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2

Let (R ,N,) be a two dimensional normed linear space.

If N, satisfies the condition (a) below it is shown by

adopting an iteration procedure that N, determines a Banach

Sequence space B • This class of Banach spaces is a gener-

alization of the classical 1 spaces (1 < p < oo ) . In this
P "~ "~

paper it is proposed to discuss the separability and reflex-

ivity of these spaces intrinsically in terms of NL .

In what follows N, is a norm on the coordinatized plane
2

R satisfying the condition
2

(a) if U is the unit ball of (R , N,) and P is the
positive quadrant of the plane then
Convex hull { (1,0, (0,1) , (0,0) }c p fl u ^ Convex hull( (1,0 ), {*>o)j

(0,1), (1,1)}

Convex sets which satisfy the above inequality are known as

fans and their relation to substitutive bases are discussed

in Corson and Klee [1].

The norm N, may be utilized to define a norm NL. 1 (K > 2)

on the K-dimensional space R by an iteration procedure as

follows.

Nx(Nx(xx

that Nx(c
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,x2) , |x3
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N~ is a i

the norm
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•

RK

XK)
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Since P fl u is a fan it is verified

(a2, b2) if 0 < a i < a 2 and 0 < b^ < b .

this monotonicity it follows at once that

Proceeding inductively having defined

let N__ h_e defined on R by setting N v (x) =

I *v i "i "F Y "~* ('v ^̂  v ^

K+lR . With any sequence x let us denote
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the K-vector (x,, x2^ . . ., x^) by X|K. It is verified that

{N_. n (XIKJJ^ ̂  o is an increasing sequence. Let B denote

the set of all sequences x such that {Nv (x |K+1) }_. . , is

bounded. Then B is a linear space and the function Nn (x) =

sup {N-. , (x|K) } is a norm on B. The normed linear space
K>2 K~X

(B, NL) is denoted by B^ .

Remark 1. If N ^ x ^ x ^ =[|x1|
P+ |x 2|

P] 1 / / p for some p,

1 <^ p <_ OD then B is the 1 sequence space and of course

conversely.

Proposition 1. The normed linear space BM is a Banach space.

i °
Proof. Let {x } . ̂  , be a Cauchy sequence in B . Clearly

1 — N0
(xK

1} is a Cauchy sequence of xeals for a fixed K >. 1. Hence

(x } converges coordinatewise to a sequence y. Further

since {x1} is a Cauchy sequence NQ(x
1) < K for all i and for

some nonnegative real number K. Thus N ,(y|p)=

lim N 1(x
1|p) < N (x1) < K. Hence yeB . From the defin-

i)oo p" ^0o 0
ition of N it follows that for any e > 0 for large p, NQ (y-x

1)

- N p - l ( ( y - xl) 'p) + G- Since Np.l ( ( y * xl) IP)~>°> as i ^ 0 0 .
NQ(y - x

x)->0 i.e. xX->y in the space B . Hence B is a

Banach space.

Before proceeding to discuss separability and reflexivity

of the space B.T we establish a lemma.

Lemma 1. If xe B then x is a bounded sequence and
N0

sup |x. | < N (x) . Further if N, (l,a) = 1 for some a > 0 then

the Banach space 1^ is isomorphic to B while if 1^(1,a) > 1

for all a > 0 then every sequence in B is a null sequence.



Proof. Suppose x e B . Since the condition (a) implies

that the unit ball U of (R , N ^ is a subset of the unit

2
ball of R with the supremum norm it follows that

sup(|x,|, |x2|) < N ^ x ^ x2) . Thus for every integer p >. 2

sup|x.| < N -(x,, x9,. . ., x ) . Hence sup |x.| < N (x).

< 1 < p —

Next let for some a > 0 N..(l,a) = 1. From the definition of

N o it readily follows that N Q (y) = 1 where y is the sequence such

that y-i = 1 a^d y. = a for all i > 1 . Hence if x is the

constant sequence whose range is {a} then xe B . Thus every

bounded sequence is in BXT i.e. the vector spaces 1 and Bx_
N0 °° N0

consist of the same elements. Since sup |x. | <̂  N n (x) for

all xe B N and B N and 1 are Banach spaces, B is isomorphic

to 1 . In particular B._ is not separable.
00 N Q

Next let us assume N, (l,a) > 1 for all a > 0. We note

that non-zero constant sequences are not in B . For if such

a sequence is in B then clearly the sequence 1^the constant

sequence with range {1}, is in B . Let N Q (I) = m. Since

N, (1,1) > l,.m > 1. It is verified by induction that
No(l|p + 1) > [N, (1, 1/m)] N, (1,1)u *— I l

for p > 2. Thus N^(I) is infinite and Ie BXT . Next let
0 N o

xe BXT . If possible for some e > 0 let there be a subsequence
0

{x ) in x such that |x 1 > e for all i > 1. Since xe BXT .
ni

 ni "" No
the sequence x in which all elements of x other than x are

replaced by zero is also in B M . By definition of the norm
0

Np. it then follows that the sequence y for which y. = x is



£n B N . However N Q(eI) < N Q (y) . Thus Ie B N which is a

contradiction. Hence xe B N implies x is a null sequence.
0

Remark 2. From the above lemma it follows that either B M
iN0

is the same as the space 1 or B^ c: c Q where C Q is the

linear space of null sequences. Further since the condition

(a) implies |x 1| + |x 2| ^ N - ^ x ^ x 2) for all ( x ^ x 2) €R

it follows that xel-, implies ^ > i l x i ! :L N o (
x) a n d X G B N #

Thus if B,T / 1 then 1, <= BM
 c Co and the identity mappings

JNQ OO X "Q U
i: 1-I-4BN a n d ^: BN -^ cn a r e continuous. However it does

1 0 0
not follow in this second case that B̂ j is separable (cf

0
example at the end of this note) .

We next proceed to show that the Banach space BN is
0

isometrically isomorphic to the conjugate of a Banach Space.
rr

In lemma 2 we obtain the adjoint of the norm N^ , on R .

Let MT be the adjoint norm of N, . If U,. U denote1 ± l* oo

the unit balls of R corresponding to the norms

|x1| + |x2|, and Sup(|x1|, |*2|) then the unit ball U of
2

(R , N,) satisfies the inequality U, c U c u . Hence
X X. JN ̂ O O

2
U, c UM c U by considering the polar sets. Thus (R , M,)

also satisfies the condition (a) and the iteration procedure

determines the Banach Space B..

Lemma 2. The adjoint space of (RP, N ,) is the space

(R , M j) where M - is the p dimensional norm determined

by M^ through iteration procedure.

Proof. It suffices to show that if (f1, fo,...f ) €R
P then



Mp_1(f1, f2,...,fp) = sup where fx^ x2,...,xp)< 1

1" iThe proof of this statement1" is by induction. Suppose that

for some K > 2 every K-vector (f,, fo,..., f..) satisfies- K 1 2. K

MK_1(f1, f2,..., fR) = sup |
1

x =
=

xK)
KKvaries over the unit ball UL. of (R .JSL, .) . Let

, IN. i\—X

K+l
9 = * B y d e f i n i t i o n o f

if NK(x, jX^j x̂ ,-.) <. 1. Thus by the induction hypothesis
K

( x 1 , x 2 , . . .̂ Xĵ ) eUK. Hence ^ ( g ] L , g 2 , . . . >gK+1) >. llgll where || • |

i s the ad jo in t norm of Nv .

Let us next show t h a t MK(g1^g2, . . . ^ g ^ < | |g||. Since

is the adjoint of N . there exists a vector x =

GU such t h a t
K

K̂  =.L gixi* F u r t h e r

2 wiThus there exists a vector (Zi,Z2) € R
2 with Z. >. 0 for i=l,2

and N1(Z1,Z2) < 1 such that



K
i X i ) Z l + l%+llZ2

K

gK + 1sign

Since K+l > 2 and (x-^x^ . . . ̂

( Z1, sign

< NL (Z, ,ZO) < 1. Hence
— JL J- Z —

MK(g1,g2, . .-*gK+1) <llgll. The proof i s complete.

In the next theorem C.T is the closure of the linear
N0

subspace of finite sequences in BN • Clearly the set of

unit vectors {e1}i > 1 where ê * = 1 if i = j and e^ = 0

if i ̂  j is a Schauder base for the space C^ .

Theorem 1. The Banach space BN is isometrically isomorphic

with the conjugate space of CJA .
• *

Proof. Let Cj^ denote the conjugate of C^ and let the ad-

joint norm be || • || . Since {e1} . > , is a base of CM it

follows that feC^ implies that f(x) ̂ ^f.x. where f. = f(ex)

and x = {x. } . > , is a sequence in Q&/U- Since for z =

(z1,z2, . . .,z ) e U ^the unit ball of (R
P, M 1 ) >

p
l I I i f - z - I < llfll it follows that

p
e51 f ^ J < ||f|| for a l l zeU

^.l^i'^'-'- 'V - "f" f o r a 1 1 p - 2*



Hence the sequence {f. }. ^ , €BN and N ({f. }. > ,) <
1 1 ^ JL r\ v/ X J- ^ 1

**
Since each function feC^ determines a unique sequence

^0i *

where f. = f (e ) the mapping or: C M -^B N defined by

a(f) = ( f i ) ^ ! is a linear operator and (l)N0(a(f)) < ||f||.

The mapping a is onto. For if the sequence f = (fjj^i i s
in BTST then consider the linear functional g on C M defined

W0 M0
by g(x) = 5^ f .x. . Now if the sequence x is such that

i> 1 x x

MQ(
X) ~ 1 then M 1 (x|p) < 1 for every p-vector x|p.

p
Thus I X fixil < Nn-1 (f1,fp,---,f ) • Hence

|g(x)| < sup N 1(f1,f2,...,f ) = N (f). Thus
p y^ 2 *~ ^

SIAP |g(x) I < NQ(f) • Hence g€CM , ° (g) = f and

(2) ||g|| < NQ(f) = N0(a(g)) . Thus a is onto B N and from

inequalities (1) and (2) it follows that a is an isometry.

Thus B^ is isometrically isomorphic to C

Corollary. The Banach space B M is separable if and only if

i °
{e } B> 1 is a base for the space.

Proof. We note that as a consequence of the monotonicity of

MQ i.e. x,yeCM and x i >_ yi >, 0 imply MQ (x) >. MQ (y) for

every xeCM the series x = Sx.e is subseries convergent.
i ^Thus {e } .>:. is an unconditional base for the space C M .

Since CM* = B.. , B^ is separable if and only if the sequence
0 JXQ ^O

biorthogonal to {e1} .^, is a base for the space B N as a
1~ x 0

consequence of Theorem 5 on page 77, Day [2] .

Remark 3. As a consequence of the above corollary it follows

that the following statements are equivalent. (1) B T is
W0
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separable (2) BN = CM i.e. [e1).>1 is a base of BN

0 0 — 0
(3) BN has a base. Further if BN is separable then BN

o o o
is isometrically isomorphic to BM

0
The next theorem provides a characterization of reflexive

Banach spaces BM •

Theorem 2. The Banach space BN is reflexive if and only if
0

BN and BM are separable.
0 0

Proof. Suppose Bvr and BM are separable. Then BN = (BM )
0 0 0 uo

BN by Remark 3. As already noted in proving the preceding
0 **

corollary, BN has an unconditional base. Further BN = BN°** ° °
implies that BN is separable. Hence by Theorem 4 on p. 76 of
[2], BN is reflexive. Conversely suppose BN is reflexive.

0 0
Then the closed subspace CIST is also reflexive. Hence the base

0

*

of C N is boundedly complete by a theorem of James.

(cf Theorem 3 on page 71, Day [2]). Thus if x = {x.}.>, e B N

P i """ i
then since NU (yx.e ) < N_ (x) for p > 1 and since {e ] .

\J / | 1 — U li=l

is a boundedly complete base of CN it follows that X€CN . Thus
0 * 0

BKT ~ CN anc* BTVT is separable. Since CKT = BM and CM is
W0 0 N0 0 <D 0
reflexive it follows that BM is also separable.

0
We are not able to obtain a complete characterization for

the separability of the Banach space BN intrinsically in terms
0

of N,• However, we establish three theorems. The first one

provides a sufficient condition for the existence of a base in

BM (equivalently for the separability of BM ) in terms of the
0 W0

norm N^. The second and third provide a necessary and a suffic-

ient condition for the existence of a base (equivalently for the

separability of BM ) in terms of the norm N, .
iN0 *•



example of a two dimensional norm N, such that each sequence

in the corresponding Banach space BN is a null sequence,
0

yet B^ fails to be separable.

Theorem 3. If for some 6 > 0, 0 £ x. < 6 i = 1,2,3 implies

N1(N1(x1,x2) , x3) > N1(x1,N1(x2,x3)) and N^l^a) > 1 for

all a > 0 then the sequence C^X} • > 1 is a base for the

Banach space BN .
0

Proof. Since N,(l,a) > 1 for a > 0 lemma 1 implies

that the sequences in BM are null sequences. Suppose

i °
{e } •>- fails to be a base for B^ . Then there exists a
sequence x = fx. ) .>., and a sequence of integers p. such

that 0 < x. <. 5 and for some e > 0 for all i' >. 2

N
Pi-l

 (xq±+l^
 x

qi+2"-->
 X

qi+Pi) > e where q± = % Pfc.

Since N, (N, (x1,x2) 9 x^) >. N, (x,,N, (x2,x^)) it is verified

inductively that

(A)

where for 1 < i < 7 - 1

Zi =
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where q. = ^ P+
1 t=l

By the choice of the sequence x, z. > € for i < i < r-1.

Thus the inequality (A) implies

NO ̂  — N 2 ̂ where £ is the (r-1) - vector with each

coordinate £. = €. Since this inequality is satisfied for

large r the constant sequence with range {e} is in BM

•o
which is a contradiction. The proof is complete.

Next we proceed to obtain a necessary condition and a

sufficient condition for the nonexistence of a basis in BN
0

in terms of the asymptotic behavior of the function a(s) =

N, (1;S) - 1 as J-^0+. We assume in the rest of this paper

that N, (l̂ a) > 1 for a > 0 so that every sequence in B̂ j is

a null sequence. We start by establishing a useful lemma.

With a little abuse of notation we denote the norm of an

n-vector (x^ . . . ,xn) by NQ (x^ . . . ,xn) instead of

Lemma 3. The Banach space BN does not admit a base if and
0

only if for some e > 0 there exists for each pair of positive

numbers 5,7? a finite sequence x1,x2^...,x such that

(1) 0 < x± < Tje 1 < i < N

(2) N 0( X l,...,x n) = €

(3) N Q U J X ^ . ..,xn) < (1+6) e.

Proof. Suppose NQ satisfies the above property. With a fixed



11

choice of 5 > 0 select positive sequences £ 5.}.>, and

^i^i>l S u c h t h a t

(4) Sfc (1 + 6L) = 1 + 6Q

(5) riL-* 0

By hypothesis we can select for each i a finite sequence

jc x = (x^, xl", ...,x^') which satisfies

(6-^ 0 < X J 1 < 7?i€

(62) N Q (x
 i ) = €

and (63) NQ(e, x
 i ) < (1 + 5i)e .

Now let x, denote the countable sequence

(5) and (6,) imply x is a null sequence. We proceed to show

that x e B M . It follows from (6 ) and the definition of N o
0 l

that

(7) N Q(x
 X ;...; X

 q ) = N Q(N 0(€; X
 2 ) ; X

 3 j . . . jx q ) .

Using (6,) we deduce from (7)

(8) N Q(x
 1 ;...;X

 q ) < N Q ((1 + $2) e; x
 3 5.. .;X

 q )

( ) - 1 X 3 ;---;(1+V ̂

by the monotonicity of N n. By repeating the computations in (7)

and (8) we deduce that

(9) N0Cs
 X ; x 2 ;...;x q ) < (l+fi) (l+5)N(€;x 4 j ; x q
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q
< e 7T(l+«

2

•« (1+6J

5 i ^

€ .

OO

< 7T

By induction we conclude

(10) NQ(x
 1 ;

(10) implies that x € BJJ

In order to see that B N has no base by the monotomicity
O

of N Q observe that

(11) NQ(x * ; x * ;...) > N0(x. * j 0,0,...) = e

so that N0(x
 K ; x K + 1 ',..')-/> 0 as K-^ oo . Thus (e1)

is not a base of B M . Hence by Remark 3 B M does not admit
0 w0

a base.

Conversely suppose the sequence (e1}.>- is not a base

for the space B N Q # Then by earlier results we can find a

null sequence £ = (x, , x^ * • • •) € B N such that for some

€ > 0

(12) NQ(x) = A < CD

(13) A>_N o(x m, xm+1,...) > 2e > 0 for m=l,2,...

By discarding an initial segment of x if necessary we can

suppose without loss of generality that 0 < x. < Ve for a

preassigned r\ > 0. Now define a sequence of integers

{ J i ) i > 1 such that

where q. = "jLJ.
1 t=l t-

By (13) this is certainly possible for sufficiently small 77.
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Let us decompose the sequence x as

55 ^

where 2e >.No(x
x) > e.

Now multiply the finite sequences x 1 £>Y ̂ . =

o x~ '
than(clearly j < ©± < D . Thus if yX = ©jX1, i > 1,

(14) y ^ < Ve and N Q (y>) = e.

By the monotonicity of N , y = (y x ; y ;...)€ B̂ j since

* € B V

We complete the proof by showing that for each 6 there

is a finite sequence x,,...,x^ such that 0 < x. < Vef

NQ(x1, .. .^XJJ) = e and NQ ( e ^ , .. ' .x^) < (1+6) €. If this

is false there exists a 5 > 0 for which 0 < x. < Ve

and N^fx^ x2,...,xN) = € imply NQ(e, x]L,x2,.. .,xN)> (1+6 )e.

However in this case we claim that for every sequence

1 2 2^
& '5 5 5 i X ) (x x )5 i » • • •

which satisfies 0 < x* < Tje/ NQ (x
1) = e that

(16) No(x) > (1 + fi1)1^, K >_ 1. This claim is justified

as follows by induction. For K = 1 (16) is clearly satis-

fied. Suppose (16) is true for some K > 1. Then

(17) N (x • x • • . . *x^ • x^ "*"̂"# . x^ )

1 2 2^ P̂ 4-1 pK+1
= N (N (X • x • • *x ) x x f *x )

> N ((l+5±)Ke; x 2 +i-;...j x2

HUNT
CARNEfilE-MELLON
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and in addition

(18) NQ(x^
 +±;...;x

By (18) we see that for some c3 0 < c <̂

while by using the monotonicity and (15)we obtain

1 ^ ^ 9 4-1 9

(19) N o0s
X; X 5-.-S X > 5 +1;...;x^)

> NQ((1 + 6
±)Ke; C x 2 ;...; C x

+ 1 1 1 ^ 2

This completes the induction argument#

1 2

Now (16) clearly implies that ^ = (̂  ; y ;...)€ BJJO which

is the desired contradiction.

Let us recall that Q. denotes the increasing function defined

by <*(s) = ^ ( 1 , 8 ) - ! 9 s > 0 .

Theorem 4. B N fails to have a base provided the function OL

satisfies the following condition for each A > lj

(*) (In 1/7?) -1 (min ^ f j r ^ G O as

Proof. By the lemma it suffices to show that for some fixed

€ > 0 there exists for each pair 6, 77 > 0 a sequence

x - ^ . . . ^ such that (1) 0 < x ± < Ve (2) N Q (x^ . .. ,xN) = €

and (3) N
Q(

€> Kijm9m9XN^ — ^ + ^)€» Moreover we may with

out loss of generality require r\ to be sufficiently small so

that the following conditions are satisfied
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(4X) a(n) < 1/2, V < 1/2,

(42) (in l/i,) -1 (min

and (43) [^(l.T?)]2 (1+6/2) (1+6/4) < 1+6.

We now construct the desired sequence by taking

22
(5) x.. =??€, X2 = X3 = *• = ^ 1 = ^ € where N is determined

by

2

and then selecting x € (0,?? e) so that (2) holds. That

there exists an N satisfying (6) follows from the fact that

BJJ contains only null sequences.
If we denote N (x,,...,x.) = 0 . , 1 £ J £ N then the

scalars c. are recursively determined by
x x

(7) C l = x x, Cj+1 = CjN^l, -j±i ) = C j [l+a(

Hence by (2)

(8) x x ^ f 1 (1 + a(-j±i)) = c N = e
3—1 3

Moreover

x x
(9) C. < €, - j ^ < - j ^ < 1J, j = 1,..., N-l.

J Cj Xl

On the other hand if we denote N (€,x,,...,x.) = d. for

I £. j ̂ . N then the scalars d. are recursively determined

by (10) dx = NQ(e, xx) = e ^(1,7?)
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Thus

(11)

we

€

have

N1 (1,??)
N - l
j |
3=1

x.

+ *l-fr )] =

and (12) d. >_ €. Select the index m so that

(13) x, TT [i + <*(-??*• > 1 < < x, "JT [i + o=(-iti ) ]
1 j=l Cj 1+6/2 1j=l cj

Then by (8) we deduce that

N-l x.
(14) T T [1 + « ( r 1 ^ ) ] < 1 + 6/2 .

j=m+l j

We proceed to appraise NQ(e, x ^ , . . . , ^ ) . By monotonicity

of tt(s) for s >_ 0 we conclude since d. > c. that

N-l x. .
(15) T T (1 + «( -4^)) < 1 + 6/2.

j=M+l dj

On the other hand since (14) ensures that c. < — - — ,
3 1+6/2

l<_j <.ia - 1. We have
nt-1 x... m-1 c. X.^T

(16) T T [1 + «( -J^ )] = TV [1 + «( s 1 -fr1 )]
3=1 j j=l j cj

m-1 - x.

3=1

Now by (13) we have

<17> & ln n + «( -i±I ) ] < in (1+6^2)- = In

x. ,
By (9) and (4^ a ( ^ + x ) < a (T?) < 1/2

x. , D m . ,,K+1 x.,, K
whereby In [1+a ( -J±i) ] = V - i ^ [a ( ̂ +1 ) 1

Cj K=l K cj
X.

> 1/2 a J
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Thus (17) implies

m-1 X'JLI '" 1
(18) S cc(-L± < 2 ln

From (42) and (4,) it follows that

U9) % a( T^l ^ ) £ *%£&? • 2 ln

Substituting (19) into (16) we obtain

m-1 x. -
(20) ^ [l+a( -J±i)] < 1+5/4.

jj=l D

Finally inserting (15) and (20) into (12) we obtain

o *X1<*X2'* " " * ̂ Xn

< € 1^(1,1?) (1+6/4) [l+a( - ^ ) ] d+6/2)

< € [^(l.Tj)]2 (1+6/4) (1+6/2)

Using (4^) it is verified that

NQ(€, x1,...,xn) < € (1+5).

The proof is complete.

Adopting techniques similar to the proof of the pre-

ceeding theorem we obtain the following necessary condition

for the nonexistence of a base.

Theorem 5. In order that B N may not have a base it is

necessary that for each A > 1

Next we proceed to construct an example of a nonseparable

Banach space B^Q whose elements are n
(ill sequences.
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Example. Let (x,, x2) represent the coordinates of a

point in the plane with reference to a pair of orthogonal

axes. Consider the arc determined by x. + x,e~xl'x2= 1̂

3/4 £ X-. < 1 and the line segment joining (0,1) and the

point on the above arc corresponding to x^ = 3/4. The

above curve together with the line segments joining the

origin to (0,1) and to (1,0) forms the boundary of a

fan. This fan together with its reflections through the

origin and across the axes is a convex set and determines a

Minkowskian norm N, on R , It is verified that N,(1,S)

= 1 + e^s and a(s) = e'1^3 for small s > 0. Since

N^(l,s) > 1 for s >̂  0 every member of BN is a null se-

quence. Futher since

it follows by theorem 4 that BN does not admit a base. From

the remark 3 we conclude that BJJ is not even separable.
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