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ON LIFTING CHARACTERS IN FINITE GROUPS*

Henry S. Leonard, Jr. and Katherine K. McKelvey
Carnegie Institute of Technology and Cornell College

1. INTRODUCTION

The theory of exceptional characters was first developed by
R. Brauer (see, fér instance, (1)) and M. Suzuki {11}, and later
was geﬁeralized by W. Feit [6 and 7]. It has been a powerful
tool in its many applications, in that, under certain conditions;
it ;ields information about the characters of a finite group @
from information'about the characters of a certain subgroup <.
More recently Feit and Thompson [9] obtained the theory of coherent
sets.of characters, which applies under more general conditions
on (@ and> £. The earlier theories had required the existence of

a trivial intersection set & in £, whereas they introduced

‘the weaker condition that % be tamely imbedded in G. The

theory of coherent sets of characters played a crucial role in
their proof of thesolvability of groups of odd order.

All these theories concern a linear isometry ¢ mapping

. certain generalized characters of &£ into those of ¢ and the

extension of o to an isometry with a larger dbmain. When an
extension is possible, the larger domain is.called coherent. 1In
the theory of exceptional characters, ¢ is the induction operator.
’Recently Dade [5] proved the existence of a suitable operator o

Fal
under more general conditions on G, £, and £ than those of

Feit and Thompson. At the same time, related operators were

*The first author was supported by National Science Foundation Grant
GP-4240. An earlier version of much of the paper was contained in

. the second author's dissertation, which was submitted in partial

fulfillment of the requirements for the degree of Doctor of Philos-
ophy at the Carnegie Institute of Technology. Part of her work was
done while she was on the faculty of Mount Mercy College, Pittsburgh.
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2
employed by Brauer {2] and Suzuki [12] in their studies of the
existence of normal complements of subgroups.

-Our purpose here is to make a new study of ¢ and of coher-
ence, further generalizing the existing theories, and to indicate
some applications. In §2 we study the existence and properties
of 0, and we obtain a result on the existence of normal com-
plements. 1In §§3 and 4 the existence of ¢ 1is assumed and results
concerning the éxi?teﬁce and uniqueness of its extensions o* are
obtainedr .Assuming.an'extension o* of o exists, we study the
mulfiplicities of the constituents of ©|£ for certain characters
® of G in §5. Finally, as an application inVolving many of
. the earlier results of the paper, we state in §5 a theorem
giving a lower bound on'the degrees of certain characﬁers of a
class of groups having a Frobenius section.

Most of the notation and terminology are standard. All groups
discussed are assumed to be finite, and all characters are over

the field of complex numbers. By a generalizéd character we mean

a linear combination of irreducible characters with coefficients
iﬁ the ring Z of integers. We reserve the term 'character' for
linear combinations of irreducible characters with positive integer
coefficients. The inner product of class functions has the usualn@aﬁng.
By the weight of a generalizd character o we mean (d,q), that is "oz”z. By the
Xkernel of a class function a of G we mean the intersectipn of
the kernels of all irreducible represenﬁations for whose charactérs
}(. we héve'(a,EK) # O. "

If G is a group then Z(G) denotes the center of (. If T
is a set then |T| denotes the number of eléments in T. - If T is

a subset of G then 72q(19 and Cq(g) denote the normalizer and
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centralizer of T in G, respectively, and zf denoies T - (1}.

We call T a trivial intersection set in. G if eyery.pair of
conjugates of T has its intersection contained in <I>. .

Let w denote a set of primes and w' the set of all
primes not in w. Any integer divisible only by primes in' 7 is
a w-number. £ is a w-group if |£| is a m-number. G is a
m-element of a group G if the group <G> géheréted by G is'a

mT-group. Any eiemént G can be represented uniquely as a product

=‘ . - ' . i 1 -
G=G -G, G ., G of commuting 7 and w'-elements. G,
is the w-part of G. If R 1is a subset of a group ¢ then R

T
denotes the set of all w-elements in R.

A subgroup £ of G is a Hall subgroup if (G:£) and |£|

are relatively prime. & is a w-Hall subgroup if it is a w-

group and (G:£) is a 7w!'-number.
Let G be a finite group, £ a subgroup and £o a normal

subgroup of &£. A normal subgroup Qo of G is a normal com-

plement of &£ over £o, if

G=G,, 8, =G, n¢

and hence Q/Qo = £/£o.

2. THE OPERATOR o AND THE EXISTENCE
OF NORMAL COMPLEMENTS

Here we study the existence and properties of a lifting
operator ¢. Hypothesis 2.1 is a generalization of Dade's
assumptions [5]. Theorem 2.1 gives-conditions under which’

o preserves\inner products and gives analogues of the Frobenius

Reciprocity Theorem. Theorem 2.2 gives conditions under which
o

‘a0’  is a generalized character. These results are generalizations
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(G:Cg (L)) (T (L) :X (L))

- - | I(L) | .
= o Tkex (L) ® ) = TemTIF@T Kex(r)® LX)

L (£:05(L))

1 .
= Tl ken(n) I = TgT L5 ()@@ -

Equation (2.4) can be obtained by letting © = 1, and (2.4a) follows

from (2.1), (2.4) and (2.2).
If a is a complexavalued class function on &£ such that
a(L) = a(Lﬁ) for Lef . then define o’ by
4 o 0 clo(B)
(2.6) o (G) . = .
o(L) Gew(L),Leﬁw.

Equation (2.1) implies that o’ is a well-defined class function

of G and (2.2) implies that of|& = ale. Clearly the domain

of o0 1is a complex vector space and 0 1is a linear transformation.

It is clear from (2.6) that (2.5) can be applied to o for all

Le& .
™
In particular, for any class function a of & having’ X(L)
in its kernel for every Lgﬁw, o’ is defined.
THEOREM 2.1. Assume £ and () satisfy Hypothesis 2.1.
Let © be a class function of G such that

(2.7) Bre ()@ @I = (F(L):K(L)) B y gy @ (LK)

for all. Leﬁw. Let a, be a class function of £ which vanishes

1
. )
outside & 'such that al(L) = al(L") for Leﬁ. Then

"(2.8) (@,00) 5 = (0]£,0)) ;.

I1f o, is a class function of £ such that- aZ(L) = az(Lﬁ) for

(2.9) (ag,a‘l’)q = (a,,a)) .

If oy is a class function of &£ which vanishes on w(ﬁ)ﬂ(S - @)
such that a3(L) = a3(Lv) for Le& then

o
(2.10) (ag,al)q = (a3,ag|£)£.

i_J _J —J

| N |
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Proof. ince o« vanishes outside ¢ . implies that
£. Si ¢ ish tside ¢(2)(2.1) implies th

1 -0 _ 1 ~o
(9,&? G~ TET gw(@)eal(G) -~ TeT 2:Rt-:R,Ge-:(p(R)ea'(]T(G)

where R 1is a system of representatives of the classes of & .
T

Applying (2.5) to. © and using (2.2),

1 o 1 ~o
(0’0‘(11)0 =TT IReR,Geé(R)ea(l’(G) = TeT 38 1@ -

B8ince e;?]ﬁ = Gailﬁ and since @, vanishes outside ﬁ,
(6,00) o = ThT In 8@ (G) = (8]£,a)
1) g = TeT B 8% ) g
The proofs of the other equations of the theorem are similar,

Let R = [Rl,...,Rk] denote any non-empty subset of ﬁw' Let

J(R)

J(Rl)n...n ZI(Rk).

and let
X (R)

R(Rl)n...n J((R.k).
Then J(R) is the normal W'-Hail subgroup of CQ(R) and
cx(u)n J(R)= X(R) . Furthermore 71£(R)normalizes J(R) and'
ns(a) N J(R)= Co(RIN T(R)= X(R) < £ .

.Thus any class function o of £ which has ¥(R) in its kernel
defines a class function «p on 71£(R)- J(R) by

aR(NJ) = oa(N) for all Ne71£(R)JeJ(R).

Assume @ has R(L).in its kérnel for every Leﬁw. Then
a(M) = a(MW) for all Mef and we can definé o’ and 0. In

particular any class function o of £/£o satisfies the con-

‘ditions necessary for defining o and 0 -

A
THEOREM 2.2. Assume & and &£ satisfy Hypothesis 2.1.

1f o ig‘glqeneralized character of &£ which has ¥(L) in its
A
kernel for all Lefi\l‘"‘r and which vanishes outside & then af

is a generalized character of G.
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Proof. According to a theorem of Brauer (See [3] and the
references there or (4, (40.8)]) it is sufficient to show that
a°|z is a generalized character of & for all elementary subgroups
E. of G. Let B be an elementary group. Then & = Eo X El
is the direct product of Eo’ a m-group, and El’ a v'-gfqup.
Let p be the projection of & onto §_ . Then Ec € has the
rm-factor E_ = p(E)and it is clear from the definition of o?
that a°(E) = o (p(E)), that is, |8 = ad‘p. It will, therefore,
- suffice to prove that .ozq| 80 is a generalized character of 80.
' Suppose 2 is an elementary w-group. We will show that

o’|8 = B|® where

-

*

'(_1) lnlaﬂ

B = 'an;a,ngﬁﬁ (SR (R)

If Ge £ then clearly .
(-1 1®lo (aY)

BIG) = Iy vy TEm (M) M (MTA |

summed over all R, Y such that R is a non-empty subset of

QW, YeG . and GYe 7l£(n) -« J(R). The denominators are just
|£‘| 3R |/|¥(R)|. If NeM(R) is one of the |X(R] elements
satisfying GYeN»'J(R) " then aR(GY) = a(N). This vanishes unless

A .
Nef. Therefore

IR' Y

1 -1 a(N X (R
8(G) = - 75T W,y,n "~ [3(R) X (R)

where R £ 8, RC QW, Ye@G, Ne‘nx(ﬂ) n Q, G!eNa’(R)

By a lemma of Dade [5, p. 595]

gV - R) « >3
N - N J(R) SN <N (r)

<u'r,>:r(n)

[N1rc<N1r > J(R) (N1r) ]
_ o L v <N > T (R)
B '[N1T<N1r ”C3(R) (N,) ] N‘rr
= J(R
= [N <N_>Cg g (N)] (®)

Thus if GYeNJ(R) then




GYelN <N >Cq o (N) 17 (R)

or

: GYe (N ]3’(3)
™

since G is a w-element. But then

Y J(R) _ '
G EINWCJ(R)(NW)] = NW3(R)
and

’ NI (R) = N T (R),

J(R)

Therefore G eN3(R) if and only if G eN and NW.€3(R)-

J(R)

There are |8(R)|/|CU(R)(N")| elements in N_ and

|CQ(G)| Y's gi?e the same conjugate of G. Therefore, there
are |CQ(G)||3(Q)|/|C3(R)(NW)I Y's such that G eNJ(R). Furthermore

since N"e
)(NW) =J(R) NC (M) = T(R UN_)).

Cx(r G

Thus |R|
(-1) a(N)lcg(G)I-lzr(R)l

_ 1
B@) = - T5T XN [FRU N NT-TT@R]

summed over all R # @, R C ﬁ}, N€71£(R) N § such that ¢ is
cbnjugate to N in G and Nw,eq(ﬂ).

Cléarly if Gﬁw(ﬁ) then B8(G) = 0. 1If Ge¢(£).then since
v GI is a v;element wé may assume Geﬁ._ Then «a(N) = o(G) and
|CQ(G)| = ICQ(NV)|' Now hold N fixed and vary R. If N £R
and R pccurs in the sum then R U [Nv] also occurs in the

sum and it is clear that the two terms cancel. Therefore

_ |Ccn(N )|
_ -a(G a(G)
B(G) = 'TT}:T)' I (- 1)T_L—{3(N YT~ = I (s::cs(NW))IM(NW)T

A
where the sum is over all N such that Ned and G 1is conjugate

to N_ in G. There are |M(NW)|'(£:C£(NW)) such elements N.

Thus
B(G) = «al(G),

To complete the proof of the theorem it is sufficient to note

that




R = -ZR(-]') ‘R'a*é

where R ranges over a system of representatives of the collection
of conjugage classes of non-empty subsets of Qw in £.

THEOREM 2.3. Let G be a finite group, £ a subgroup of

G and £° a normal subgroup of £. Suppose there is a set' 7

u
of primes such that (£:£o) is a w-number and such that:

1. Whenever two w-elements of & - £o are conjugate in

G, they are already conjugate in &£.

2, I1If Le& - £6 is a mw-element then CQ(L) = J(L)cs(L)

where J(L) is a

normal w'-Hall subgroup of CQ(L) and
Ce(L) N J(L) = ¥(L) < £,.

Then there exists a unique normal complement Qo f £ over

S, and G, =G - (f-5).

Proof. Clearly &£ and Q = & - £0 satisfy Hypothesis 2.1.
Let © be a non-principal irreducible character of £/£0 with
degree d. Then by Theorem 2.2 and (2.8) (e - d)0 is a gener-
alized character of G and ||(8 - d)0”2 =1+ d2. (2.7).impliés
that (( - a)%,1) = -4 and hence (8 - )7 = X - d where X is
an irreducible character of G. The intersection of the kerneis
of all the charactersbj( as © ranges over'all non-principal

irreducible characters of £/£0' is G - w(&). Thus G - w(&)

is a normal subgroup of § and (G - ¢(Q)] neg = £o'. By (2.4a)
16 - o] = (@S] - (6:9 18] = (@92,

Therefore G = (G - ¢(ﬁ))£, and G - m(&) is a normal complement
of & over £o in G.
Let Qo be an arbitrary normal complement of & over So

in G. Then Q/Qo-: £/£0 is a w-group and all m'-elements of’
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G belong to Qo. Suppose GeQ0 n ¢(£). Then Q”er and
G Yef - £ for some YeG. But G YeS N G, = S since G
is normal in G¢. This is a contradiction. Therefore QO c G - w(ﬁ).
Since |00‘ = |Q|/(£:£o) = |G - w(ﬁ)l, £ has a unique normal com-
plement over £0 in G. ‘

REMARKS. Notice we have not assumed (£:£o) and (G:£) are
relatively prime. Theorem 2.3 is related to a theorem of Brauer .
[2, Theorem 1]. It géneralizes the sufficiency part of a theorem
of Suzuki [12, Theorem 1]. (The last paragraph of his proof
provides a deduction of his theorem from ours.) And two theorems
of Wielandt [13, Satze 1 and 2] can be deduced from it. These
deductions can bé made in the same way that Brauer makes them
[2, p. 79]. The proof of theorem 2.3 is similar to Suzﬁki's
proof.

3. COHERENT SETS OF CHARACTERS

Let G be a finite group, let & be a subgroup of G, let
gl be a set of characters of &£, and let I = X1(S) be the 2Z-
module 6f generalized characters of & generated by §. Let
I, = ;o(g)‘be the submodule of I consisting of the members of
degree zero, and suppose there is a iinear isometry o of Lo
into the Z-module MQ of all generalized characters of @,
We call g o-coherent if Ly #'[O] and there exists an extension
o* of o which is a linear isometry Qf 1 into MQ‘ This defini-
tion of coherence is the same as that of Feit [8, p. 18l]. We let
MQO denote-?he submodule of MQ consisting of the members of
degree zero.

In this section we give conditions which imply the coherence
of certain sets of-characteré or which imply the uniqueness.of o*.
Proposition 3.1 is a simple well-known fact. Proposition 3.2 is

much the same as a result of Feit [8, p. 182, ZY. 7-10] and its
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proof is also the same as the proof of the existence part of [9,

Lemma 10.1]}, of which it is a generalization. -Proposition 3.3

is 'a generalization of the uniqueness part of [8, (31.2)]) and its
proof is much the same. For the sake of unity we give the proof

here. Lemma 3.1 and Pr0positionv3.4 are related, for example, to
[l0, Corollary 2.2.].

Theorem 3.1, the main result in this section, together witﬁ‘.
Propositions 3;3 and 3.5, generalize a major theorem of Feit and
Thompson [9, Theorem 10.1] and a similaf theorem of Feit [8, (31.2)].’
Our definition of subcoherence is essentially the same as that
of Feit and Thompson [9] except that we have separated it from
the concept of a tamely embedded subset of a group and from our
corresponding Hypothesis 2.1, and we have weakened it in one
other respect.

PROPOSITION 3.1. Let &£ be a subgroup of G, and let S =

—— —_— ~

[xill < i < n} be a set of characters of £. If there exist

integers li for i = 1,...,n such that 11 =1 and A, (1)

IN

AZ;n; (1) for all i, then I (S) is generated by {A; - xixlll
Proof. 1If Zhikielo(g) then Zaili = 0. Therefore Zhi

Za; (A - K™

>
i

PROPOSITION 3.2. Suppose &£ 1is a subgroup of a group §

and gl is é set of irreducible characters of & all of the same

degree. Suppose there is a linear isometry. o f I

— —_—

(S) into

(o)
MQO‘ Then S is o-coherent.

REMARK. If & and & satisfy Hypothesis 2.1 and 1 f£ &,
and if § = [xill < i < n}) with n> 2 is a set of irreducible
charécters of £/£° such that ki(L) = Al(L) for all Le& - 2

aﬁd for 1 < i < n, then by (2.8) and Theorem 2.2 the mapping o

i < n}.
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of ,52 is a linear isometry of Eo(g) into gq, and by (2.6)
uc(l) = 0 for all pelo. Hence by Proposition 3.2 S is o-
coherent.
PROPOSITION 3.3. Suppose & is a subgroup of G and

[x |1 <i< n) with n> 1 is a set of orthoqonal characters

f &£. Suppose there is an isometry o from LD(§) into MQ'

Suppose xl and A, are irreducible and ()\1(1))\2 - xz(l)xl)°(1)'=

O. Then either there is at most one extension o* of o to

I{S) or n = 2, Xl(l) = Az(l), and there are exactly two extensions

q .
Ig

d#' of o to I(S); namely kioé,= -Ay_;0% for i=1,2.
of.

Let o* ‘and Jﬁ be extensions of o to I(S).

Denote xi(l) by 11. Then for all i

o o A

(3.1) @ny - IADT = AT xS =T - T

Clearly our conclusion follows if n = 2, since (3.1) must be
the difference of two characters. Suppose n > 2, Then either

o7 o . o o

A = A, for i =1,2 or A\, = -\

i i i 3.4 for i =1,2, 1In

- the former case our conclusion follows. In the latter case we have

o2 o* o o* 2 _ .2 2 . .2 2
”}\3 ” = ”11)\3 - 13)‘1 - 13)\2 ” = 11”)\3” + 13"?‘1”

2 2
| + 450, |
a contradiction. It follows that o* = a#t

LEMMA 3.1. Suppose £ is a subgroup of G and § =

k‘ill <i<m)and T = [)jll < j < n} are coherent sets of

orthogonal characters of £ with respect to isometries o¢ and T,

respectively. Assume uo(l) =0 and v'(l) =0 for all “€10(§)

g T
and uelo(z). If ‘10(§) and IO(E) are orthogonal and
. :
(l(ia*,ij ) = O whenever either K; or Aj is reducible, then
0* T* ‘
S and T are orthogonal,

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSITY
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Proof. Denote Ki(l) and 7\).(1) by k; and lj’ respectively,

for all i and j. Suppose for some i and j that’ Ki and )\j
T*
. j )
A,€8 with u #1 and v ¥ j. Then

»*
are irreducible and (K(i,, A = ¢ = +1. Choose Kuei and

- : (1] T
0= ((k; K, - X, k)7, (K, - ,xv)\j) )
- g* | T*
= kiJ{j(Ku Ay )+ ek I,
Then K and A A are irreducible (ko*}\' ) = - ¢ and k.Y =
, u v o ’ u’’v vl i

. . . U .
kulv. Since u (1)4=0 for all pel (S),

T*

o* ot T*
0=k, K, (1) - k, Kj (1) = -eki?\v(l) - € ku)\j(l).

But .
0= 1sz (1) - yvx;h) .
These two equations imply N;Tl) = 0 Dbecause the ki and lj
are positive integers. This contradicts the fact that ”k;n = 1.
As én easy corollary of this lemma we have:
PROPOSITION 3.4. Suppose £ is a subgroup of § ggg ‘§i

for 1 < i< k are disjoint ci—coherent sets of irreducible

0.
1 ——
c.haracters‘ of £. Supgo(s;e My (1) =0 ofor all uielo(gi) .

1 are orthogonal when-

h
A ssume that (§h) ~ and f1~o(s~i)

: k

s =U §i' Then there is an isometry o*

: i=1 '
3 * = i

from I(S) into % such that o*|1 (gi) o%¥ for each i.

ever h #1. Let

REMARKS. If in Propositioﬁ 3.4 gi consists of characters
of the same degree for some i, then the oi-coherence of S,
need not be assumed since it is implied by Proposition 3.2,
Proposition 3.4 does not conclude exactly that g is coherent,
because Io(g) was not considered.

The following hypotheses and Theorem 3.1 provide sufficient

conditions for the coherence of the union S of certain orthogor’xal
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sets of characters, but assuming an isometry ¢ on £°(§) is
.given. However, it is not explicitly assumed that the sets are
‘coherent or that they consist of irreducible characters, énd
therefore Lemma 3.1 is not applicable in all cases. ‘But the
assumption that certain subsets which don't consist of irreducible
characters are subcoherent in the union gives a substitute for
this lemma. |

1If T is a set of characters of G, let R(T) denote the
module of class functions of G generated by members of T
over the rational numbers. If & 1is a subgroup of the group
G, let § =‘[xi|1 < i < n}] be a set of pairwise orthogonal
characters of £. Suppose tbere is an isometry ¢ from Eb

into gq. If 5, © 8, let x(§1) denote the smallest weight of

1
any character in §, with minimum degree. 1If S, and T are

o-coherent subsets of § with extensions 01 and o, respectively,

define

) _ . . o _ A
Q(gl,ol,g,oz) = («af 1)a|£o and ii) o = £ + [é,

where .
a) AeR(T 2,
o
b) Ai is orthogonal to R(T 2),

2

. (o)
c) Al is not orthogonal to 10(§4) ,

a lal? < x(g)).

DEFINITION. Let S, be a o-coherent subset of S and

1 —_—
let o* be an extension of ¢ to §;. TIhe pair (§,,0%) is
subcoherent in § 4if the following conditions are satisfiég: If

T is a o-coherent subset of S which is orthogonal to §1 and
if o, and o0, are extensionsof o to §, and T respectively,

" then:
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oy o,
i) §1 is ort onal to T
iigg_aeﬁ(gl,al;g,az) then af is a sum of two generalized
characters, one of which is orthogonal to §g* and the other is
. o*
+
iﬂ..gl .

We first obtain a uniqueness statement in terms of subcoherence.

PROPOSITION 3.5. Suppose £ is a subgroup of G and §

is a set of orthogonal characters of d&. Suppose there is an iso-

metry o from 1,(8) into Mo and that S is o-coherent with

fixed extension o* . of o to I(S). Assume there is a subset

S, of S in

f S such that (§1,01) is subcoherent in S for some

extension dl of o to I(§l) and that |§ - 8

U (A} for some AeS - S

vV
N
lH
Hh
wn

S

1 1
o to I(S,)). If there exists A

then o*IS2 is the only extension of

€S - § such that hl(l) divides

1 1
the minimum degree of characters in S:s then either o*|§l =

o, or S, : {pl,pzl for some pu,,u,, and ul(l) = uz(l),

%
MZ = -l3_3 L for i= 1,2,

Proof. Let g, be an extension of o to £(§2). Then .
: o, O :
for pjegl, (ujz,x 2) = 0, and by the definition of subcoherence
- .

(uj 2,x°*) = 0. But if mg = uj(l) and l_= A(1) then mjk -

An

J

02 02

= mA% - luq*. Therefore ”u.”2 = (p.
J J J J
2 o 92
Hence “j - “j = O for all 'ujegl, and consequently A =
ko*. This proves the first statement.
To prove the second statement, let §, = [ul,...,pk]. Choose

the notation so that Ky has smallest weight of any character

in 8§, of minimum degree and so that xl(l)|ul(1). Denote

xl(l) and uj(l) by 11 and mj, respectively, and ml/l’l by

ml. Then
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- O _ = 0% o*
@Ay -7 =W -y
Also, by the first part of the definition of subcoherence,

*
("IJ'(I ’ (mll-‘z - mzpl)c)

- 0% o* ' y
MRy - by (mgby =mpiy) )

2,
m,lluy 2 # 0.
Therefore mlzl - uleé(gral;g - gl,o*), so (ﬁlk - “1 Al A2
: 1 A 1 o*
whg;e Aje S, and A, is orthogonal to §,”. Since A, is

orthogonal to §1l, it follows that A1 + ug* is orthogonal to
(o4
§11’ and in particular to Al‘ Hence
' _ o*

(302) (Al’Al) = '(Al’ul )- |
Suppose ”A1” = ”“l”' Then it follows from (3.2) that A = -ug*.
But Ale i§il and

o o o* o*
(3.3) w.mluj - mj”l = ml“j - mj“l .

7 a* %
Hence if A1 = ipl = Ky then A1 = - and then the conclusion

() g

~Holds.l If A = iyzl then (3.3) implies A = uzl and m; =m,.
~Also k = 2 because otherwise (3 3) implies
(o] (o4
2 2 2
”“ ” = “ml“3l = m3#11 - m3ﬂ21“
2. 112 2 2 2
= m 2% + w2l 0% + w2,
a contradiction. Again the conclusion holds.
Thus we may assume ”A1” # ”ul”. Then we can assume Al =
(o] .
iuzl and ”u2” # ”ul”. Equation (3.2) implies
2
A l? = 1A, w1 < o lleS™ Il
Hence ”“2“ < ””l”' The original choice of Ky implies m, > m, -
o,

" We know that ull is orthogonal to Al,A , and Xo*. Hence

1
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- o
the equations for (ml,?\l - ul)c imply (ul l,“lo*) = 0. Therefore
g o
1 o* 1, _
(myp, =+ mypy™, py 7)) = 0.
Equation (3.3) implies
o g
o* 1 1, _
(mlﬂz + mzul 1“1 ) = 0.
Therefore
o* T1)2 2 2 2
”mlﬂz + mzul ” = ml ”#2” - mz”“}_” s

which, because 'of our ‘earlier inequalities, is negative. This
is .a contradiction, and the proof is complete.

HYPOTHESIS 3.1.

1. &£ is a subgroup of the finite group G.
o

2. r 1< i<k, §i=[Aié|'1gs§_ni}. The sets S,
3 3 3 . » k' - .
are pairwise disjoint and S = U Si consists of pairwise
i=1 "~ :

orthogonal characters of £.

3, For 1 <i<k, 1<s< n., there exist positive integers

Iis such that 111 = 1 and xis(l) = Zisxll(l) for all LY

There is a linear isometry o from I, ko %QO'

4, is irreducible.

11

A
5. 8§, is o-coherent with extension o of o to I(s)).

6. For each gm either a r b is true.

a. S consists of irreducible characters. For each

m
n )(2
(3.4) folopl Lis 2 2%+ 1A m> L
I Gl

b. §m . is o-coherent w;th extension . o of o. §m

is partitioned into sets §mj such that each Emj' either consists

of irreducible characters or (§mj’°mj) is subcoherent in S for

some omj' Furthermore
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THEOREM 3.1. Suppose Hypothesis 3.1 is satisfied. Then

> zlml if m> 1.

is

{7}

is o-coherent, and there is an extension o* of o to I(S)

such that o*|§, = o,.

Proof. We use induction on k. If k = 1 the theorem is
true by hypothesis. Assume the theorem is true for k - 1. Then
there is an extension of 0 to a linear isometry o* on

k-1 _
L(U;Z] 8;) such that o*|§, = o,.

We may assume zkl < lks for all s. Choose the notation

so that A

k1 has minimum weight among the members xks of
S, for which 1%, = xkl' If §, satisfies 6b let §kl‘ denote
the set §kj containing xkl. For 1< s < n, define

Bg = lksxll = Mse
Define the integers a by

S
o* o, _

(3.6) (xll ,Bs ) = st - ag for 1 < s < .
Since Bsego
: o¥ o, _ o* o

N sBg) = (Xeny 5B50)

o* o* o

(3.7) | - e - M 08g)

=-a . for 1<ic<k-1,1<¢t<n,(i,t)#(1,1).

IN

Since kll is irreducible and o0 is an isometry on Lo
o2 _ 2 2
(3.8) I8N = K™ + NGl for 1< s < ny.
We have
: n, Y.
o _ a* -1 i it o*
(3.9) Bs - z'kskll - 8 Z%=l z%=l ”x ”2 Ait‘ + As
it

for some class function AS of G. It is clear that (A%,xlg*) = 0.
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If (i,t) # (1,1) and 1 < i<k -1, 1 < t< n;

i then, since the

¥*

it
Therefore (3.8) and (3.9) yield that

A are pairwise orthogonal, (3.7) impliés (Ah,xito*) = 0.

2 2 k1 b4 2 2 2
(3.10) X, .° -2f . a +aj L., ., ﬁ;igﬂj + ”A§” = Iks + ”Aks” .
Now we shall complete the proof in tﬁe case that §k éatis—
fies 6a. If a #0 then‘(3.4) and (3.10) imply
g h? - 812 2 22 2 - a) + 2ty a
since a_ is an infeger. Since A, _ 1is irreducible this implies

Ag =0 if a # 0. Hypothesis 3.1.3 and (3.9) imply

L.,
o o* t o¥
0= Bs (1) = lksxll (1) - s Z-r—i—ﬁf %it (1)

1.2 | LY
74 . *
N ¢

. . . . . o* .

if As = 0. Since %ll is irreducible, M1 (1) # 0. Hence

the preceding equation implies that if As = O then ag> o0

and together with (3.4) it implies 1&5 > 2aslks’ a contradiction.

Thus AE # O and hence a_ = O. Define Akso* to be JAS. Then

s
. k
is orthogonal to U,

- o*
1=

g

A 1

X 0%
ks , (3.8) and (3.9) imply “Aks” =1,
and, since (Bso,Rto) = tﬁslkt for s # t, the generalized char-
acters xg: ~are orthogonal. Thus the proof is complete in this

case,
From now on we assume ﬁk satisfies 6b. If a, # O then

since al is an integer (3.5) and (3.10) imply

.2 2 2
0 < 2/, (ay - ap) < I, 117 - lial®.
" Therefore

12

, ' 2 .
(3:11) | HAlu < ”“kl if a; # O.
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We will show that a, = O. First we note that if

1
k-1 o %% _ CE ot
NeU;Z) S, and pes, then (A~ ,p ") = O. For if either N\ or u

is reducible this follows from the definition of subcoherence, and

hence by Lemma 3.1 it follows for irreducible A and u. Thus
pu .
k

. -1 ' :
S, is orthogonal to U§=1 2 Therefore for 2 < s S-“kf
o 0. O :
k ky _ ky _ 2
(3.12) (8,4 N - Halks) = (Rl’xks ) - Daneg) = Ll .
. D oy |
In particular Al is not orthogonal to 8., and its inner product

g .
.with each member of ﬁk? is an integer. Hence if §kl consists

of irreducible characters then (3.11l) implies that a, = 0.
Suppose (§k1’0k1) is subcoherent in §. If a, # O then

2 2 : 2 .
by (3.11) HA1H < ”kklﬂ where kalH = x(§kl)' Since, by

. , o
(3.12), Al is not ‘orthogonal to (lo(gkl)) , (3.9) and the
definition of subcoherent imply
o
(3.13) Bl = jL1 + J\z

. Oy1 . kl .
where A, e + S 7" and Jll is orthogonal to §, ". Slnge

.S

. .
kKl ;s orthogonal to Uk:l §9*, (3.9) and (3.13) imply A
~Xk 1l . i=]1 i . 2
is the perpendicular projection of A onto (§kl) kl, and

hence ”A2”2 lﬁ “ Theréfore if a, # 0 (3.11) implies"
JLZ = + kgl for some s # 1. Hence (3.13) and the analogue
for °k1' of (3.12) imply
2 2
"/lkl“}\ks” - ‘lks”}‘kl”

i
o

2 2 2 . .
so kalH 5-”1\2”, < ”Al” . Hence (3.11) implies that ay
in all cases,

Since a; = O (3.6) implies

(3.14) - (Allo*,SlG) = X,

For 1 < s <n
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1, 1
R.o=XE g 4+ (K ).

. . o*¥ 0 |
Therefore (3.14) implies that (All,ﬁs) = Iis for all s, so by
(3.6) as,= O for all s. Almost exactly as in the case 6a'we
can verify that o¢* can be extended to ljg); This completes
the proof.

4. COHERENCE IN GROUPS HAVING A
NILPOTENT SECTION

Here we apply Theorem 3.1 to groups éatisfying Hypothesis
4.2 stated below. This hypothesis generalizes assumptions of Feit
and Thompson [9, Hypothesis 11.1] in several ways. We have sepa-
rated the hypothesis from the concept of a tameiy imbédded,subset
and from our corresponding Hypothesis 2.1. We have replaced their
assumption that |£| is odd by the weaker assumption 4.2.4. And
we have introduced the subgroup 7l into the Hypotheses (which is
{1} under Feit and Thompson's Hypotheses). This allows, for
instance, for a non-trivial center in §, and makes the theory
available to the study of collineation groups. (See Theofem 5.1.)

Theorem 4.1 is a generalization of Feit and Thompsén's
Theorem 11.1 [9] and of [8, (31.3)].

HYPOTHESIS 4.1.

1. &£ 'is a subgroup of the finite group G, £O is a

normal'subgroug of &, and & is a union of cosets in & of

£0, with IAQ.

2. H,M and M are normal subgroups of £/£o such that
¥ is nilpotent, ¥ € M , and
Uyt CE) NI xN-M S ¥/, c MxM =5 c /s,
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Denote £/£o and ﬁ/xo by X and 9, respectively. Often
we regard characters of ‘R as characters of £, If § 1is a
éet of characters of & we denote by L{g,g) the set of members
of. I1(S) which vanish on & - @.

Througﬁout this section we let 179 deﬁote any fixed irreducible
character of 2, and let £i denote any non-principal irréducible
character of M. Let .E;n denote the character of X induced

by“gin, and let JF denote the inertia group of 7 in X. Let

§ = [Einlgi # 1 and E;n vanishes on X - (ﬁ un)j.

- LEMMA 4.1. Suppose Hypothesis 4.1 is satisfied. Then §

is a set of orthogonal characters. Suppose that for some §lne§

we have £ (1)]€;(1) for all & es. Lf Z; = £;(1)/€) (1) then

€, = 4,8 (@) for Les - &,

Furthermore £j§J£) =1,(9.

Proof. Clearly S consists of orthogonal characters. The
eéuatiop for Z; holds by definition of § and because it
‘holds for L = Ne M . Since 1[@, L(g,ﬁ)_g ;O(§Q; and now Pro-
pbsition 3.1 implies that ;(g,ﬁ) = lo(g).

REMARK. If G, £, and ﬁ satisfy Hypothesis 2.1 as well as
Hypothesis 4.1 then, since 1‘§A£) = lo(g),'Theorems 2.1 and :
2.2 and (2.6) imply that the mapping ¢ . in §2 is an isometry

from lo(g) into In Hypothesis 4.2 below we shall assume

Moo

the existence of such a function.

LEMMA 4.2, Assume Hypothesis 4.1 is satisfied. If the

kernel of gi does not contain ¥ then fineg.

~

. A
Proof. We must show £in vanishes on ¥ - (K UM ). Clearly

Eiﬁ vanishes on ¥ - J. By [9, Lemma 4.3] £i vanishes on
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m - UHe}if CH) NM. 1f JeT - (Q UN) then J = MN where
P‘;em— HEH#C(H) NM and Ne . Then £,(M) =0 so
giﬂ(MN) = 0.

Two characters 91’92€§« will be called equivalent if

91(1) =8, (1) and ”91” = ||92|| if A is a normal subgroup of &

let s(@) denote {eegle is equivalent to some character in S

which has @ in its kernell. |
HYPOTHESIS 4.2.

1. Hypothesis 4.1 is satisfied. There is a linear isometry

o .from 1,(8) into %QO‘

2. There exists a positive integer e such that e|£.1(1) for

~all ‘Eineg and S contains some irreducible character of degree

en(l) (X:3).

3. Each equivalence class of S is either subcoherent in §

or consists of irreducible characters.

4. Hl is a normal subgroup of X with Hl c 4 and one

of the following is true:

a. S consists of irreducible characters.

~

b. Each equivalence class in § - Q(Hl) has at least:

two members.

c. e2| (M:¥) and (3‘:3’)|{(H:H2) - 1] for each subgroup

Hz of ‘Hl 'which is normal in ¥X.

THEOREM 4.1. Suppose Hypothesis 4.2 is satisfied. Let a

pe the square free part of (H:Hl) . Suppose that either a =
(H:Hl) and
(4.1) () - 1> 4e?(3m?

or a # (Ji:lil) and
(4.2) a(:u)) > ae? (3.3 2.
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L]
Hh

g(ul) is o-coherent and contains an irreducible character
of deqree en(l) (X:J3) then S is coherent.

Proof. Let Nz be a normal subgroup of X which is contained

in Hl and is minimal with respect to the property that S(uz) is

o-coherent with respect to lo(g(ﬂz)). Suppose that Hz #. <.

Choose - H3 c uz

g(uz) = §1 = (xlsll S-S'S-nll’ where xll is irreducible and

such that HZ/H3 is a chief factor of ¥X.  Let

xll(l) = en(l)(H:U?. Let 8,,...,8, be the equivalence classes
of Q(H3) - g(Hz). For 2 < i<k 1let Iilkli(l) be the common
degree of the characters in §i' Clearly our assumptions and
Lemma 4.1 imply §(H3) satisfies Hypothesis 3.1 except possibly
(3.4) or:(3.5). 1If gi with i > 1 consists of irreducible
characters and has more than one member, then by Proposiﬁion

3.2 S5 is o-coherent.

We will now verify that either (3.4) or (3.5) is satisfied.
Consider only the characters ﬁj of M whose kernel does not
céntain H., With n fixed let gjn range over a set of:repre-
sentaitives of the classes of characters of J/Hz which are conjugate
‘uhder_ X. 'Then €j ranges once over a set of representaﬁives_of
classes of characters of 7n¢m2 with respect to conjugacy in &,
Let aj denote the number of characters of & which are conjugaﬁé
in X _tov Ejn. Then aj/(K:S) is the number of cqnjugates of gj

~

‘relative to J¥. By lemma 4.2 all the characters £j" are in §1

and 2 ~ 2
N (1) , &L (1)
3 ~l§_7F_> 3 —Jﬁ_—f—
S l? T ST NE

S SRL (1?7, £.(1) %, (x:3)
= = =n 1 (1) Ta. :
B L

7 (1) 2 (X:3) (X:3) ((M:2,) - (M:M) ],

i
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Equivalently 2
ls

2 = 2
S (RSP e (¥:J)

(K:3F) (M:H) [(H:H,) - 1]

Since 1(/)(3 is nilpotent, Hz/)t3 n Z(N/H3) # <. vTherefore,
since uz/H3 is a chief factor of X, Hz/H3.g Z(M/¥j). I1f o
is an irreducible character of H/H3 then [9, Lemma 4.1)] implies
that w(l)zl(H:ﬂz), since M 1is nilpotent. Let b be the sqﬁarg
free part of (ui:uz) and let c = (a,b). Then the square free pért
of'(H:ﬂz) is ab/czf Thus ¢(1)2|(H:H2)c2/;b. Every irreducible
chéracter of 7L is a constituent of some character induced i:y an
irredubible character of M. Hence

1/2

(4.4) [ je < L@zH,)c?/ab] /3 (m:n), (2 <m<K).

Suppose now that (3.4) or (3.5) is violated fqr‘some value

of m, Under Hypothesis 4.2.4a the summation in (3.4) is an integer.

*In case 4.2.4b we may assume (3.5) is violated.. And in case
4,2.4c the right hand side of (4.3) is an integer. Hence in all
cases (4.3) implies
(M) [ (4:¥) - 1]
e?(3:7)

IA

21&1"

This and (4.4) yield that
(:4,) - 1< 2e(F:3) [ (#:4,) c?/ab] 1/2

Let ab/c2 = s and 2e(%:J) = t. Then (H:Hz) = rzs for some

positive integer r. We have rzé - 1 < tr., This implies

rs - 1< rs - 1/r < t.
If «rx =.l~ then (N:Hz) is square-free, and hence (H:Hl) is
square~-free, Then
M) - 1< s - 1< 2e(F:d)

contrary to (4.1).
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Therefore r # 1, rs - 1 < rs - 1/r and rs < t, so

(1:20) ab/c? < ae” (7:7) 2.

Then
2
o) <L o) < S et (mn? < el
o ab

But this is incompatible with both (4.1) and (4.2). Therefore
either (3.4) or (3.5) is true and all assumptions of Theorem 3.1
are satisfied. - Hence §jﬂ3) is coherent contrary to the minimél
natﬁre of Hz."‘This finally implies that uz = <1>. Therefore
S = §1H25 is coherent. This completes the proof of the theorem.

As applications of Theorem 4.1 we mention that Lemmas 11.1
and 11.2 in [9] can be generalized. 1In particular the-inequalities
in those lemmas can be replaced by a(.H:H')ZAL(J):n)z and a(H#:H1)< 4(.(::31)2,
respectiely, where a is the square free part of (H:¥), As another appli-
cation we state without proof the following theorem, which is a
generalization of [8, (31.5)] and [10, Theorem 3.1]. The proof
is very much like Feit's proof [8, (31.5)], or it can be based
on the generalizations of the lemmas just mentioned. .Onlf the
case that ¥ ‘is a non-abelian 2-group with (M:H') = 4,‘requires
a separate argument, and this is easily given by the method ofv
proof of [9, Lemma 11.3].

THEOREM 4.2. Suppose that Hypothesis 4.2.1 is satisfied and

that ¥ =M, ﬁ =4 XN -MN, and X/N is a Frobenigs group with

Frobenius kernel (ﬁ XN)/N . Then

S = [Einlgi 'is a non-principal irreducible character of H]}.

Then one of the following must occur:

(i) |8] = 1 and hence ¥ is an elementary abelian p-group
with [¥]| - 1 = (3:3) = (¥:J).
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(ii) ¥ is a non-abelian p-group for some prime p with

a(H:¥') < 4(3:8’)2 where a is the square-free part of (H:H').

(iii) 8 4is o-coherent.

5. THE RESTRICTION OF CERTAIN CHARACTERS
OF G TO £

In this section we obtain results concerning the multi-
plicities of the constituents of ©|£ for characters © of §
assuﬁing G, £, aqd 2 saﬁisfy Hypothesis 2.1 and assuming a
coherent set of irreducible characters is given. To do this we -
apply Theorem 2.1, and for this it is necessary that © satisfy
(2.7), i.e., that the average values of © over L3(L)Aand LY (L)
be equal for each Leﬁw. As an application of these results we
state without proof Theo;em 5.1, which gives a lower bound‘on the
degrees of certain characters of a class‘of groups having a
Frobenius section. First we obtain conditions under which (2.7)
holds. Throughout this section we assume Hypothesis 2.1 is satis-
fied, and’ ¢ denotes the operator discusses in §2. |

' A
PROPOSITION 5.1. Suppose & and & satisfy Hypothesis 2.1

- and Leﬁ,,- I1f © .is a character of G let O|<I>J(L) = $; + U,

where the kernel of ¢1 contains J(L) and no constituent of ¢2

contains J(L) in its kernel. Then

(5.1)  Epog(g)®@d) = (T(L):X(L) F g () ©(LK)
Af and only if | |
(5.2)° - Ikex () ¥2 (LK) = 0.

If (8|T(L), lywy) = (e|¥ (L), ly(y)) then © satisfies (5.1).

Proof. Let £y denote any irreducible constituent of wz

where § 1is an irreducible character of <I> and 9. is an irreducible

character of J(L). Then

1 _ ’
o= (vy,1) = O Zﬁe3(L)7(J)'
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‘Therefore
0 = ZJea,(L)gv(LJ) = Z‘deJ(L) b, (LI) .
.Clearly (5.1) holds for wl; hence (5.1) holds for © if and
only if (5.2) holds for §,. If (8|JI(r), 13w = (e|¥ (L), 1y ey
then it is easily seen that O = (¢2|3(L), IJ(L)) =($2|R(L), IK(L))‘

This implies that $2 satisfies (5.2) and completes the proof.
Clearly if 6 = xg* is constant on the cosets of J(L) .
which lie in <L>3(L) ; J(L) thén (2.7) is satisfied and (2.8)
caﬁ be applied to ©. Lemma 5.1 aﬁd Proposition 5.2 given con-
ditions under which this is the case. Lemma 5.1 is related to
Feit and Thompsons Lemma 10.2 [9], Lemma 5.2 to their Lemma 9.2,
and Proposition 5.2 to their Lemma 10.3.
If all irreducible characters of (G are constant on ¢(L) for
all Le&,Tr then, since character tables are non-singular matrices,
w(L) must be a single class of conjugate elements and hence

A .
J(L) = ¥(L) = <> for every Leﬁn. Then ﬁv =48 and C, (L) c &

G
for every Lef, and Hypothesis 2.1 implies ﬁ is a trivial inter-
section set.

Throughout this section ['(¢,£) will denote the.set of all
generalized.characters of &£ which vanish on w(ﬁ) n (&£ -’ﬁ)
and contain ¥(L) in their kernels for all. Leﬁv. l}(ﬁ) will
denote the submodule of 1'(@,2) consisting of those generalized
characters which vanish outside &£.

If B 1is a generalized character of a subgroup of G, denote

by R* the:generalized character of ¢ induced by R.

LEMMA 5.1. Suppose &£ and ﬁ satisfy Hypothesis 2.1 and

that Leﬁv. Let « be any irreducible character of J(L).

n 'Qg the irreducible characters of <IL>, and let

Let £, &p,.++,€




. 30
ﬁa = [gsa]. If © is a generalized character of § such that

(6,(§Sa - gta)*) = 0 for all esa, €tae§a and for all o # 1

then © is constant on the cosets of J(L) which lie in <I>J(L) -

J(L) .

Proof. If a #.1 then

(6, (£ a - £ a)*) = (6|<r>J (L), £ a - £, @) = 0.
Thus , '
e|<L>T(L) = £ _, £.n+ R
where 7 is some character of J(L) and B is a character of

<L>J(L)/T(L). Thus clearly ©(N) = B(N) for Ne<I>T(L) - T(L).

LEMMA 5.2. Assume & and ﬁ satisfy Hypothesis 2.1 and

that ae;'(ﬁ). If LeﬁTr then aolcq(L) is a generalized char-
acter of CQ(L)/J(L).
Proof. By a Lemma of Dade [5, p. 595] if Cecs(L) then

cT(L) = C T(L) = [C Cyytc1® ),

Thus if NeCJI(L) then Nep(L) if and only if Cep(L). If Cep(L)
then o°(N) = a(L) for all NeCT(L). If CAo(f) then o°(N) =0
for all NeCI(L). Let B be the generalized character of CQ(L)/3(L)
- which satisfies
: _ o
Blcg(L) = |cg (L)
By the above remarks
o
R= a |Ch(L).
|Cq(w
Thus since H is a combination of characters of CQ(L)/J(L) the

same is true of aolcq(L).

HYPOTHESIS-S.I. Assume & and Q satisfy Hypothesis 2.1.

‘Let M = ML) for Lef .

1. With the notation of Lemma 5.1, if E;a and E?a are

the characters of 7ZL induced by gsa and gta with a # 1, then




3 =1 J
irreducible characters of ?1L such that ej(l) = ) for

— T —_— n 4 -
Esa = Zﬁ:l nj and £, = L ej, where the ny and ©. are
(1
nJ(

j=1,2,...,n.
2. Let

ﬁL = [UJG:T(L)# C‘nL(J)] - J(L) .

Then %L is a trivial intersection set in G with ’nq(ﬁL) = nL'

Note that .if Hypothesis 10.2 of Feit and Thompson [9] is
assumed with Hi .replaced by J(L) then condition 1 above is
satisfied.

PROPOSITION 5.2. Assume that & and Q‘ satisfy Hypothesis

2.1 énd that 1£ﬁ. Suppose Hypothesis 5.1 is satisfied for some

element Leﬁw. Let S Dbe a set of characters of &£ such that

® <.

c
1o <
Assume that § is o-coherent. Assume further that § contains
*
at least two irreducible characters. If AeS then N is con-

stant on the cosets of J(L) which lie in <I>J(L) - J(L).

Proposition 5.2 is related to Feit and Thompsons Lemma 10.3
(9], and its proof, based on our Lemmas 5.1 and 5.2, is nearly

the same as their proof with our nj,ej in the role of their

.

61,92.
Propositions 5.3 and 5.4 are generalizations of [10, Corollary
.2.1] and Proposition 5.5 generalizes Feit and Thompsons Lemma 10.5 [9].
If § = [xi} is a coherent set of irreducible characters and

* .
Uxi} is a set of irreducible characters of G such that %g =

eixi where e, = +1 for each i, then we call Xi the

. exceptional character of G associated with ki. ‘All other

.irreducible characters of § are called non-exceptional. If 1¢£

and lo(§)_g ;}(ﬁ)'then €, is independent of i since ua(l) = 0
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for all ueIl'(£). In the remainder of the section we use this

notation.

PROPOSITION 5.3. Assume G, £, and i satisfy Hypothesis

2.1 and 1££. Suppose § = {Aill < i < n} is a o0-coherent set

—

of irreducible characters of & such that

1.9 s (®. Let

Ay = A; (1) . Then for GeG and for all j

e(llkj - ljkl)(L)
o
: A .
where the first case occurs if Geop(L), LeJ:Tr and the second if

Gtw(ﬁ ).

T
Let © be a generalized character of G satisfying (2.7)

(5.3) I X,00) = 1, X (@ + {

¥
which is orthogonal to §? . Then there is an integer d and

a generalized character pu of & orthogonal to S such that

= 1

there exist integers dj and characters uj of & orthogonal

5.4 ole =4
( ) | | z’; Eixi)\i + u.
ag* . . a* . .
£ A satisfies (2.7) then each %j' satisfies (2.7) and then

to S such that
d

5.5 18 = ern. + =L EL N, + ..
( ) le € 3 'l]_ 111 i “J
Proof. Equation (5.3) follows from (2.6). If © satisfies

(2.7) then (2.8) implies that for j > 1
ell “if e

X
(e]s,zlxj -Aljxl) = -€ Ij if &= X,
0 if 6 is orthogonal to U\’l,xj].
() Py . a*
By (2.6), (llxj —_Zj%l) satisfies (2.7). Therefore if 13
. % .
satisfies (2.7) then so does xg for every Jj. This yields

(5.4) and (5.5).

PROPOSITION 5.4. Suppose all the assumptions of Proposition

5.3 are satisfied. If aeL'(w,&) and-(a,llxj - Ijxl) = O then
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(5.6) Xl(Xj|£Jn = lj(K}J£,a). |

Assume S C l}(w,ﬁ). If %g* satisfies (2.7) then in (5.5)

we have d. = A2.d4,/Z,. 1f also each constituent of pu. and u
— — 73 j 171 1. - "3 — "
is in l)(w,ﬁ) then pj = ;i #lJ. |

proof. If oel'(p,8) then (2.10) and (2.8) imply that

(5.;(ulxj - 4 ?(l)lx,a) = (g - 28,0

= (N - E .00 = (A - 12,00

This yields (5.6). If § CL'(p,8) then putting a =2, in
(5.7) we have for j > 1

£(dj/1l - 1j(€ +d;))

X

Hence dj = ljdl/li. Equation (5.6) yields the last statement.
REMARK. Often it occurs that w(&) n (&£ - ﬁ) is empty. If

also £o has no v'-eleménts then every character of & is in

L'(w,ﬁ) and Proposition 5.4 is more readily applicable.

PROPOSITION 5.5. Suppose all the assumptions of Proposition

5.3 are satisfied. Let © be a generalized character of G

satisfying (2.7). Then there exist rational numbers b and c

and generalized characters B8 and ¥ of & orthogonal to S
such that if LGS% then 6(L) = bA(L) if © is orthogonal to
X,

Proof. Let § = zﬁli%i where A, ranges over §S. There
- i

§,0*: _a_ng XJ(L) = E)\J(L) + C')’(L) LE_ e

exists a character §' of & which is orthogonal to S such
that & + §' = Pgs the character of the regular representation of

£. By (5.4f if © 1is orthogonal to go*

then
9|£=b1€+ K
where u 1is orthogonal to §. Similarly

le',J:: 5)\j+ C1€+ ‘J,j
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if 6 = ;xs by (5.5). Since px(L) = 0 for Leﬂy
e(L) = -blﬁ' (L) + u,

X ) = en (@) - c 8 (D) + u(w),

and the Lemma resu.ts py a suitable change in notation.

THEOREM 5.1. Suppose G, £, and ﬁ satisfy BEypotheses 2.1 and

4.1 ard that H=%), .,\:O=<1>,.’§=uxn-77, £N®), and £/ is a Frobenius group with

Frobenius kemel #xn/‘))‘. Supose that Hypothesis 5.1 is satisfied for all Leﬁ%r'.‘Assune

-1 : :
that &N G NGe=g for all GeG. I1f X is a faithful character of

G of degree less than (|¥| - 1)/2 and if X is constant on

A
o(L) for all LESW then one of the following must be true.

(a) ¥ is a non-abelian p-group for some prime 'p with

a(M:) < 4(8:H xN)2

where a is the square free part of (M:¥').

(b) £ =G . Then ¥ is normal in G.

(c) ¥ is an elementary abelian p-group for some prime p

and no proper subgroup of ¥ is normal in £.

This theorem is a generalization of [lO, Theorem 4.2],
and its proof is entirely similar to the proof of that theorem,
being based on Lemma 3.1, Theorem 4.2, Propositions 5.3 and 5.4

and other analogues of results in [10]..
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