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I. Introduction

Let p(x) be positive and continuous on [09 oo) and let n be

a positive integer; it is known that the differential equation

(1) Yfl + p(x) y 2 n + 1 = 0,

can have solutions defined on a bounded interval which do not adroit

an extension to the interval [0, o o ) . An example of this singular

behavior has been given by Hastings [1], and another example, which

is perhaps conceptually somewhat simpler, is given below. In this

note we will also establish certain conditions on p(x) which are

sufficient to guarantee that all solutions of (1) can be extended to

[0,oo)• Two such conditions for a more general equation have been

given in [1]. For equation (1) these reduce respectively to the

conditions i) that p(x) be piecewise monotone, and ii) that p(x)

satisfy a locally uniform Lipschitz condition. The main result of

this note states that all solutions of (1) will exist on [0,oo) if

p(x) is locally bounded variation. This condition on p(x) is



implied either by condition i) or by condition ii)• We remark that

piecewise mdnotonicity is still sufficient if p(x) is only assumed

to be non-negative.

The proof of our theorem involves the use of a bound for solutions

of (1) in terms of the total variation of p(x)• Indeed, suppose

that p(x) is of bounded variation on [0,x], with, say, T(x) = total

variation of p(x) on [0,x] . Then, if y(x) is a solution of (1)

defined on [0,x ), and if T(x) < oo for each x < x , we have

(2) log |y(x) | < C x T (x) + C 2, 0 < x < x Q,

where the positive constants C, and C depend only on n, a lower

bound for p(x) on [0,xQ], and on y(0) and y (0). An inequality

such as (2) also is valid in the linear case (n = 0) but the in-

equality is more significant when n > 0, as is indicated by the

following facts. If p(x) is continuous on [0,x ] and T(x) < oo

for x < x while T(x)~^oo as x-*>x , then in the linear case the

left hand side of (2) remains bounded from above as x~-^x . On

the other hand* as our example will show, if p (x) has these same

properties and n > 0, then (1) can have solutions y(x) for which

(3) lim sup (T(x))"1 log |y(x) | > 0.

II. Example.

In this section we construct an example of equation

(4) y M + p(x) y3 = 0

in which p(x) is locally of bounded variation everywhere in [0,oo)



with the exception of one point, x , and such that at least one

solution has [0,x ) as its maximal interval of existence. This

shows, incidentally, that global existence of solutions of (1) can

be destroyed by a pathology of the coefficient at a single point,

and in fact even when the coefficient differs from a constant by

an arbitrarily small amount.

It should be remarked that a solution of (4) or of (1) on the

interval [0,x ) can fail to have a continuation to the right of x

only if the solution changes sign infinitly many times as x approaches

x from the left. Indeed since a solution y(x) of (1) always
t!

satisfies yy <. 0, an elementary argument shows that for a solution

y defined on the interval [0,x ), and having only finitly many

zeros there, both y and y will possess finite limits as x — ^ x -.

We note that a solution of (1) which is bounded in a finite interval

can have at most finitly many zeros there. This follows from the

Sturm comparison theorem.

The example of (4) which we construct below can be regarded

as resulting from a perturbation of the coefficient in the autonomous

equation
(5) — 0 U + C

2U3 = 0 .
dt2

For convenience we choose the positive constant C so that (5) has

a solution u(t) satisfying

(6) U(0) = U(l) = 1, f^ U(0) = | ^ U (1) = 0,

and having exactly two zeros in (0,1) . That C can be so chosen

follows in an elementary way from the fact that all solutions of



equation (5) are oscillatory and periodic, for any non-zero value of

C.

We require the following result.

Lemma 1. For each positive integer n, there exists a continuous

function qn(t) on [0,1] with

(7) qn(0) = qn(l) = 0,

and such that the differential equation

2

di:
(8) ^ + (C2 + q n(t))U

3 = 0,
n

has a solution U (t) satisfying

dU (0) dU (1)
(9) xr1 = 7TT1 = 0 , U (0) = 1, U (1) =

and having at least two zeros in (0,1) . In addition the q n(
t) can

be chosen in such a way that each is of bounded variation on [0,1]

with fl

(10) |dq (t)| < Kn~ , n=l,2,...,

Jo
for an appropriate constant K.

We now proceed with the construction of our example, deferring

the proof of Lemma 1 to the end of this section.

Let the sequence VJY\^
:>e defined by setting

n - 1.
a = o, a = / —'0 , n > 1.

n kTT' k2



For 0 < x < ~ ( = lini a ) we define the coefficient p (x) in (4),
6 n ^ o o n

and a solution y(x) of (4), in the following way. For each n = 1,2,

put

(11) p(x) = C2 + qn(n
2(x - (Tn)), for an < x < aR + ±,

and define

(12) y(x) = n2Un(n
2(x - oj) , for On < x < Vn + ± .

It follows from (7) that p(x) is continuous on [0, ~— ) and from

1 2

(9) that y(x) is at least of class C1 on [O,2^) . From (11) and (12)

it follows that y(x) satisfies (4) on each of the intervals
2

[a ,a -) y and, therefore, since it is of class C on [0,—r-) ,

2
it must in fact be of class C and satisfy (4) everywhere in [OJ^TO •

Inequality (10) implies that q (t) HKO uniformly on [0,1] as n-foo;

2

consequently, (11) implies that p (x)—*-C as x-^ — ~. We can,

therefore, extend p(x) continuously to [0,oo) by setting p(x) = C

for x >_ -g— . On the other hand, the solution y(x) of (4) which we

have constructed has at least two zeros in each of the intervals

(a ,a , ) , and from (9) and (12) we see that

(13) y(an) = n
2, n = 1,2, ...;

2
thus, y(x) cannot be continued beyond ~ .

2
We shall now show that y(x) satisfies (3), with x = g 3 ar*d

where T(x) denotes, as in section 1, the total variation of p(x)



in [0,x] . In view of (10) and the definition of p(x) we have
n

(x) < K } ^ ^ < Kx log n for 0 < x < a .
"-" nk = 1

(The total variation of p(x) in [a ,o + 1] is the same as the total

variation of qn(t) in [0,1].)

oo

17" \ 1 1

Since L̂_. _ a = / , —=• ~ const, x n~ , as n-joo,
k = n K

2 2
(14) T(x) < K2 | log (|- - x) |, for 0 < x < ̂ .

Similarly, (13) implies that

2
p ( ̂

2
(15) lim sup ( ̂ - — x) y(x) •> 0,

X ifr TT
6

and combining inequalities (14) and (15) we finally obtain

lim sup (T(x))"1 log |y(x)| > 0.

Proof of Lemma 1. We shall first define a function U (t) of

class C on [0,1] which satisfies (9) and has two zeros in (0,1).

The function qn(t) will then be defined by

(16) qn(t) = - [C2
+tr

3(t) f^

Let U (t) denote the solution of equation (5) which satisfies (6),

and let tQ (0 < tQ < 1) be such that U (t) is positive in [t ,1]:



Then, U (t) will be represented in the form

(17)

= U o o ( t )

U (t) = (2n + l)/n* + U (t) -
n oo

< t < t
—• O

(t-s)fn(s) ds, t < t < 1

d d
The continuity U , -rr U and —o U requires thatu n at n _. £ n ^

at

(18) (tQ - s) ds = (2n

(19) fn(s) ds = O

and

(20) ^ ^ 0 * = 0 #

On the other hand, if (18), (19), and (20) hold, and if q (t) and

Un(t) are defined by (16) and (17) respectively, then U (t) is of

2
class c on [0,1] and satisfies (8). In order that (7) hold it suffices

to have

(21) fn(D = -c<

If we assume f to have the form
n

(22) fn(t) = - t Q),
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then (20) holds automatically and (18, (19), and (21) become

equivalent to the linear system

(23)

a z 3 + p z 2 + y z = - C 2 r f n + 1 J -1 ,
n n n L V n V J

where z = 1 - t . Since z =|= O* the determinant of (23) is easily

seen to be non-zero. Therefore, if f is taken to be of the form
n

(22) then (X , (3 3 and y can be chosen in such a way that (18) , (19) ,

(20), and (21) hold; in fact, OL S j3 , and y are uniquely determined,

and for a suitable constant A we have

(24)

Thus, by setting

max (|an|,|0n|,|yn|) < An"
1, n = 1,2,... .

hn(t) -u n(t) - u o o ( t ) ,

it follows from (22) and (24) that for n = 1,2,..., and for a suitable

constant B

max (|hn(t) |, lft
dt2

 h
n

1

- Bn ' ° - * ̂ 1 •
Using this inequality in (16), it is easily shown that

dt
< Kn , 0 < t < 1, n = 1,2, ...,

and, since q (t) has a continuous derivitive, (10) follows.



The proof of Lemma 1 is now complete.

III. Theorem,

The main result of this note is the following.

Theorem. Let n be a positive integer and let p(x) be positive,

continuous, and locally of bounded variation on [0,oo). Then for

arbitrary real numbers a arid b and for any x € [05oo) the initial

value problem

(25) y(xQ) = a, y (xQ) = b

has a unique solution which exists on [0,oo).

The proof of the Theorem depends upon the following lemma.

Lemma 2. Let n be a positive integer, and let p (x) be positive

and of class C on an interval [x ,x,) . Assume there exists a non-

negative function g(x) such that

(26)

and

P (x)/p(x) < g(x) on

g(x) dx < oo, for x < x, .

Then the solution y(x) _of (1) which satisfies (25) will exist on

[x ,x,) y and satisfy the inequality

(28) J(x exp

x

g(x) dx , x^ < x < x, .
o — x
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where

(29) • - (y !) 2 + ^ p ( x ) y 2 n + 2 .

Proof, Let y(x) be a solution of (1) satisfying (25) and

assume that y(x) exists on an interval [x ,x ) 3 x < x2 < x, . if

$ is defined in terms of y by (29) , then clearly $ if of class C

an [xQ^x2)^ in fact we have

*' (x) = ^~j P? (x) y 2 n + 2(x) , x Q < x < x2.

Using (26) we obtain

*' (x) < g(x)$ (x) , x Q < x < x 2

and integration of this differential inequality gives (28) for

x <. x < x2. It follows now from (27) and (28) that both y arid y

are bounded on [x ,x«) , this implies that the solution y(x) can be

continued to the right of x2. Since the point x2 e [x ,x,) was

arbitrary^the proof of Lemma 2 is complete.

Proof of the Theorem, Let x, > x , and assume that p (x) >^ m > 0

on [x .x, ] . It is possible to approximate p(x) uniformly on [x ,x,]

by a sequence of functions {pv(x))^ where each p (x) is a class C

on [x ,x,] and satisfies

pk(x) >. m on [ x ^ x ^
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and r x

xo

|p' (x) I dx < T,

where T is the total variation of p (x) on [x ,x,] . For each k - 1,2,

let y (x) denote the solution of

y1 + pn(x) y = 0

which satisfies the initial condition (25). Since

p (x)/p, (x) X m~ |p (x) ), it follows from Lemma 2 that each of the

y, (x) exists on [x ,x.. ] and furthermore that for k = 1,2,..
YL O 1

\ (x) < \ (xo)
 e > xo <

 x £ xx •

As k-^oo ; the y^C^) tend uniformly to a solution y(x) of (1)

satisfying the initial conditions (25). This shows that (l)-(25)

has a solution on [x ,x,) for arbitrary x1 > x ; a similar argument

shows that the solution exists on [0,x ]• The uniqueness of the

solution of (l)-(25) follows from standard results, since the term

p (x) y satisfies a Lipschitz condition in y.
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