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1. Introduction. A polynomial

m

P(C) = 2 E I P V ( C ) , C€C ..,PV(AC) = A
kPv(C) (l.D

with complex constant coefficients is called hyperbolic in the

sense of Garding [1], with respect to the direction N e R
n^

 i f

and only if P (N) £ 0 and the roots r of P(rN +• £) have
J m

bounded imaginary parts for real £eN . It follows that P

is hyperbolic, if P is, and has only real roots. It is natural

to ask for which lower order perturbations of the principal part

P the polynomial P is hyperbolic. In two dimensions this

question was answered completely by A. Lax [4]. She showed that

it is necessary and sufficient that if P has a root of multi-
m ,

plicity v at the point r N + { , then each polynomial P ,

k < v, has a root of multiplicity &> - k at T N + £ . Kasahara

and Yamaguti [3] showed that the necessary condition carries over

into higher dimensions provided that by multiplicity one means the

number of times a given factor appears in the factorization of P .

In this paper we shall show that the necessary condition is valid

in any number of dimensions using a much stronger definition of

multiplicity (which for the purpose of distinction we call order).

Our definition of order is the common one associated with the

Taylorfs expansion of a function of several variables.

Definition of Multiplicity and Order. Let P(r,£) be a
polynomial of degree m in r- whose coefficients are of class
m **
C with respect to £ in some subdomain of R . The multipli-

S city of P at (r .£ ) is the least integer v such thato o
<M. '
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The order of p at (T Q,4 O) is the least integer /i such thatT Q,4 O

for some a,k with | a| + k = \i.

It is clear that the order of P is always less than

or equal to its multiplicity. In one dimension the two concepts

are always the same; hence they are also the same for homogeneous

polynomials in two dimensions. For this reason no confusion can

arise from interchanging the words order and multiplicity in the

theorem of A. Lax.

The question arises as to when the order and the multiplicity

are the same. Let us write
m

P(T,£) = 7T (T - Tk(£)).
k=l K

If the root r = r, (£ ) has multiplicity v and if all of the

roots r. (£) are v - 1 times differentiable functions of £,

then any derivative

is a sum of products each of which contains the factor zero. Hence

in this case the order is equal to the multiplicity. Unless the

irreducible factors of P have distinct, and hence Cm, roots,

there seems to be-no a priori reason why this should be so. One

of the conclusions of this paper is that for homogeneous hyperbolic

polynomials the order and the multiplicity are always the same.

For an interesting complement to the theory of this paper the

reader is referred to Garding [2].

2. Statement of Results. As mentioned in the introduction,

the main purpose of this paper is to extend the necessary condition
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of A. Lax to higher dimensions. Our proof is based on the following

somewhat stronger result which may also be of independent interest.

Theorem 2.1. Let P(r) = T + a-(£)r "" +... be a polynomial

of degree m in r whose coefficients are of class C with

respect to £ in a neighborhood £ = °* 4^R • * f the roots

T, (£) of P satisfy the order relation Im r, (£) = 0(|£|) as

4 —> 0 and if P(r,O)has a root r of multiplicity v9 then

P has a zero of order v at (r ,0) .

Our generalization of the Lax necessary condition then is:

Theorem 2.2. Suppose that the polynomial P is hyperbolic

with respect to the direction N and P has a zero of multiplicity

v at the point r N + £ * £ G N • Then for each k, 0 < k < v,

the polynomial P .. has a zero of order i/-k at T N + £ .
^ •* m-k o so

We emphasize that the above theorem gives new information

even if there are no lower order terms present. One might ask

whether the roots of a homogeneous hyperbolic polynomial do, in

fact, have any a priori smoothness. The best general result

that we have been able to prove in this direction is:

Theorem 2.3. Let P be hyperbolic with respect to U

and suppose that the roots r,(£),.••,r (£) of P are indexed

in non-decreasing order, £GN . Then for each 4 e N > there

exists a constant K such that

The constant K is uniform over compact subsets of any set where

r, (4) has constant multiplicity.

There remains the difficult question of deciding whether or

not the necessary condition is also sufficient. The following

theorem gives some evidence in support of the conjecture that it is.
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Theorem 2.4. The necessary condition of Theorem 2.2 is also

sufficient for second order operators.

3. Some Combinatorial Lemmas. The proof of our basic

theorem, Theorem 2.1, is rather long so we shall first prove some

lemmas to facilitate its proof. We begin by introducing some

notation.

A multi-index a is a vector (a.,...,a ) where each coordinate

a. is an integer, 1 < a. < h. The number of components r is

denoted by |a\. If fl = (fl,,...,«) is another multi-index, by
1 S

a8 we mean the index (a1,...,a ,#,,...,B ) . Let F be a
l r i s

sufficiently differentiable function of x = (x,,...,x ) and let

y = (y^.-.jy ) be an n-vector. The symbols F and y are

used to denote the derivative drF/dx ...dx and the product

y ...y respectively. (Note that we are using the classical

convention rather than the more recent one of letting y =

y. ...y ). A homogeneous polynomial of degree m may be written

P(Y) = f-f ay
\a =m

where the coefficients a are symmetric within permutations

of the components of a. At times it will be convenient, for example,

to re-write

p(y) - 2 1
||

where j and k are fixed integers, O <̂  j + k <̂  m. The symmetry

of the coefficients allows us to combine a and y into a single

index 6, \b\ = m - k, and to re-write

P(y) = 2Z ZZ. a

We shall also find it convenient to perform the above indicated

manipulations on derivatives.
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For functions <|) of one variable r, the k-th derivative will

be indicated by <j) . When considering functions of several

variables F ( T , X ) , where the first variable r is singled out,

(k) ot k OL_

the expression F means the mixed derivative (b/hf) (d/dx) HP.

The following lemma illustrates the use of the product notation

for indices.
r+1

Lemma 3.1. If F: R —> R is of class C and x(a) :
2

is of class C , then

Proof. It follows from the rule for differentiating a product

that r

' *' °v d «<• V " a, ... a. ... a
a. 1=1 da al ar k=l | a. |=1 S

The proof is completed by using the symmetry of F , setting

a. = R and setting the product of the remaining indices equal

to a.

The above lemma is used to obtain a formula for the deri-

vatives of a class of composite functions.

Lemma 3.2. Let 0(<r) = F(x(cr)) where F is a polynomial

in xeR and x(cr) is a quadratic in a. Then

[k/2]

2
j=0 jl2J(k-2j) t |o|=k-2j

Fa/?(x)x'x-< (3.1)

Proof, We proceed by induction. The assertion is clearly true

for k = 0. Supposing (3.1) to be true, we differentiate both

sides, using Lemma 3.1 together with the fact that x*! is constant,
P

to obtain



[k/2]

j=0 j'. a|=k-2j

[k/2]

JsJ
j=0 jl2J(k-2j-l) i |a|=k-2j-l

(x)x'xMx«

In the first term on the right we replace off by a single index

(of length k - 2j + 1) and in the second we replace ft 7 by a

single index. The summation index j in the second term is

then replaced by j - 1. After simplifying, the expression (3.1)

is obtained with k replaced by k + 1. This completes the proof.

The next lemma relates certain bilinear forms in the derivatives

of a polynomial to quadratic forms in its roots.

Lemma 3,3. Suppose that P(r) = T + ... is a polynomial of

degree m in r with roots r, + i s, , k = l,2,...,m. Let

2 2
F(x) = X.. . . .x and Y. = (r - r,) + s, . Then

1 m ri K K

» 2

a

and

2k

j=0

1=5

_
(2.k)P^>(T.)P(2k"j)(r)
3

(3.2)

2k+l

= in, 2 (-1)
j=0

9V4-1

(r) . (3.3)

Proof. Let <))(CT) = |P(T + ia) | and note from the factored form

of P that <{)(CT) = F(x(cr)) where xk(a) = (r - r k )
2 + (a - s k )

2 .



Since ^ ( 0 ) = Y k, x^ (0) = -2s k and ^'(O) =2, it follows

from Lemma 3.2 that

2.

j=0 3 < lK ^ ' • |a|=k-2j

On the other hand it is a consequence of Leibniz1 formula for the

derivative of a product that

k

j=0

By equating the above two expressions and separating the even

and odd cases we obtain
k

^ (2k) i2 2 k' 2 j

jl(2k - 2j)l | a| = 2 k_ 2 j

Z (-l)k+^ (2k]p(j)(r) P«2k-J>(r), (3.4)
j=o V j /

and
k

2k+l

. iPVJMr)Pv^-L-JMr). (3.5)
j=0 D

We next replace the summation index j in the sums on the left

sides of the inequalities (3.4) and (3.5) by k - j. The proof is

then completed by noting that the left sides of (3.4) and (3.5)

are real.

Our basic technical lemma is the following corollary of Lemma 3.3
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Lemma 3.4. Suppose that P, F and Y are as defined in

Lemma 3 and set

|a|=k

Then we have
2k

j=0

k

0(
=l • D

.|s|2j) (3.7)

and
2 k + 1

j=0

2k+ll

j i

Here |s| = +...+

tt

) 1 / 2s )

aProof. Since Ftt(x) = F (x) /x or Fa(x) = 0 and Y, ^ 0, i t follows that

K (3.9)

where K depends only on m. (3.7) is then proved by substi-

tuting (3.9) into those terms on the left side of (3.2) where

j >_ 1 and (3.8) is proved by substituting (3.9) into the left

side of (3 .3) .

The application of Lemma 3.4 which we have in mind involves

polynomials P(T,£) in r whose coefficients depend on 4 =

(£T > • • • > £ \GR anc* whose roots have imaginary parts which are of

the order 0(|£|) as £—>0. For such polynomials the order terms

in (3.7) and (3.8) are respectively at least 0(|£| ) and 0(|£|).

We next study the question of refining these error estimates in

case certain derivatives of P are known to vanish at a point.



It is convenient to define

B(T.O =
P j=0

and

j

to set p = (|£\2 + r 2 ) 1 / 2 .

Lemma 3t5. Assume that P(r,£) = r +... is a polynomial of

degree m in r whose coefficients are of class C m in a

neighborhood of £ = 0 and suppose that, for integers ~K,v- which

satisfy A + 1 <. ̂  <. m, we have

P(k)a(0,0) = 0 , \a\ < A - 1, k + |a| < v - 1.

If p < 2v, then

I f p £ v and v - p <. A, then

/virv fk + | a | < A + y - p (3.11) '
Bv ' (0,0) = 0 \

p (k + | a | = A + v - p , | a | < A (3.12)

and

B^-P ) a (O,O) = 2 ( - l ) t P / 2 ] R e P a (O ,O)P ( ^ (O ,O) , | « | = A. "(3.13)
P

(k) Q!Proof. The derivative Bv ; (0,0) is a linear combination of

terms of the form

p(j+i)fl(0^0) p(p-j+k-i) (Q^0) (3.14)

w h e r e 0 < . j £ p , O £ i £ k a n d | fl| + | y | = | a | . A t l e a s t o n e

o f t h e t e r m s i n t h e a b o v e p r o d u c t v a n i s h e s i f

l # M y | < A - 1 a n d k + | o?| < 2v - p . ( 3 . 1 5 )

O t h e r w i s e we w o u l d h a v e j + i + | / 3 | >. i> a n d p - j + k - i + | y | >.

w h i c h i m p l i e s t h e a b s u r d i t y k + ' | a : | > - 2 i / - p .

Now i f k + | a | < 2 i / - p a n d 2v - p <. A t h e n \a\ <. A - 1

so by (3.15)/ (3.14) we have B ̂ a (0,0) = 0; hence
P

Bp(T,4) = O(p
2^"P) . (3.16)

On the other hand, if 2v - p > A, k + | a\ <. A and | a| £ A - 1,

(3.15) is again satisfied. It follows that all derivatives of B
P

up to order A vanish at (0,0) except possibly Ba(0,0), |a\ = A.

Hence
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Bp(T,£> = 0(|4|A) + 0(p X + 1). (3.17)

The proof of (3.10) is completed by combining (3.15) and (3.16).

We turn now to the proof of (3.12) and (3.13). The inequali-

ties k + |a| £ A + y - p and A £ v - 1 imply that k + | «| < 2t/-p.

Hence if |B\,\y\ < A - 1, it follows from (3.14) and (3.15) that

(3.12) is satisfied. It also shows that the only contribution

to B * P"^ ̂ (0,0) , |a| = A, arises from (3.14) with |?| = 0 or

|y| = 0. If |y| = 0 the expression (3.14) will be zero unless

i + j = v and if |ft| = 0 it will be zero unless i + j = 0 .

Thus the truth of (3.13) is verified.

It remains to prove (3.11). The inequalities k + |a\ <

A + v - p and v - p <. A show that | Qf| < 2A; hence either \$\ <^

A - l or |y| <. A - 1. If both are <. A - 15 the argument of the

preceding paragraph shows that (3.14) vanishes. If |ft| > A we

would have p - j + k - i + |y|>.^ which together with | y| =

| o\ - |^| <. | a| - A implies p + k + |a| - X >_ i/ contrary to

(3.11). A similar argument shows that (3.14) vanishes if |y| >_ A.

This completes the proof of Lemma 3.5.

Lemma 3.6. If in addition to the hypotheses of Lemma 3.5,

the roots rv(£) + i sv(£) of P satisfy the order relation

skU) = 0(U|) as % ->0, then

and

= Re B2k(T,0 + 0(|£|A+2) + 0(pA+3) + O(p2v-2*). (3.18)

= 0 ( U | A + 1 ) + 0(pA+2) + O{P
2U-2*-1). (3.19)

Proof. We first prove (3.18) by induction on k. It is clearly

true when k = u/ for all it says in this case is that Q is

bounded near (0,0). Assuming that (3.18) is true for k + l,...-,v,

we obtain from (3.10) and (3.18) that
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when j >. 1 and k 4- j <_ v. On the other hand it is a con-

sequence of (3.7) that ,

Qk = ReB 2 k + 0(21 Qk+j) +O(m
2"- 2 k).

The proof of (3.18) is completed by combining the above two results.

The identity (3.19) is now easily proved by substituting (.3.10)

into (3.18) and then using the resulting estimate in (3.8). This

completes the proof of Lemma 3.6.

The next lemma formalizes the arguments which will be used

several times in the proof of Lemma 3.8.

Lemma 3.7. Suppose that av(£)* k = <3J<3 + 1*--**WJ a r e

homogeneous functions (not necessarily polynomials) of degree k

in £, £eR , and that a is not identically zero. If for (r,£)

in a neighborhood of the origin we have
w

^ L a U)TW"k + 0(pW+1) > 0,
k=q

then q and w are even and a (£) > 0.
q •> _

Proof. Replace (r,£) by (eT,e£), e > 0, divide by e W and let

e —» 0 to obtain

W" k > 0, (3.20)

k=q k

which, by homogeneity is then valid for all (r,£). If w were

not even, the opposite inequality would be obtained by replacing

(T,£) by (-T,-4)* contradicting the fact that a is not identi-

cally zero. Now divide (3.20) by T
w""<3 and let r—»+oo to

obtain a (£) >_ 0. That q is even is again a consequence of

homogeneity. This completes the proof.

The next lemma shows that the vanishing of certain derivatives

of a polynomial whose roots have small imaginary parts implies the
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vanishing of more derivatives at the same point.

Lemma 3.8, If in addition to the hypotheses of Lemmas 3.5

and 3.6 we have P^MO,O) ? 0,. then

( P(k)a(0,0) = 0, |«| < A, k + |<*| < i/ - 1.

Proof. It is sufficient to prove the above result when k = 0.

For by the theorem of Gauss and Lucas, Polya and Szego [6], p. 89,

problem 31, the roots of the derivatives of a polynomial lie in

the convex hull of the derivatives of the polynomial; in parti-

(k)

cular, the imaginary parts of the roots of the polynomials P

are of the order 0(|£|) as £—*°* T h e general result is then

obtained by applying the special case to the polynomials p*J' f

j <L v ~ 1* with v replaced by v - j .

By hypothesis P (0/0) = 0 when |a| <. A - 1, hence we have

only to prove that Pa(0,0) = 0 for | a| = A. The proof consists

of several steps. The proof that Re Pa(0,0) = 0 , | «| = A is

broken down into the three cases: (I) v even, A even, (II) v even,

A odd, and (III) v odd. The proof that Im P (0,0) = 0 , | a\ = A,
is separated into two cases: fc^ v even and (v) v odd.

Proof of Case I. Since v is even let \i = v/2. Now apply

Lemma 3.6 with k = \x. The order term 0(p v~ ) may be dropped

since v >. A + 1. Using (3.18) and substituting the results of

(3.10)-(3.13) into the Taylors expansion of B it is seen that
ZfJ

QM < ̂^A ^ 2 T _ p
a(o,o) 4aP

(l/) (0,0) + o(pA+1) .

Since Q >. 0, Lemma 3.7 implies that

0 < ( - l ) U R e 2 T P a (0 ,0)^^^(0,0) . (3.21)
|a|=A

Next apply Lemma 3.6 with k = JU - 1, again using (3.10) - (3 .13) ,

to obtain
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+ 0(p X + 3),

where a, is homogeneous in £ of degree k. It is clear from

the proof of Lemmas 3.5 and 3.6 that the term 0(|£| ) is inde

pendent of r; hence it may be absorbed into a o(£) . Another

application of Lemma 3.7 then shows that

0 < (-ir

By combining the above result with (3.21), and using the fact that

P(r,O) has real coefficients we then have

Re

hence P (0,0) = 0 for each a,|a\ = A.

Proof of Case II. Proceeding as above, we obtain (3.21).

Since A is odd it follows immediately that P (0,0) = 0 , |a\ = 1

Proof of Case III. Since v is odd let v = 2\x + 1. Again

using Lemmas (3.5) and (3.6), we obtain

1
Q u <

 1 * = f - Re *- P"(0,0) ̂ - ' (0,0) r

+ aA+1(^) + 0(p
A+2) .

The inequality Q >. 0 and Lemma 3.7 show that Pa(0,0) = 0 for

Proof of Case IV. Let JJL be defined by v = 2/i. By applying

(3.19) of Lemma 3.6 with k = \x and then using the results of

Lemma 3.5 we obtain

HUNT L1BfiARY

CARNEGIE-MELLON UNIVERSITY
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By incorporating the term 0(|£|A+1) into a A + 1 U ) and applying

Lemma 3.7, we see that Im p'ft'(0,0) = 0 (recall that P^(0,0)

is real).

Proof in Case V. Let v - 2\i + 1 and apply (3.19) of

Lemma 3.6 with k = \i. Arguing as above it is shown that

0,0) = 0(p A T i);

hence P (0,0) = 0 , | a\ = A. This completes the proof of Lemma 3.8.

4. Proof of Theorems, Theorem 2.1 is proved by induction

using the induction hypothesis (assuming r = 0 )

I (A) : P(k)a(0,0) = 0 , | a | < A - l , k + | a | < i > - l .

I(1) is simply the statement that P has a zero of multiplicity

v at (0,0). The induction step is provided by Lemma 3.8.

To prove Theorem 2.2, we assume, as we may, that N = (1,0,...,0)

Suppose that the polynomial
m

k=0

is hyperbolic and that P has a zero of multiplicity v at the

point (r ,4 )• Consider the polynomial

m

k=0 m~ X

If we write P in factored form

m

Pj[r,€) = TT (r - rk(0)
m k=l K

we see that the roots ak of T" are er^d/e) . Since P is

hyperbolic we then have | Im T, | <. M; hence Im a, = 0(e) . We

notice that P*(T,£O,0) =
 P

m(
r>^o)

 S O P* h a s a z e r o o f multiplicity

v at 4= £ , e = 0. Hence, by Theorem 2.1, P(T,€*e) has a zero

of order v at ( T O * 4 O J ° ) ; that is
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^ V o ' 0 ) - 0, k + |a| + r < y.

But this implies that

rl ̂ - r ^ W = °' k + '"' < V ' *'
which is just what is meant by saying that P has a zero of

-> J. J. J m - r

order v - r at (r ,£ ) . This completes the proof of Theorem 2.2.

We turn now to the proof of Theorem 2.3. Let the multiplicity

of P at (r ,£ ) be v. By Theorem 2.2, P then has a zero

of order v at (T ,£ ) . It is then a consequence of Lemmas

(3.5) and (3.6) that

V i = 0((r - ro ) 2 + l« - ̂ Ol
2) (4-1}

near (r s£ ) . The assumption that the roots T, (£),..., T (4) a r e

in non-decreasing order implies that they are continuous. Let us

now re-order them so that T-(£),..., T (£) are the roots which

coalesce at £ . Now Q is a sum of products of factors

T
K.

\T - T (4) i taken m - v + 1 at a time. One of these products is
K

m

T ~ T (0\2 T T |T - T.(£)|2. (4.2)
1 3

By continuity there exists an m > 0 such that
m
TT 1 ̂  ri(0l >m (4.3)

for r,£ in a neighborhood of (T ,£ ) . We deduce from (4.1), (4.2)

and (4.3) that

IT - T L U ) |
2 = O((T - T O )

2 + \i - €O)
2),(T,€) (TO,|O)

The required result is obtained by setting r = r = r (£ ) . Since

the above argument can be repeated with r.. (£) replaced by r,
1 Kl

k <c i/ we have

That the constant K is uniform over compact subsets of a set

where P^ has multiplicity v is a consequence of the uniformity

of the 0 constant in (4.1) and of m in (4.3).
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We next prove Theorem 2.4. Let

where P, is homogeneous of degree k in (r,£) and Po(r,£) i
K 2

hyperbolic. Let

K1&2;e,S) = (T •- r1(4))
2 + (r - r 2

By the theory of symmetric functions, or for that matter by direct

computation, L^tPgjT,^) is a polynomial in (r,£)* Since it is

clearly homogeneous it is a quadratic form in (T,£);

Now choose a coordinate system such that

2 2
Q(T,5) = Vi + ...+ 77 , r <̂  n + 1.

It follows that, in this coordinate system
r

P (T, £) = *^L a .T?. .

Otherwise P would be non-zero at a point where P^ has a double

zero. Hence

|Px(r,4) I
2 < K L1(P2;r,O,

for some constant K. It then follows from the result of McCarthy

and Pederson [5] that P is hyperbolic. This completes the proofs.
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