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Recently Orin Frink (see [2]) gave a neat internal charac--
terization of Tychonoff or conpletely regular T,, spaces. Thi s
characterization was given in terns of the notion of a norma
base for the closed sets of a space X. A nornal base.'Z for
thé cl osed sets of a space X is a base which is a disjunctive
ring of sets, disjoint nenbers of which may be separated by
di sj oi nt conpl enents of nenbers of Z, in a normal space the
ring of closed sets is a normal base.

To obtain the relationship between a normal base for a
space X and Tychonoff spaées Frink considered a Hausdorff
conpactification of X He showed that if X has a nornal
base, fhen t he WAIIﬁan space o00(Z) consisting of the Z-ultra-
filters, is a Hausdorff conpactification of X It fol l ows
that X is Tychonoff. Cbnversely,'if X is Tychonoff then
the zero sets of real continuous functions over X forma
normal base. Thus a space is Tychonoff if and only if it has
a nornal base. |

By choosing different normal bases Z for a non-conpact
space X, different Hausdorff conpactifications of X may be
obtained in the formof Wall man spaces "(Z). Frink raised the
question as to whether every Hausdorff conpactification nmay be
obtained in this way. He showed that the Stone-Cech conpacti -
fication always fs a "Wl |l man-type" conpactification

O av N astad ([4]) gave sufficient conditions for a com

pactification to be of the Wall man-type. These were stated in

terms of the enbedding of the space into the conpactification.




He then used themto show that certain classes of conpactificaQ
tions are of the Wall man-type. In particular he showed that

this is the case for the Freudenthal conpactification énd

rel ated conpactifications (see [1]) and t he boundi ng system

conpactifications of Gould ([3]) . He also showed that a

cohpactification is a Wall man-type conpactification if and
only if the corresponding (unique) proximty determ ned by the
conpactification has a productive base consisting of closed
sets. This relates Wallman-type conpactifications to the prox-
imty aspects of the theory of conpactifications and, in par-

ticular, to the Smirnov conpacti fi cati on.

In this note we give necessary and sufficient conditions
for a Hausdorff conpactification to be a Wall man-type conpaéti-
fication. These are given in ternB'of condi tions inposed on
the normal base Z. These theorens will, show, in an easy man-

ner, that several conpactifications are of the Mallnan-type;

DEFINITIONS.. A base Z for the closed sets of a Tl space

X 1s said'to be disjunctive if, given any closed set F and any

poi nt x not in F, there exists a closed set A of Z which con-

tains x and is disjoint fromF. The base is said to be separating

if any two disjoint menbers A and B of Z are éubsets respecti ve-
Iy of disjoint conplenents X-C and X-D of nenbers C and D of
Z (that is, Acx - C B<=x-D and (X- QO Pl (X- D =0 .

A famly of sets is called a ring of sets if it is closed

under finite unions and intersections.




A base Z for the closed sets of a TLL space X is a

normal base if it is a disjunctive ring of closed sets that

is'alsb separati ng.

A proper subset of a nornal base- Z is called a Z-filter
if it is closed under finite intersections and contains every
superset in Z of each of its menbers. W al so assune thép no-

Z-filter contains the enpty set. A Z-ultrafilter is a max-

imal Z fiiter.

If Z is a normal base for X, the Wallman space 60(2) is
obtained in the followi ng way. The points of ~(Z) are the
Z-ultrafilters of X. For each Ain Z we define the set A*
to be the famly of all Z-ultrafilters having A as a ﬁenber.

The collection of sets A* for Ain Z" is taken as a base fbr t he
cl osed éets'of co(d . The space axj i s a conpact Hausdorff space,
Thére Is a natural enbedding h of X into <2 where h(x) is the
Z-ultrafilter consiéting of all Z sets that contain the el enent
x. Equivalently we could take as a base for the open sets of
00(2 the famly of all sets U* consisting of all Z ultrafilters
having at | east one subset,of U as a nenber, where the conpl enent
of Uis in Z

| If Ais a subset of X, we use cl*A to denote the closure of

Ain X. VWhen there is no chance of confusion, we wite cl A

W first state three lenmas. The first two | enmas give sone
properties of a normal base Z on X and its corresponding Val | man

space QX2 . Then we state a characterization of a Z ultrafilter.




LEMMVA 1. 1£Z j £ a normal base for X, then.

(1) (Afl B)* = A 0B* for all. A, Bin Z,
(2) h(A) = h(X) n A* or all Al
(3) cl h(A) = A*.

Proof. We omt the proofs of (1) and (2) which follow
fromthe construction of co(2 . _

Since the collection of A*, Ain Z* is a base for the clos_ed
sets in co(2 ¢ it follows from (2) that cl h(A) is included in A*.
If 3 is any member of A* and U* is any open set containing it
then Ais in 3 and there is a Z in 5 such that Z is included in
U. Hence A Hz is in 5 and we may choose a point X in‘X from
A ft z. Then h(x) is in h(A and also in U since Zis in h(x)
and Z is included in U It follows that 3 is in cl h(A) . This

conpletés the proof.

LEMMA 2. Let Z be. «a_normal_ base_for X_and h the natural

embedding of X into *(Z) . 1f 3 1" any point of co(2 and if.
Zz

G is_any open set containing it, then there is a, Z iri Z such

that_cl h(Z) is ja_neighborhood of 3 and cl h(Z) is. included in

Proof. Since oo(2 1is a compact Hausdorff space we can

separate 5 and the complement of G* by disjoint open sets Vj.*

2 1
However, these basic open sets are just conplements of basi c

and V,*, each of which is a finite union of basic open sets.

cl osed sets Z* where Z is in Z. Let V2* be the finite union of

basic open sets co(d _ Zi* that covers co(2) _ Q*. Since? is.a




ring, Lemma 1.1 inplies that \/*2 **3 just a set co(2) _ zx for
some Zin % and Lenma 1.2 inplies that this Z* =cl h(2 .
Hence 3 is inV* ¢ h(2d <=G. It follows that cl h(Z) is a

nei ghbor hood of <.

LEMVA 3. Suppose that Z is" iai normal base for X and that

3ista Z-f'|'xter on X Then 3 jls" <a Z-ultrafilter if and only

if for each Z iri_Z either Z .is fn <* dr_there_is an Aftn 3 such

ri_Zeither n

[

that Ais, included in the conpl ement of Z.

Pfoof, Let 3 be a Z-ultrafilter and let Z be any nenber
of Z . if for each Ain 3, Alis not included in the conpl enent
of Zg then Z nmeets each A The Z jitrafilter 3 must then be
equal to the Z. filter generated by 3f and Z. Consequently Zi
must be-in 3. |

Conversely, if the conditions afe satisfied, let Q
be a foliter properly containing #. If the Zset Z is iﬁ Q and
not in .'", then there is an Ain ", and therefore in Q such
that Ais included in the conplenent of Z  Hence An z =0

‘and AHz is in Qwhich is a contradiction.

THEOREM 1. Let_Y b<e_a. Hausdorff conpactification of <a

T, space X let g be the enbedding of X into Y/ and let Z be at

nor mal base %'X'that satisfies the follow ng property.

(P) .Eor each y in Y _and each nei ghborhood V of y there iis

ar Z_iri 2_such t hat yecl g(2 ¢ Vandcl g(2) i~ <a nei ghbor hood

of y. Then there is a. fclosed)_continuous map f of. "o(2d onto Y

such that f|h(X) =g-h"*.




Conversely if f is® <a_honmeonorphismof co(2 onto Y, then

. condition P I £ satisfied.

Proof. For each 3 in o2 let V(3) be the fanily of all
basic open sets U* of 3, and let B(3) be the fanily of Clyg(U)
for U inV(3) . B(3) is a famly of closed subsets of Ywith
the finite intersection property and hence D =fi B(3) is nbt_
enpty. _
| Suppose that there are distinct points a and b of Y in D,
Since Y is Hausdorff, the condition assertsthat we can separate
the points a and b by “-sets A and B whose closures cly a(A)
and C|¥ g(B) are disjoint and are nei ghborhoods of a and b re-
spectively. Thus A* HB* =0. If U is any basic opeh set
containing <, thencl g(U is inB(5 . Hence the intersecti'on
of cl g(A withg(y and the i ntersection of cl g(B with g(V
are both non-enpty. It follows that Afi U and Bfi U are non-
enpty and therefore so are A* ~ U* and B*fi U*. Hence 3 is in
A* fi B* which is a contradi _ctioh. Thus D consists of exact |y
one point y(3) .

Ve can define a map f ,of co2 into Yby f(3) =y(3) fo

9inco . if 3isinh(X then'"is of the formh(p) :Sp
the Z-ultrafilter consisting of all Z-sets which contain the
poi nt px The in.nt g(p) isincl g(U for each U* in V(Bg.
Thus f(3p) = g(p) :gOTl"P)) and f|h(X) = g-h"™

If f is continuous then it nﬁst al so be a closed map since
Q2 is conpact and Y is Hausdorff, Let V be any open set inY
th‘at contains a point f(3). Since B(3) is a filter base with
a uni que cluster point and since Y is conpact, B(3) converges

to f(3) and it follows that there is a U* in V(') such that




cl g(U V. If 3%is any Z-ultrafilter in U* then U is in V(3»)
so f(30is incl g(U ¢V. Thus® is in U, and f(U*) ¢V, and
therefbre f is continuous. _'

- Since f (h(X) =g(X and since CIY(g'(X)) =Y, cly(f(h(X))) =Y.,
But f is a closed continuous map, so Y =f(cl”" (h(X))) =f («(2))
and f is an onto map.

Conversely suppose that f is a homeonorphisin of ~(Z) onto
Y and that f |h(X) = g-h~l. Using an argument simlar to that
used to prove Lemma 25 for each y in Y and each open set V in
Y containing y, we can obtain a set Z* such that y is in f(Z*) |
<=V, Zin Z Si nce Z* = cl h(Z) by Lemma 1.3, f(Z*):cly(f (h(2)))
= cly g(Z) . This conpletes the proof of the theorem

THEOREM 2. Let Y b a, Hausdorff conpactification of X. Then

Y X5 homeomorphic to a._Wallman-type_conmpactification _of X if
d

and only if X has a. normal base Z that satisfies:
() cly(A0OB) =cl,AO0. ,Bforal A BinZ.
(b) For each y in. Y and each neighborhood V off. y there is a.

Z |n Z such that y iss ijncly, 2% V.

Proof. The necessity of the conditions for a normal base Z
of Xis immediate. Since, if f is a homeomorphismof Y onto *(2) ,
then f (cl 2) :,C'co(_Z) AT (ZA =ze by [AlMA 1.3 Then Lemma 1.1
yields condition (a) and Lemma 2 yields condition (b).

Conversely, suppose that Z is a normal base for X that
satisfies conditions (a) and (b)y and let SP be the collection
of all sets Z in Z such that pis in clyZ. Clearly 3_ can not

contain the enpty set and contains every Z-set that is a superset

of any member of ° . That 3. is a Z-filter follows from condi tion |
D _




(a) which says that 5p is closed under finite intersections. If

"3 is any Z-filter that properly contains 3 then there is an A
P

in 3 such that pis not inthe clj A By condition (b) there is
aZinZ such that y isinclyZcY- cly A Then Z is in 3P
and therefore in 5. It follows that- AO Z is enpty and is in

5 which is a contradiction. Hence J¥ is a Z~ultrafilter.

N0W3Pare all the Z-ultrafilters on X. For if 3 is any

Z-ultrafilter on X, then the colléction of sets consisting of
cly Z, or Zinb5, Is a famly of sets closed in Ywth the
finite intersection property. | Since Y is conpact, there is a
point p which is incly Z for each Z in J. It follows that
< a $ and hence 3 nust be equal to 3*’p.

W can nowdefine a map f fromY onto 0)(z) by f (p) = £Jp
for p inY, SinceYis conmpact and since "(_Z) I s Hausdorff,

it follows that f is a closed map if f is continuous. To see
that the mapping is continuous, let U* be a basic open set con-

taining f(p*)=3.. Then X - u is a menber of Z . Since 3
P P

is in U there is anAin3p such that A°CU. If pwere in the
cly(X- U then pwouldbe, incly(X~U fl clyA=cly((XU fl A .
Thus (XU H A wuld be in 3"P which is a contradiction since the
ittersection is enpty. Hence p is in the open set Gwhich is
the conplement in Y of cl,(X-U. W showthat f(G is includ-
ed in U. |If gis any point of Gthen X~uis not in 3g,. By

I__érma 3 thereis aZin 3 such that Zis included in U  Con-

g g
sequently 3 isin U and f(Q " U-.
The mapping is one-one since condition (b), in conjunction




with the fact that Y is Hausdorff, asserts that we can separ-
ate any two distinct points a and b of Y by the closures inY
of Z-sets ‘A and B respectively. Thus Ais in 3 and Ais not
In 3D by condition (a). It follows that éa s ﬁdt equal to

3% and f is one-one. This conpletes the proof.

Theorem 2 remains true if condition (b) is replaced by
condition P. In fact the proof would be extrenely easy si nce
we could then use Theorem 1. .Fbmever the conditions on Theorem
2 give nore insight into the nature of a nornal bése Z on X
This we hope will lead to an answer to the question as to whether
every Hausdorff conpactification X nmay be obtai ned as-é Wal | -
man space "(Z2) . |

It is interesting to note that in Theorem 1 we defined our
map from<o(2 into Y, whereas in Theorem 2 we defined it from
Y into"(?) . For the sake of cIarLfication we shoul d nention
that in Theorem 2 we had to know t hat éondition (a) held. More-
over, Theorem 2 gives us a representation for the Z-ultrafilters
in0)(2 . ,

If Y is the Al exandroff one point conpactification of a
| ocal |y conpact Hausdorff space X, then a normal base Z for X
is the collection of zero sets of those continuous functions on
X that are constant on the conpl enent of sone conpact subset of
X. That for this Z to(2 is honeonorphic to Yo follows imed-
iately fromour Theorem 2. In fact suppose p is the ideal point
and pis incL*Z® 0cl yZ, but not in cIY(Z,Llizzg wher e 21 S
the zero set of the function f, that is constant on the com

pl enent of the conpact set KV, i =1, 2. Let k» be the constant,
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associated with K':.' I f k.l Is not zero then Z» is included in

t he conpact set K.1 and nust therefore be conpact. Hence p is
in.Z.l = cl_\, Zi which is included in X and this is a contradiction,
| f L-L: kz_:O and if pis not incly(Z; 0 z* then there is an
open set G containing p which is disjoint from Z,L 0 z». Since
Ki UK_Z is conmpacty its conplenment in Y intersected with Gis
an open set containing p. Then there is a poilnt ain |
(Y. KKt UK;) PI GO z; and hence in (Y-K* Hx = X-1~ which is
included in Z.l, i=l, 2. Consequently aisin Gfl z*» 0 z*
which is a contradiction. Thus clyfz» 0 z%} =cl "™ Hcl, Z".
If Gis any open set in Y containing p then there is an open set.
V such that pis inV®clyV®G W can separate cly V and

X - G by a continuous funct'ion f which is zero on cl (/ and’

one on G Since p is the ideal point, Y-V =X-Vis 1; conpact
subset of X The restriction f|x of f to X is constant on V.

W take Z to be the zero set of f]|x. IfIU is any open set

containing p, then UH Vfi X is not enpty; hence pis in

clyZ and cly Zis included in G

Using. Theorem 2 we can al so show that any Hausdorff com
pactification of X which gives rise to a proxinmty that has a
productive base. (see Njastad [4]) can be obtained as a Wl l man
space co(d . Theorem 2 gives a very sinple proof of this fact
since we take as our norrmal base Z finite unions of nenbers of
" the productive base for the proxinmity. It is imediately seen
that Z satisfies the conditions of our Theorem

In particular, if Y is any Hausdorff conpactification of X
then there is associated with it a (unique) proximty 6 defined

as: A6 Bif and only if cly Anc.l yB” p (see [4 and [5].
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W say that two subsets of X are far if they are not menbers
of the relation 6. Acollectionft of subsets of X is a base for

the proximty 5 if every two disjoint sets inft are far and if

every two far sets are contained in subsets of A which are far.
If a proximty 5 has a baseft which is closed under finite

intersections (Nastad [4] called such famlies productive) then

N astad has shown that the ring Z generated byftis a nornmal
base for X W.now show that Z, which is just finite unions of
menbers of a g satisfies the conditions of Theorem 2.

If Z, and Z; are nenbers of Z and if X isin clZ, HzO,
then x 5 (Z, O z_z) . Hence x 8 Z, and x 6 Z, whi ch inplies that
xisinclyZ 0clyZ* It follows that cl,(Z: 0 z;) =
Ciyzy n ciyz,. |

If Gis any open set inY contéi ning a point p then there
are open sets V1 and \/2 such that pis in Vj'_, Y-G° VZL and
clvV* Hcly Vo = 0. “Since Xis dense in' Y, it follows t hat
cIy(X-n clyV:) =cly Vs, 1=1, 2. This I nplies that the sets
. X0clyV, i=l, 2, are subsets of Xwhich are far. Since 2S
is a base for the proxinity 6, let Z, and Z* be menbers of Z
such that X Hcly V> ¢z and cly Z* fl cly Z, =0..' "Then p
isin clyVj-cclyZ:.cY-clyZ,"c Y-clyV, c G Thus there
isazinkék éuch_ that pis incly,Zc Gand the conditions of

Theorem 2 are satisfi ed.

This can now be applied to t_he conpacti fi cati ons nenti oned
in the first part of this note. For exanple N astad has shown
that the conpactification of Pan and Gottesman has a producti ve
base of closed sets for the associated proximty. dJr Theor em 2

is then applicabl e.
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