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| ntroduction

Let .p(x) be positive and continuous on [0y 00) and let n be

~a positive integer; it is known that the differential equation

(1) Yo+ p(x) y2htto= o,

can have solutions defined on a bounded interval which do not adroit
an extension to thé interval [0, o00). An example of-this singular
behavi or has been given by Hastings [1], and another example, -which
i's perhaps conceptually somewhat simpler, is given below. In this
note we will also establish certain conditions on p(x) which are
sufficient to guarantee that all solutions of (1) can be extended to
[0,00)¢ Two such conditions for a nmore gene}al equation have been
given in [1]. For equation (1) these reduce respectively to the
conditions i) that p(x) be pi ecewise monotone, and ii) that p(x)
saiisfy a locally uni f orm Li pschitz condition. The main result of

this note states that all solutions of (1) will exist on [0,00) if

| p(x) _is Iocally bounded_variation. This condition on p(x) is



i mplied eith.er by condition i) or by condition ii)s We remark that
pi ecewi se mdnotonicity is still sufficient if p(x) is only. assumed
to be non-negative. ‘

The proof of our theorem involves the use of a bound for solutions
of (1) in terns of the tot.al variation of p(x)e Indeed, suppose
that p(x) is of bounded variation on [0,x], with, say, T(x) = total
'va'riati.on of p(x) on [0,x] . Then, if y(x) is a solution of (1)

defined on [O,xo), and if T(x) < oo for each x < Xor W have

(2) log |y(x) | <Cu T(x) +Cz, 0 <X <Xy,

where the positive constants C, and C2 depend only on n, a | ower
bound for p(x) on [0,Xq], and on y(0) and y1 (0). An inequality
such as (2) also is valid in the linear case (n = 0) but the in-
equality is more significant when n > 0, as is indicated by the
foI-Iovvi hg facts. If p(x) is continuous on [O,Xo] and T(x) <_Ioo
for x < Xo while T(x)~"oo0 as x-*>x0, then in the linear case the
left hand side of (2) remains bounded fromabove as x~-"x,.
t he ot her hand* as our exanple will show, if p(x) has these sane
properties and n > 0, theﬁ (1) can have sol utions yl(x) for which

(3) limsup (T(x))"" log™ |y(x) | > 0.
' x“}xa

| 1. Exanpl e.
In this section we construct an exanple of equation

(4 - - y"+ p(x) y®> =0 y
in which p(x) is locally of bounded variation everywhere in [0, 00)




wi th the exception oflone point, Xx,, and suchthat at |east one
sol ution has [O,xo) as its maximal interval of existence. ‘This
shows, incidentally, that global existence of solutions of (1) can
be destroyed by a pathol ogy of the coefficient at a single point,
and in fact even when the coefficient differs froma constant'by
an arbitrarily small anount.
| I't should be remarked that a solution of (4) or of (1) on the
i nterval [0,xo) can fail to have a continuation to the right of Xq
only if the solution changes sign infinitly many times as x apprpaches

X fromthe left. Indeed since a solution y(x)-of (1) always
t! .

satisfies yy <. 0, an elenentary argument shows that for a solution
.y defined on the interval [O,x°), and having only finitly many
zeros there, bothy andy will possess finite [imts as x—x°-.
V& note that a solution of (1) which is bounded in a finite interval
can have at ‘'most finitly many zeros there. This follows fromthe
Sturm comparison theorem |

The example of (4) which we construct below can be regarded
as resulting froma perturbation of the coefficient in the autonomous

equation 2 -
" (5) AU+ =0.
. dtZ

For conveni ence we choose the positive constant C so that (5 has

a solution u(t) satisfying

(6) U(o) = U(I) =1, fAU0) =1~ U (1) =0,
and having exactly two zeros in (0,1) . That C can be so choseh

follTows in an elementary way fromthe fact that all solutions of




equation (5) are oscillatory and periodic, for any non-’ze_ro val ue of

C.
We require the following result.

Lenma 1. For each positive integer n, there exists_a continuous

function qn(t) on [0,1] with

(7) gn(0) = qgan(l) =0,
and such that the differential equation
2
(8) ST (E gV =0
i n-

has a sol ution Un(t) satisfying

: dU (0) du (1) 2

9 i _ b _ _ fn+1

9 _ X = 7L =0 ' U 410) =1, Un(l) - ( n ) ’
and havi ng at | east two zeros in (0,1) . In addition the gq,(') can

be chosen in such a way that each is of bounded variation on [0,1]
Wi th £l |
\ 1
(10) |[dgn(t)] = Kn~ , n=Il,2,...,
Jo
Feor—ar—appreprate—eorstart K

-V now proceed with the construction of our exanple, deferring

the proof of Lemma 1 to the end of this section.

‘.
Let t he sequence VA"’ 7 def i ned by setting
N n - L
a, = o, a = M 5 n > 1.

’ "ORTT. K2




' 2
For 0 < x <T ( =lin a) we define the coefficient p(x) in (4),
6 n"oo "
and a solution y(x) of (4), in the follow ng \/vay. For each n =1,2, ...
put

(11) p(x) = C + 0n( nz(x - (Tw)), for a,_< X_< ar+ s

and defi ne

(12) y(x)" = n?Up(n?*(x - oj), for Q< X< Vos+:

=
. 11'2
It follows from (7) that p(x) is continuous on [0, g—) and from

,
(9) that y(x) is at |east of class CiLon [O ) . From (11) and (12)

it follows that y(x) satisfies (4 on each of the intervals

2
. . . 1
[an,an +1) y and__, therefore, since it is of class C on [0,1—3 :
2
it must in fact be of class C2 and satisfy (4) everywhere in [QINTO

I nequality (10) inplies that qn(t) HKO uni formy on [0,1] as n-foo;

2 11'2

6
consequently, (11) inplies that p(x)-=*=C as x-~— ~ W can,
t herefore,2extend p(x) conti nuously to [0,00) by setti ng p(x) =¢C

for x > -g—. On the other hand, the sol ution y(x) of (4) whi ch we
have constructed has at least two zeros in each of the intervals

(&, & * L), and from (9) and (12) we see that
(13) y(a,) =n? n=1,2 "...;

2
. ™
thus, y(x) cannot be continued beyond g~

2
W shall now show that y(x) satisfies (3), wth X = §-3 ¥xd

where T(x) denotes, as in section 1, the total variation of p(x)




in [O,x] . In view of (10) and the definition of p(x) we have
n ,
T(X) <K} N "M < Kilogn forO<x<a.
k=1 " n

(The total variation of p(x) in [g .q +1 is the same as the total

variation of gn(t) in [0,1].)

00
17 AU | 1

Snce L. _a =/ , —= ~const, xn~, as n-joo,

k =nkX | |

2 | | 2
(14) T(x) <Kz | log (|- - x)]|], for Osx<".
Simlarly, (13) inplies that
2 -2
(15) i m supp((™ —x) "y(x) +>0,
X_if_rTLz__
6

and conbi ning inequalities (14) and (15 we finally obtain

1

lim sup (T(x))"! log |y(x)| > O.
.x—-')lrs—- —_ -

Proof of Lemma 1. W shall first define a function U _(t) of
class C~on [0,1] which satisfies (9) and has two zeros in (0,1).
- The functi_on gn(t) wll then be defined by

(16) d(t) = - [Chtr3(t) fru (o1,

Let Uoo(t)' denote the solution of equation (5) which satisfies (6),

and let to (0<to< 1) be such that U _(t) is positive in [t  1]:




Thén, Lh(t) will be represented in the form
Un(t) —Ugpg(t) 0<t’5_ to,
(17)
_ 2 ) ) .
Un(t) = (2n +1)/n* + Uoo(t) (t-s)fn(s) ds, to-s t.; 1.
t
Th ntinuity U d dOlz U i t hat
e continuity n’_d{r H an 5;@ n requires a
2
(18) (tg - 9) fn(s) ds = (2n + 1) /n
to
1
(19) fo(s) ds = O
t
o
and
(20) nAQx =07

On the other hand, if (18), (19), and (20) hold, and if qn(t)'and
U(t) are defined'by (16) ~and (17) respectively, then Un(t)'is of

2 .
classc on [0,1] and satisties (8). In order that (7) hold it suffices

to have

(21) | f.(D= 03[(5—:——%-) 6 -].

If we assune fn to have the form

_ 3 2 :
(22) fa(t) = (t -t )7 + B (t - £)" + 7 (t -tg)),




then (20) holds automatically and (18, (19), and (21) becone

equivalent to the linear system

1 4 1, 3,1 _
4az-_+-35nz + 5 Y2 = 0,

(23) -];'\'1 z +%ﬁ z +%-y z3'= -(2n+].)/n2

. .3 2 o 2‘_‘ Aﬂ."'l \6
+ + = - —], -
an Z pn Z yn VA C I:__r {/ = J,\,/ 1

S

where z = 1 - to Since z & O the determ nant of (23) is easily

seen to be non-zero. Therefore, if f 1is taken to be of the form
. N .

n n ‘n
(22) then (X, (33 and y can be chosen in such a way that (18) , (19) ,
n n n
(20), and (21) hold; in fact, OLs j3 , andy are uniquely determ ned,

“and for a suitable constant A we have

(24) : max (|an,|0nl,|Yn) <An"* n=1,2 ...

Thus, by setting
hn(t) -un(t) -Ueo(t),

it follows from (22) and (24) that for n =1,2,..., and for a suitable

constant B

2 |
max (| hy(t) |, IfEn ()], li}"zhn w ) <Birto_ % Al

Using this inequality in (16), it i s easily shown that

1

dg, ®) 1 _knl o0<t <1 n=1,2 ...,

dt

and, since 'qn(t) has a continuous derivitive, (10) foll ows.




The proof of Lemm 1 is now conpl ete.

I11. Theorem,.

The main result of this note is the follow ng.

Theorem Let n be a positive inteder-and | et p(x) be positive,

conti nuous, and locally of bounded variation on [0,00). Then for

arbitrary real nunbers a aid b and for_any x, € [0s00) the initial

val ue probl em

(25) y(x =a y(xg =b

has a uni gue sol ution which exists on [0, 00).

The proof of the Theorem depends upon the follow ng | emma.

Lenma 2. Let n be a positive integer, and let p(x) be positive

1

and of class C~ on an interval [><d>g2 . Assune there exists a non-

negafive function g(x) such that

(26) P'(X)/p(x) < g(x) on [x,,%)
and
X
g(x) dx < oo, for x < X, -
xO

Then thé solution y(x) _of (1) which satisfies (25) wll exist on

[>%, ﬁj)v and satisfy the inequality -

(28) B0 < J(xg) exp g(x) dx , XA <X <X, .
' o — X
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(29) ' o - '(y!)2 .|../\ p( X‘) y2n + 2 .
Proof, Let y(x) be a-solution of (1) satisfying (25) and
assunme that y(x) exists on an interval [xo,xz) 3 Xg < X2 <X, . i f

$is defined in terms of y by (29) , then clearly $if of class ¢

an [xg"x2)™ in fact we have

Using (26) we obtain
(X)) < 9g(x)% (%), Xo< X < Xa.

and integration-of this differential inequality gives (28) for

xo<_. X < Xp. It follows now from (27) and (28) that both y' aid y

are bounded on [xo, x<9 , this inplies that the solution y(x) can be

continued to the right of x,. Since the point x, e [xo,x,L) was

arbitrary”t he' prodf of Lenma 2 is conplete.

Proof of the Theorem Let X, > X and assune that p(x) ->* m> 0

o

It is possible to approxi mate p(x) uniforrﬂy on [xo,xj_]

on [xo;xl] :

~ by a sequence of functions {p,(x))" where each p (x) is a class o
on [xo,xl] and satisfies

pk(X) > m on [ x~AxA




11

and Xq

P (%) 1 dx<T,

X0

where T is the total variation of p(x) on [xo,xl] .

| et yn(x) denote the solution of

1!

3
y* + pa(x) y =0

“which satisfies the initial condition (25). Since
p k(x)/p,K(x) z(_m~l|p;l (x) ), it follows fromLemma 2 that each of the

y, (X) exists on [x ,x..] and furthernore that for k =1, 2, ..
YL o 1

\ (X) <\ (XO) él'/% XO <_X£XX
As-k-"00; the y*C") tend uniformy to a solution y(x) of (1)

sati sfying the initial conditions (25). This shows that (1)-(25)

has a sol ution on [xo,xl)

for arbitrary x; > x_; a simlar argunent
shows that the solution exists on [0,X0]° The uni queness of the
solution of (l)-(25) follows fromstandard results, si nce the term

p(x) Y**t L satisfies a Lipschitz condition iny.
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