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Recently Orrin Frink (see [2]) gave a neat internal charac-

terization of Tychonoff or completely regular T, spaces. This

characterization was given in terms of the notion of a normal

base for the closed sets of a space X. A normal base Z for

the closed sets of a space X is a base which is a disjunctive

ring of sets, disjoint members of which may be separated by

disjoint complements of members of Z# in a normal space the

ring of closed sets is a normal base.

To obtain the relationship between a normal base for a

space X and Tychonoff spaces Frink considered a Hausdorff

compactification of X. He showed that if X has a normal

base, then the Wallman space oo(Z) consisting of the Z-ultra-

filters, is a Hausdorff compactification of X. It follows

that X is Tychonoff. Conversely, if X is Tychonoff then

the zero sets of real continuous functions over X form a

normal base. Thus a space is Tychonoff if and only if it has

a normal base.

By choosing different normal bases Z for a non-compact

space X, different Hausdorff compactifications of X may be

obtained in the form of Wallman spaces ^(Z). Frink raised the

question as to whether every Hausdorff compactification may be

obtained in this way. He showed that the Stone-Cech compacti-

fication always is a "Wallman-type" compactification.

Olav Njastad ([4]) gave sufficient conditions for a com-

pactification to be of the Wallman-type. These were stated in

terms of the embedding of the space into the compactification.



He then used them to show that certain classes of compactifica-

tions are of the Wallman-type. In particular he showed that

this is the case for the Freudenthal compactification and

related compactifications (see [1]) and the bounding system

compactifications of Gould ([3]) . He also showed that a

compactification is a Wallman-type compactification if and

only if the corresponding (unique) proximity determined by the

compactification has a productive base consisting of closed

sets. This relates Wallman-type compactifications to the prox-

imity aspects of the theory of compactifications and, in par-

ticular, to the Smirnov compacti fication.

In this note we give necessary and sufficient conditions

for a Hausdorff compactification to be a Wallman-type compacti-

fication. These are given in terms of conditions imposed on

the normal base Z. These theorems will, show, in an easy man-

ner, that several compactifications are of the Wallman-type.

DEFINITIONS.. A base Z for the closed sets of a T- space

X is said to be disjunctive if, given any closed set F and any

point x not in F, there exists a closed set A of Z which con-

tains x and is disjoint from F. The base is said to be separating

if any two disjoint members A and B of Z are subsets respective-

ly of disjoint complements X-C and X-D of members C and D of

Z (that is, A c x - C, B <= x - D, and (X - C) PI (X - D) = 0) .

A family of sets is called a ring of sets if it is closed

under finite unions and intersections.



A base Z for the closed sets of a T.. space X is a

normal base if it is a disjunctive ring of closed sets that

is also separating.

A proper subset of a normal base Z is called a Z-fjlter

if it is closed under finite intersections and contains every

superset in Z of each of its members. We also assume that no

Z-filter contains the empty set. A Z-ultrafilter is a max-

imal Z_fiiter. .

If Z is a normal base for X, the Wallman space 60(Z) is

obtained in the following way. The points of ^(Z) are the

Z-ultrafilters of X. For each A in Z we define the set A*

to be the family of all Z-ultrafilters having A as a member.

The collection of sets A* for A in Z^ is taken as a base for the

closed sets of co(Z) . The space co(Z) is a compact Hausdorff space

There is a natural embedding h of X into <̂ (Z) where h(x) is the

Z-ultrafilter consisting of all Z_sets that contain the element

x. Equivalently we could take as a base for the open sets of

oo(Z) the family of all sets U* consisting of all Z_ultrafilters

having at least one subset,of U as a member, where the complement

of U is in Z.

If A is a subset of X, we use cl^A to denote the closure of

A in X. When there is no chance of confusion, we write cl A.

We first state three lemmas. The first two lemmas give some

properties of a normal base Z on X and its corresponding Wallman

space CO(Z) . Then we state a characterization of a Z_ultrafilter.



LEMMA 1. I£ Z j_£ a_ normal base for X, then

(1) (A fl B) * = A* 0 B* for all. A, B in Z,

(2) h(A) = h(X) n A* for all A in Z,

(3) cl h(A) = A*.

Proof. We omit the proofs of (1) and (2) which follow

from the construction of co(Z) .

Since the collection of A*, A in Z^ is a base for the closed

sets in co(Z) 9 it follows from (2) that cl h(A) is included in A*.

If 3 is any member of A* and U* is any open set containing it

then A is in 3 and there is a Z in 5 such that Z is included in

U. Hence A H z is in 5 and we may choose a point x in X from

A ft z. Then h (x) is in h (A) and also in U* since Z is in h(x)

and Z is included in U. It follows that 3 is in cl h (A) . This

completes the proof.

LEMMA 2. Let Z be. «a normal base for X and h the natural

embedding of X into ^(Z) . ijf 3 i^ any point of co(Z) and i_f

G* is_ any open set containing it, then there is a, Z iri Z such

that cl h(Z) is_ ja neighborhood of 3 and cl h(Z) is. included in

Proof. Since oo(Z) is a compact Hausdorff space we can

separate 5 and the complement of G* by disjoint open sets V,*

and V *, each of which is a finite union of basic open sets.

However, these basic open sets are just complements of basic

closed sets Z* where Z is in Z. Let V * be the finite union of

basic open sets co(Z) _ z.* that covers co(Z) _ Q*. Since z is a



ring, Lemma 1.1 implies that V* *-3 just a set co(Z) _ z* for

some Z in %, and Lemma 1.2 implies that this Z* = cl h(Z) .

Hence 3 is in V^ c cl h (Z) <= G*. It follows that cl h(Z) is a

neighborhood of <*.

LEMMA 3. Suppose that Z iŝ  <a normal base for X and that

3 iŝ  a Z-fjxter on X. Then 3 jLŝ  <a Z-ultrafilter if and only

if for each Z iri Z either Z .is_ rn <* oir there is an A rn 3 such

that A is, included in the complement of Z.

Proof. Let 3 be a Z-ultrafilter and let Z be any member

of Z . if for each A in 3, A is not included in the complement

of Z9 then Z meets each A. The Z_uitrafilter 3 must then be

equal to the Z.filter generated by 3f and Z. Consequently Z

must be in 3.

Conversely, if the conditions are satisfied, let Q

be a Z_fliter properly containing #. If the Z_set Z is in Q and

not in .', then there is an A in ^, and therefore in Q, such

that A is included in the complement of Z. Hence A n z = 0

and A H z is in Q which is a contradiction.
.i

THEOREM 1. Let Y b<e a. Hausdorff compactification of <a

T- space X, let g b<e the embedding of X into Y/ and let Z b<e a^

normal base on X that satisfies the following property.

(P) For each y in Y and each neighborhood V of y there iis

a^ Z iri 2 such that y e cl g (Z) c: V and cl g(Z) i^ <a neighborhood

of y. Then there is a. fclosed) continuous map f of. ̂ o(Z) onto Y

such that f|h(X) =g-h" 1.



Conversely if f iŝ  <a homeomorphism of co(Z) onto Y, then

condition P i£ satisfied.

Proof. For each 3 in o>(Z) let V(3) be the family of all

basic open sets U* of 3, and let B (3) be the family of cl g(U)

for U* in V(3) . B (3) is a family of closed subsets of Y with

the finite intersection property and hence D = fi B(3) is not

empty.

Suppose that there are distinct points a and b of Y in D.

Since Y is Hausdorff, the condition asserts that we can separate

the points a and b by z-sets A and B whose closures cly g(A)

and cly g(B) are disjoint and are neighborhoods of a and b re-

spectively. Thus A* H B* = 0. If U* is any basic open set

containing <*, then cl g (U) is in B (5) . Hence the intersection

of cl g (A) with g (U) and the intersection of cl g (B) with g (U)

are both non-empty. It follows that A fi U and B fi U are non-

empty and therefore so are A* ^ U* and B* fi U*. Hence 3 is in

A* fi B* which is a contradiction. Thus D consists of exactly

one point y(3) .

We can define a map f ,of co(Z) into Y by f(3) = y(3) for

9 in co(Z) . if 3 is in h (X) then ff is of the form h (p) = 3 ,

the Z-ultrafilter consisting of all Z-sets which contain the

point p# The point g (p) is in cl g(U) for each U* in V(3 ) .

Thus f (3 ) = g(p) = g O T 1 ^ )) and f|h(X) = g-h"1.
p P

If f is continuous then it must also be a closed map since

CO(Z) is compact and Y is Hausdorff, Let V be any open set in Y

that contains a point f(3). Since B(3) is a filter base with

a unique cluster point and since Y is compact, B(3) converges

to f(3) and it follows that there is a U* in V(ff) such that



cl g(U) c V. If 31 is any Z-ultrafilter in U* then U* is in V(3»)

so f(3Ois in cl g (U) e V. Thus 3' is in U*, and f(U*) c V, and

therefore f is continuous.

Since f (h (X)) = g (X) and since cl (g(X)) = Y, cl (f(h(X))) =Y.

But f is a closed continuous map, so Y = f ( c l ^ ^ (h (X))) =f

and f is an onto map.

Conversely suppose that f is a homeomorphisin of ^(Z) onto

Y and that f |h(X) = g-h~ . Using an argument similar to that

used to prove Lemma 25 for each y in Y and each open set V in

Y containing y, we can obtain a set Z* such that y is in f(Z*)

<= V, Z in Z. Since Z* = cl h(Z) by Lemma 1.3, f(Z*)=cl (f (h(Z)))

= cl g(Z) . This completes the proof of the theorem.

THEOREM 2. Let Y be a, Hausdorff compac ti f icat ion of X. Then

Y XJ5. homeomo r ph i c to a. Wa 1 lman - type compact if icat ion of X if

and only if X has a. normal base Z that satisfies:

(a) cly(A 0 B) = c l y A 0 c l y B for all A. B in Z .

(b) For each y in. Y and each neighborhood V off, y there is a.

Z In Z such that y iss. ijn c l y Z
 c: V.

Proof. The necessity of the conditions for a normal base Z

of X is immediate. Since, if f is a homeomorphism of Y onto ^(Z) ,

then f (cl Z) = clco(Z) ^ f ( z ^ = z* bV L^1™1^ 1-3. Then Lemma 1.1

yields condition (a) and Lemma 2 yields condition (b).

Conversely, suppose that Z is a normal base for X that

satisfies conditions (a) and (b)9 and let 5 be the collection

of all sets Z in Z such that p is in cl YZ. Clearly 3 can not

contain the empty set and contains every Z-set that is a superset

of any member of 3 . That 3 is a Z-filter follows from condition
P p
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(a) which says that 5 is closed under finite intersections. If

3 is any Z-filter that properly contains 3 then there is an A
P

in 3 such that p is not in the cly A. By condition (b) there is

a Z in Z such that y is in clY Z c Y - cly A. Then Z is in 3

and therefore in 5. It follows that- A 0 Z is empty and is in

5 which is a contradiction. Hence J? is a Z~ultrafilter.
Now 3 are all the Z-ultrafilters on X. For if 3 is any

P

Z-ultrafilter on X, then the collection of sets consisting of

cly Z, or Z in 5, Is a family of sets closed in Y with the

finite intersection property. Since Y is compact, there is a

point p which is in clY Z for each Z in J. It follows that

<* a 3 and hence 3 must be equal to 3* .

We can now define a map f from Y onto o)(z) by f (p) = £J

for p in Y, Since Y is compact and since ^(Z) is Hausdorff,

it follows that f is a closed map if f is continuous. To see

that the mapping is continuous, let U* be a basic open set con-

taining f(p*)= 3 . Then X - u is a member of Z . Since 3
P P

is in U* there is an A in 3 such that A CU. If p were in the

cly(X - U) then p would be, in cly(X~U) fl cly A = clY((X_U) fl A) .

Thus (X-U) H A would be in 3* which is a contradiction since the

ittersection is empty. Hence p is in the open set G which is

the complement in Y of clv(X-U). We show that f(G) is includ-

ed in U*. If g is any point of G then X~u is not in 3 , By

Lemma 3 there is a Z in 3 such that Z is included in U. Con-
g

sequently 3 is in U* and f(G) ^ U*.
The mapping is one-one since condition (b), in conjunction



with the fact that Y is Hausdorff, asserts that we can separ-

ate any two distinct points a and b of Y by the closures in Y

of Z-sets A and B respectively. Thus A is in 3 and A is not
a

in 3 by condition (a). It follows that 3 is not equal to
D a

3L and f is one-one. This completes the proof.

Theorem 2 remains true if condition (b) is replaced by

condition P. In fact the proof would be extremely easy since

we could then use Theorem 1. However the conditions on Theorem

2 give more insight into the nature of a normal base Z on X.

This we hope will lead to an answer to the question as to whether

every Hausdorff compactification X may be obtained as a Wall-

man space ^(Z) .

It is interesting to note that in Theorem 1 we defined our

map from <o(Z) into Y, whereas in Theorem 2 we defined it from

Y into w(z) . For the sake of clarification we should mention

that in Theorem 2 we had to know that condition (a) held. More-

over, Theorem 2 gives us a representation for the Z-ultrafilters

in 0)(Z) .

If Y is the Alexandroff one point compactification of a

locally compact Hausdorff space X, then a normal base Z for X

is the collection of zero sets of those continuous functions on

X that are constant on the complement of some compact subset of

X. That for this Z, to(Z) is homeomorphic to Y9 follows immed-

iately from our Theorem 2. In fact suppose p is the ideal point

and p is in cL^Z^ 0 clYZ2 but not in clY(Z, H z ) where Z. is

the zero set of the function f. that is constant on the com-

plement of the compact set K^, i = 1, 2. Let k^ be the constant
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associated with K.. If k. is not zero then Z^ is included in

the compact set K. and must therefore be compact. Hence p is

in Z. = clv Z. which is included in X and this is a contradiction,

If L = k2 =0 and if p is not in cly(Z1 0 z^ then there is an

open set G containing p which is disjoint from Z, 0 Z^. Since

K., U K2 is compact9 its complement in Y intersected with G is

an open set containing p. Then there is a point a in

(Y . K1 U K2) PI G 0 z1 and hence in (Y-K^ H x = X-I^ which is

included in Z., i=l, 2. Consequently a is in G fl z^ 0 z^

which is a contradiction. Thus clyfZ^ 0 z^j = c l ^ ^ H cly Z^.

If G is any open set in Y containing p then there is an open set

V such that p is in V c clY V
 c G. We can separate cly V and

X - G by a continuous function f which is zero on cl V and

one on G. Since p is the ideal point, Y-V = X-V is a compact

subset of X. The restriction f|x of f to X is constant on V.

We take Z to be the zero set of f|x. If U is any open set

containing p, then U H V fi X is not empty; hence p is in

cl Y Z and cly Z is included in G.

Using Theorem 2 we can also show that any Hausdorff com-

pactification of X which gives rise to a proximity that has a

productive base (see Njastad [4]) can be obtained as a Wallman

space co(Z) . Theorem 2 gives a very simple proof of this fact

since we take as our normal base Z finite unions of members of

the productive base for the proximity. It is immediately seen

that Z satisfies the conditions of our Theorem.

In particular, if Y is any Hausdorff compactification of X

then there is associated with it a (unique) proximity 6 defined

as: A 6 B if and only if cly A n c l y B ^ p (see [4] and [5].
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We say that two subsets of X are far if they are not members

the relation 6. A collection ft of subsets of X is a base for

the proximity 5 if every two disjoint sets in ft are far and if

every two far sets are contained in subsets of ^ which are far.

If a proximity 5 has a base ft which is closed under finite

intersections (Njastad [4] called such families productive) then

Njastad has shown that the ring Z generated by ft is a normal

base for X. We now show that Z, which is just finite unions of

members of a 9 satisfies the conditions of Theorem 2.

If Z.. and Z2 are members of Z and if x is in clY(Z., H zO ,

then x 5 (Z, 0 z2) . Hence x 8 Z, and x 6 Z2 which implies that

x is in cly Z1 0 cly Z2* It follows that cly(Z1 0 z2) =

ciYz1 n ciyz2.

If G is any open set in Y containing a point p then there

are open sets V, and V2 such that p is in V,, Y-G
 c V2, and

clY V^ H C 1 Y V2 = 0. Since X is dense in Y, it follows that

cl (X n cly V±) = cly V±, 1=1, 2. This implies that the sets

X 0 clY V., i=l, 29 are subsets of X which are far. Since 2S

is a base for the proximity 6, let Z, and Z^ be members of Z

such that X H C 1 Y V^ c Z^ and cly Z^ fl cly Z2 = 0. ' Then p

is in cly Vj- c cly Z± c Y-cly Z2 "c Y-cly V2 c G. Thus there

is a Z in £ such that p is in cly Z c G and the conditions of

Theorem 2 are satisfied.

This can now be applied to the compactifications mentioned

in the first part of this note. For example Njastad has shown

that the compactification of Pan and Gottesman has a productive

base of closed sets for the associated proximity. Our Theorem 2

is then applicable.



12

REFERENCES

1. H. Freudenthal, Kompaktisierungen und bikompaktisiertingen,

Indag, Math. 13. (1951) 184-192.

2. Orrin Frink, Compactifications and semi-normal spaces, Amer.

J. Math. 8£ (1964) 602-607.

3. G. G. Gould, A Stone-Cech-Alexandroff compactification and

its application to measure theory, Proc. London Math. Soc.

14 (1964) 221-244.

4. Olav Njastad, On Wallman-type compactifications, Math. Z.

91. (1966) 267-276.

5. Yu, M. Smirnov, On proximity spaces, Mat. Sb. N. S. 3JL

(1952) 543-574. (Russian)

The Carnegie Institute of Technology and

The Pennsylvania State University.


