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ON LIFTING CHARACTERS IN FINITE GROUPS*

Henry S. Leonard, Jr. and Katherine K. McKelvey
Carnegie Institute of Technology and Cornell College

1. INTRODUCTION

The theory of exceptional characters was first developed by

R. Drauer (see, for instance, [1J) and M. Suzuki 111], and later

was generalized by W. Feit [6 and 7j. It has been a powerful

tool in its many applications, in that, under certain conditions,

it yields information about the characters of a finite group Q

from information about the characters of a certain subgroup X.

More recently Feit and Thompson [9] obtained the theory of coherent

sets of characters, which applies under more general conditions

on Q and £. The earlier theories had required the existence of

a trivial intersection set x in £, whereas they introduced

the weaker condition that X be tamely imbedded in Q. The

theory of coherent sets of characters played a crucial role in

their proof of the solvability of groups of odd order.

All these theories concern a linear isometry a mapping

certain generalized characters of £ into those of Q and the

extension of a to an isometry with a larger domain. When an

extension is possible, the larger domain is called coherent. In

the theory of exceptional characters, a is the induction operator.

Recently Dade [5] proved the existence of a suitable operator a

under more general conditions on Q, X, and X than those of

Feit and Thompson. At the same time, related operators were

*The first author was supported by National Science Foundation Grant
GP-4240. An earlier version of much of the paper was contained in
the second author's dissertation, which was submitted in partial
fulfillment of the requirements for the degree of Doctor of Philos-
ophy at the Carnegie Institute of Technology. Part of her work was
done while she was on the faculty of Mount Mercy College, Pittsburgh.
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employed by Brauer [2] and Suzuki 112] in their studies of the

existence of normal complements of subgroups.

Our purpose here is to make a new study of a and of coher-

ence, further generalizing the existing theories, and to indicate

some applications. In §2 we study the existence and properties

of a, and we obtain a result on the existence of normal com-

plements. In £ ^ 3 and 4 the existence of a is assumed and results

concerning the existence and uniqueness of its extensions a* are

obtained. Assuming an extension <r* of a exists, we study the

multiplicities of the constituents of e|£ for certain characters

© of Q in § 5. Finally, as an application involving many of

the earlier results of the paper, we state in $ 5 a theorem

giving a lower bound on the degrees of certain characters of a

class of groups having a Frobenius section.

Most of the notation and terminology are standard. All groups

discussed are assumed to be finite, and all characters are over

the field of complex numbers. By a generalized character we mean

a linear combination of irreducible characters with coefficients

in the ring 53 of integers. We reserve the term 'character1 for

linear combinations of irreducible characters with positive integer

coefficients. The inner product of class functions has the usual mealing.

B/ the weight of a generalized dtoracter a we mean (a, a), that i^ ||a|| . By the

.kernel of a class function a of Q we mean the intersection of

the kernels of all irreducible representations for whose characters

X we have (<*,JX) 7* °-

If Q is a group then Z(Q) denotes the center of Q. If T

is a set then ITI denotes the number of elements in T. If T is

a subset of Q then 7 t c ^ a n d C G ^ denote the normalizer and



centralizer of T in Q, respectively, and *g denotes T - (1).

We call T a trivial intersection set in Q if every pair of

conjugates of T has its intersection contained in <1>.

Let tr denote a set of primes and TT1 the set of all

primes not in ir • Any integer divisible only by primes in ir is

a 7T-number, X is a TT-group if |X| is a ir-number. G is a

TT-element of a group Q if the group <G> generated by G is a

ir-group. Any element G can be represented uniquely as a product

G = G • G , = G ' • G of commuting ir and TT1 -elements. G

is the -rr-part of G. If ft isa subset of a group Q then ft

denotes the set of all ir-elements in ft.

A subgroup £ of Q is a Hall subgroup if (Q:£) and |£|

are relatively prime. £ is a ir-Hall subgroup if it is a TT-

group and (Q:£) is a TT1 -number.

Let Q be a finite group, £ a subgroup and £ a normal

subgroup of £. A normal subgroup Q of Q is a normal CCT(1-

plement of £ over £ , if

, X o = Q Q fl Z

and hence Q/QQ =

2. THE OPERATOR a AND THE EXISTENCE
OF NORMAL COMPLEMENTS

Here we study the existence and properties of a lifting

operator a. Hypothesis 2.1 is a generalization of Dade's

assumptions [5J. Theorem 2.1 gives conditions under which

a preserves inner products and gives analogues of the Frobenius

Reciprocity Theorem. Theorem 2.2 gives conditions under which

tt is a generalized character. These results are generalizations
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Equation (2.4) can be obtained by letting © - 1, and (2.4a) follows 1

from (2.1), (2.4) and (2.2).

If a is a complex^valued class function on £ such that J

a(L) = a(L ) for Lex then define ot° by -
TV • • ^ 17T

{(2.6) «"(G)
Ge<p(L) ,

Equation (2.1) implies that a is a well-defined class function

of Q and (2.2) implies that aa\Z = a|x. Clearly the domain

of a is a complex vector space and a is a linear transformation.

It is clear from (2.6) that (2.5) can be applied to aa for all

In particular, for any class function a of X having K(L)

in its kernel for every L^X , cP is defined.

THEOREM 2.1. Assume £ and X satisfy Hypothesis 2.1.

Let © be. a. class function of Q such that

(2'7) EJ6JT(L)
e(LJ) = (3-(L):K(L))^€K(L)6(LK)

for all LeX . Let a, be â  class function of £ which vanishes

outside £ such that a,(L) = an(L ) for LeX. Then
' — — JL L IT

(2.8) te'^Q =

If a i s BL class function of £ such that- t*2 (L) = a2 (L ) for

Le£ then

(2.9) <a2'a?Q = ( a 2^ a l ) £ #

If a3 JLS SL class function of £ which vanishes on <p(X) fl(£ - X)

such that a, (L) = a^(L ) for Le£ then
"•"••——— — — — — — j J TT
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Proof. Since a? vanishes outside <p(XX(2.1) implies that

or L<P&)*%{G) = Tor
where ft is a system of representatives of the classes of X .

IT

A p p l y i n g ( 2 . 5 ) t o e a n d u s i n g ( 2 . 2 ) ,

<°>«?>Q - l i f ^€R,GG6(R)K(G) " "[XT Z ^ ( G > *
Since ©a, | £ = ©a, | £ and since or- vanishes outside L,

The proofs of the other equations of the theorem are similar.

Let ft = ( R i ^ ^ A ) denote any non-empty subset of X . Let

and let

= K(R )n...fl

Then JT(R) is the normal 7rf-Hall subgroup of CQ(R) and

= K(R). Furthermore 7lj.(R) normalizes IT(R) and

n JT(R)= c^tRjn tf(ft)= K ( R ) C
X

O

Thus any class function a of X which has K(R) in its kernel

defines a class function aR on TL^ifl) • 3*(ft) by

aR(NJ) = a(N) for all N€7Z£(ft}J€JT(ft) .

Assume a has K(L) in its kernel for every LeZ . Then

a(M) = a(M ) for all Met and we can define aa and ao. In

particular any class function a of X/X satisfies the con-

ditions necessary for defining a and o^.

THEOREM 2.2. Assume X and X satisfy Hypothesis 2.1.

If a jLs ja generalized character of X which has K (L) jji its
A

kernel for all LeX. and which Vj

is a generalized character of Q.

A A rr

kernel for all LeX. and which vanishes outside X then a
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Proof. According to a theorem of Brauer (See [3] and the

references there or 14, (4O.8)J.) it is sufficient to show that

a0|H is a generalized character of E for all elementary subgroups

5̂ of Q. Let 15 be an elementary group. Then £' = £ x £_

is the direct product of JT , a -rr-group, and |?«., a TT1-group.

Let p be the projection of £ onto £ • Then E€ C has the

7r-factor E = p(E)and it is clear from the definition of aa

that aa(E) - aa(p(E)), that is, aa| £ « aa p. It will, therefore,

suffice to prove that aa| £ is a generalized character of £ .

Suppose £ is an elementary 7r-group. We will show that

aa|6 = P\t where
"(-l)l*'a*

If G€ £ then clearly

summed over all ft, Y such that ft is a non-empty subset of

X , YeQ and GYe7lf.(ft) • ff(ft) . The denominators are just

IT X

|X| -l̂ lft) |/|K(ft) | . If Ne7l£(ft) is one of the |K(ftJ elements

Y Y
satisfying G eN!T(R) then aR(G ) = a(N) . This vanishes unless

A
NeX. Therefore

9(G) = . -L_ . <-1>'ft'«W ^^-

where R ̂  0 , R c 4^, YeQ, Ne7l£(R) n S, GY€NlT(Ri

By a lemma of Dade [5, p. 595]

HT • »„.,?(«> =«„.<«,

Thus i f GYeN3'(ft) then



or

since G is a TT-element. But then

and

Y Y !T(ft)

Therefore G eN?(ft) if and only if G eN v ' and

There are \3(R) |/| Cg.,^ (N^) | elements in N^ Kn) and

|Cp(G)I Y's give the same conjugate of G. Therefore, there

are |CG(G) | |3"(ft) |/|Cg./Rv (N^) | Y's such that GYeNJr(R) . Furthermore

since v eiv

Thus I pi
(-1) |K|a(N) |Cr(G)

u [N

summed over all R ̂  0^ R c £ , NGTl^tR) fl $* such that G is
TT

conjugate to N in Q and N

Clearly if G/<p(̂ ) then 8(G) = 0. If Ge<p(h then since
A

G is a 7r-element we may assume Ge£. Then a(N) = oc(G) and

|CQ(G)| = |CQ(N ) | . Now hold N fixed and vary ft. If N^

and ft occurs in the sum then ft U {N } also occurs in the

sum and it is clear that the two terms cancel. Therefore

! C ( N } * a(G)

A

where the sum is over all N such that Ne£ and G is conjugate

to N in Q. There are |X(N )|#(£:C«(N )) such elements N.
7T IT «/ T

Thus

To complete the proof of the theorem it is sufficient to note

that
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where ft ranges over a system of representatives of the collection

of conjugage classes of non-empty subsets of £ in X.

THEOREM 2.3. Let (} b e a finite group. £ a. subgroup of

Q and £ at normal subgroup of £. Suppose there is a. set' ir

of primes such that (£:£ ) ijs a. ir -number and such that;

1. Whenever two TT-elements of £ - £ are conjugate in

Q> they are already conjugate in £.

2. If Le£ - £ is a 7r-element then Cft(L) = X(V)Q,~{Ju)
— o vj X

where JT(L) is a normal TT1 -Hall subgroup of Cn(L) and

C X(L) n a-(L) = K(L) c £o.

Then there exists a, unique normal complement Q of £ over

^o, and Qo = Q - <p(£ - £Q) .
A

Proof. Clearly £ and £ = £ - £ satisfy Hypothesis 2.1.

Let 6 be a non-principal irreducible character of £/£ with

degree d. Then by Theorem 2.2 and (2.8) (e - d)° is a gener-

alized character of Q and || (e - d)a||2 = 1 + d2. (2.7) implies

that ((e - d)a,l) = -d and hence (6 - d) ° = X - d where ft is

an irreducible character of Q. The intersection of the kernels

of all the characters % as e ranges over all non-principal

irreducible characters of £/£Q is Q - <p(£) . Thus Q - <p(£)

is a normal subgroup of Q and [Q - <p(£) ] fl £ = £Q. By (2.4a)

|Q - <p&)\ - <QsX> |X| - (Q:£)|&| = (Q:*)!^!.

Therefore Q = (Q - <p(£))£, and Q - <p(£.) is a normal complement

of £ over £ in Q.

Let Q be an arbitrary normal complement of £ over £Q

in Q. Then Q/Q = £/£ is a 7r-group and all TT1-elements of
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Q belong to Q . Suppose GeQ ("I <p(X) . Then G eQ and

G Ye£ - X for some YeQ. But G Ye£ n Q = £ since Q
ff O 71 O O • O

is normal in Q. This is a contradiction. Therefore QQ c (J . <

Since |Q | = |Q|/(£:£ ) = |Q - <p(£) | , £ has a unique normal com-

plement over £ in Q.

REMARKS. Notice we have not assumed (£:£ ) and (Ql£) are

relatively prime. Theorem 2.3 is related to a theorem of Brauer

[2, Theorem 1]. It generalizes the sufficiency part of a theorem

of Suzuki [12, Theorem 1]. (The last paragraph of his proof

provides a deduction of his theorem from ours.) And two theorems

of Wielandt [13, Satze 1 and 2] can be deduced from it. These

deductions can be made in the same way that Brauer makes them

[2, p. 79]. The proof of theorem 2.3 is similar to Suzuki's

proof.

3. COHERENT SETS OF CHARACTERS

Let Q be a finite group, let £ be a subgroup of Q, let

g, be a set of characters of £, and let X = JL(&) t>e the £-

module of generalized characters of £ generated by £. Let

I = LN(§) ke the submodule of X consisting of the members of

degree zero, and suppose there is a linear isometry a of X

into the ^-module J&Q of all generalized characters of Q.

We call g, q-coherent if X / (°) a n d there exists an extension

-or* of o which is a linear isometry of X into J&~. This defini-

tion of coherence is the same as that of Feit [8, p. 181]. We let

Hnn denote the submodule of J&G consisting of the members of

degree zero.

In this section we give conditions which imply the coherence

of certain sets of characters or which imply the uniqueness of cr* <

Proposition 3.1 is a simple well-known fact. Proposition 3.2 is

much the same as a result of Feit [8, p. 182, ]Ly.. 7-10] and its
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proof is also the same as the proof of the existence part of (9,

Lemma 10.1], of which it is a generalization. Proposition 3.3

is a generalization of the uniqueness part of [8, (31.2)] and its

proof is much the same. For the sake of unity we give the proof

here. Lemma 3.1 and Proposition 3.4 are related, for example, to

[10, Corollary 2.2.].

Theorem 3.1, the main result in this section, together with

Propositions 3.3 and 3.5, generalize a major theorem of Feit and

Thompson [9, Theorem 10.1] and a similar theorem of Feit [8, (31.2)]

Our definition of subcoherence is essentially the same as that

of Feit and Thompson [9] except that we have separated it from

the concept of a tamely embedded subset of a group and from our

corresponding Hypothesis 2.1, and we have weakened it in one

other respect.

PROPOSITION 3.1. Let £ be a subgroup of Q, and let S =

| be a. set of characters of £. IJ: there exist.|l<.i<,

integers X- for i = 1, . . . ,n such that /, = 1 and A. (1) =

I.A. (1) for all i, then I (S) is generated by (A. - jJ.X, 11 < i < n}
~ 1 i — : — ~*jO ~ -* —*• 1 1 1 — —

Proof. If Za.A.el (S) then La.^. = 0. Therefore la. A. =
I I ~o ~ 11 I I

la, (A, -XiV'

PROPOSITION 3.2. Suppose £ jjs a. subgroup of JL group Q

and 5, is ja set of irreducible characters of £ all of the same

degree. Suppose there is a, linear isometry; a jof £(£>,) into

jSiPA. Then £ is a-coherent.

REMARK. If £ and £ satisfy Hypothesis 2.1 and 1 £ £,

and if jS = (A. | 1 £ i <, n) with n >. 2 is a set of irreducible

characters of £/£Q such that ^(L) = AX(L) for all Le£ - 4

and for 1 < i £ n, then by (2.8) and Theorem 2.2 the mapping a
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of $2 is a linear isometry of jl (£5) into MQ, and by (2.6)

jua(l) = O for all M€£o- Hence by Proposition 3.2 S is a-

coherent.

PROPOSITION 3.3. Suppose £ is a subgroup of Q and

jS={A.|l<.i<.n} with n > 1 _i£[ a, set of orthogonal characters

of £. Suppose there is an isometrv a from £ (£) into JSJG-

Suppose A. and Ao are irreducible and (A,(1)AO - Ao(1)A,)
0(1) =

"^ 1 —r"* Z 1 Z Z 1
0. Then either there is at most one extension a* of a to

J°£ n = 2, A1 (1) = A9 (1) , and there are exactly two extensions

tr* and / of a to £(&) ; namely At = - ^ 3 ^ ^ for i = 1,2.

Proof. Let o* and cr be extensions of a to

Denote A.(l) by ]L^. Then for all i

Clearly our conclusion follows if n = 2, since (3.1) must be

the difference of two characters. Suppose n > 2. Then either

A. = A ^ for i = 1,2 or A ^ = - ^ 3 ^ for i = 1,2. In

the former case our conclusion follows. In the latter case we have

2

a contradiction. It follows that o* = cr .

LEMMA 3.1. Suppose X is ^ subgroup of Q and 5, =

{ K • I 1 <L i £ m ) and % = {V | 1 <. j £ n} are coherent sets of

orthogonal characters of £ with respect to isometries a and r,

respectively. Assume fia(1) = 0 and ^T(l) = 0 for all ji€l (S)

and uel (T). If I (S)° and I (T) are orthogonal and

( A< . , A . ) = 0 whenever either jr. or A . is reducible, then1 3 x D "
and T are orthogonal.

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSITY
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Proof. Denote K^1) and X.(l) by k^ and jL,9 respectively,

for all i and j. Suppose for some i and j that &. and X

are irreducible and (*( ., X. ) = t = ±1. Choose K eS and
JL J """" U ̂•̂

\ €£ with u / i and v ^ j . Then

Then Ac and . ~K are irreducible, (Af ,X ) = - e , and k.^,

ku/v. Since na(l) = 0 for all

e k . /

But

0 = J.^

These two equations imply xT\l) = 0 because the k. and /L .

are positive integers • This contradicts the fact that ||x.|| = 1.

As an easy corollary of this lemma we have:

PROPOSITION 3.4. Suppose £ is a subgroup of Q and S.

for 1 <. i <. k are disjoint a. -coherent sets of irreducible
a.1

characters of £. Suppose /^ (1) = 0 for all /iieIo(S^) .
ah ai

A ssume that I (Su) and I (S.) are orthogonal when-
k

ever h / t. Let £ = U Ŝ. . Then there is an isometry a*
^ i=l ^x

from Î (S) into M^ such that a^l^t^) = or£ for each i.

REMARKS. If in Proposition 3.4 Ŝ . consists of characters

of the same degree for some i, then the a.-coherence of §^

need not be assumed since it is implied by Proposition 3.2.

Proposition 3.4 does not conclude exactly that S, is coherent,

because I (S) was not considered.

The following hypotheses and Theorem 3.1 provide sufficient

conditions for the coherence of the union S of certain orthogonal
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sets of characters, but assuming an isometry a on r (S) is

given. However, it is not explicitly assumed that the sets are

coherent or that they consist of irreducible characters, and

therefore Lemma 3.1 is not applicable in all cases. But the

assumption that certain subsets which don't consist of irreducible

characters are subcoherent in the union gives a substitute for

this lemma.

If £ is a set of characters of Q, let R(J!) denote the

module of class functions of Q generated by members of £

over the rational numbers. If £ is a subgroup of the group

Q, let g, = {A. |l <. i <L n} be a set of pairwise orthogonal

characters of £. Suppose there is an isometry o from I

into MQ. If S c s, let xfg^) denote the smallest weight of

any character in S, with minimum degree. If S, and T are

<r-coherent subsets of Ŝ  with extensions a and a~ respectively,

define

MS^aj.jT,^) = Cal i^lio a n d ii) ^ = *1 + *2'

where

a) ^ R l / 2 ) ,
°2

b) A. is orthogonal to R(T ) ,
c) A. is not orthogonal to I (S,)CT,

d) ll^ll2 < x(&1)}.

DEFINITION. Let Ŝ.. Jbe ̂  g-coherent subset of S and

let <r* he, an. extension of a Jtfi &,. The pair (ĝ  ,o*) is

subcoherent in ^ JjE the following conditions are satisfied! If

X .is. a. a-coherent subset of g, which is orthogonal to g, and

if a, ar>d a2 are extensions of a _t£ S,, and Ĵ  respectively^

then:
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al °2

i) EN is. orthogonal to £
^ S,^yO^%9o2) then a° is a sum of two generalized

(7*

characters. one of which is orthogonal to S" and the other is

We first obtain a uniqueness statement in terms of subcoherence

PROPOSITION 3#5. Suppose Z is a subgroup of Q and £

is ja set of orthogonal characters of £. Suppose there is an iso-

metry a from I (S) into My,- and that S is cr-coherent with

fixed extension a* .of a jto !,(£>,) . Assume there is .a subset

EL o»f £5 such that (S,, JO1 ) jjs subcoherent in £5 for some

extension a, of a to I(S,) and that Is - S, I > 2. If So =
— — - — — — j_ — — — ^^ ,̂ ĴL — — - — — — ^ ^^^ rs^£

S, U {A} for some 7\eiS - Ŝ, then a* | £>2 ^s the only extension of

a to I (So) . If there exists A,eS - S, such that A, (1) divides

the minimum degree of characters in S,, then either a*|S, =
al 2L £l = t^l^2^ f o r s o m e ^\^29 a n d ^i*1) = ̂ 2 ^^'
a* ^ al
Mi = -M3«i f o r i = i^2-

Proof • Let ao be an extension of a to I (So) . Then

°2 °2
for /i.Ĝ S,, (jLt. y\ ) = 0, and by the definition of subcoherence

°0 rr* °2

(u. ,}T) = 0. But if m. = M ( D a n d I = ^(D t h e n m j ^ -

^ . ^ = m.A^ - JM!j\ Therefore ||u.||2 = lv°2,»°2) = ( M ^ 2 , ^ ) •

Hence /i. - /n.a = 0 for all JLI.G^J^, and consequently A

Xa . This proves the first statement.

To prove the second statement, let S^ = [p.^, . . ., jtx̂} . Choose

the notation so that /i, has smallest weight of any character

in S.. of minimum degree and so that 7^(1) 1^(1) . Denote

and ju.(l) by £^ and m., respectively, and Vk1/Xl
 hY

Then
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^ml 1 " Ml' = ml 1 " **1 *

Also, by the first part of the definition of subcoherence,

Therefore m. A- - //, €A('S1/r1 ;S - S,,a*)j so (nL X, - u, )
a =

1 1 ^1 1 1>~ ~1' 1 1 HL
where A.e ±Si and >L is orthogonal to S, . Since A, is

orthogonal to S, , it follows that A. + /te, is orthogonal to

S. ^ and in particular to A, . Hence

(3.2) (Ai>V = "(Al^l'f) •

Suppose HA, || = HM^II- Then i t fol lows from (3.2) t h a t A = -/it? .
a lBut A.€ +S,X and

•*• *""Vv'l ^ ^
/ >̂ o \ ^ *« 1 .* 1 .. «, . . ^
^ J . J ; '.r, m. f i . - m . / i , = n \ , / i . - m.fX.

Hence if A. = ±ii, = -ju, then A, = -/x, and then the conclusion

al al
holds. If A. = ±p>2 then (3.3) implies A. = /x2 and m, = m .

Also k = 2 because otherwise (3.3) implies

a contradiction. Again the conclusion holds.

Thus we may assume | |A.| | ^ ll/iill- Then we can assume A1 =

±\i2 and ||ju2l| ^ 11^II- E q u a t i o n (3 .2 ) i m p l i e s

2IIA.II2 = | ( ^ , / i f ) | < lU

Hence ||M2II < II Mill • T h e o r i g i n a l choice of \i^ impl ies m2 > m

a l a*
We know that /j, is orthogonal to &\>&2' a n d ^1 * Hence
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the equations for (m,,A- - /u,) imply (u , ji ) = O. Therefore

# al ^ m a* alv Q

Equation (3.3) implies

Therefore

which, because of our earlier inequalities, is negative. This

is a contradiction, and the proof is complete.

HYPOTHESIS 3.1.

1. £ jj3 a. subgroup of the finite group Q.

2. For 1 <. i <. k, £JL = t A^l'l <. s < IK} . The sets £.
k

are pairwise disjoint and £ = U £. consists of pairwise

orthogonal characters of £.

3. For 1 <. i <. k, l<.s<^n., there exist positive integers

%. such that Xy-t = 1 and A. (1) = /. ^.,(1) for all A. .

There is a. linear isometry a from I Jto MQQ.

4. A-, is irreducible.
11

5. S is a~coherent with extension o of a t̂o JE (Ŝ  ) .

6. For each S either a or; b JLS true.

a. S consists of irreducible characters. For each

t with 1 < t < nm

11 A\ ym-1 y i ^is >. 2X—A. + 1 if m > 1.

b. S is q-coherent with extension a of a. S
~iu — —; m ~-

is partitioned into sets S . such that each S . either consists
<c 'HTCl] — — — *Mllj

of irreducible characters or (S^.,am.) .is subcoherent in £ for

some a .. Furthermore
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X2

THEOREM 3.1, Suppose Hypothesis 3.1 jjs satisfied. Then

S is q-coherent, and there is an extension a* of a to I(S)

such that a* | j^ = or1 •

Proof. We use induction on k. If k = 1 the theorem is

true by hypothesis. Assume the theorem is true for k - 1. Then

there is an extension of a to a linear isometry a* on

I(l£~}" S.) such that o*\s~ = a, .
~ i=l ~i '~1 1

We may assume Xj, £ Xk for all s. Choose the notation

so that A. 1 has minimum weight among the members A, of

S for which £, = /, , • If S, satisfies 6b let Ŝ ,, denote

the set £5, . containing A,,. For 1 <. s <. n. define

Define the integers a by

(3.6) ( H i ^ O = X*s ~ as for

Since 0 €l

(3.7)

i t for 1 < i < k - 1, 1 < t < nit (i,

Since ~k , is irreducible and a is an isometry on 1^ ,

(3.8) Ilrt/H2 = Xks
2 + l|Aksl|

2 for 1 < s < i^.

We have

( 3 ' 9 ) ^s " *ks A l l " a s r i = l Lt=l ... .,2 A
i t

 + *s
Pitll

for some c l a s s func t ion £ of Q. I t i s c l e a r tha t (6 ,X ,? ) = 0 .
S S 11
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If (i,t) ft (1,1) and 1 <. i <. k - 1, 1 <. t <, r^ then, since the

>vifc
a are pairwise orthogonal, (3.7) implies (A ,A..a*) = 0.

Therefore (3.8) and (3.9) yield that

2 \ ̂77 + KM2-
Now we shall complete the proof in the case that S, satis-

fies 6a. If a ft 0 then (3.4) and (3.10) imply
s

K J I 2 - U f > 2Xk3(as
2 - ..) * as

2 > as
2

since a is an integer. Since A, is irreducible this implies

A = 0 if a ^ 0. Hypothesis 3.1.3 and (3.9) imply
o S

= 1, A. T (1) - a L o A.. (1)
Aks 11 s IK l|2 it v '

U )

if £ = 0. Since A - is irreducible, A,, (1) ̂  0. Hence

the preceding equation implies that if £ = 0 then a > 0

and together with (3.4) it implies / k g > 2ag^ks, a contradiction.

Thus & £ 0 and hence a = 0 . Define >u to be -^s- Then

Aks
a* is orthogonal to ujlj S **, (3.8) and (3.9) imply ||A^|| = 1,

and, since (Q^*>ft^) = ^xs^kt f o r S ^ ty t h e generalized char-

acters }\? are orthogonal. Thus the proof is complete in this
Xv S

case.

From now on we assume S satisfies 6b. If aFrom now on we assume S sat isf ies 6b. If a ^ 0 then

since a i s an integer (3.5) and (3.10) imply

0 < 2Xkl(aJ - ax) < ||AklH
2 - | | ^ | | 2 .

Therefore

(3:11) HAj2 < II^JI2 if aL * 0.
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We will show that a = 0. First we note that if

. ~ S. and iieS, then (A ,a ) = O. For if either A or /i
1=1 ~1 ~K

is reducible this follows from the definition of subcoherence, and

hence by Lemma 3.1 it follows for irreducible A and /Lt. Thus
ak k-1

S, is orthogonal to U.-, &. . Therefore for 2 <_ s <, n, ,

(3.12) \ * \ * > - < « ^ \

k
In particular A. is not orthogonal to g, -, and its inner product

1 ^ ^ 1

with each member of g, , i s an in teger . Hence i f g, - c o n s i s t s

.of i rreducible characters then (3.11) implies that a. = 0 .

Suppose ( S , ^ ^ V T ) -̂S subcoherent in Ŝ  I f a- / 0 then

by (3.11) H^ll2 < | |Ak l | |
2 where | |Xk l)|2 = xi^) . S ince, by(3.12), £L is not orthogonal to (jo(Skl))

CT. (3-9) a n d the

definition of subcoherent imply

(3.13) B^ = A L + A 2

°kl A
 aklwhere j\ne + S. , and A n is orthogonal to S, , . Since2 — '̂ kl 1 ^ ^kl

Or, 1 V 1 rr^
g, 1 is orthogonal to Uv̂ -, g,. , (3.9) and (3.13) imply A .~*1 x-l i
is the perpendicular projection of A, onto (S, ,) , and

hence 1^||2 < ll^lf2. Therefore if a± / 0 (3.11) implies
akl

A 2 = i \ s
 f o r some s ̂  1. Hence (3.13) and the analogue

for akl of (3.12) imply

so ll^j^ll2 <. IIA2I|
2 < ll^ll2- Hence (3.11) implies that a = 0

in all cases.

Since a.. = 0 (3.6) implies

(3.14) (\11
<r*. 3^) = Xkl.

For 1 <. s <. n. ,
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kl k s

Therefore (3.14) implies that Uji*^|[) = Xkg for all s, so by

(3.6) a = 0 for all s. Almost exactly as in the case 6a we

can verify that a* can be extended to I,(S) . This completes

the proof.

4. COHERENCE IN GROUPS HAVING A
NILPOTENT SECTION

Here we apply Theorem 3.1 to groups satisfying Hypothesis

4.2 stated below. This hypothesis generalizes assumptions of Feit

and Thompson [9, Hypothesis 11.1] in several ways. We have sepa-

rated the hypothesis from the concept of a tamely imbedded subset

and from our corresponding Hypothesis 2.1. We have replaced their

assumption that |£| is odd by the weaker assumption 4.2.4. And

we have introduced the subgroup 7t into the Hypotheses (which is

{1} under Feit and Thompson's Hypotheses). This allows, for

instance, for a non-trivial center in Q, and makes the theory

available to the study of collineation groups. (See Theorem 5.1.)

Theorem 4.1 is a generalization of Feit and Thompson's

Theorem 11.1 [9] and of [8, (31.3)].

HYPOTHESIS 4.1.

1. £ is a subgroup of the finite group Q, £Q is a

normal subgroup of £, and £ .is. a. union of cosets in £ of:

£Q, with 1/&.

2. #, 7YI and 71 are normal subgroups of V £
o such that

W iS. yiilpotent. H c Ttl , and

4/ n = * s
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Denote X/X and X/X by X and *, respectively. Often

we regard characters of X as characters of X. if £ is a

set of characters of X we denote by £(£,*) the set of members

of I,(S) which vanish on X - X.

Throughout this section we let rj denote any fixed irreducible

character of 71 , and let £. denote any non-principal irreducible

character of 771. Let £\ denote the character of K induced

by £>y), and let 3 denote the inertia group of rj in K. Let

S = [Xi \iL i
: 1 and ^ vanishes on K - (ft U 71 ) } .

LEMMA 4.1. Suppose Hypothesis 4.1 is satisfied. Then S

is a, set of orthogonal characters. Suppose that for some £1 e!5

we have C (1)|€, (1) for .all l-eS. IX /. = £, (D/4, (1) then
"—"— — — — JL i XTy X X X

£i?7(L) = ̂ ^ ( L ) for £

Furthermore I^(S^) ()

Proof. Clearly 13 consists of orthogonal characters. The

equation for £. holds by definition of S and because it

holds for L = N€ 71 . Since 1$, I,(S,X) c ^(S) , and now Pro-

position 3.1 implies that iJS^X) = I (S) .
A

REMARK. If Q, X, and X satisfy Hypothesis 2.1 as well as

Hypothesis 4.1 then, since iJS^X) = I (S) , Theorems 2.1 and

2.2 and (2.6) imply that the mapping or in §2 is an isometry

from I (S) into ?1GO" I n H y P o t h e s i s 4* 2 below we shall assume

the existence of such a function.

LEMMA 4.2. Assume Hypothesis 4.1 jLs satisfied. JIf the

kernel of £. does not contain U then £. eS.

Proof. We must show 4- vanishes on K - (K U 71 ) • Clearly

4- vanishes on K - ff. By [9, Lemma 4.3] 4- vanishes on
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7TI - U H € W/ C(H) n m. If J€lT - (it U 71) then J - MN where

Me Wl - UH€W^C(H) n 7YI and Ne 7t . Then ^(M) = 0 so

|-it?(MN) = 0.

Two characters © ,©2eS will be called equivalent if

9, (1) = 92 (1) and ||eJ| = ||©2II. If OL is a normal subgroup of £

let Ŝ (Ci) denote {©€Sj© is equivalent to some character in Ŝ

which has (X in its kernel}.

. HYPOTHESIS 4.2.

1. Hypothesis 4.1 is satisfied. There is ja linear isometry

or from ^(S) into V^.

2 . There exists a positive integer e such that elf.(1) for
— — i ^ ^

all £. €S and S contains some irreducible character of degree

3. Each equivalence class of S is either subcoherent in S

or consists of irreducible characters.

4. H. jj3 a. normal subgroup of K with W. c JJ and one

of the following is true:

a. S consists of irreducible characters.

b. Each eauivalence class in !3 - £3(1*.) has at least

two members.

c e2|(7W:H) and O:ff) | [ («:«2) - 1] for each subgroup

M^ of Jf. which is normal in K.z — i

THEOREM 4.1. Suppose Hypothesis 4.2 ^£ satisfied. Let a

be the square free part of (M:*^). Suppose that either a =

(U:U.) and
x ———̂  ^

(4.1) ((W:«L) - I)
2 > 4e2(3:3r)2

or a ̂  {U-.U^ and

(4.2) afM:^) > 4e2(5:ff)2.
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If S(W.) .is, a -coherent and contains an irreducible character
•' " ' *•*•' JL « — — • • — — — — — — — — — • .

of degree erj(l) (K:JF) then S jj3 coherent.

Proof. Let »2 be a normal subgroup of X which is contained

in M- and is minimal with respect to the property that £(W2) *
s

a-coherent with respect to ^ ( S , ^ ) ) - Suppose that J*2 ^

Choose M3 c W such that ^2/W *s a ^ ^ ^ factor of K. Let

S(WO) = Sn « [A, ll < s < n t}, where Xt1 is irreducible and
^ 2 ~1 Is1 — "• 1 11

X...(l).= e?7(l) (K:ff) # Let £2>*..,S, be the equivalence classes

of S(M3) - S,(H2) . For 2 < i < k let ^n^ii^1) b e t h e coinroo

degree of the characters in !3. . Clearly our assumptions and

Lemma 4.1 imply £(#0 satisfies Hypothesis 3.1 except possibly
(3.4) or'(3.5). If £• with i> 1 consists of irreducible

characters and has more than one member, then by Proposition

3.2 S. is a-coherent.

We will now verify that either (3.4) or (3.5) is satisfied.

Consider only the characters £• of 77L whose kernel does not

contain M. With r\ fixed let £.r? range over a set of repre-

sentaitives of the classes of characters of *T^2 which are conjugate

under K. Then 4- ranges once over a set of representatives of

classes of characters of 77l/U2 with respect to conjugacy in 15,

Let a. denote the number of characters of ff which are conjugate

in K to 4 •*?• Then a./(K:3) is the number of conjugates of 4-
J J J

relative to 5. By lemma 4.2 all the characters £• are in •§.

and 0 ~ ? \
2

V lit II
= rj(l)2(K:3T)
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Equivalently ~
XlQ (K:af)(-»i:»)[(lt:M2) -1]

L s ||Alg||
2 " B2(K:Z) ~ ~ '

Since il/)l3 is nilpotent, »2
/'>fJ n zl*/*$) ? <1>- Therefore,

since W2/H3 is a chief factor of X, «2/»3 £ Z(H/*3) • If <P

is an irreducible character of K/tt then [9, Lemma 4.1] implies

that p(l) |(W:W ), since M is nilpotent. Let b be the square

free part of (W.:W2) and let c = (a,b). Then the square free part

of (W:J<2) is ab/c2. Thus <p(l)21 («:M2) c
2/ab. Every irreducible

character of ?7i is a constituent of some character induced by an

irredubible character of H. Hence

(4.4) ^ e < [(W:JI2)c
2/ab]1/2(777:W); (2 < m < k) .

Suppose now that (3.4) or (3.5) is violated for some value

of m. Under Hypothesis 4.2.4a the summation in (3.4) is an integer.

In case 4.2.4b we may assume (3.5) is violated. And in case

4.2.4c the right hand side of (4.3) is an integer. Hence in all

cases (4.3) implies

This and (4.4) yield that

y 2
Let ab/c *= s and 2e(*:3) = t. Then (»:1*2) = r s for some

2
positive integer r. We have r s - 1 < tr. This implies

rs - 1 <. rs - 1/r <, t.

If r « 1 th

square-free. Then

If r « 1 then (M:M2) is square-free, and hence (MrMĵ ) is

(H-.l̂ ) - 1 < s - 1 <

contrary to (4.1).
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Therefore r / 1, rs - 1 < rs - 1/r and rs <C t, so

(}{:)l2)ab/c
2 < 4e2(^:(r)2.

Then

(K:H ) < I (W:MJ < - ^ 4e2(^:3-)2 < ^ 4e2(3:3-)
2.

l D x ab^ a

But this is incompatible with both (4.1) and (4.2). Therefore

either (3.4) or (3,5) is true and all assumptions of Theorem 3.1

are satisfied. Hence S^{M ) is coherent contrary to the minimal

nature of if ' This finally implies that M2 = <1> . Therefore

*L ~ §,(̂ 2̂  *s c o h e r e n t* This completes the proof of the theorem.

As applications of Theorem 4.1 we mention that Lemmas 11.1

and 11.2 in [9] can be generalized. In particular the inequalities

2 2
in those lemmas can be replaced by a(M: if')>.4 (&; J4) and a(#:»f )< 4(£: U) ,

respectively, where a is the square free part of (it: W1)• As another appli-

cation we state without proof the following theorem, which is a

generalization of [8, (31.5)] and [10, Theorem 3.1]. The proof

is very much like Feit's proof [8, (31.5)], or it can be based

on the generalizations of the lemmas just mentioned. Only the

case that U is a non-abelian 2-group with (M:Mf) = 4 requires

a separate argument, and this is easily given by the method of

proof of [9, Lemma 11.3].

THEOREM 4.2. Suppose that Hypothesis 4.2.1 JLS satisfied and

that W = 7 n , K = Kx7l-7t, and H/7L ±s a Frobenius group with

Frobenius kernel (W x 71) /7V • Then

& = (tini £j[ i§ ^ non-principal irreducible character of W} .

Then one of the following must occur:

(i) I'Sl " 1 and hence H _is. an elementary abelian p-group

with \U\ - 1 = (5:ff) = (K:S).
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(ii) W ,is,a non-abelian p-group for some prime p with

a(»:M«) < 4(3:?)2 where a is the square-free part of («:M»).

(iii) §, .is g-coherent.

5. THE RESTRICTION OF CERTAIN CHARACTERS
OF Q TO £

In this section we obtain results concerning the multi-

plicities of the constituents of ©{X for characters © of Q

assuming Q , £, and <£ satisfy Hypothesis 2.1 and assuming a

coherent set of irreducible characters is given. To do this we

apply Theorem 2.1, and for this it is necessary that © satisfy

(2.7), i.e., that the average values of © over Lff(Ii) and LK(L)
A

be equal for each Le£ . As an application of these results we

state without proof Theorem 5.1, which gives a lower bound on the

degrees of certain characters of a class of groups having a

Frobenius section. First we obtain conditions under which (2.7)

holds. Throughout this section we assume Hypothesis 2.1 is satis-

fied, and.' a denotes the operator discusses in $2.
A

PROPOSITION 5.1. Suppose £ and Z satisfy Hypothesis 2.1
and Le& . Ij[ © j ^ at character ojE Q l e t ©|<I>ff(L) = ^ +

where the kernel of 0, contains JT(L) and no const i tuent of
— — — — — —«— — — — — — j_ ———-.-—————

contains ff(L) jji its kernel. Then

<5-L) W ( D e ( L J ) =

if and only if

(5.2) . *k€

If (©|3-(L) , ljj.{L)) = (©|K(L), 1K(L)) then © satisfies (5.1).

Proof. Let £y denote any irreducible constituent of 02

where ^ is an irreducible character of <I> and y. is an irreducible

character of JT(L) . Then

0 - ^
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Therefore

0 - L
J e;r(L)*

v ( L J ) - LJe;r<L)*2
(LJ)-

Clearly (5.1) holds for $,; hence (5.1) holds for 6 if and

only If (5.2) holds for 02. If (e|3r(L), lj(L)) = (©|K(L), 1K(L))

then it is easily seen that 0 = (02|3"(L), 13'(L)^ H ^ l ^ 1 ^ ' 1K(L)^4

This implies that 0~ satisfies (5.2) and completes the proof.

Clearly if © = X? is constant on the cosets of JT(L)

which lie in <K>JT(L) - JT(L) then (2.7) is satisfied and (2.8)

can be applied to ©. Lemma 5.1 and Proposition 5.2 given con-

ditions under which this is the case. Lemma 5.1 is related to

Feit and Thompsons Lemma 10.2 [9], Lemma 5.2 to their Lemma 9.2,

and Proposition 5.2 to their Lemma 10.3.

If all irreducible characters of Q are constant on <p(L) for

all Lei then, since character tables are non-singular matrices,

<p(L) must be a single class of conjugate elements and hence

3\(L) = K(L) = <1> for every L e ^ . Then & = £ and CQ(L) c £

for every Le£, and Hypothesis 2.1 implies £ is a trivial inter-

section set.

Throughout this section £' (<p,£) will denote the set of all

generalized characters of £ which vanish on <p(£) f) (£ - £)

and contain K(L) in their kernels for all LeJ? . I1 (x) will
A ~

denote the submodule of If(<p,£) consisting of those generalized

characters which vanish outside X.

If ,5 is a generalized character of a subgroup of Q, denote

by ft* the generalized character of Q induced by P.

LEMMA 5.1. Suppose £ and £ satisfy Hypothesis 2.1 and

that L G £ . Let oc be. any irreducible character of JT(L) '.
Let 4 > £i > •••3i &£. the irreducible characters of <L>, and let
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s~ ~ (Sea)* i£ e is a qeneralized character of Q such that

(9,(4ga - £t<*)*) = 0 for sOl £ga, ^t
ae^ot ^BSL for all « ^ 1

then © JLS constant on the cosets of *T(L) which lie in <L>IT(L) -

Proof, If a fi 1 then

Thus

e|<K>3-(D = 2f=0 zsv + «

where ?7 is some character of JT(L) and j8 is a character of

<L>(T (L)/3* (L) . Thus clearly e (N) = j8(N) for Ne<I>3*(L) --ff(L).

LEMMA 5.2. Assume Z and X satisfy Hypothesis 2.1 and

that ael,1 (£) . Ij. L €^ then ^ ^ ^ ( L ) is a qeneralized char

acter of CG(L)/IT(L).
G

Proof. By a Lemma of Dade [5, p. 595] if CeC£(L) then

Thus if NeCar(L) then NG</)(L) if and only if Ce<p(L) . If Ce<p(L)

then aa(N) = a(L) for all N€Cff(L) . If C/?<p(£) then aa(N) = 0

for all NeCJr(L). Let j8 be the generalized character of

which satisfies

fl|C£(L) = a
a|c

By the above remarks

B = aa|CQ(L).

Thus since fi is a combination of characters of C^(L)/3'(L) the

same is true of aa|Cp,(L).

HYPOTHESIS 5.1. Assume X and X satisfy Hypothesis 2.1.

Let 71L = 7lQ(ff(L)) for L€$rf.

1. With the notation of Lemma 5 .1, jLf. €c/v and £ are
— • — - — — - • — — — — — — — — — — o CJt i-vJC

the characters of 77T induced by £ a and U with a j4 1, then



31

»*£> wT\ rf x~n

so( j=l "j ^ta j=l j* - \i j ——

irreducible characters of 7Jh such that e j d ) = *u(l) for

j = 1,2,•..,n.

2. Let

JLJ

Then $ T is a trivial intersection set in Q with Tlnin T) = T^x

Note that if Hypothesis 10.2 of Feit and Thompson [9] is

assumed with H. replaced by JT(L) then condition 1 above is

satisfied.

PROPOSITION 5.2. Assume that £ and JL satisfy Hypothesis

2.1 and that 14*>. Suppose Hypothesis 5 .1 _is> satisfied for some

element heZ . Let S be a set of characters of £ such that

Assume that S, ĵ s g-coherent. Assume further that S, contains

(T*

at least two irreducible characters. If AeS, then A JLS[ con-

stant on the cosets of JT(L) which lie in <I>JT(L) - JT(L) .

Proposition 5.2 is related to Feit and Thompsons Lemma 10.3

[9], and its proof, based on our Lemmas 5.1 and 5.2, is nearly

the same as their proof with our T7.,©. in the role of their

Propositions 5.3 and 5.4 are generalizations of [1O, Corollary

2.1] and Proposition 5.5 generalizes Feit and Thompsons Lemma 10.5 [9]

If Ŝ  = {A.} is a coherent set of irreducible characters and
rr-Xr

{X-} is a s et of irreducible characters of Q such that A. =

e . X- where e . = ±1 fox each i, then we call X - th^

exceptional character of Q associated with A.. All other

-irreducible characters of Q are called non-exceptional. If l/£

and I (S) c ît (£) then e . is iiadepemdent of i since \x. (1) = 0
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for all /4€l' (£) . In the remainder of the section we use this

notation.

PROPOSITION 5.3. Assume Q, Z, and £ satisfy Hypothesis

2 • 1 and l^i. Suppose £ = {^ • I 1 <. i <. n} JLS. a. a-oohejrent set

of irreducible characters of £ such that I (S) cz i» (X) . Let

1. = A. (1) . Then for GeQ and for all j
r I I J

f e(X,A. - ̂ .X ) (L)
(5.3) ^,X.(G) = ̂ -X^G) + < X ^ D 1
where the first case occurs if Ge<p(L) , LeX and the second if

Let 6 be a qeneralized character of Q satisfying (2.7)

0"*

which is orthogonal to g, . Then there is an integer d and

a. generalized character /z jof £ orthogonal to S, such that
(5.4) e|X =

If A^* satisfies (2.7) then each A?* satisfies (2.7) and then

there exist integers d. and characters \x. gf_ £ orthogonal

to S such that
~ d.

(5.5) X . U = e A . + T 1 E X * - + M--
3 3 Ai i i i 3

proof. Equation (5.3) follows from (2.6). If e satisfies

(2.7) then (2.8) implies that for j > 1

tXx if e = Xy

-e % if © = % v

0 if 6 is orthogonal to (Xv'X-

By (2.6), UJL^. - X '^l)° satisfies (2.7). Therefore if A^

satisfies (2.7) then so does A? for every j. This yields

(5.4) and (5.5) .

PROPOSITION 5.4. Suppose all the assumptions of Proposition

5.3 are satisfied. If ae£! (<p,&) and (a.Xĵ A. - Xj*1) = °
 t h e n
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(5.6) XA% .|£,a) = I

Assume %£ U (<P,&) • if ^T* satisfies (2.7) then in (5.5)

we have d. = /L .cL/X, • JL£ also each constituent of n. and fi1

is in Î 1 (<p,£) then /x. =

Proof. If OKI/ (<p,&) then (2.10) and (2.8) imply that

(5./)

This yields (5.6) . If Ŝ  c î' (<p̂ X) then putting a = A, in

(5.7) we have for j > 1

Hence d. = Z.d /jL. Equation (5.6) yields the last statement.

REMARK. Often it occurs that <p(£) 0 (£ - £) is empty. If

also £ has no TT f-elements then every character of £ is in

1/ (<p,£>) and Proposition 5.4 is more readily applicable.

PROPOSITION 5.5. Suppose all the assumptions of Proposition

5.3 are satisfied. Let © be_a. generalized character of Q

satisfying (2.7) . Then there exist rational numbers b and c

and generalized characters ft and y jof £ orthogonal to £

such that if LeSf then ©(L) = bfl(L) _if © is orthogonal to

S , and Of. (L) = £ A . (L) + cy(L) if © = X..

Proof. L e t ^ = IJ.^.A. where A, ranges over jS. There

exists a character £f of £ which is orthogonal to £5 such

that ^ + ^f = PC-J the character of the regular representation of

£. By (5.4) if © is orthogonal to £ then

. ©|£ = bx€ + M

where \i is orthogonal to 4- Similarly
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i f 6 = X - by ( 5 . 5 ) . Since p«(L) = O for heir
3 ^

9(L) = - b ^ ' (L) + M,

and the Lenuna r e s u l t s oy a su i tab le change in notat ion.

THEOREM 5 . 1 . Suppose Q, Z, and X s a t i s f y Hypotheses 2.1 and

4.1 arrHhat U=7i% £ =<]> ,£=Mx77-?7, £-??(&) , 33d &/f) 1$. JL Frobenius cproup with

Frobenius kemel Jl x?]/?}• Suppose that Hypothesis 5.1 is satisfjjad fibr aU L eX .

that ^n G"17?G=0 for a l l GGQ. I f p( i s a fa i th fu l character of

Q ojE degree l e s s than (| Jl | - 1) / 2 and i f ^f i s , constant on

<p(L) for a l l Le£ then one of the following must be true.

(a) U jj3 a, non-abelian p-group for some prime p with

a(tf:JJi) < 4(£:tt x?t ) 2

where a ĵ s the square free part of (M: M •) .

(b) £ = Q . Then H i s normal in Q.

(c) M i s , an elementary abelian p-group for some prime p

and no proper subgroup of W i s normal in £.

This theorem i s a general izat ion of [10, Theorem 4 . 2 ] ,

and i t s proof i s e n t i r e l y s imilar to the proof of that theorem,

being based on Lemma 3 . 1 , Theorem 4 . 2 , Propositions 5.3 and 5.4

and other analogues of r e su l t s in [10 ] i .
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