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I. Introduction

If a group G has a full order relation, <, such that for each

a,b,c € G if a < b then both ac < be and ca < cb, we say that (G, <)

is an f,o. group, that it is fully ordered by <, and that < is a

full order of G. If G is fully ordered by < and C 5 G is a subset

such that when a,b € C, then all x between a and b are also in C,

we say that C is convex with respect to < or if there is no ambiguity

simply that C is convex. We denote by C< the family of all sub

groups of G convex with respect to <. The family C< is called the

convex family of (G, <) .

Several authors have investigated properties of those families

of subgroups of a group G which are the convex families determined

by the various full orders of G. Among the investigators K. Iwasawa

[3J has given conditions characterizing such families of subgroups.

Another set of conditions on a family of subgroups of a group G which

is necessary and sufficient that G admits a full order is stated



in Fuchs [1J pp. 51, 52, and attributed by him to L. S. Rieger

and V. D. Podderyugin.

In this paper we will investigate the convex families of full

orders in torsion free locally nilpotent (TFLN) groups. Our main

result (theorem 2) is that for an arbitrary full order < on the

TFLN group G, the convex family, C<9 is a central system. We

remark that there are several examples known of full orders on non-

TFLN groups which.are not even normal systems. We use our result

to obtain a characterization of those families of subgroups of

TFLN groups which are convex families. This characterization

is simpler than the general characterization given by Iwasawa.

Secondly, we show that the Rieger-Podderyugin conditions (theorem 1)

do not characterize convex families, a question raised in Fuchs QJ .

II. Results

A family of subgroups 5, of a group G is a normal system

if each F € 3 is normal in G, if 5 is a chain with respect to set

inclusion, and if 3 is closecj with respect to arbitrary unions and

intersections. A jump in 3 is a pair of elements C,D e 3 such that

C c: D and no element of 3» is properly between C and D. Letting

Z(H) denote the center of any group H, we say that 3 is a central

system in group G if {1) and G are in 3, if 3 is a normal system of

G, and if for each jump C,D in &, D/C £ Z(G/C).

Theorem 1: (Rieger, Podderyugin as per Fuchs [3J) .

A group G is orderable if and only if it contains a family, 5, of

subgroups satisfying (i) - (v) :



(i) 3 is a chain containing {1} and G and is closed under

arbitrary unions and intersections.

(ii) If C e 3 then for each g € G, g~ Cg € 3.

(iii.) If C,D is a jump in 3 then C is normal in D and D/C

is isomorphic to a subgroup of the additive group of the real

numbers.

(iv) If C,D is a jump in 3 then (N(C), N(C), D) c c where N(C)
2

is the normalizer of C in G,

(v) If C e 3 and S (a) is the normal subsemigroup of G generated

by a and if C H S(a) is non-empty then some conjugate of a is

in C.

Furthermore there will be a full order, <3 of G such that 3 £ C^.

Until now it was not known whether a full order < of G existed

such that 3 = C.. However, by the example below this question is

answered in the negative.

We now consider TFLN groups. It has been known for some time

that all TFLN groups can be fully ordered (see Neumann (_5) ; Graham

[2} has another proof) • Another result in Graham [j2] is the following,

Lemma: If G is TFLN and < is a full order of G then C< is a

normal system of G.

Proof: By straightforward calculation if C € Cand g e G then

g~ Cg e C also. Thus <f Cg => C or g-1Cg S C, To show that

2 1 1
If x,y e G then (x,y) = x~ y~ xy* If S and T are subgroups of
then (S>T) = gp( (s,t) | s e S and t e T) . Finally (S,T,U) meanjs
((ST)U)



g~ Cg = C for all C e C and g e G we assume otherwise. Without

loss of generality we assume that there is a g e G and a C € C such

that g~ Cg ̂  C. Then there is an a e C such that g~ ag k Cs so

for arbitrary positive n we have

(1) g-^ag 1" 1 / g-nCgn.

het C^ = g""mCgm, let U,g;O) = a, and let (a,g; n + 1) = ((a,g;n),g)

Note that C.+, ^ C. anc| g~ "ag = a(a,g;l) / By induction on n the

identity (2) below can be established^ where '^(a^g;!) is to be

interpreted as some finite product of commutators (a,g;i) in which
-2 2 2

none of the ifs ,s greater than k. For example g ag = (a,g;l) (

rn*gn = (TT(a,g;
i

(2) <rn*gn = (TT(a ,g;i)) (a,g;n).
i

Since a(a^gil) e C, it follows by induction on m and by (2) that

•• - \ •

(a^g;m) e C . However G is locally nilpotent so the group generated

by a and g is nilpotent^ say of class k. Then all commutators of

length k + 1 and greater are the identity so from (2) we get

= (TT (a,g;i)) (a,g;k + 1) =TT(a,g;i) € CL .
i<k i<k K

But this contradicts (1) taking n = k, and the lemma is established.

Theorem 2: If G is TPLN and fully ordered by < then C. is a

central system.

Proof: Since {1} and G are convex they are in C, By the lemma

C is a normal system. Now let C^D be a jump in C# All that remains

is to show the D/C c Z(G/C). First note that if for each g € G

the mapping g:G/C -* G/C. induced by conjugation by g is the identity



map on D/C, then for each d € D (dC)^ = g~ dgC = d(d,g)Cj hence

it follows that (d,g) = 1 mod C so that D/C c z(G/C).

Thus the problem reduces to showing that for each g €

is the identity map. Suppose on the contrary for some g e

is not the identity map. Then there is a d e D such that (d̂ g) f 1 mod C,

Since G is TFLN one of (d^g;m) = 1, so for some first m, say n + 2,

(d,g; n + 2) =1 mod C. Then (d,g;n) f (d,g; n + 1) mod C and neither

is congruent to 1 mod C# Let b = (d,g;n).

Since (d,g; n + 1)C^ = (d,g; n + 1) (d,g; n + 2)C = (d^g; n + 1) C and

bC§ = b(d,g; n + 1)C we have for all integers r >_ 0 that bCg^

= b(d,g; n + l)rC. If r < 0 then bC = bC§~r ̂ r = (b(d,g; n + 1)

= (bC)^r(d,g; n + 1) ~rC = (bC^r) ( d,g; n + 1) rC so for all

r = 0, +1^ ±2,...^ we have

(3) r r= b(d,g; n + 1) C = b(b^g) C.

Now < on G induces a full order on G/C since C is convex* We

will denote this induced order by < also* Furthermore, for each r^

^ is an order preserving automorphism of G/C.

Also (b,g)C^ = (d,g; n + 1) C^ =? (d^g; n + 1) C = (b,g)C hence

for all r, (b,g)C^r = (b,g)C. Now by the choice of b, C ̂  (b,g)C ̂  bC.

Therefore either bC < (b,g)C or bC > (b,g)C. If bC < (b,g)C then

bC^r < (b,g)C§r for all r. But bC§r = b(b,g)rC = bC((b,g)C)r < (b̂ gjc

so bC < ((b,g)C) "r for all rational integers r. This is impossible

since neither is the identity and since D/C is an Archimedean ordered

group. A similar contradiction is reached if we assume that bC > (b,g)C.



Therefore the assumption that ̂ JD/C is not the identity leads to a

contradiction and the theorem is established.

Using the conditions in theorem 1 with the added information

from theorem 2 we can now characterize those systems of subgroups

of TPLN group G which are the convex families with respect to

the various full orders of G,

Theorem 3: If G is TFLN the system 0 of subgroups of G is the

convex family of subgroups with respect to some full order of G

if and only if:

(i) C is a central system of G.

(ii) If C,D is a jump in C the D/C is isomorphic to a subgroup

of the additive group of real numbers.

Proof: If C is the convex family of G with respect to some

full order of G then (i) holds by theorem 2 and (ii) holds since

in the induced order on D/C, D/C is an Archimedean ordered group,

hence isomorphic to a subgroup of the additive reals. (See Fuchs

QJ P* 45. The theorem is due 0. Holder.)

On the other hand if (jL) and (ii) hold for C then one can

define a full order on G as in .Neumann [6J 9 theorem 2.3. (Strictly

speaking the fuller generality of Graham [2J, theorem 23 is needed.)

This full order is constructed so that the induced order on each

jump factor D/C of C is Archimedean, hence no new convex subgroups

arise. Thus C turns out to be the convex family of the newly

defined full order of G.



III. Example

Let F be the free group on x and y, P- the fourth term in the

lower central series of F and G = F/F.. Group G is the free nilpotent

group of class 3 on two generators* Such groups are discussed in

Kurosh [4J. In G let 3 be the family {G, G2J [1}}, where G2 is the

second term in the lower central series, namely (G,G). Since 3 is

a series of length 2 it cannot be a central series (G is nilpotent

of class 3), so by theorem 2 it cannot be the convex family with

respect to any full order of G, However we will now show that it

does satisfy the Rieger-Podderyugin conditions. Thus these conditions

do not characterize the convex families of a group which admits

full orders.

On to the conditions of theorem 1:

(i) Immediate,

(ii) Since G2 is normal in G, this condition is satisfied.

(iii) G/ G9 anc* G7^^ ==: G2 a r e eas^ly shown to be Abelian,

They are known to be torsion free and finitely generated,

hence they are isomorphic to subgroups of the additive reals,

(iv) Since N(G2) * G and since for the lower central series

{Gk) of any group (G±J G_.) c G± + ., we have

(N(G2), N(G 2), G) £ G3 £ G2, and (N(l), N(l), G2) £ G^ = {1}.

(v) Finally suppose that there is an a e G such that

S (a) (1 G. f^''.^'j i = 1,2,4# Then we must show some conjugate

of a is in G.. We actually show that in each of the three cases

a itself is in G..
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If i = 1, then G. = G, = G and a € G.

If i = 2 and s(a) H G. ^= 6, then for some f i n i t e non-empty
x

s e t { x . l i « l , 2 , . . . , r } £G TFx̂ "" a x i € G ,̂ s ince a l l elements

of S(a) are of t h i s form. But then TTx.~" ax. = TT"(a(a5x.)) € G .
i

However (a,x.) e Go for each i so TT(a) = ar € G-. But G/G9 is
1

t o r s i o n f r e e whence a e G? .

If i = 4 then G. = [V. Then if S (a) n { l 1 ^ d> t h e r e is a

f i n i t e non empty s e t { y . | i = l , . . . . , s } £G such t h a t | T y . ~ av . ) = 1 .

Thus 1( (a(a,y.)) = 1 . Since each (a,,y.) e Go we have TTa(a,y.) = asx x A ± x

= 1 mod G^. As before G/G^ is torsion free so a e G^ But then

(a,y.) € G3 for each i so TTa-(a,y^) = as = 1 mod G3# Since G^/G^ is

also torsion free it follows that a € G3. Then (a,y.) e G^ = [V for

each i so finally ||a(a,y.) = a - 1. But G is torsion free so

a - 1 and we are done.
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