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1. Introduction

I This paper concerns solutions of the non-linear hyper-

r •• bolic equation

Q (w )W = W. . . (1.1)
v v x xx tt

Using methods developed by Ludford [5], Zabusky [8] studied

this equation for Q having the special form

Q2(4) = (1 + €«),

[ and for the boundary conditions,

w(O,t) = w(L,t) = 0, • t > 0, (1.2)

w(x,0) = w Q(x), 0 < x < L, , (1.3)
'i - \
i
I

w. (x,0) = 0, 0 < x < L. (1.4)

Zabusky examined this problem as a model for a non-linear

[ string. . He observed that any solution must eventually break

down in the sense that some second derivative becomes infinite,

; This result as well as the techniques used to prove it, namely

, . the method of Riemann invariants, have analogs in Ludford!s

work [5] on the one-dimensional motion of a polytropic gas .t

! Using methods which differ from those of Ludford and
L. . _ • .

Zabusky, Lax [3] extended the breakdown result to a general

^During the process of revision our attention was called to
work of R. E. Meyer [6]. The class of equations considered
there does not include (1.1).
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positive function Q subject to the condition

|Q- (i) |> m > 0. (1.5)

Here we study (1.1) under the following assumptions on Q

and boundary conditions on w:

Q(£) > 0 and Q(0) = 1, (Q )

Q' U) $ 0 for £ ̂  0, (Q )

w(0,t) = w(L,t) = 0,

w(x,0) H0/w t(x,0) = w]L(x) , 0 < x < L. (1.6)

In order to simplify the calculations we impose convexity

conditions on w, (x) (see conditions on f(x) in Section 2) 3

but it is pointed out in Section 3 how our results can be

extended to broader classes of functions w,(x).

It is interesting to compare equation (1.1) with the usual

linear wave equation in which Q is a constant. In that case

the conditions (1.2), (1.3) and (1.4) correspond to a unique

solution existing for all time. This solution and its deriv-

atives up to any order k can be bounded in terms of bounds

for derivatives of w having corresponding order. Moreover

all solutions are periodic and possess a common period depend-

ing only on the constants Q and L. For the non-linear equa-

tion our results like those of Lax and Zabusky show that

global solutions for all x, 0 £ x £ L, almost never exist.

This of course eliminates the possibility of periodic solutions;



However certain boundedness results for the linear wave equa-

tion are maintained. It turns out that wherever the solution

exists w. is bounded by the same bound as for the linear case

(see (2.8a)), while w may or may not be bounded depending on
x

the nature of Q.

A physical application of (1.1) occurs in the theory of

one-dimensional motions of a gas in material coordinates. In

2

that theory Q is related to the sound speed and Laxfs

assumption (1.5) is satisfied. On the other hand the equation

also serves to describe one-dimensional motions in elasticity.

This is pointed out in [1] for shearing motions in general

incompressible isotropic simple elastic materials in finite

strain. Application to longitudinal vibrations in elastic

materials satisfying certain special constitutive assemptions

is discussed in [2] 3$ 97-98. In both of these applications

condition (1.5) is unsatisfactory, while (Q,) and (Q~) are

quite natural.

One purpose of this paper is to extend the Ludford-

Zabusky-Lax result to general Q»s satisfying (Q,) and (Q~) .

The techniques again involve Riemann invariants. In the course

of our study it was observed that there are certain differences

in behavior of solutions of (1.1) corresponding to differences

in the nature of Q. These differences concern the regions of

the x, t plane in which smooth solutions do exist, and a dis-

cussion of them forms the second aim of the paper.

The classical boundary value theory for equation (1.1) on



a strip establishes the existence of a solution for all x in

0 <. x <, L for some interval 0 < t <̂  T. For a given x, of

course, the solution may exist for a much longer time; the

results described here concern the time intervals of existence

for different x-values. It turns out that if Q satisfies'

appropriate conditions there can exist intervals of x in which

the solution must exist for all time even though it does

break down for some x-values outside these intervals•

The crucial condition on Q for existence of such x-intervals

is convergence of the integrals

oo -.OD

Jo Q(£)d£ = ax, JQ Q(4)d4 - -a2. (1.7)

Our methods yield initial data leading to x-intervals of global

existence only if either a, or a 2 is finite. A novel feature

of our theorems is that they establish existence in arbitrarily

large time intervals only for solutions w which have the

property that the values of w become unbounded. (Our conditions

on w.. (x) will exclude the solution w(x,t) H 0, for example) .

Our purpose in considering the initial conditions (1.6)

rather than those of Zabusky is as follows. The breakdown

result remains true if one retains (1.3) and replaces (1.4)

by the more general condition wt(x,0) = ŵ ^ (x) . Moreover, if

either a- or a is finite then infinite time intervals of

existence occur for large classes of initial data, cases in

which w,(x) s 0 being an exception. Hence Zabusky!s initial

conditions are special in this regard. We have adopted (1.6)



in order to illustrate the possibility of infinite intervals

of existence and still keep the computations simple.

2. Statement of results

For orientation we begin our discussion with some standard

facts about the method of Riemann invariants. Consider the hy-

perbolic quasi-linear system of two equationsy

L[U] = U t - A(U)Ux = 0, U = (u,v) . (2.1)

Suppose that U is a continuous function U = U(R) of R = (r,s) .

If the transformation U is one-to-one and has nonvanishing

Jacobian then it is possible to invert so as to obtain R = R(U)9

and by introducing R(x,t) = R(U(x,t)) we may write (2.1) in

the form

Rt - ̂ (R)RX = 0, (2,2a)

where

1 / r s \
A(R) = (VU)-X A(U(R))VU, VU = ( / xj ). (2.2b)
—- — — ^ \ v^ Vg /

ur us
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When U(R) is chosen so that A(R) is diagonal (this is always

possible after multiplication by integrating factors) then the

functions r,s are called Riemann invariants.

The method of Riemann invariants consists in interchanging

the roles of R and X =(x,t) in (2.2)• This means we assume

that R=R(X) is one-to-one and has nonvanishing Jacobian. Then

X= X(R) and (2.2) becomes

x r + d 2t r = 0, x s + d 1t s = 0, (2.3a)

with

di

i ( R ) = ( 1 d2
o

)$ dl ^ d2- (2'3b)

In (2.3) d, and d2 are functions of r and s so that

these equations are linear.

The idea now is to solve (2.3) for X = X (R) 9 invert to

obtain R = R(X) and then obtain a solution of (2.1) by means

of the formula

U(X) = g(R{X)) . , (2.4)

The following well known and easily proved result shows the

sense in which this is a valid procedure / Note that "region11

always means open region.

Lemma 1_# Let X(R) denote <a solution of (2.3) . If Q' is a

region of the R plane in which the mapping X = X(R) is_ one-to-

one onto a region $ and J (X) = det V X j4 0, then (2.4) yields
• — — — — — — ~ — — — j^ '•

â  solution of (2.1) on & .



We emphasize here that the theorem requires both that the

| mapping be globally one-to-one and that J ^ 0. The latter

condition yields only local invertibility. It is the global

1 property which is hard to prove in general. Observe that

equations (2.2), (2.3) and the transformation formulas

t dx - x dt -t dx + x dt
I d r ^ ~ j S , ds = —E j r , (2,5)

yield immediately the following relations:

J = (dx - d2)trts, (2.6a)

j = det(VxR(x)) = J-
1 = (d2 - dx)rxsx. (2.6b)

These formulas yield immediately the following supplementary

result.

Lemma 2_. Let X(R) and 0' satisfy the conditions of Lemma J^

and assume in addition that X = X(R) is continuous on fif . Then

if t or t approaches 0 as R->R^eS^!, the function U(X) defined

by (2.4) satisfies u (X(R))—^oo. or v (X(R))~->oo ^s R ~vR .

In order to apply these lemmas we must translate boundary

and initial conditions on U as a function of X into con-

ditions on X as a function of R. The resulting linear prob-

lem for X(R) is then solved in a portion Cl of the R plane.

For that part of £2 for which X(R) ' is one-to-one and J ^ O

we then obtain a solution of (2.1).
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It turns out in the problems we consider that the non-

vanishing of J is sufficient to guarantee that X(R) is

globally one-to-one. Thus, by (2.3a) and (2.6a) we can obtain

existence theorems for (2.1) by solving linear equations for

X(R) and showing that the derivatives t and t do not
r s

change sign. Note that the domains of existence one obtains

are automatically determined by the linear problem for X(R).

Let 0> be the image of the U-plane under the mapping

R = R;(U) , and let Q be the sub-region in which X(R) is

determined. The initial curves on which the data for X(R)

are given will of course be in O . . in the problems we con-

sider these initial curves are of finite length and consequent-

ly Cl will be bounded. There are then two possibilities.

First Cl c Cl in which case one gets bounds for U simply

in terms of the size of Om The other case, however, is that

O H 9 O may be non-empty. Then it will follow that U can

become arbitrarily large in its domain of existence. This

latter case corresponds to a.̂  < oo or a 2 < co in (1.7) .

We remark that when a.. = co and a^ = <n>, as is the case in

gas dynamites problems, Q is all of the R-plane so that if

one starts with finite data then U always possesses d

priori bounds•

We now state our problem precisely. We formulate it as a

system for w '" = u, w. = v. We seek a solution U(x,t) =

(u(x,t), v(x,t)) of the equation
U. - A(U)U = 0 (E)



when

r

.(U) = (

Qz(u)

where Q* satisfies conditions (Q.,) and (Q2) of Section 1. • U

is to satisfy the conditions,

v(O,t) = v(L,t) = 0,

u(x,O) = 0,

v(x,O) = f(x),

t >. o;

0 < x < L,

0 < x < L .

(A)

(B)

(C)

It is easy to see that this is equivalent to (1.1) and (1.6),

Concerning f(x) we assume that it is twice differentiable

and concave and vanishes at x = 0 and x = L. Under these

conditions it will have a unique maximum value a > 0 at some

point b in (0,L). Some remarks on more general boundary

conditions are contained in Section 3.

Let X(R) be a solution of (2.3) in a region O. We

denote by D(X,O) the subregion of > & in which J(X) ^ 0

and by S(X,Q) the image of D(X,X2) under X. U(X,fy denotes

the function (2.4) . Our results can be now stated with ref-

erence to the figures below. The situations mentioned in

the introduction can be dealt with as three separate cases.

Case 1. a < min (a,.ao) < oo.

M B

A,
0

B,

Figure 1. C-V«) [ fe,
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Theorem JU X£ Q and f satisfy the conditions of Case 1̂

there exist functions X and X., i = 19 2 defined on O such

that:

(1) S (X. , O) contains some triangle of the form T? oj£ Figure

and the associated mapping is one-to-one.

(2) S (X ,fy contains some region of the form B,BB2F cxf Figure 1

(3) The function U defined by

(U?(X) in T^ i = 1,2.
U(X) = 1 X X

(^ in B

is â  smooth solution of (E) satisfying (A) 9 (B) , (C) .

Remark 1. The curves separating the T. from D are charac-

teristics of (E) which are images under an X? of one of the

sides of Cl9

Remark 2. As we have indicated before, we obtain bounds for

the solutions immediately. For equation (E) the Riemann invar

iants are

u

s = v -M(u), M(u) = Jo Q(£)d£. (2.7)

Since by Figure 1 |r| < a and |s| < a we have then

|v| < a, |u| < m(a), (2.8a)

where m(a) i s defined by

m (a)

J QU)d£ = a (2.8b)
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Remark 3. It can happen that D (X ,0) = Cis S(X ,fl) = D and

that the mapping £2-*D is one-to-one. Then of course the

solution U is extended to all of D . One can then proceed to

T. in a fairly obvious fashion (see Section 5). The process

can be continued to D ,T.,... until some second derivative

becomes infinite. The linear problems to be solved to obtain

these successive continuations are all in the same square O

so that the bounds (2.8) obtain as long as the solution exists.

The interesting fact is that one need not actually solve any

further problems. All the remaining solutions, which we

denote here by X 2 n + 1 and X 2 n i = 1,2, can be .obtained

from the functions X? and X1. This is the content of the

next theorem and is our statement of the idea of Ludford and

Zabusky.

Theorem^ 2̂ . Under the hypotheses of Theorem 1 there exist

linear combinations ^(R) , *' (R) and $1 (R) , i = 1,2 , of

the functions X?(R), X1(R) and X1(R*) [R* = (-s, -r)],

such that the successive solutions X 2 n + 1 (R) X 2 n (R) of ."

(2.3) cm O can be expressed in the form

X 2 n + 1 = n# + *', X2n = n# + *[, n = 1,2.. . (2.9)

The crucial fact about the representation (2.9) is the fol-

lowing:

Leimnâ  3̂ . The function det V ^ changes sign in O.

It follows from Lemma 3 that det V X n must change

sign in M for n sufficiently large. Hence it is 0 some-

place in O and by Lemma 2 the solution must break down. This

yields
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Theorem 3. Ij: Q and f satisfy the conditions for

Case 1 some second derivative of the solution must eventually

become infinite.

Case 2. a > max(a, .ao)
• 1 JL

Note that in this case the image O of the U plane is the

infinite strip -2a < f-s < 2a,.

0 H

Figure 2.

Theorem 4^ Ijf Q and f satisfy the conditions for Case 2

there exist functions X? defined on (I and X defined on

a subset of O such that the conclusions of Theorems 1

and 3 remain true. The curves BB,, BB2 bounding T^ and

T^ tend asymptotically to lines x = OL and x = j8, where

G < a < /* < L.

Remark 4. Observe that here we obtain global existence (i.e.

for all time) in the intervals [0^] and [£,L] .

Remark 5. Note by (2.7) and Figure 2 that the first inequality

in (2.8a) continues to hold. However the second inequality is

now meaningless, and indeed we shall find that u is unbounded

in T? 9 i=l,2. On the other hand for each r e(O,GrJ u is
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bounded in the truncated triangles. T? fl (t < T ) , i=l,2

Case 3, min (aTja2) ~
 a £. m a x (ai*a2^ *

For this case the geometrical situation is intermediate

between those depicted in Figures 1 and 2. When the right hand

inequality is strict one of the tiangles T? is bounded, the

other is unbounded. Thus global existence of U is obtained only

in one interval (which is a degenerate one if equality holds on

the left). When equality holds on the right, both of the tri-

angles T. are unbounded, but global existence still obtains in

at most one nondegenerate interval. For brevity we will not in-

dulge in a detailed analysis of Case 3.

3• The linear problems.

In this section we formulate the linear problems for X(R)

in the R-plane. This neans first the translation of conditions

(A), (B) , (C) into conditons on X. For the special choice

of A(U) occuring in (E) equations (3.2) become

x r - qtr = 0, x s + qts = 0 q « Q ( M T 1 ( ^ )) , (3.1)

with M(u) being defined as in (2.7) . If we eliminate x from

these equations we find,

t r 8 « P(r - s) (tr - t g ) , (3.2)

where p(£) = Q» (M"1 (4/2) )/4q2 (4) . Note that conditions (Q^
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and (Q2) yield

p(£) £ 0 for £ £ 0. (3.3)

Equations (2.2) become in the present case,

= 0 , st + Qsx = 0. (3.4)

Condition (B) states that t = 0 corresponds to u = 0

or r = s. Hence

tr(r,r) + tg(r,r) = 0 (3.5)

In addition x = x(r,s) hence by (C)

1 = xrrx + xgsx = f< (x) (xr + xg) on r = s (3.6)

Now q = Q(0) = 1 on r = s hence by (3.1) and (3.6)

1 = f i (x) (t - t ) on r = s (3.7)

Again we have v = r = f (x) on r = s. Here we must use our

assumptions on f(x) for we wish to invert this equation. Let

us denote the ascending and descending portions of the concave

function f (x) by <p, (x) and <P2 ̂ respectively. Thus

f (x) = ̂ (x) 0 < x < b, <pj(x) > 0 0 < x < b, <p|(b) = 0

f (x) = <P2(x) b < x < L, <p2(x) < L b < x < L, 9^ (b) = 0

(f2).
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Now, corresponding to the interval A,B of Figure 1 we have

by (fx),

x(r,r) =<p[1(r), 0 < r < a. • (3.8)

Then by (3.1), (3.5) and (3.7)

tr(r,r) = -:ts(r,r). = \ [<p[(x(r) fl"
1 = \(<P£X (r)) ', 0 < r < a.

(3.9)

On the interval BA~ we have

x ( r , r ) = ip~^ ( r ) , . 0 < r < a , (3.10)

and

t r ( r , r ) = - t s (r ,r) = iftp"1 (r)) ! , 0 < r < a. { (3.11)

Consider now the first of conditions (A). Here v = 0 so

that the image of x = 0 is r = -s, Thus x(r,-r) = 0 or

x (r, -r). - x^ (r, -r) = 0. Hence by (3.1)
r s • • . •

tr(r,-r) + tg(r,-r) = 0 . (3.12)

The second of conditions (A) yields the same condition for t.

Observe that conditions (3.9) imply that t > 0, t < 0
r s

while in (3.11) the signs are reversed. We wish t to increase

as we move into the R region in which (3.2) is to be solved.
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Figure 3 •

What suggests itself for Case 1 is the following. We determine

t°(r,s) as a solution of (3.2) in CL = OBB.. with (3.9) on OB

and (3.12) on t°(r,s) is a solution of (3.2) in = 0BB

with (3.11) on OB and (3.12) on 0B~. The images of the regions

will then be T?.
X 1

The fact that q is a function only of r-s means that

the equation (3.2) remains invariant under the change

(r,s)—>(-s,-r) . Hence each of the above problems can be ex-

tended to a doubled triangle 0. . Define functions $. (r) on

-a < r <̂  a by

^1(~r)= - ^ ( r ) , 4>2(-r)=2L-$2(r), *± (r) ~ (pT1 (r) ,0 < r < a,

Then the above problems for t. are equivalent to the following:

= p(r - s) (t° „ - t? J in O, = B'BB,, (3.13)t?

= &. (r) on B B. (3.14)

Remark 6. For future reference we observe that the tY can be

extended to the reflection of f2. in r = s by simply solving

the initial-value problem (3.13), (3.14) for (r,s) on the

opposite side of r = s.
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Once the t values are determined the x values can be

found from (3.1), (3.8) and (3.10). The appropriate equations

are, s

x°(r,s) = 2*. (r) - J q(r - s')t? (r,s')ds', i=l,2. (3.15)
• • 4.

Case 2 is treated in the same way except that the appro-

priate regions in the R plane are trapezoids instead of triangles

as indicated in Figure 2.

In order to obtain next the solution t (r,s) corresponding

to D we solve a characteristic initial-value problem for (3.2)

We take as data for t the values of t, on r = a and the

values of t? on s = a. Here we must distinguish between the

two cases. In Case 1, t.. is obtained in all of the region Q

of Figure 1 with • ,

t1(a,s) = t°(a,s) , -a < s < +a

(3.16)

t^r^a) =t|(r,a), -a < r < +a

In Case 2> t is obtained in the sub-rectangle £1 s r > a - 2a2,

s > a - 2a1 of Q (see Figure 2) and (3.16) holds on

a - 2a, < s < a, a - 2a? < r < a respectively. The function*

x is obtained again from (3.1) this time in the form

s

x1(r,s) = x^drja) - Jaq(r-.s0t^ (r,s')ds«. (3.17)

The solutions corresponding to the succeeding regions

T^n and D n + in Case 1 (there are none for Case 2) are obtained

by essentially the same processes. For the t.n we match the

t values on one characteristic edge of £2 to those assumed
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by t (obtained in the preceding step) , and use con-

ditions (A) to obtain (3.12) on r = -s. The solutions t.

will alternately be obtained in 0~ = B,B!B0 and ClA = B,BBO

(see Figure 3) . For the t n we match t values with

t, on one characteristic side of Qs and with t^n on another

characteristic side of SI.

We end this section with some comments concerning the

solution of (E) for more general initial functions than we

have specified.

Remark 7. Suppose that u(x.O) = 0 but that the initial

function v(x,O) has several maxima and minima at, say,

Xp,,., x . Then one can simply solve the problem in sections

as indicated in Figure 4. The linear problem corresponding to
t

Figure 4.

T? will be exactly as above. The problems corresponding to

T^, T^, ... will be of the same type except that the data on

r = s will not be antisymmetric with respect to r = 0 . The

1 2

linear problems for D , D ,... will be characteristic prob-

lems in rectangles with data taken from pairs of the triangles

T £ . The continuations to T^, D114"1, D n + 2, . . . are then dealt

with in a strictly analogous way.
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Remark 8. If both u and v are initially non-zero the general

procedure is the same as that given in the present section

except that the initial curves in the r,s plane are not straight

lines. We shall not pursue this situation here, but it is

possible to obtain results analogous to those we have given.

Remark 9. We want to comment on the special conditions of

Zabusky and Lax, that is,

u(x,O) = f(x), v(x,O) = 0. (3.20)

This problem must be handled somewhat differently since we note

that the image of the line t = 0 in the R-plane is r = -s,

which is the same as the image of x = 0 or x = L where

v s 0 also. Assume again that f (x) has a single maximum

at x = b. Then the appropriate procedure is as indicated in

Figure 5. The solutions in T, and T~ are obtained first by

Figure 5.

B

solving initial-value problems in 0BB4 and OBB» respectively

with data given along OB. B is the point (r,-r) where

r = J (3.21)
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The solutions in D and T. are then obtained in the same

1 ?
way as those in D and Tf in our problem.

The interesting difference between our problem and that of

Zabusky is that in the latter problem. Case 2 does not lead

to unbounded solutions. Indeed observe that in Case 2

r < a., by (3.21). Hence the triangles OBB' and OBB*

lie entirely within -2a2 < f-s < 2a.. that is within O so

that both u and v have a priori bounds. A consequence of

these bounds is of course that the t(r,s) values remain

bounded, so that one cannot infer the existence of a solution

for all time for any interval of x.

4. Existence of Solutions in T. and D

We consider the function t° which in Case 1 satisfies (3.13)

and (3.14) on the triangular region O, = B!BB, (Figure 3), or

in Case 2 satisfies these equations on the trapezoidal region

B'BB.^ (Figure 6)

B

B/

Figure 6.
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That such a function exists and is uniquely determined is a

standard result. We proceed to show that the function x°(r,s)

defined by (3.15) satisfies (3.1). From (3.15) it follows

directly that (3.1b) holds: •

Note moreover that

s
xl,r = 2*l(r) + t^8(r,r) - J (q(r-s«) t^ g (r,s ')) rds < .

(4.1)

By (3.14)

t^s(r,r) = - ^ (r), (4.2)

while (3.2) may be wirtten in the form

° ° r) s. (4.3)

Using (4.2) and (4.3) we may simplify (4.1) to

s . .. .
xl,r - l r + J^ q r-s ) t ^ r r,s )gfdst

(4.4)

= q(r-s) t° (r,s) ,

which is (3.1a). Therefore since (3.8) and (3.9) clearly hold,

the functions (x°,t°) as defined in (3.13), (3.14), and (3.15)

constitute X,. Moreover, as was observed earlier t?(r,s)

and hence x,(r,s) may be extended to all of £2 by solving

(3.13), (3.14) for (r,s) on the opposite side of r = s and

applying (3,15).
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Now let ft. denote the part of fi, lying in r + s > 0.

We ,,0want to show that D(X1^ fi^) = Q^. T^ will then denote

.othe image under X, of ft,.

Lemma 4. Let k = min $., (a) on -a < a < a. Then in (I,
^*#AArww*> Y/vv,* ™ ' ' X • ••— — • — — — — — — •, ..• . . j^ ̂

O ^ O *̂ /O O\

We recall that (p- (x) is concave so that k is positive,

We integrate (3.13) first with respect to s and then with

respect to r and we obtain,

P(r-y) (t^r(r,y) - t^s(r,y))dy, (4.6)

s

s(r, p(x-s) (t° r(x,s) - t° s(x,s))dx. (4.7)

Note that p (r - y) and p (x - s) are negative in £2 and

$ (r) is a positive even function. Hence, by successive approxi

mations, t^ > 0 and t?" < 0. •

l,r l,s

Next we observe from (2.7) and the definition of p that

- s)

We denote t^ - t^ by P(r,s). Then if we subtract (4.7)
i f r 1 9 s

from (4.6) we find,

r-s

P(r,s)> (^(r) + *|(s)) - |

+ P(z+s,s))dz. (4.8)
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Once more we apply successive approximations. We set

P° (r, s) = *£ (r) + *| (s) ,

and we verify by induction that

n

Pn(r,s) > k £ (-1)̂  (log qfr-s))^.
j=0 jl

The assertion is true for n = 0. Assume it is true for n.

Then
n_ . •*• r-s

Pn+I(r,s) > k -k 2, -Hfc- i di" log q(z) Clog q(z))jdz
j=0 ° •

>

n+1

j=0

On the other hand it is easy to see by a standard successive

approximations analysis that the sequence P (r,s) converges

uniformly to some function P(r,s) which thereby is the unique

solution of (4.8). Hence we conclude that

P > ke- l o g q = k/q,

and this proves the last estimate of (4.5) .

Lemma 4 and equation (2.6a) show that indeed ;D(X^,flL) = Ci.

and we proceed to the verification that S(X°/flL) = T?. As a

first step we prove that t?(r,s) is positive in Q.. We integrate

(4.2), taking t. (r,r) to be zero and using (4.6) . This yields,
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r x
J J p(x - y)P(x,y)dy dx
s s

r x

k J J P[* -_ y] dy dx (4.9a)
s s

kJ(r -s),

where

z

J(z) = -z + J-T^T = -z + 2u(z) . (4.9b)

The second equality in (4.9b) follows from the fact that by

(2.7)

du(r - s) = 1_
d(r - s) 2q '

Note that J* (2) = -1 + q(z) "1 > O and J(O) = 0 . Hence J(2) > 0

for 2 > O. Thus

tj(r,s) > ^(r) - ̂ (s) for r > s. (4.10)

Since $,(r) is increasing it follows that t. > 0 in H.

hence certainly in O,.

Lemma 4 and equations (3.1) show that

x° ,. > 0, x? o > 0 in O! . (4.11)
1 j r 1 j s JL
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We recall that t, (r^s) was so constructed as to satisfy

t°(r,s) =

that is t° (r,-r) + t° (r, -r) = O. Hence by (3.1)
, x , r x, s

(4.12)

x° _(r,-r) - x? (r,-r) == 0. (4.13)

It follows that x?(r,-r) is constant and since x, (r,r) = 2$(r)

we have x?(0,0) = 0 and hence x°(r,-r) = 0 . But then by

(4.11) x? + x? > 0 hence x°(r,s) > 0 in a! .

We can now construct T,. In Case 1 T, is the region

in the X plane bounded by the images of OB, OB, and BB,

of Figure 3. Note that the image BB2 of BB, is a character-

istic of (2.1) and hence satisfies

dx = g(u) .
dt

Since u decreases as we move down along BB, the curve BB,

in the x - t plane is convex upward as shown in Figure 1

and A,BB,A, forms a closed curve. Then the remarks of the pre-

ceding paragraphs show that S(X° U.) <- TS* and by construction,

the boundary of O, is mapped onto the boundary of T, .

We observe next that the mapping from flL to S(X?,Oj) is

one-to-one. Consider two points P and Q in fiL say in the

position below.

Figure 7.
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We use the relations (4.5) and (4.11). Along PR and along

RQ t increases hence t > t . Similar considerations hold

for other configurations and one proves (x ,t ) = (x ,t )

only if P = Q. Thus S(X° flL) = T° and the mapping is

one-to-one.

In Case 2 we need a slight modification. The region £1

is now the trapezoid BOB,tfB^ of Figure 6. We deduce, just as

before, that the mapping X°: *ij—*S (X^,4^) is one-to-one. We

prove that t°—»oo as R~>R where R is on B,B" . Asr 1 o o 1 1

R—*R we have r - s-*2a hence u—*oo and hence by (4.9)

t.—»oo. We now define T° as the region in the X-plane

bounded by the images of OB, BB, and OB^ under X°.

Observe that Lemma 4 and (3.1) show that

xr + xs = q(tr - ts) in

Since x = 0 on OBl* it follows that along any segment starting

on OB" and drawn parallel to OB x must increase from 0 to

at least k (a - a,) on B,E1 . Thus x values in B.,E,B must be

greater than k (a - a,) . In particular if a = x(B,) we must

have tt > k (a - a,) . We already know that t—KX> as R—»B,

along BB., hence the image of BB^ is the characteristic B B,

of Figure 2. Consider the curves x(r,s) = c for c < k(a-a..) .

These lie in the rectangle 0B1 B1E1. They start on 0E1 and end

on Bl'B, and as R-^BVB, along them t—*ca>. Hence T, contains

at least the infinite strip 0 < x < kfa-a^ , 0 < t < oo . Hence

we obtain T^ as in Figure 2 with a > k(a - a^ .
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We know now that the mapping X, is one-to-one hence we

can define its inverse R(X°) and form U° (X) = IZ(R(X)) .

By Lemma 1 this satisfies equation (2.1) • On t = 0 we have

r = s, hence u = 0. Moreover for 0 < x < b,

v(x,O) = r(x,O) = <&~ (x) = ̂ ( x ) .

On x = 0 we have . r = -s and hence v = 0. Thus U° is the

desired solution in T- .

The proof for T^ proceeds in exactly the same way and

we omit the details. The only change is that Lemma 4 becomes

t° ̂ (r.s) < 0, t° AT,B) > 0. (4.14)

Remark 10. If the function Q(£) happens to be even the

solution in T« can be determined from that in T, by the

following simple procedure. Let t, (r,s;<i>, (•)) denote the

solution t (r,s) in Jl as a functional of $.,. Then in 02,

the reflection of flL across r = s, one finds

t^(r,s) = t°(B,r{¥2(.)), ¥2(r) = L - <S>2 (r) .

The proof of the first part of Theorems 1 and 4 is now

complete. Moreover we have shown that in Case 2 U is indeed

unbounded on T?, i = 1,2. Next let us complete the justifi-

cation of Remark 5 by verifying that u is bounded in each

truncated triangle T? H(t < T ) . For brevity we again give

an explicit analysis only for T?. Here u >_ 0 by (2.7)
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while by (4.9) the condition u > m is seen to comply that

o
t± > k(-2a1 + 2m) .

It follows that in T°n(t < T) the solution satisfies

0 < u < â ^ + ^ •

Let t (r,s) denote the solution of (3.2) satisfying

(3.16) in fi (or Cl in Case 2) . If we could show that t

and t 3o not change sign we would have an existence theorems

for D • It can be shown by examples that these derivatives

can change sign in Cl hence the best that can be obtained in

general is an existence theorem in the subregions of D of

Figures 1 and 2.

Lemma 5 There exists a neiahborhood of r = a and s = a

In whiflh tj; < o, tl < o.

Observe first that (4.5) and (4.14) yield tjl(r,a) =t° (r,a)<0

and t (a,s) = t^ (a,s) < 0, t and t become infinites x ̂ s r s

near r = a and s = a respectively, and we must study this

behavior. First consider the t?. If we apply Riemann's

method we obtain using (B) and (3.9) ,

'f
r

t£(r,s) =J R(r',r',r,s)^(r')dr',

(r • ,r • ,r,s) $[ (r •) dr'

* This always happens on Cl in Case 2 as is shown in Section 6.
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r

X • S J. v o X

(4.15)

where R is the Riemann function. It is easy to see that
t t •

R(s,s,r,s) > 0. Note that <$>(r)—fco as r—>a since <p-(x)—^0

as x—*b. However, since $, (a) exists the singularity must

be integrable. Hence the integral term in (4.15) has a limit

as r—>a and we deduce that tn (a,s)~>- oo as s-*a.
1 <f S

Similarly t^ (r,a)-T*-oo as r^a.

Now apply RiemannT s method to t . One finds

t (r,s) = R(a,s,r,s) t^(a,s) + R(r,a,r,s)t^ (r,a) + ..,, (4f16)

where the dots indicate integrals over t, (a,s) and t^r^a).

Hence

t (r,s)-^~ QD as r—^a and t (r,s)—>-oo as s—>a.

Lemma 5 now follows from the continuity of t and t .

It is easy to verify as in a previous calculation that x

as defined by (3.17) satisfies (3.1). Recall that x is chosen

so that x (r,a) = x^(r^a) . But by (3.1)

x(a,s) = -q(a-s)'t (a,s) = -q (a-s) t^ (a,s) = x^ (a,s) ,

and x (a,a) = x,(a,a) = b hence also x (a,s) = x, (a,s) . This

shows that the geometry in the X plane is as shown in Figures

1 and 2.

We set now U =^(R(X)) in the region in which X is

one-to-one. It is easy to see that U = U? or U = U^ on

See Section 6.
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the appropriate boundaries. It is also true that the derivatives

of U match those of U° or U?,. Observe that derivatives of

U can be expressed in terms of derivatives of X. For example

note that by (2.5) and (2.6)

rx = J~\> sx = -J'\'

Hence by (2.7) and (3.1)

2vx= rx + sx= (ts - V ^ V s -

On r = a we have t, = t • On the other hand by our anal-ly s s J

ysis of (4.15) and (4.16) it follows that

v ->-l/2qt as r-*a.

This result holds for both v.. and v and the corresponding

t values are the same, consequently the v values agree,s x

Similar facts hold for all the derivatives. This completes

the proofs of Theorems 1 and 4.

5. The recursion formulas:

In Case 1 the problems for the t?n and t 2 n + 1 for n >. 1

were described in Section 3. Explicitly, the conditions to be

satisfied are

t2n(r,(-l)na) ^ ^ ( ^ ( - D ^ ^ t ^ ^ - r ) + t
2*s(r,-r) = 0 ,

(5.1)

tf((-l)na,s) = t2n-1((-l)na,s),t2nr(r,-r) + t2
n
s(r,.r) =0,

(5.2)

t2n+1((-l)na,s) = t2n((-l)na,s), t2n+1(r,(-l)na) = t2n (r, (-1) na) .

(5.3)
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! Lemma 6. The t functions satisfy the following recursion

( formulas:

tf (r,s) = t2*"1^) + t^C-s^r) - tf-2(r,s),
( . (5.4)

t2n+3r(r,s) = t2n(r,s) + t2n(r,s) - t2""1 (r,s) , n > 1.
f- • -1 • . .

The right sides of equations (5.4) are solutions of (3.2}.
f- -

[ Hence by the uniqueness theorems for (3.2) we need only verify

p that these functions satisfy (5.1)-(5.3) and this is easily done

by induction.

f .
>{ Lemma 7. The x functions satisfy the formulas:

xfOr.s) ̂ x211-1^^) - x^^t-sj-r) - x2n.-2 (r,s) ,

|, x2n(r,s) =x 2 n^(r,s) - x211"1 (-s, -r) - x 2 n" 2 (r,s) + '2L, (5.5)

| - x2n+1(r,s) = x2n(r,s) +x2n(r,s) - xf11""1 (x, s) , n > 1.

I These formulas may be proved as follows. One verifies by

induction that equations (3.1) are satisfied and that the values

match on the appropriate sides. We omit the details.

.The recursion formulas (5.4) and (5.5) can be solved for

L all the t»s and x!s in terms of t. and t or x? and x 3

f respectively. This in turn produces a formula for the solu-

tions U in terms of U. and U . We write down the formula

I for the t*s since we shall use it in the next section. The
i. •

other formulas are similar.
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Lemma 8. Set

*<r,s) - t^r^s) + tVa^-r) - t£(r,s) - t°(r,s).

Then for n > 1

2n+l 't (-s,-r) n odd
t'^tr.B) = n*(r,s) +. ,. ,.

,t (r,s) n even,

ft°(r,s) n odd
:^n(r,s) = n*(rjS) +j

 2 (5.7)
,(r,s) n even,

it?(r,s) n odd
,s) = n*(r,s) +] 1 (5.8)

^tr^s) n even.

These formulas can be verified by induction. We give a

typical calculation. Suppose (5.7) and (5.8) are true for

n s 2k and (5.6) for 2k - 1. Then by (5.4)

t
4k+1=2k#(r,s) +tj (r, s) +2k*(r, s) +t° (r,s) - (2k-l) *(r, s) -t1 (-s, -r)

= (2k+l) *(r,s)+tJ(r,s)+t^(r,s>-t1(.8|-r)-t
1(r,s)+tX (r,s)

which is (5.6).

These x and t functions will produce solutions U .

T In this formula the functions t$(r,s) are to be considered
as defined in all of ft. We indicated in Remark 6 that the t9
could in fact be extended to all of ft.



33

and U n in the x-t plane. One can verify as in earlier

calculations that the various triangles fit together as shown

in Figure 1. Moreover, as long as no r or s derivative of

the t functions is 0 the mappings are one-to-one and one

obtains the existence of a solution in the X-plane. Thus one

could calculate the position of the breakdown in terms of

solutions of linear problems.

6• Non-existence theorems:

In this section we prove Theorem 3 and its analog in

Case 2. These state that the solution must ultimately break

down. Consider Case 2. Here the proof is quite simple. Recall

that t (r,s) is a solution of a characteristic initial-value

problem in the rectangle O = EB^BB, of Figure 8 below. The

lines BB- and EB., are r = a and

V

I
I

f
i

i..

....

-

B

B'4. f

/ i SI
i

' i

B«

Figure 8

s = a - 2a, respectively. Suppose now that t and

not change sign in the rectangle. Then in particular

on EB, since we proved that it was negative near BB

Consequently if rl! > r1 we have

t (rf,a-2a..) > t (r!f
4a-2a1).

t2 dos

t r < 0

2 and BB. .
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But from (4.16) t (r» ' ,a-2a1)—>+ oo as r! <—*a and hence

t (r,a-2a..) = +00 which violates (4.16).

The proof in Case 1 is much more complicated. We indicated

in Section 2 that the essential step is the proof of Lemma 3.

What we are going to show precisely is that

*r(a,-a) > 0, *r(-a,a) < 0. (6.1)

It follows that ^ changes sign in Q and hence by formulas

(5.6)- (5.8) t n changes sign for n sufficiently large.

Then by (2.6a) J will change sign.

The proof of formulas (6.1) requires a rather careful study

of the representation of the solutions in terms of the

Riemann function. The Riemann function R(r,Sjr!,sf) is a solu-

tion of the equation adjoint to (3.2) as a function of (r,s) .

As a function of the variables (r!,sf) it is the solution of the

following characteristic initial-value problem:

R£'s< = P ( r f ~ st)(Rr« " R s » ^ (6'2)

R f + pR = 0 on s» = s, (6.3)

R - pR = 0 on rf = r, (6.4)
s

R(r,s,r,s) = 1. (6.5)

9. The Riemann function for (E) satisfies

Rr,(s,8,r',s') > 0, Rg,(s,s,r',8') < 0 in r' > s > s',

Rr,(s,s,r',s») < 0, Rs,(s,s/r',s') > 0 in r' < s < s'.
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We prove this lemma in the same way as Lemma 4. From (6.3)-

(6.5) we deduce that R (s,s,r',s) > 0 and R ,(s,s,s,s') < 0.

Equation (6.2) yields*

s

R (s,s-,r',s ) = Rr, (s,s,r',s) -J P (r» -y) (Rr, (s, s, r' ,y) -
s'

- Rgt (s,s,r» ,y))dy,

r'

R (s,s,r',si) = Rfll (s,s,s,s») + J P(x-s')-(Rr, (s,s,x,s') -
s

- R • (s.s^x^s1) )dx,
s

The first part of Lenmia 9 follows then by successive approxi-

mations and the second.part by a similar calculation.

The Riemann representations for t. and t are

s!

tj(rss') = - J R(s,s,r',s<)$i(s)ds, . (6.6)

t^r^s') = R(a,s«,r',s)tJ(a,s«) + R(r !,af!,s ») t| (r t ,a)

a

+ J (Rs(a,s,r',s') + p(a-s) R(a,s,r»,s»)) tj (a,s) ds
s ?
a

+ J (Rr(r,a,r»,s») - p(r-a)R(r,a,r»,s»))t^(r,a)dr. (6.7)

r
I We have

s'
ti,r'(r''s') ^(r'jr'.r^s')*.^') - J r , Rr, (s,s,r« ,s') *± (s) ds,

(6.8)
s'

ti,s' ( r' j S' ) = -R(s',s',r',s')4!(s') -J Rg , (s,s,r • ,s«) $[ (s) ds,
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and

2 r(r«,a)

R(a,-r«,-s',-r')tJ (a,
(6.9)

The dots ;Ln (6.9) indicate terms which remain bounded as r'—>a.

Now we are ready to calculate the function

*r,(r',s') = t^(r',s')-t^(-s',-r') - t ^ r , (r' ,s«) - t ^ r , (r« ,s«) ,

(6.10)

at the point (-a,a) . Note first that (6.8) and (6.9) lead to

the following decomposition

tf.t(r',s') = R(r',a,r',s«)R(r«,r«,r',a)*2(r«)

- R(r«,r«,r«,s')*[(r') - R(r« ,r«,r« ,s') *2 (r') + ...,

(6.11)

where the dots again indicate regular terms. Now from (6.3) -

(6.5) we have
s'

(r',s,r«,s') = exp ( J p(r'-T)dT),

r
R(r,s<,r',B') = exp { J p(T-s')dr).

r'r'

It follows that the coeffincients of <^(r») and $2(r') in (6.11)

]



37

each sum to zero so that there are no singular terms as r'—>a.

i On writing out all regular terms in (6.10) we obtain

* ,(-a,a) = R(-a,a,-a,a)t? (-a,a) + (R +R (-a,a, -a,a)) t°(-a,a)

\ + Rr, (a,a,-a,a) t°(a,a)

i - (R_(-a,a,-a,a) - p (-2a) R(-a,a, -a,a)) t° (-a,a)

I r l

a

I + J (Rrr» (
r*a,-a,a)-p(r-a)Rr, (r,a,-a,a))t2(r,a)dr

(a,a) + (R +R (a,a,-a,a))t°(a,a) (6.12)
o o o JL

Rg, (-a,a,-a,a) t°(-a,a)

(Rg(a,a,-a,a) + p(2a) R(a,a, -a,a)) tj (a,a)

where the bars over to and t1 indicate that the singular
/., r x^s

i
terms + R$. are to be deleted.

The first integral in (6.12) is zero since as a function

of r and s, R satisfies.;

Rr(r,a,r',a) - p (r-a) R(r,a,r J,a) = 0 .

Moreover t.(a,a) = 0 , We substitute the expressions for t? ,
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t^ 9 deleting the singular terms and obtain,

a

* ,(-a,a) = Rc,(-a,a^aia)t^(-a,a)+J R (s,s, -a,a) §\ (s) ds
r s /. ia r -L

V>C

(6.13)

t(r,a,-a,a) - p(r - a) R (r,a, ~a,a))t° (r,a) dr,

Now it is easily deduced from the ordinary differential

equation (6.3) that

Rr(rJsir«Js) - p(r - s) R(r5s,r',s) = 0

Differentiating this identity with respect to s and setting

s = a, r! = -a we find that

R < t (rjaj-aja) - p(r - a) R f(r,a,-a,a) = -R (r,a,-a,a)-

- pf.(r - a) R(r,ai-aia) + p(r - a) Rg (r,a, -a,a) . (6.14)

Now recall that in r and s R satisfies the equation adjoint

to (3.2) that is,

•R- '+ (P(r - s)R) - (p(r - s)R) • = 0 .
is i. o

Hence (6.14) yields

R (r,a,-a,a) - p (r - a) Rgl (r,a, -a,a) = (p(r - a) R(r,a, -a,a)) r

Note also that by (6.5) and the differential equation (6.4) one

finds

R(-a,a,-a,a) = -P(-2a)
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Thus (6.13) becomes

a

*r,(-a,a) = - p(-2a)t°(-a,a) + J Rr, (s,s,-a,a) ̂ (s) ds

—a

a

- J (p(r - a)R(r,a,-a,a))rt°(r,a)dr

- a)R(r,a,-a,a) t° (r,a)dr,

-a

+a

' -a
(6.14)

Lemma 9 shows that R , (s,s,-a,a) < 0. $, (s) is positive

and by (4.10) t° (r,a) < 0. Also r -a < 0 so that

p(r - a) > 0. It is easy to see that R is positive and

hence all terms in (6.14) are negative. This proves the first

inequality of (6.1) and the second is a very similar Calculation.

This completes the proof of Theorem 3.
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