2,10) of the triangle (2,8,10) is

givenas g = j%cot 0 « But a central angle of a circle is twce
the corresponding inscribed angle so cot C = W/L . Thus if (2,10)

‘is aline on the boundary of R

(25a) gt ="f/a . _
If (2,10) is aline in..theinterior of it it follows by symretry that
(25b) g® »HL . '

This shows that the upper network and the even network are equival ent
and Theorem 9 is proved. '
Theorem 10. The Dirichlet integral of Problem| has a | ower bound

given by the relation

(26) DYy A Q(w

yhere \r _is discrete harnonic at_the points of the odd network inside

R and w= U at the points where the odd network_ crosses the boundary

«*& The quadratic forig Q" is defined as

(27) Q(wW = E£gr..(w.-w)?.

where the summation is over the |lines of the odd network. Here:
B8Y; = 8;; if the line (i,J) is insiiait,
i3 2 ®ij if the line (i,j) crosses "R,

SZU » @ if the line (i,j) is outside H
Proof. This theoremw || be deduced froma simlar theoremgiven
qn :f2, pscnﬂ. concerning a |l ower network, A |ower network was defined

as a network whose power input gives a. |ower bound to the Dirichlet
integral of Problem!| for correspondi ng boundary conditions. To
apply this theoremthe region R is triangulatedas in the proof of
the previous theorem For exanple Figure 4 shows a pol ygonal cell
triangul ated by auxiliafy lines. Then
the | ower network is obtained by con-
structing the dual network to the
network of triangles. The dual network
is shown as dotted lines in Figure 4.
The resistance of the dotted line is
is taken équal to conductance of the
line of the upper network which it

crosses provided it crosses an
interior line. In particular the
Figure 4. The dual network
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line (b,c) is ascribed zero resitance because the auxiliary line
(2;6) has zero conductance. Likewi se the line (a,b) is ascribed
zero resistance. Thus an equi val ent network is obtained by shrinking
the points a,b,c into a single point placed at" the center of the
circle of the polygon. If aline such as (2,4) is a boundary line
of the region R then ihe correspondfng dotted line is termnated
at the nidpoint of the boundary line and only half the resistance
is ascribed. It is seen that the geometry of the shrunken network
is the same as that of the portion of the odd network in R; Since
resistance is the reciprocal of conductance it follows that Q' is
t he quadratic formgiving the power input to the |ower network.

These | ast two theorens pefnit various generalizations. Im
particul ar sone -of the boundary |lines of the region R can be
‘given the Neumann bouhdary condition"~u/ Sn = 0 where n denotes
the normal. This generalization includes the standard probleh1of'
the total conductance of a pol ygonal plate between two edges. Thus
an.upper- bound to the conductance of the plate is furnished by
the jOinf conduct ance of an associ ated upper network. A |ower bound
for the chductance is obtained by enploying a | ower network in the
same-way. For details reference is made to V. 2J e

Recent devel opments in the theory of a conplex variable have
concerned the geonetrical concept of "extremal length':: The electrica
interpretation, of extremal length is resistance. The concept of
extremal length has been extended to the geonetry of networks inf[" 3] -
These concepts can be carried over directly to the present problem

As an exanple of these ideas let "5 be the total conduct ance bet ween
edge (12,14) and edge (20,22) of the polygonal plate shown in Figure
2; other edges being insula.ted. Then
- (28) ?2» £ N £ N .
Here If" is the joint conductance of the even network between, points
(12,14) and (20,22) Wen line conduct ances gaj areas in Theorem 9
Her e$" is the joint conductance of the odd network between. points

a and b when |ine conductances g»_,.:J pre as in Theorem 10.
I
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