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A BLITZ PROOF OF THE CONTRACTIVE MAPPING THEOREM

I. I. Kolodner

The Contractive Mapping Theorem asserts: I_f (X,d) is a

complete metric space, and f:X—^X is a contractive function with

contraction constant k < 1 (i.e., for all x,yeX, d(f(x),f(y))

£ kd(x,y) ) then:

i. f has a unique fixpoint £,

ii. for any ueX, {f (u) } —$> £,

iii. d(£,fn(u)) < knd(u,f (u))/(l - k) .

It is easy to verify that contractivity of f itself is not

quite necessary for the success of the proof. It suffices

that some iterate of f, say g = fp be contractive (k)--and

this is what we assume below--while f may be even discontinuous.

In this case parts i and ii of the Theorem still hold true, while

in place of the approximation theorem iii, we get a modified

statement.

iii' dU,fpn(u)) < knd(u,fP(u))/(l - k) .

The proof is very simple although the details might fill a

page. (For the case p = 1 see for example [1], Chapter 2. The

case p > 1 does not seem to appear in the literature, but an

indication of the proof will be found in [2].) Here we give a

very brief proof which produces a little bit more and shows how

the Contractive Mapping Theorem follows from the Cantor Intersection

Theorem.

We consider first the case of a bounded metric space, i.e.

diam X = A. Let Sĵ  = (x|x = f(x)}, S = . {x|x = g(x) }, the sets

of fixpoints of f and g = fp, respectively. By induction we

show that {f (X)} and (gn(x)} are descending chains of sets and



that diam gn(X) < 25kn—»0. Then gn(X) has the same properties

and from the Cantor Intersection Theorem it follows that

oo —-—
n g (X) = {£}, a singleton. Thus, using the continuity of g,

n=0

we get

g(U)) = g( n g
n(x)) <= n* g(?

r(x)) c r? g
n + 1(x) = {{•}.

n=0 n=0 n=0
Consequently

£eS c fl gn(x) c n gn(X) = {£},
p n=0 n=0

from which it follows that S = {£}, a singleton.

Finally we observe that g(f(£)) = f(g(£)) = f(£), so that

f(£)eS , i.e. £ = f (£) > £^^ • Since S, c s we conclude thatP l i p

S 1 = {£}. This yields part i of the Theorem.

oo oo
Since S.. c n f (X) = fl g (X) = S 1 we get the following

n=0 n=0

strengthening of part ii of the Theorem: Xf. x €f (X), n = 0,1,2

then {xn} — ^ 4 .

Since fpn+s(X) c gn(x) for all s > 0, and £egn(X) , while

diam gn(X) <^ iSc11, we get the following modification of part iiij

of the Theorem: If xefpn+S(X) then d(f,x) < 23kn.

In an unbounded space the situation is quite different, since

the diameters of gn(X) do not tend to zero. (For example, on a

Banach space g = yl is contractive but g (X) = X for all n.)

In this case, for any z, let Y(z) = B z (d(z,g (z))/(I - k)) , the

closed ball with center z and radius d(z,g (z))/ (1 - k) . Since

g(Y(z)) c Y(z) and diam Y(z) = £ < 2d(z,g (z)) / (1 - k) , we can

apply the results of the preceding discussion to the restriction

of g to Y(z). After proving that the fixpoint of g, and thus

of f is unique on X, we conclude that part i of the Theorem



Is proven, while part ii is now modified to: I_f x efpn(Y(z))

then fx } — ^ £ . Since fpn (Y(z)) is not necessarily included in

gn(Y(z)), we can only conclude in place of iii»: lj[ x Gfpn(Y(z))

then d(£,xn) < fik
n < 2knd(z, fP(z) ) / (1 - k) .
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THE COMPACT GRAPH THEOREM

I. I. Kolodner

The closed graph theorem is^well known and very appre-

ciated theorem of linear analysis. Apparently little known (and

perhaps not at all noticed) but still useful is the simple compact

graph theorem which is proven below. Before stating the theorem,

consider a typical question which is answered by it. Let

f:[O,l]-*R be a function whose graph, G(f) = { (x, f(x)) | xe[0,1])

is a closed and bounded set. Is it true that G(f) is a connected

set? The answer is yes since, as will be evident, f is continuous

THEOREM: Let X and Y be topoloqical spaces and let f:X-*Y

be ja function with domain X, range R(f) c y and graph

G(f) c X X Y. Then:

i. X and R(f) are compact if G(f) jijs compact:

ii. G(f) JL£ compact if X \s_ compact, f jjj. continuous

and Y _is. a. Hausdorf f space.

iii. f jls[ continuous if G(f) _i£ compact and X ĵ s a.

Hausdorff Space.

PROOF: Let p, and p ' be the coordinate projections of X x Y

on X and Y. They are both continuous.

i. X = p1(G(f)) and R(f) = p2(G(f)) are both compact if

G(f) is compact since they are images of a compact set under

continuous functions.

ii.' Since f is continuous and Y is a Hausdorff space,

G(f) is closed. Since X is compact and f is continuous, R(f)

is compact and so X X R(f) is compact. Thus G(f) e x X R(f)

is a closed subset of a compact set, and thus it is compact.
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iii. Consider the restriction of p^q = p, | G(f) :G (f )-^ X.

Since (x,f(x)) ^ (y,f(y)) implies x ^ y, q is one-to-one and onto

and q~ exists. Assume now that X is a Hausdorff space and

that G(f) is compact. Then q is a homeomorphism, and thus

q" is continuous. Since f = p2<> q"" , f is continuous.



ON COMPLETENESS OF PARTIALLY ORDERED SETS AND

FIXPOINT THEOREMS FOR ISOTONE MAPPINGS

I. I• Kolodner

1* If P is a conditionally complete lattice and f is an isotone

mapping on the interval < a,b > = {xeP,a < x < b} into itself,

then f has a fixpointt See, e.g., [1], pp. 5 3-54. In appli-

cations one frequently has to work with posets which are not

lattices; a normed linear space in which the cone of strictly

positive elements is open is an example of such a poset. Con-

sequently it is desirable to establish fixpoint theorems for

isotone mappings under less stringent conditions than those

assumed in the classic theorem quoted above. In this note we

explore some such possibilities.

It is obvious that some sort of completeness assumption on

the poset P is required in order to achieve a sufficiently

general fixpoint property. For example, if

f:[-l,O) U (0,11-^1-1,0)-U (0,1], f(x) = x/2,

then f is isotone (under the usual ordering of reals) but has

no fixpoint. As we shall see below, the reason for this is that

some chains in the poset fail to have a supremum, and some fail

to have an infimum.

2. Concerning the poset P = (P,<.) , we will use below the follow-

ing hypotheses:

H1 .' P is a lattice.

U P is order complete; that is, each bounded subset of

P has a supremum and an infimum. (Alternate name: P



is a conditionally complete lattice.)

EU. P is chain complete; that is, each bounded chain in P

has a supremum and an infimum.

EL* P is enumerably chain complete; that is, each bounded

enumerable chain in P has a supremum and an infimum.

Clearly EL^EU-^H- and H 2 ^ H . On the other hand, there

are posets satisfying H3 or H 4 which are not lattices. For'

example, if in R one defines the order >_ by

x > y iff X. > y1 and xo > y?* x >. y iff x > y or x = y,
2

(here x = (x,,x2), y = (y1>Y2)) then (R ,>_) is not a lattice,

but it is chain complete.

As a further illustration consider the three posets

P. = (L..[0,1] ,<,.) , i = 1,2,3 where the relations <C. are

defined by:

f % 9 if f (x) = g(x) or f(x) < g (x) on [0,1],

f < 2 g if f(x) < g(x) on [0,1],

f < 3 g if f (x) £ g(x) on [0,1] ae.

P, is not a lattice, but is chain complete. P^ is order

complete; see [2], p. 302, Theorem 22. P« is a lattice which

has property HL as follows from the bounded convergence theorem.

However, it fails to be chain complete. To prove this we first

show that P^ is not order complete. Let A e [0,1] be a non-

measurable set, and let S = (Xr ^|zeA}. (X_ is the characteristic

function of U.) Then the only suitable candidate for sup S is

X which is not a measurable function, and so P^ is not order

complete. Our assertion will now follow from Theorem 1 below.

THEOREM 1. H, and H^ imply Ho.1 J Z
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f(sup C) €JP; since sup C <̂  f(sup C) , C U (f(sup C) } is a chain

in IT. As C is a maximal chain, we conclude that f(sup C) eC,

i.e., f(sup C) <_ sup C. Thus f (sup C) = sup C.

4. The classic proof of Theorem 2 under hypothesis H2 proceeds

along the same lines. However, instead of picking a maximal chain

in £ in order to pry into F, one generally considers £ itself

which has a supremum under the more stringent hypothesis. One

finds then that sup !FeF and it follows trivially that sup F =

sup F. Similarly, by working with F one finds that inf l?eF

and inf IF = inf F. Under hypothesis Hk, sup CeF exhibited

in the proof of Theorem 2 turns out to be a maximal element of

F. Similarly, one can construct minimal elements in F by

considering maximal chains in IF. In general, however, F will,

not have a supremum or an infimum under hypothesis EU.

Observe that it suffices to assume in place of H^ that either

every chain in P with an upper bound has a supremum, or that every

chain in P with a lower bound has an infimum. On the other hand,

none of these conditions is necessary in order to insure that every

isotone function on < a,b > has a fixpoint. Consider, for example,

the poset described in the figure below. The order is defined

T

by (x < y iff x is to the left of y) except that elements of
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a are not comparable with elements of a1 and likewise, the

elements of /? are not comparable with elements of /3f . Then

the subset f is a chain without supremum or infimum, and thus

none of the conditions we mentioned are satisfied. Let f be

any isotone self-mapping of this poset; we will show that it has

a fixpoint. Either a = f(a), or b = f (b) , or a < f(a) £ f (b) < b,

In the latter case, f maps < f(a),f(b) > = A into itself. Since

A is a complete lattice f|A has a fixpoint (in A) and so f

also has a fixpoint.

5. Under hypothesis H~ for P, F is an order complete subset

of P but not a sublattice of P. (If A c: F then sup AeF.

in view of P : One then verifies that inf{xeP|x >_ f (x) >_ sup A]

is the supremum of A in F and similarly one shows that

sup{xeP|x £ f (x) ;< inf A} is the infimum of A in F.) Under

hypothesis H^ for P, F need not have the property H^. It

may be then interesting to seek a completeness criterion for P

which is inherited by F. Under hypothesis H. for P, F could

be empty. However, we shall show that property H. is shared

by F if one imposes the following restriction on the isotone

functions:

Hc. f is continuous on enumerable chains; that is, whenever A

is an enumerable chain in < a,b >, and sup A, inf A,

sup f(A), inf f(A) exist then

f(sup A) = sup f(A), f(inf A) = inf f(A).

We note that since f(A) is an enumerable chain whenever A is

an enumerable chain, the assumption H 4 will imply the existence
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of inf A, sup A, inf f (A) and sup f (A) . Also, in view of p4,

it suffices to assume in HL that f(sup A) £ sup f(A) and

f (inf A) >, inf f (A) .

THEOREM 3. If, H 4 arid H5 hold then f has. a fixpoint. The

set of fixpoints F has property H 4 and sup F = inf F,,

inf F = sup F . Furthermore, if P isa lattice then F is a
a — — — — — — — — — — — — — «—«———i—— ——..«. mmmmmm^ „__

lattice, but not necessarily a, sublattice of p.

PROOF: Because of' P , F.-jt 0. Consider F for xeF.. In

view of P , F is an enumerable chain in £. In view of HL/

sup F exists. P shows now that sup F = sup f(F ) and H-
X . X ' X j

shows that sup F = f (sup F ) . Thus sup F is a fixpoint of
X X X

f and so F ^ 0.

Next, let C c F be an enumerable chain. H. implies that

sup Ce < a,b > exists. Now f(C) = C; thus sup C = sup f(C) =

f(sup C) in view of H5, and therefore sup CeF. Similarly,

ijif Ce < a,b > exists and inf C = inf f (C) = f (inf C) .

Next, sup F eF and inf F^eF. Since for all xeF,

a < x < b, fn(a) < fn(x) = x = fm(x) < fm(b) for all n,m « 1,2, . . .

Thus sup F <. x < inf F,. and it follows that sup F = inf F <̂

sup F = inf F, .

Finally assume that P is a lattice and let xeF and yeF.

In view of P , x U yeF., and it follows from the first part of

the proof that sup Fx(J eF. Obviously, sup F x U is an upper bound

in F for x and y. Suppose next that zeF and that z is

an upper bound for x and y. Then xUy <. z, so that for all

n = 1,2, . . ., fn(x U y) < fn(z) = z. Thus sup F x U y < z. Thus

sup F is the supremum in F of (x,y). Similarly one shows



13

that inf F x n is the infimum in F of {x,y}.

Note that if in place of EL we assume that f is continuous

on chains, then F has property H3.
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THE JORDAN CURVE THEOREM FOR

PIECEWISE SMOOTH CURVES

R. N. Pederson

It is the purpose of this note to provide an elementary

proof of the Jordan Curve Theorem for the class of piecewise *

smooth curves. This is just the class considered by Ahlfors [1] .

The only tools which we use are the notions of compactness and

continuity together with the concept of the index of a closed

curve relative to. a point. In particular, one who is familiar

with the material in the first four chapters of Ahlfors is ade-

quately prepared to read this note.

DEFINITIONS AND NOTATION

An arc is said to be smooth if it has a C parametrization.

A piecewise smooth arc is one which is obtained by joining

end to end a finite number of smooth arcs. If an arc c is

parametrized by z » <j>(t) , a <. t <, b, and S c [a,b] , we shall

denote by C{S) the image of S under <|). At other times, if

z>CeC, we shall use C[z,£] to denote a portion 6f C joining

z to £. By C» we mean the complement of the curve C with

respect to the plane.

PRELIMINARIES. We begin by introducing, for each smooth

arc C, a class of arcs C which plays the role, of the

lines parallel to a given segment. These arcs will be used

to connect points close to C by an arc which does not intersect

C

LEMMA 1. Let C:z = (J)(t) , 0 < t < L, be a simple smooth

arc parametrized by arclength. Define, for each real €, C
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to be that arc parametrized by, z = <|>€(t) = (J)(t) + ieCJ)' (t) ,

0 <, t <, L. There exists a. d > 0 such that C D C = 0 when

0 < |e| < d.

Proof: We begin by showing that portions of C and C ,

corresponding to sufficiently small neighborhoods of the para-

metric interval [0,L], are disjoint. Let t,re[O,L]. We then have,

after some manipulation,

t

<|>€'(t) - (j)(r) = (t - T + i€)<|>' (t) + J «|>t (s) - <{>' (t))ds.
T

By uniform continuity, there exists a 6 > 0 such that

|<j>« (s) - <|>t (t) | < 1/2 if |s - t| < 6. Hence, if |t - r\ .< 6,

we have

|<t>€(t) - <|)(T) |2l |t - T + i€||0» (t) | - |t - r\/2.

Now |(|)f (t)| = 1 since t represents arclength. Consequently

(j>e(t) ̂  <|>(T) if |:t - r| < 6 and e ̂  0. (1)

We next prove that, for e sufficiently small, each point

on C has a neighborhood which is disjoint from C . To this

end we choose points 6 = t < t. < ... < t = L such that
^ o 1 n

|t. - t, -| < 6/4. It is then a consequence of (1) that

C{|t - tk| < 6/4) n C€{|t - tk| < 6/2} = ft. (2)

The. point sets C{|t - t j < 6/4} and C(|t - tk| >. 6/2} are

disjoint and compact since C is simple and the continuous image

of a compact set is compact. Hence they have a positive distance

d,. The fact that the portions of C and C , corresponding to
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the set |t - .tjj >. 6/2, have a distance at most |e| then shows

that

C£(|t - t̂ l > 6/2} n C{|t - tk| < 6/4} = J2T if |e| < c^.

By combining (2) and (3) it is easily seen that Cf|t - t.|

< 6/4} n c = jrf if | e | < cL . It follows that C D C - j6

if |c| < d = min{d^}. This completes the proof.

We next use a standard variational argument to show that any

point sufficiently close to an interior point of C lies on one

of the curves C .

LEMMA 2. Let C and C be as defined in Lemma 1. If

z /£ C is closer to C than it is to either end point of C,

then there exists a tQ e (0,L) and an € ^ 0 such that

z = <!>(to) + i€ o^ (tQ) , that is zeC^ .
o

Proof: . Since z is closer to C than it is to (j)(0) or

<j)(L), there exists a t €(0,L) such that |z - <j)(t ) | = dist

(z^C), Using the definition of distance and the identity

z - $(t) » z - (j)(to) +. (|)' (tQ) (t - tQ) + o(t - t Q), we have

(t-tQ)

o(t-to).

It then follows from the fact that t - t can be either posi-
o *

tive or negative £hat 2 Re(z - ^(^Q))^ 1 (tQ) = 0 . But this is

equivalent to z -.<|>'(t ) = i^o^
f (tQ) for some real €Q ^ 0.

This completes the proof.
The previous two lemmas allow us to say that two points

zeC and CeC are on the same or opposite sides of C

according to whether € and r? have the same or opposite signs
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Note that we have not excluded the possibility of a point being

on both sides of C. Fortunately, this is not important for our

purpose. Once the Jordan Curve Theorem has been proved, it is

an easy exercise to show that if zeC , 0 < \e\ < d, then z

is only on one side of C.

The previous two lemmas will be used to show that any

two points sufficiently close to and on the same side of C

can be joined by a curve in Cf. In order to prove the same

result for points on opposite sides of C we shall need

another lemma.

LEMMA 3 . Let C be. .as. jji Lemma 1. There exists a. d > 0

such that the 'half neighborhood1 z = <{> (L) + eCJ)1 (L) e1 ,

o < e < d, -ir/2 <. 9 <, TT/2, .is. disjoint from C.

Proof: There exists a 6 such that

|(j)' (s) - <J>» (L) | < 1/2 if |s - L| < 6. We then have

i 6(L)e j
Jt

L

= f ((j)' (s) - (|)t (L))ds + <|>t (L) [(L-t) + €ei9j
Jt

It then follows from the triangle inequality and the fact that

|<j)' (L)|= 1 that the right side of the above equality is greater

in absolute value than

|L - t + ee^\ - (L - t)/2

if L - t < 6. The above expression is easily seen to be posi-

tive for G > 0 and -TT/2 <.-©-<. ir/2 . Hence

the 'half neighborhood' is disjoint from C(L - 6 <. t <. L} .

Let d be the distance from (j) (L) to C(0 <. t < L - 6}. If

0 < e < d, then the 'half neighborhood' is disjoint from C.

This completes the proof.
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LEMMA 4# Let C be as in Lemma 1, A a compact set and

Zj£ two points of (C U A) each of which is closer to an interior

point of C than it is to A or an endpoint of C, If

(i) C PI A « <|)(0) or (ii) C fl A « (|)(0) U <|)(L) and z,C are

on the same side of C, then z can be joined to £ by an

arc in (A U C)'.

Proof: Let z = (j)(t ) and C = <J>.(T,) be points on C

which minimize the respective distances from z and £ to C.

By Lemma 2/ z and £ can be connected in (A U C)• to points

Z 2 = ^ ^ l * + i€(J)f ^ 1 ^ and ^2 =: (1)(7V + iT?<^? ̂ Tl^ for al3L sma11

e}r\. Assume that 77 = £€. If case (i) is in force we suppose

that t1 < T . The arc C [(j) (t.) ,(J)(L) ] is disjoint from A and

hence has a positive distance 6 from it. Let |e| be less than

6 and the dfs of Lemmas 1 and 3. If 77 = e then, by Lemma 1,

the arc C {t, •£ t <C T^} serves to join z2 and C2
 i n (c U A) • .

If 77 = -€ we may join z2 and £2 to the points (j)(L) + i€<|)? (L)

and 6(L) - ietj)' (L) by the curves G (t. < t < L} and C (t, < t < L}

It then follows from Lemma 3 that these two points can be joined

by an arc in (C U A) • . The proof of (ii) is similar and will be

omitted.

THE JORDAN ARC THEOREM. Once one has proved either the

Jordan Curve Theorem or its companion the Jordan Arc Theorem,

the proof of the other one is relatively simple. Lemmas 1, 2,

and 3 are now used to give a simple proof of the Jordan Arc

Theorem for our special class of curves.
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THEOREM 1. The complement of a. simple piecewise smooth

arc. C jLs. an open connected set having- C ajs its boundary.

Proof: It follows from the fact that C is compact that

Cl is open and that the boundary of C1 is contained in C.

Lemma 1 shows that each smooth point of C is a boundary point

of C1 . Since the boundary of any set is closed, the 'corner

points1 of C are also in the boundary of Cf.

It remains to show that C1 is connected. We proceed by

induction on the number of smooth segments of C to show that

C* is arcwise connected. Suppose then that C is a simple smooth

arc. If z^CeC1 we may join them by a smooth arc T which

does not pass through either end point of C. If V does inter-

sect C we may, because of the continuity of the parametrization

of T, join z and £ in C' to points z, and £. which

are arbitrarily close to interior points of C. By Lemma 4

z., can be connected to £.. by a curve in C1. Thus any

two points in C1 can be connected by a curve in C1. Hence

C! is arcwise connected.

Suppose now that Theorem 1 is true for arcs having n

smooth segments. If C . has n + 1 smooth segments, let C

denote the first n segments and C the last. If z,£€C' .

then, by our induction hypothesis, z and £ can be joined by
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an arc I in C^. We may assume that T does not pass

through an end point of C since removing a point from an open

connected set does not disconnect it. We may then join z and

£ in C^+1 to points zx and Cx which are arbitrarily close

to interior points of C. It then follows from Lemma 4, with

A = C . that z, can be connected to £.. by an arc in C' .
n J. i n+l

This completes the proof.

THE JORDAN CURVE THEOREM. We are now in a position to -

state and prove the main theorem of this note.

THEOREM 2\* The complement of ̂  simple closed piecewise

smooth curve C consists of two components E and I each

having C as; its boundary. Moreover, the index of C jjs equal

to zero in E and, if C _is oriented properly, is equal to

one in I. • •

Proof: We first show that CM consists of at most two

components. Since C is compact, there exists a point £

which lies outside of a disk containing C in its interior.

Let E denote the set of points which can be joined to £ by

a curve in Cf. E is clearly connected since any two of its

points can be connected to £ by a curve in E. Let I = C» - E.

If 1/0, let Is be the simple piecewise smooth curve obtained by

removing an open smooth segment y from C. By Theorem 1, any

point z,€l can be joined to £ by a curve T cr t . This
1 - zx
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curve necessarily crosses y for otherwise z would be in E.

As in the proof of Theorem 1, we now choose points zj, £f

arbitrarily close to interior points of y such that

V [z ,zj] and V [CSC] a r e i n C 1, We claim that z'
Z -i 1 J- Z •. i-

£' are on opposite sides of y for otherwise by Lemma 4

z could be joined to £ by a curve in C1. Let z2 be another

point in I and let z^ play the role analogous to z^. The

point z» must be on the same side of y as z' for otherwise

z 2 could be connected to £ by a curve in C!. Since z£ and

z' are on the same side of y, it follows from Lemma 4 that z,

and z2 can be connected by a curve in C1. Hence I is connected.

We next consider the difference between the index of C

at two points on opposite sides of a smooth portion of C. If

z = <j)(t ) is such a point, it follows from Lemma 1 that, as

long as e retains its sign, z- = ^^Q^ + i^^^) i s i n t h e

same component of -C1. It follows that

A = n(C,zQ + i€<|>' (tQ)) - n(C,zQ - i€<|>' (tQ))

is constant for all small € > 0. By using the continuity of

(|)' at t , it is easily shown that

(tQ)
(t)

(t - to>
2
 + s

+ E

where given an 77 > 0 there exists a 6 > 0 such that

IEI < V — ^-5 5- if |t - t I < 6.
[(t - t Q )

2 + e
2]
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If C* denotes the portion of C corresponding to |t - t I > 6,

we then have

A ~ 2Ti ^ (z - z o - i€$' (tQ) " z - zQ + ieit>' (to)J dz

j ^ r2" J
t +6
°
V

E] dt.

The first integral tends to zero as € —> 0 since its integrand

is continuous at e = 0. In the second integral we substitute

t - t = es and then let e—*0. We then obtain
o

| A - l| < v.

But since A is an integer we must have A = 1. It follows

that C* has at least two components. But we already know

that C1 has at most two components; hence I is not empty.

The above argument also shows that every smooth point of C

is a boundary point of both E and I. That the 'corners1 are

boundary points follows from the fact that the boundary is a

closed set. Since in E (the unbounded component of C!) the

index of C is zero, it follows that in I it is + 1, hence

by re-orienting, if necessary, we may assume that it is 1.

This completes the proof.

Reference
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1966.
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A NOTE ON FIRST ORDER SEMI-LINEAR PARTIAL DIFFERENTIAL

EQUATIONS: AN EXERCISE IN COMPOSITION

I. I. Kolodner and R. N. Pederson

The theories of initial value problems for linear partial

differential equations and for non-linear ordinary differential

equations have reached a fair degree of sophistication. By

comparison, the corresponding theory for non-linear partial

differential equations is in a state of infancy. It is, therefore,

of interest to classify those equations in the latter category

for which one can obtain information by using properties of

solutions of equations in the first two categories.

The authors [1] have'recently obtained estimates* for solutions

of semi-linear parabolic equations

(1) |^ - Lu = g(t,u), u(x,O) = f(x),

where g is concave in u, by combining properties of solutions

of the linear partial differential equation

(2) |^ - Lu = 0, u(x,O) = f (x),

and the ordinary differential equation

(3) |* = g(t,v), v(0) = q.

It was shown that, under mild regularity assumptions, if u(x,t;f)

and v(t;q) are the solutions of (2) and (3), then the compositions

u (x, t; v (t; f (•) ) ) and v (t;u (x, t; £)) are pointwise lower and upper

bounds to the solution of (1).
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Perhaps a few remarks on the above notation are in order.

The symbol u(x,t;f) represents the value of a function which

depends on the point (x,t) and on the function f; that is, it

is a functional of f. The expression v(t;f(-)), for fixed t,

denotes a function, with the appropriate domain of definition,

and therefore is a fit candidate for substitution into u(x,t;.).

On the other hand, v(t;q) is a function of the pair t and q:

The substitution of u(x,t;f) into v(t;.) is therefore a meaningful

operation.

It is the purpose of this note to point out that for the

semi-linear first order equations in n-space dimensions,

X = (X, , • • • >X.~\) *

n

(4) I f + X I Mx,t)-|£ =g(t,u), u(x,O) = f(x),
d t i=l x d Xi

either of the above indicated procedures yields the solution of

(4) exactly. Furthermore, no assumption of concavity of g

is needed; it is only required that solutions of (3) be unique.

The proof makes use of the fact from the theory of characteristics,

see [2], that the solution of
n(5) §* + X at(x,t) |^ = 0, w(x,O) = f(x),

1""" 1 1

a.,f€C , is given by w(x,t;f) = f(<p(x,t)) where <p(x,t) is the

function whose i»th component <p. is the solution of the problem

(5) with initial data

f(x) = x±.

It is then easily seen that w(x,t;v(t,f(•))) and v(t;w(x,t;f))

are both equal to v (t; f (<p(x, t) )) . Indeed, the prescription for
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computing w(x, t; v(t; f (•))) is to substitute <p(x,t) into v(t;f(-)),

the result being v(t; f (<p(x, t))) . A less subtle argument gives

the same result for v(t;w(x, t; f)) . That v(t; f (<p(x, t))) is the

solution of (4) is a simple exercise in differentiation together

with an application of the uniqueness theorem for solutions of(4).

Another way of looking at the result of the previous para-

graph is that the operation of solving (5) with the solution of

(3) as initial condition is identical with the operation of solving

(3) with the solution of (5) as initial condition. That is, the

indicated composition is commutative.
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A SIMPLE PROOF OF THE SCHRODER-BERNSTEIN THEOREM,

I.I. Kolodner

The objective of the present note is to clarify the proof

of the Schroder-Bernstein theorem given in Suppes ([1], p. 95-96).

While in principle our construction does not involve anything

beyond what already appears in [1], we stress here the fact that

the proof is achieved by finding a fixpoint of a certain function.

This function turns, out to be an isotone self-mapping of a complete

lattice, and thus has a fixpoint.

A clarification of this type seems not to have attracted the

attention of other expositors. The proof in [1] follows an

ex-machina pattern: an equation is written, one does this and

that, and presto--the conclusion follows. The same attitude is

taken by Fraenkel ([2], p. 102-103) on which the proof of [1] is

based, and the same is indicated by Dieudonne ([3], p. 10 exercise

4, and p. 13 exercise 3) through hints.

The Schroder-Bernstein theorem asserts: If the functions

f-:Xn->Xo and fo:Xo—^X. are one-to-one, then there exists
1 1 z £ z. 1

a function g:X,-•>X2 which is one-to-one and onto.

The beginning of our proof is standard: the assertion follows

if one can produce subsets A, c: X- and A 2
 c X 2 such that

(1) f l ( A l ) = A 2 a n d f2 ( A2> = A l '

(Primes denote complements.) Indeed, the restrictions f. | A, :Aj--> A

and f2 |A2:A2-3"A» are then one-to-one and onto functions and thus

g:X1-^X2 defined by
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f, (x) , if X€A.,
(2) g(x) = ^ " i

(f 2|A 2)"
I(x), if X€Aj^,

has the desired property.

The functions f.. and f2 induce associated set functions

F,:P(X )-*P(X2) and F2:P (X 2)~* P (X^ on the corresponding power

sets, where F ^ U ) = {fi(x)|xeU € P (X±) }, i = 1,2. Let C^: P ( X ^ P (X^,

i = 1,2 be the complement function, i.e., C ^ U ) = U ! cx.^. Then

condition (1) implies that the pair (A,,A2) will be a suitable

pair of sets if and only if it is a solution of the pair of con-

ditional equations

(3) Fx(x) = C 2(y), F2(y) = C][ (x) .

Thus it suffices to show that (3) has a solution.

Eliminating y from equations (3) we now get a single fixpoint

equation on P(X,):

(4) x = K(x), where K = C ^ F2« C ^ F ^ P f X ^ P t X ^

It is easily checked that if U is a solution of (4) then the pair

(U.. , (C2 * F.) (U)) is a solution pair of the system (3). Thus our

objective is now to show that K has a fixpoint.

To solve (4) observe that F. and F2, being set functions

induced by point functions, are isotone (i.e., order preserving)

under the orderings of P (X,) and p(x
2)

 bY s e t inclusion. The

complements C. and C2 are antitone (i.e., order inverting)

functions. Thus K, being a composition of two isotone and two

antitone functions, is an isotone function.

At this point we may invoke a well known fixpoint theorem

for isotone functions since (P(X..),c:) is a complete lattice;

see e.g., [4], p. 54. However, the matter is so simple that we
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hardly need a reference to finish the proof. Let S = {xeP(X ) |x

C K ( X ) } ; S is not empty, since 0 c K (0) „ We shall show that

U = U{xeS} is a fixpoint of K. If the element aeU then aex

for some xeS and so aex c: K (x) ; since K is isotone and

x c u, it follows that K(x) c K (U) whence a€K(U), or U c K (U) .

Since K is isotone, this yields K (U) c: K (K (U)) showing that

K(U)eS. From the definition of U we now conclude that K(U) ^ U,

and consequently U = K (U) , as asserted,

Coming back to the original question, we see that A- = U,

A2 = 'C2° Fl^ ̂ U^ i s a Pa;i-r satisfying the conditions (1).
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