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APPROXIMATION OF OPERATOR SEMI -GROUPS
' T. Seidman

gl. In his book [3], Yosida presents a section (§12 of Ch. IX)
entitled 'The Trotter-Kato Theorem' in which is proved a theorem

on the convergence of a sequence of C semi-groups acting on a

O
sequentially complete lctvs (locally convex topological vector
space) X. This is parallel to, but does not subsume, the theorem
presented by T;otter [2] and Kato (e.g., [l]) on the convergence
of a sequence of (discrete or continuous) semi-groups acting on a
sequence of approximating spaces; for Trotter and Kato all the
spaces are Banach spaces. Thé aim of this paper is to provide a
common generalixation of these results.

In & 2 is presented the setting for the theorems: a net of
spaces {Xa} approximating an lctvs X. In &3 an approximation
theorem is proved for a net of CO semi-groups and in &4 this is
used to treat also the case of discrete-parameter approximating
semi-groups. Finally, &5 contains a converse to the main theorems

of §3 and g4.

22, For any lctvs X we call a set ¢ of continuous semi-norms

on X a determining set if it determines the topology of X; for

simplicity we also assume @ closed under linear combination with
positive coefficients so @ is a determining set for X iff
{{xeX: o(x) < 1}: e} Ais a neighborhood base at O.

Let G be a directed set, {Xa: aecG@} a net of lctvs's, and

{rm_: aeG} a net of continuous linear surjections (r

o X-—»xa).
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Let @ be a determining set of semi-norms on X and let ©—» @,

be a map (for each wcG) of & onto a determining set of semi-norms

-on X, . We call such a system (incorrectly, but conveniently,

identified as {Xa}) an approximating net (of spaces) to X if,

for each xeX and each e,

(1) @y, (T oX) —> © (x)

(convergence as o ! in the directed set G),

Example: Let X Dbe any lctvs with dual space X* and let G

be the directed set of all finite-dimensional subspaces «a of fﬁe
dual X* ordered by inclusion. Let Xa be the dual of « for
aeG and, define L by setting [vog](y) = y(x) for each xeX
and y e . Let & be any determining set for X and, for @c<®,

set wa(z) = inf {o(x): xeX, 7 x = 2z} for each zeX ;

o o since To ?

as defined above, is open as well as continuous, linear and sur-
jective, @y will be a continuous semi-norm on Xy * To demonstrate
(1) , note that for any 0ed and X €X there exists, by the
Hahn-Banach Theorem, a yeX* such that |y(x)| < o(x) for all

xeX while y(xo) = @(xo); it follows that we have ¢a(wago) = @(xo)

for any a such that yea . Thus, every lctysg can be approximated

in this sense by a net of finite-dimensional spaces.

If & is a determining set for the lctvs X and u 1is a

mapping (g: @ @); we say the linear operator L: X—X |is

pB-continuous if, for every xeX and every ¢c? ,

o (Lx) < [mp] (%)




We observe that every continuous operator on X is M-continuous
for some g . An operator L,: X —X, will also be called

p-continuous if, for every x,eX, and 0e?,

@, (Loxy) < [Hol, (x,)

A net of operators [La} (La: Xa—~>Xa) is called equi-continuous
in a if each L, is M-continuous with the mapping p fixed
(independent of «).

Let {x.: ocG} be a net of vectors, X, €X We say X

(a4 o (e

converges to x (for some xeX) and write X,~*X Oor x = lim X,

if, for every ¢ae@ s ‘
wa(xa - Wag)-q-o.

"For a net (L} of operators (L

o Xa-ﬂ>xa) we say {La} con-

o

"verges (strongly) to L ( for some operator L on X) and write

L,—L or lim La =L 1if, for every xeX , Ldﬁag——>Lx so, for

every e ,
¢a(Lavax - WaLx)—a-O .

For future reference, we state the following (obvious) result

as a lemma.

Lemma l: Let {Aa}, {Ba} be nets of operators on the approximating
net {X} to X . If A,~—+A and B,—>B , then (Aa+ Ba)—+A+B.
If, in addition, {Aa} is equi-continuous (i.e., p-continuous

uniformly in o« for some W) then (AaBa)—e~AB .

33. In this section [Xa] will denote an approximating net of

spaces to X, with X and each Xa a sequentially complete




lctvs; {Sa] = {Sa(t): t > 0} is a net of N semi-groups
(Sa(t): Xa—a-xa) M-continuous uniformly in oG , t 2_0; that is,

for each x,eX, and 0 ,

2 0y (8 (D)%) < [Hol,(x,) -

Denote by Aa the infinitesimal generator of the semi-group Sy
and by Ra(%) the resolvent of Aa (Ra(%) = (N - Aa)_l where this

inverse exists as a continuous operator) .

Theorem l: Let {Sa} be a uniformly p-continuous net of CO
semi-groups, as above, on the net {Xa] approximating X . Suppose

that, for some %o > 0,

R(%o)x = lim Ra(Ko)wax

exists for each xeX and that the range of R(xo) (i.e., the set
{1lim Ra(%o)vax: x€X}) is dense in X. Then, for Re\ > O, Ra(%)
converges strongly to an operator R(A) on X which is the resol-
vent of the infinitesimal generator A of a H-continuous Co
semi-group S = [S(t): t > 0} on X ; further, Sa(t) converges

to S(t) wuniformly in t , for t in any bounded interval.

Proof: That Ra(k) is defined for ReA > O 1is Corollary 1 of
*
[Y: IX, 4] . Formula (10) of that section gives us, for each

XX, ReA >0 , n=0,1,..., .

n+l_ _ AP JOO 5
X e

t.n
{ARa(%)] o = ] o t sa(t)xadt

(that the [Bochner] integral is well-defined follows from (2)

*
References of this form are to chapter and section of Yosida [3];
e.g., this refers to §4 of Chapter IX.




and the sequential completeness of Xa) so, for each ¢ec® ,

n+l

kn+1 Iax At
n! o €

(3) ol (IR, x ) <

o tn[uso]a(xa)dt = [Meo] (x,)

OlOl

if A 1is real and positive; i.e., {[%Ra(x)]n} is p-continuous
uniformly in A(A > 0), n(n=1,2,...) and «afacl).
From the linearity of each Ra(ko) follows that of R(%O).

Using (3) with A = A we may apply Lemma 1 recursively in n

O 3
n n
to show [koRa(Ao)] —~>[%OR(XO)] (n=1,2,...). It then follows

that [7\OR(7\O)]n is p-continuous (for n=l1,2,...) on X since
O (IMGRMG 1™) < oy, (T, NGROG 17%) = 0(INR(A) 17%) |
+ 05 (INgR, (A 17T % = T INGR(A5) 17%)
+ <Pa([?\ORa(7\O)]nTraX)
< ol (T x) + €,

‘ n
where ea~f>0 by (3) and the convergence of [KORa(RO)] , and

[l (7T %) — [Ke] (x) Dby (1).
Now set 8 = (A, - N /A and, for A such that |e| < 1 ,

set
@
(4) ROOx = AS0 I 6" R0 1™ x .
The series converges absolutely - - i.e., the related series
-1
® ‘
IAOI Zé Ie] @([K R(k )]n+l ) converges - - Dby the uniform

n+l] Hence R(A\)— is well-defined

pcontinuity of {[XOR(%O)]
by (4) since @ is a determining set and X is sequentially

complete . Observe that, similarly, for |A - kol <%

-1 n n+1l
xo Zg’e [KoRa(xo)]
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converges absolutely and may easily be seen to converge to Ra(X).
Let RN and Ri be the corresponding partial sums (Zg) so, for
€ > 0, there exists N(e) = N(x,0,€) independent of «a (xeX,

0e®) such that
0, (IR, - RlT %), o([R - Rx) < ¢

(Ra = Ra(x), R = R(A\)) for N > N(e¢) in which case

¢a(vaRx - Rawag)
’ S_wa(waRNx - Rﬁvdx)
+ oy mgR - B1x) - o([R - RV]x) |
+ o([R - RIx)
N
+ ¢ (R, - RIT %)

n+1 n+l

n
— 0 [7\0R(7\o) ]

the first term going to O as en[AoRa(Ko)]

for n=0,...,N and the second by (1). Thus Ra(K)~—>R(%) for
A - Kol < A, and, as above, this implies that (for N real and
0O< AL 2%0) [KR(K)]n is M-continuous (for n=1,2,...). Choosing
a 'new %O' one can now repeét the process to obtain convergence
in a larger disc and so, eventually, Ra(k)~—>R(x) for Re AN > O
and, for A real, positive and n=1,2,..., [AR(M)1" is L-continuous,
Sincé each Ra(-) satisfies the resolvent equation, so does
R(*) (at least for positive real 1A) by the equi-continuity of
ARa(K) and Lemma 1. The assumed density of the range of R(%O)
now guarantees (c.f., [Y: IX, 7]) the existence of an operator
A of which R(A) is the resolvent and the uniform p-continuity

of {[%R(%)]n: N> 0; n=1,2,...} guarantees that this A 1is the




infinitesimal generator of a H-continuous Co semi-group

S = {s(t): t >0} on X . We need only show the convergence of

Sa(t) to S(t).

For N =1,2,..., n=1,2,..., t> 0, set

k. k
- N
SN(t;n)x = e nt ZB nk? [nR(n)]kx
(5) N k. .k
N _ _-nt n t k
Sa(t,n)xa— e Zo T [nRa(n)] X

for =xeX, x,€X ; by the uniform Md-continuity of [[nR(n)]k,
[nRa(n)]k} we obtain the p-continuity of SN(t;n), Sﬁ(t;n), S(t;n)=
limNSN(t;n), and Sa(t;n) = limN Sz(t;n) (convergence of {SN}
and {Sg} follows as before from the absolute convergence of the
series). By [Y: IX, 7], S(tz;n) and Sa(t;n) are CO semi -
groups which converge strongly, as n-—s»o , to S(t) and Sa(t)
respectively.

We may differentiate (5) term-by-term (justifiable by the

absolute convergence - locally uniform in t - of the derived

series) to obtain
&= s(t;n) = [(n®R(n) - n] S(t;m).

Observing that (we set R(l) = R)

[an(n)>- n]R nR(n) [R-1] and

[mR (m) - nR(n) IR = (2 nR(n)mR (m) [R-1],

we have

tS(t;n) - S(t;m)]sz

t d
Jo 3s [S(t-s;n)S(s;m)]Rxds

t
=(£n?1—n—) nR(n)mR (m) [R-1] IOS(t—ssn)S(S;m)de-




It follows that, for =xeX and n,m=1,2,...,

o(Is(tsn) - s(esmIrg< t|E -2 gl (0

where up'o = usw + u4¢ (exponents denoting iterates). Thus,

as S(t;n)—S(t),

(6) p(IS(t) - s(t;mIRx) < = [pio] () .
Similarly,
(61) 0o ([Sq(t) - So(tsmIRyx,) < & [wiel, (xy) .

Notice that the absolute convergence of {Sg} is uniform in
o ; there exists €y = eN(t,n), such that eN~—>O uniformly in
t (t bounded) as N-—» 0o and
N
(7) 0 ([, (tsn) - s, (t;n)]x ) S,?N[ﬂw]a(xa),

o([s™ (t5n) - S(t3n)1x) < e [mo] (x).

We now have, for y = Rx and all aclG, N, n, t > 0, e,

O (lms(t) - s, (87, 1y)

< oy (m IS (8) - sh(t;n)ly)
+ wa(’vaSN(tsn)y - Sﬁ(t;n)vay)
+ P ([Sgltsn) - s,(0) 17y

< oy lrglstt) - s™(t5n)1y) - o(IS(t) - ™ (t5n)]y) |
+ @(IS(t) - S(t3n)]Rx) + o([S(t3n) - s\ (t3n)]y)
+ 0 (IS (£) = S, (£30) IRT %) +0,, ([S,, (t3n) -85 (t5n) I7 )
+ 0, ([8,(t) - 5, (t;n) I [RyT,- ToRIX)

k. k

-nt N n t

+ e Zg T @a@&hﬂihﬂ]ky - [nRa(n)]kwd@ .




Given ¢,y and a bounded t-interval, choose n large enough so
that (t/n) [pre] (x) and (t/n)[u'@]a(wax) are small (uniformly
in o for o> o, - - so [u'w]a(wax) ~ [H'p] (x)); next fix N
so eN[#@](y), eN[#@]a(Way) are small (uniformly in « for

o>« finally, take & large enough that all the remaining

1)
terms are small (possible by (1), the equicontinuity of Sa(t)
and Sa(t;n) and the convergence of Ra to R).
Thus Sa(t)y converges to S(t)y (uniformly in t for t
in a bounded ;nterval) when y is in the range of R = R(1).
Since this range is dense in X, the continuity of S(t) (uniformly
in t) and the equi-continuity in o of {Sa(t)} suffice to
ensure the convergence of Sa(t)y to S(t)y for all yeX and

the local uniformity in t of this convergence.

QED

§4. In this section [Xa} and X will be as in §3. For o«cG ,

let 65> 0 with 6 —+0 ; set T = [néa: n=0,1,...} 1if 6,> O

. A A
and T, = [o,oo)‘ if 6§, = 0. Let [sa) = {sa(t): teTa} be a

. A ‘ ~ . A
semi-group: Sa(néa) = (Sa)n (n=0,1,...) if 5a > 0 and Sa
a C, semi-group if 4§, = 0. Set A, =[5, - l]/éa if §,> 0
and let A, be the infinitesimal generator of the CO semi-group

A . .
Sa if 5& = 0 ; in any case let R&%) be the resolvent of Aa .

. A . . .
We assume the semi-groups {Sa] are pM-continuous uniformly in

aclG |, teT  so, for each XXy 5

o T and @cd ,

o¢ta ?

(8) 0y (84 (tg) %y) < o], (x,) -
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Tﬁedrém 2: Let [éa} be a uniformly p-continuous net of
(possibly discrete) semi-groups as above on the net {Xa} approxi -
mating X . Suppose that for some Ao > 0

R(Ao)x = 1lim Ra(%o)wag
exists for each xeX, R(%O) has densekrange and tauﬂpt (with
taeTa) uniformly on bounded t-intervals. Then Ra(X) exists for
Re A > O and converges there to R(A) which is the resolvent
of the infinitesimal generator A of a p-continuous <o semi -
group ({S(t): t > O} ;further, if t,eT, and t —-t, then

A |
Sa(ta)'rrax—»s(t)x.

Proof: When 6a > 0, define, for # > 0, XXy 3
(9) s (t)x, = e Iy ]f—]; sk x,
where s = t/éa 3 1f 6& =0 set 5, = ga . Observe that, by (8),
(9) converges absolutely and
(pa(.sa(t)gmaxo) <e” E(cj:) ]i_]’( (pa(’é{;-l_k Xg)
He < e 2P £ ol e = Lol ) -

By the usual series manipulations, it follows that {Sa(t)] is
a semi-group and, by term-by-term differentiation of (9), that its
infinitesimal generator is A, (5a > 0) ; that Sa is of type
Co follows easily from (8) and (9).

Thus, the net {Sa} satisfies the conditions of Theorem 1
so Sa(t)-a-s(t) > Where S(t) 1is the well-defined p-continuous

Co semi-group whose infinitesimal generator has resolvent

— . A
R(A) = 1lim Ra(A) . We need only prove that [Sa(ta) - Sa(t)]vax
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must become small as t&“*'t(éof“’o)'

We set Ra = Ra(l), R = R(1) for convenience and first

show that, for LN ta€ Ty > wed ,

A 2.\ _ 1 2
(11) 05 (184 (tg) - 8oty IRGX) < 5 £50,1mel o (IR, - 117 x,) 5
' A
this is trivial for 6, =0, in which case Sy =S4 > and we may
assume 5a > 0 . Then, noting that all operators involved commute,
a 2 |

at SalB)Ry xg = Su(B)Ry (Ry - L)%,

Qi s (t)R% x_ =S, (t) (R 1) %x

a2 T« o o Ta o o
so

2 2 t s > 7
Sa(t)Ra Xy = Ra X, *+ jo[Ra(Ra—l)xa+ Io Sa(r)(Ra-l) xadrjds
whence, as [R2 + 3R (R, -1)] =5 R2
? o oo oo’

. 5 ~ .2 Jéa 2
[Sa( a) - S ]Ra Xy = Jo (5a - t)Sa(t)(Ra -1 xadt.

o (¢4

Now, for t_ = nd, ,

[S,(ty)- 8, (t) IR x = [s,(ns,) - SRR x,

= B So(In-k10)857 15,50 - B IR x4

3

o k-1
= fo (6, - t)Sq([n-Kkldy + )85 "1(R, - 1) 2k at
whence, using (10),

0 ([Sy(ty) - 8,(t)1RE x,)

2

d
<2 [ % oy - Bl (R, - 117 xat

n( 5 62) twol 4 (IR, - 112 x ).

which is just (11).
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Next we show that for t,s > 0, x,eX, , 0c® we have

(12) @, ([S,(t) - S,(s)IRx,) < [t-s|[pe] (IR, - 1]1x,).

VWe may clearly assume t > s and set € = t-s > 0. Noting that

—o%- So(t) Ry = Sg(t) [Ry - 11 X,

we have
€
Sa(e)Rof{a = Rof{a + Io Sa(r) [Ra - l]xadr
whence

€
0ol 13a() - 8401 IRy < [ @y(s,(s0m) [Ry-11xp) ax
< £ ol o ([Ry-11x,)

which is just (12).
Now, for vy = R2xeX , c® , we have
0, (18,(ty) - S, () 1T,y)
<o, (8 () - s (t )R x)
(13) - Yo o' o o't 1 Ra o
+ 0, ([5,(ty) - S4,(t) 1R %)

+ 0, (18,(t) - 5,01 [R2mg - ToR215) .

By (11), the first term on the right in (13)is bounded by

1

) taéa[uwla([Ra-l]zvax) which, in turn is less than %-t o) times

o o
[ke] ([R-1]%x)
+ |10l ([R-11%%) - [pg] (r, (R-1) %) |

+ [um]a(va(R-l)zx - (Ra—l)zvax)
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which is bounded -- so the firstterm goes to O as 5a~—>0
(as «a increases in () uniformly on bounded t-intervals. By
(12), the second term on the right in (13) is bounded by

lta - tl[u@]a([Ra - l]Rdvax) which is less than lta - t| times

[l ([R - 1]Rx)
+ | [l ([R - 11Rx) - [po] (7[R - 1]Rx) |

+ [uw]a(va[R - 1]Rx - [Ra - l]Rdvax)

which is bounded - - so the second term goes to O as ta—¢-t

(as o increases in () uniformly on bounded t-intervals. Finally,
the last term in (13) is less than 2[u¢]a([R§va - Wagz]x) which
goes to O (independently of t) as @ increases in 0, Thus,

for each y in the range of R2, ‘Qa(ta)vay——»s(t)y (uniformly

on bounded t-intervals) as o increases in G , Since the range
of R2 is dense in X , S(t) continuous (uniformly in t on
bounded intervals), and Qa(ta) equi-continuous, this implies
that §a(ta)ﬁay—4-s(t)f for all yeX (whether or not y is

in the range of R2) uniformly on bounded t-intervals.

QED

§5. In this section it is shown that the consistency condition,
Ra(xo)~>R(ko), is necessary for the approximating semi-groups

to converge.

Theorem 3: Let [Sa} be a uniformly p-continuous net of Co

semi-groups on the net Xa approximating X (as in §$3). Suppose

there is a p-continuous o semi-group {S} on X such that

Sa(t)~—>S(t) strongly, uniformly on bounded t-intervals. Then

HUNT LIBRARY
GARNEGIE-MELLON UNIVERSIT)
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Ra(7\) —+R(\) for Re N> O where Ra(7\) is the resolvent
(N - Aa) -1 Gf the infinitesimal generator A _ of {Sa} and

o
similarly for R(A) = (A - A) -1 .

Proof: Recall (see, e.g., [Y: IX, 4]) that we have the repre-

sentation
m .
_ -At
Ra(7\)xa = Io e Sa(t)xadt

for Re > 0O, x_eX

> S and similarly for R(A). Then, for any

0c® and any xeX,

O (TR x = R, (N) T %)

axD -

< Jo e-(Re}\)t wa(vas (t)x - Sa(t)Tro[x)dt
M

< J“o.e-(Re%)t <pa(7raS (tyx - Sa(t)wdx) dt

o
+2jM e—(ReM t at [pe] (x) .

The last term may be made small by taking M large enough. Then,
by the strong convergence of Soz(t) to S(t) wuniformly on [O,M],
the preceding term becomes small as a4 in G ,

QED

Remark: In the setting of &4, the consistency condition is still
A

necessary as Sa(tcx) — S(t) and wa([sa(ta) - Sa(t)]xa) —0

(uniformly on bounded t-intervals) implies the convergence of

Sa(t) to S(t) so the above theorem can be applied.
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