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REALIZATION OF TEMPERATURE DISTRIBUTIONS

R.C. MacCamy, V.J. Mizel and T.I. Seidman

Abstract: It is shown that an arbitrary temperature distribution

may be approximated in the £ sense by controlling the boundary

temperatures over a preceding time interval.
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Let & be a bounded open subset of R with a piecewise smooth

boundary SB having finite (n-1)-dimensional volume. Only a rather

restricted class of temperature distributions u(= u (x), xeft) can

"arise",, that is, can have a Tpast history1 j e.g.,, such a u

must be analytic in x. We ask, however, whether one could start

with a given distribution - say, u = 0 - and,, by manipulating the

boundary temperatures over some finite time interval, arrange to

approximate arbitrarily well a specified distribution.

Thus, if tr(= TT(t,x) , t€(-l,O), xedft) is given one may obtain

the solution u of the heat equation with 0 initial data and u

as boundary data and then define the operator T from a space of

admissible boundary data to the space of possible temperature dis-

tributions by setting Tu = u where u(x) = u(O,x) for X6&. We

ask whether the range of T is dense in £~(R).

It is easily seen that the answer to this question is inde-

pendent of any reasonable choice of the space of admissible boundary

data.

The function u,then, satisfies the conditions

ut = Au te(-l,O) ,xe££

(1) u(-l,x) = 0 xeft

u(t,x) = u(t,x) te(-l,O),

and, with u(x) = u(O,x), we have the integral representation

(2) u(x) = J J G (x,y.,-t) u(t,y) dy dt

-1 9R v

where G is the normal derivative (with respect to its second

variable) of the Green's function for the heat equation in a. As

is well-known, G may be- expressed, for x,yeft and 0 < -t, as



(3) G(x,y,-t) = ££ ^ W a ^ ^

where C-A, } are the eigenvalues of the Laplacian operator in

and {su ) a r e ^xe corresponding normalized eigenfunctions; thus

We recall that the i3^) a r e an orthogonal basis of £« W J the

{A } are positive and that, if we let {jJL-} be the distinct .

2
eigenvalues, ordered by increasing magnitude, then {/i-/j } is

bounded away from 0 and °° . The kernel G of (2) is now

given by G (x^y^-t) = v • V Gfx^y^-t) and, for xeR,yed&, 0 < -t,

(5) G^(x,y,-t) = S^ ak(x)bk(y) expf^t]

where v is the unit outward normal at y (undefined on the

subset - assumed negligible - at which BR is not smooth) and

^ ( y ) = i>y • Vak(y) ^ p o r f i x e d ^t > 0 a n d X G R^ we h a v e G^

CO * '

continuous (in fact, C where this is meaningful on oft) in y

and, for fixed -t < 0 and yed&j G is analytic in x.

We assert that, as (y, t) ranges over dft X (-.1,0) , the

1 cross-sections' G (x,y,~t) generate <£ (&) when considered as

functions of x. It then follows that, any u (x) in £9(R) can be approxi-

mated arbitrarily well in £?(&) by finite sums of the form

3 V5, <*•**•-V-
Now we may find,, for e > 0/ C° functions 0 (t,y) , for

(t,y) e (-1,0) x 5ft, which vanish for jy-y | > e or |t-t | > e
f^ III IUr r

and satisfy I 0 dy dt = 1; hence, using (2) and the continuity
-1 dft m

of G in (i;-t) , u (x) can be approximated arbitrarily well by



T[2v c 0 ] so T has dense range. It remains to prove theL 1 m in

assertion.

Suppose, to the contrary, that the linear span of

111 = {G (•jYj-t): (Y* t) €dftx(-l,o) ) were not dense in £ 9 ( & ) . We

could then find a non-trivial (pelft̂  i.e., a function cpe^ (&)

such that <p / 0 but

(6) 0 = <<P,G^(-,y,-t)> (y,t)€dftX(-l,O)

Expanding <p in terms of the orthonormal basis t3^} gives

<p = £ j8, a, with j8 = < <P,a,> and (6) becomes

(7) 0 = \P^(Y) exp[Akt] yeBft, 0 < -.t < 1.

We observe that this series is absolutely convergent for each (y,t) since

{b, (y) exp [A-. t] : k = 1,2,.. .} is square-summable, being the expan-

sion coefficients of G which is in SI (fo) when, as here, con-

sidered as a function of x for yedft, t < 0.

If we collect the terms in (7) associated with multiple eigen-

values we obtain in terms of the distinct eigenvalues /z.

(8) 0 = Ej>'jz e" < z < 1

where z = e (-1 < t < 0) and, putting K. = {k;A, = /i.} (note
J K 3

that each K. is finite),

(9)

The absolute convergence of the series in (8) for, say, z = 3/4 and

the sign of the exponents {ju-} guarantee the absolute convergence

of the series uniformly in the disk |z| < 3/4. Since each of the

functions z 3 = exp [/!. log z] is analytic in the half-disk
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{z: |z| < 3/4, Re z > 0} the series converges in the half-disk

to an analytic function which, by (8), must be 0. It follows that

-^1 ^ Mj
o = rim z £. y.z J = y.

and, recursively, we obtain 0 = 7^ = y^ = ... so

(10) 0 = ^ ^ ^ ( y ) ye^B, j = 1,2,...

This implies that 21 ^ v ^ (x) h a s b 0 ^ 1 ° Dirichlet data, by

(4) , and O Neumann data and so vanishes whence, by the independ-

ence of the a. , we have £., = jS = . . . =0 contradicting the

assumption that <p ^ 0.

It follows that tU and, therefore, the range of T is dense

in <£9 W • We remark that the same proof works for any strictly

parabolic equation if the coefficients are independent of t.

Presumably the same result would obtain for temporally inhomogen-

eous processes, under mild conditions on the time dependence, but

a more delicate argument would be required.
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