NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying of this document without permission of its author may be prohibited by law.

BANACH SEQUENCE SPACES

by
Victor J. Mizel
and
Kondagunta Sundaresan

Report 66-9

October, 1966
by Victor J. Mizel ${ }^{1}$ and Kondagunta Sundaresan ${ }^{2}$
Let $\left(R^{2}, N_{1}\right)$ be a two dimensional normed linear space. If N_{1} satisfies the condition (a) below it is shown by adopting an iteration procedure that N_{1} determines a Banach Sequence space ${ }^{B_{N_{O}}}$. This class of Banach spaces is a generalization of the classical l_{p} spaces $(1 \leq p \leq \infty)$. In this paper it is proposed to discuss the separability and reflexivity of these spaces intrinsically in terms of N_{1}.

In what follows N_{1} is a norm on the coordinatized plane R^{2} satisfying the condition
(a) if U is the unit ball of $\left(R^{2}, N_{1}\right)$ and P is the positive quadrant of the plane then

Convex hull $\{(1,0,(0,1),(0,0)\} \subset P \cap U \subset$ Convex $\operatorname{hull}\{(1,0),(0,0)$,

$$
(0,1),(1,1)\}
$$

Convex sets which satisfy the above inequality are known as fans and their relation to substitutive bases are discussed in Corson and Klee [l].

The norm N_{l} may be utilized to define a norm $N_{K-l}(K>2)$ on the K-dimensional space R^{K} by an iteration procedure as follows. If $\left(x_{1}, x_{2}, x_{3}\right) \in R^{3}$ let $N_{2}\left(x_{1}, x_{2}, x_{3}\right)=$ $N_{1}\left(N_{1}\left(x_{1}, x_{2}\right),\left|x_{3}\right|\right)$. Since $P \cap U$ is a fan it is verified that $N_{1}\left(a_{1}, b_{1}\right) \leq N_{1}\left(a_{2}, b_{2}\right)$ if $0 \leq a_{1} \leq a_{2}$ and $0 \leq b_{1} \leq b_{2}$. As a consequence of this monotonicity it follows at once that N_{2} is a norm on R^{3}. Proceeding inductively having defined the norm N_{K-1} on R^{K} let N_{K} fe defined on R^{K+1} by setting $N_{K}(x)=$ $N_{1}\left(N_{K-1}\left(x_{1}, \ldots, x_{K}\right),\left|x_{K+1}\right|\right)$ if $x=\left(x_{1}, \ldots, x_{K}, x_{K+1}\right)$. Then N_{K} is a norm on R^{K+1}. With any sequence x let us denote \% Research supported in part by the grant N. S. F. GP-6173. MAR $2{ }^{1}$ ${ }^{2}$ Research supported in part by the grant O. N. R. 760 (27).
the K-vector $\left(x_{1}, x_{2}, \ldots, x_{K}\right)$ by $x \mid K$. It is verified that $\left\{N_{K-1}(x \mid K)\right\}_{K \geq 2}$ is an increasing sequence. Let B denote the set of all sequences x such that $\left\{N_{K}(x \mid K+1)\right\}_{K} \geq 1$ is bounded. Then B is a linear space and the function $N_{O}(x)=$ $\sup _{K}\left\{N_{K-1}(x \mid K)\right\}$ is a norm on B. The normed linear space ($\overline{\mathrm{B}}, \mathrm{N}_{\mathrm{O}}$) is denoted by $\mathrm{B}_{\mathrm{N}_{\mathrm{O}}}$.
Remark 1. If $N_{1}\left(x_{1}, x_{2}\right)=\left[\left|x_{1}\right|^{p}+\left|x_{2}\right|^{p}\right]^{l / p}$ for some p, $1 \leq p \leq \infty$ then $B_{N_{0}}$ is the l_{p} sequence space and of course conversely.

Proposition 1. The normed linear space $B_{N_{O}}$ is a Banach space. Proof. Let $\left\{x^{i}\right\}_{i} \geq 1$ be a Cauchy sequence in $B_{N_{O}}$. Clearly $\left\{x_{K}{ }^{i}\right\}$ is a Cauchy sequence of reals for a fixed $K \geq 1$. Hence $\left\{x^{i}\right.$ \} converges coordinatewise to a sequence y. Further since $\left\{x^{i}\right\}$ is a cauchy sequence $N_{O}\left(x^{i}\right) \leq K$ for all i and for some nonnegative real number K. Thus $N_{p-1}(y \mid p)=$ $\lim _{i \rightarrow \infty} N_{p-1}\left(x^{i} \mid p\right) \leq N_{O}\left(x^{i}\right) \leq K$. Hence $y \in B_{N_{O}}$. From the definition of N_{O} it follows that for any $\epsilon>0$ for large $p, N_{O}\left(y-x^{i}\right)$ $\leq N_{p-1}\left(\left(y-x^{i}\right) \mid p\right)+\epsilon . \quad$ Since $N_{p-1}\left(\left(y-x^{i}\right) \mid p\right) \rightarrow 0$, as $i \rightarrow \infty$, $N_{0}\left(y-x^{i}\right) \rightarrow 0$ i.e. $x^{i} \rightarrow y$ in the space $B_{N_{O}}$. Hence $B_{N_{O}}$ is a Banach space.

Before proceeding to discuss separability and reflexivity of the space $\mathrm{B}_{\mathrm{N}_{\mathrm{O}}}$ we establish a lemma.

Lemma 1. If $x \in B_{N_{0}}$ then x is a bounded sequence and $\sup _{\mathcal{1} \geqslant 1}\left|x_{i}\right| \leq N_{0}(x)$. Further if $N_{1}(1, a)=1$ for some $a>0$ then the Banach space l_{∞} is isomorphic to $B_{N_{O}}$ while if $N_{1}(1, a)>1$ for all a >0 then every sequence in $B_{N_{O}}$ is a null sequence.

Proof. Suppose $x \in B_{N_{O}}$. Since the condition (a) implies that the unit ball U of $\left(R^{2}, N_{1}\right)$ is a subset of the unit ball of R^{2} with the supremum norm it follows that $\sup \left(\left|x_{1}\right|,\left|x_{2}\right|\right) \leq N_{1}\left(x_{1}, x_{2}\right)$. Thus for every integer $p \geq 2$ $\sup \left|x_{i}\right| \leq N_{p-1}\left(x_{1}, x_{2}, \ldots, x_{p}\right)$. Hence $\sup _{i>1}\left|x_{i}\right| \leq N_{O}(x)$. $1 \leq i \leq p$

Next let for some $a>0 \quad N_{1}(1, a)=1$. From the definition of N_{O} it readily follows that $N_{O}(y)=1$ where y is the sequence such
that $y_{1}=1$ and $y_{i}=a$ for all $i>1$. Hence if x is the constant sequence whose range is $\{a\}$ then $x \in B_{N_{O}}$. Thus every bounded sequence is in $B_{N_{O}}$ i.e. the vector spaces l_{∞} and $B_{N_{O}}$ consist of the same elements. Since $\sup _{i \geq 1}\left|x_{i}\right| \leq N_{O}(x)$ for all $x \in B_{N_{\mathrm{O}}}$ and $\mathrm{B}_{\mathrm{N}_{\mathrm{O}}}$ and l_{∞} are Banach spaces, $\mathrm{B}_{\mathrm{N}_{\mathrm{O}}}$ is isomorphic to l_{∞}. In particular $\mathrm{B}_{\mathrm{N}_{\mathrm{O}}}$ is not separable.

Next let us assume $N_{1}(1, a)>1$ for all $a>0$. We note that nonzero constant sequences are not in $B_{N_{O}}$. For if such a sequence is in $B_{N_{O}}$ then clearly the sequence $I_{\text {, the }}$ the constant sequence with range $\{1\}$, is in $B_{N_{O}}$. Let $N_{O}(I)=m$. Since $N_{1}(1,1)>1, m>1$. It is verified by induction that

$$
N_{0}(I \mid p+1) \geq\left[N_{1}(1,1 / m)\right]^{p-2} N_{1}(1,1)
$$

for $p \geq 2$. Thus $N_{0}(I)$ is infinite and $I \in B_{N_{O}}$. Next let $x \in B_{N_{O}}$. If possible for some $\epsilon>0$ let there be a subsequence $\left\{x_{n_{i}}\right\}$ in x such that $\left|x_{n_{i}}\right|>\in$ for all $i \geq 1$. Since $x \in B_{N_{0}}$, the sequence x in which all elements of x other than $x_{n_{i}}$ are replaced by zero is also in $\mathrm{B}_{\mathrm{N}_{\mathrm{O}}}$. By definition of the norm N_{0} it then follows that the sequence y for which $y_{i}=x_{n_{i}}$ is
in $\mathrm{B}_{\mathrm{N}_{\mathrm{O}}}$. However $\mathrm{N}_{\mathrm{O}}(\in \mathrm{I}) \leq \mathrm{N}_{\mathrm{O}}(\mathrm{y})$. Thus $\mathrm{I} \in \mathrm{B}_{\mathrm{N}_{\mathrm{O}}}$ which is a contradiction. Hence $x \in B_{N_{O}}$ implies x is a null sequence. Remark 2. From the above lemma it follows that either $\mathrm{B}_{\mathrm{N}_{\mathrm{O}}}$ is the same as the space l_{∞} or $B_{N_{0}} \subset C_{O}$ where C_{O} is the linear space of null sequences. Further since the condition (a) implies $\left|x_{1}\right|+\left|x_{2}\right| \geq N_{1}\left(x_{1}, x_{2}\right)$ for all $\left(x_{1}, x_{2}\right) \in R^{2}$ it follows that $x \in l_{1}$ implies $\sum_{i \geq 1}\left|x_{i}\right| \geq N_{O}(x)$ and $x \in B_{N_{0}}$. Thus if $\mathrm{B}_{\mathrm{N}_{\mathrm{O}}} \neq \mathrm{l}_{\infty}$ then $\mathrm{I}_{1} \subset \mathrm{~B}_{\mathrm{N}_{\mathrm{O}}} \subset \mathrm{C}_{\mathrm{O}}$ and the identity mappings i: $\quad 1_{1} \rightarrow B_{N_{0}}$ and i: $B_{N_{0}} \rightarrow C_{0}$ are continuous. However it does not follow in this second case that $\mathrm{B}_{\mathrm{N}_{\mathrm{O}}}$ is separable ($c f$ example at the end of this note).

We next proceed to show that the Banach space $\mathrm{B}_{\mathrm{N}_{\mathrm{O}}}$ is isometrically isomorphic to the conjugate of a Banach Space. In lemma 2 we obtain the adjoint of the norm N_{K-1} on R^{K}. Let M_{1} be the adjoint norm of N_{1}. If U_{1}, U_{∞} denote the unit balls of R^{2} corresponding to the norms $\left|x_{1}\right|+\left|x_{2}\right|$, and $\operatorname{Sup}\left(\left|x_{1}\right|,\left|x_{2}\right|\right)$ then the unit ball $U_{N_{1}}$ of $\left(R^{2}, N_{1}\right)$ satisfies the inequality $U_{1} \subset U_{N_{1}} \subset U_{\infty}$. Hence $U_{1} \subset U_{M_{1}} \subset U_{\infty}$ by considering the polar sets. Thus $\left(R^{2}, M_{1}\right)$ also satisfies the condition (a) and the iteration procedure determines the Banach Space $\mathrm{B}_{\mathrm{M}_{\mathrm{O}}}$.
Lemma 2. The adjoint space of (R^{p}, N_{p-1}) is the space $\left(R^{p}, M_{p-1}\right.$) where M_{p-1} is the p dimensional norm determined by M_{1} through iteration procedure.

Proof. It suffices to show that if ($f_{1}, f_{2}, \ldots f_{p}$) $\in R^{p}$ then
$M_{p-1}\left(f_{1}, f_{2}, \ldots, f_{p}\right)=\sup \left|\sum_{i}^{p} f_{i} x_{i}\right|$ where $N_{p-1}\left(x_{1}, x_{2}, \ldots, x_{p}\right) \leq 1$. The proof of this statement ${ }^{i=1}$ is by induction. Suppose that for some $K \geq 2$ every K-vector $\left(f_{1}, f_{2}, \ldots, f_{K}\right.$) satisfies $M_{K-1}\left(f_{1}, f_{2}, \ldots, f_{K}\right)=\sup \left|\sum_{i=1}^{K} f_{i} x_{i}\right|$ as $x=\left(x_{1}, x_{2}, \ldots, x_{K}\right)$ varies over the unit ball U_{K} of $\left(R^{K}, N_{K-1}\right)$. Let $g=\left(g_{1} ; g_{2}, \ldots, g_{K+1}\right) \in R^{K+1}$. By definition of M_{1}

$$
\begin{gathered}
M_{K}\left(g_{1}, g_{2}, \ldots, g_{K+1}\right)=M_{1}\left(M_{K-1}\left(g_{1}, g_{2}, \ldots, g_{K}\right),\left|g_{K+1}\right|\right) \\
\geq M_{K-1}\left(g_{1}, g_{2}, \ldots, g_{K}\right) N_{K-1}\left(x_{1}, x_{2}, \ldots, x_{K}\right) \\
\quad+\left|g_{K+1}\right|\left|x_{K+1}\right|
\end{gathered}
$$

if $N_{K}\left(x_{1}, x_{2}, \ldots, x_{K+1}\right) \leq 1$. Thus by the induction hypothesis $M_{K}\left(g_{1}, g_{2}, \ldots, g_{K+1}\right) \geq\left|\sum_{i=1}^{K} g_{i} x_{i}\right|+\left|g_{K+1} x_{K+1}\right|$ since $\left(x_{1}, x_{2}, \ldots, x_{K}\right) \in U_{K}$. Hence $M_{K}\left(g_{1}, g_{2}, \ldots, g_{K+1}\right) \geq\|g\|$ where $\|\cdot\|$ is the adjoint norm of N_{K}.

Let us next show that $M_{K}\left(g_{1}, g_{2}, \ldots, g_{K}\right) \leq\|g\|$. Since M_{K-1} is the adjoint of N_{K-1} there exists a vector $x=$ $\left(x_{1}, x_{2}, \ldots, x_{K}\right) \in U_{K}$ such that

$$
\begin{aligned}
M_{K-1}\left(g_{1}, g_{2}, \ldots, g_{K}\right) & =\sum_{i=1}^{K} g_{i} x_{i} . \text { Further } \\
M_{K}\left(g_{1}, g_{2}, \ldots, g_{K+1}\right) & =M_{1}\left(M_{K-1}\left(g_{1}, g_{2}, \ldots, g_{K}\right),\left|g_{K+1}\right|\right) \\
& =M_{1}\left(\sum_{l_{1=1}}^{K} g_{i} x_{i},\left|g_{K+1}\right|\right) .
\end{aligned}
$$

Thus there exists a vector $\left(Z_{1}, z_{2}\right) \in R^{2}$ with $Z_{i} \geq 0$ for $i=1,2$ and $N_{1}\left(Z_{1}, Z_{2}\right) \leq 1$ such that

$$
\begin{aligned}
M_{K}\left(g_{1}, g_{2}, \ldots, g_{K+1}\right) & =\left(\sum_{i=1}^{K} g_{i} x_{i}\right) z_{1}+\left|g_{K+1}\right| z_{2} \\
& =\sum_{i=1} g_{i} x_{i} z_{1}+g_{K+1} \operatorname{sign} g_{K+1} z_{2}
\end{aligned}
$$

Since $K+1>2$ and $\left(x_{1}, x_{2}, \ldots, x_{K}\right) \in U_{K}$ $N_{K}\left(x_{1} Z_{1}, x_{2} Z_{1}, \ldots, x_{K} Z_{1}\right.$, sign $\left.g_{K+1} Z_{2}\right)$

$$
\begin{aligned}
& =N_{1}\left(N_{K-1}\left(x_{1} Z_{1}, x_{2} Z_{1}, \ldots, x_{K} Z_{1}\right), Z_{2}\right) \\
& \leq N_{1}\left(Z_{1}, Z_{2}\right) \leq 1 . \text { Hence }
\end{aligned}
$$

$M_{K}\left(g_{1}, g_{2}, \ldots, g_{K+1}\right) \leq\|g\|$. The proof is complete.
In the next theorem $C_{N_{O}}$ is the closure of the linear subspace of finite sequences in $B_{N_{O}}$. Clearly the set of unit vectors $\left\{e^{i}\right\}_{i} \geq 1$ where $e_{j}^{i}=1$ if $i=j$ and $e_{j}^{i}=0$ if i $\neq j$ is a Schauder base for the space $C_{N_{O}}$.

Theorem 1. The Banach space $\mathrm{B}_{\mathrm{N}_{\mathrm{O}}}$ is isometrically isomorphic with the conjugate space of $\mathrm{C}_{\mathrm{M}_{\mathrm{O}}}$.
Proof. Let $\mathrm{C}_{\mathrm{M}_{\mathrm{O}}}^{*}$ denote the conjugate of $\mathrm{C}_{M_{O}}$ and let the adjoint norm be $\|\cdot\|$. Since $\left\{e^{i}\right\}_{i} \geq 1$ is a base of $C_{M_{0}}$ it follows that $f \in C_{M_{0}}^{*}$ implies that $f(x)={ }_{i \geq 1} f_{i} x_{i}$ where $f_{i}=f\left(e^{i}\right)$ and $x=\left\{x_{i}\right\}_{i \geq 1}$ is a sequence in $C_{M_{0}}$. Since for $z=$ $\left(z_{1}, z_{2}, \ldots, z_{p}\right) \in U_{p-1}$, the unit ball of $\left(R^{p}, M_{p-1}\right)_{2}$

$$
\begin{aligned}
|f(z)|= & \left|\sum_{i=1}^{p} f_{i} z_{i}\right| \leq\|f\| \text { it follows that } \\
& \left|\sum_{i=1}^{p} f_{i} z_{i}\right| \leq\|f\| \text { for all } z \in U_{p-1}
\end{aligned}
$$

Thus $N_{p-1}\left(f_{1}, f_{2}, \ldots, f_{p}\right) \leq\|f\|$ for all $p \geq 2$.

Hence the sequence $\left\{f_{i}\right\}_{i} \geq 1{ }^{\in B_{N}}{ }_{0}$ and $N_{O}\left(\left\{f_{i}\right\}_{i} \geq 1\right) \leq\|f\|$. Since each function $f \in C_{M_{O}}^{*}$ determines a unique sequence $\left\{f_{i}\right\}_{i \geq 1}$ where $f_{i}=f\left(e^{i}\right)$ the mapping $\sigma: \quad C_{M_{O}}^{*} \rightarrow B_{N_{O}}$ defined by $\sigma(f)=\left\{f_{i}\right\}_{i \geq 1}$ is a linear operator and (l) $N_{O}(\sigma(f)) \leq\|f\|$. The mapping σ is onto. For if the sequence $f=\left\{f_{i}\right\}_{i \geq 1}$ is in $B_{N_{0}}$ then consider the linear functional g on $C_{M_{O}}$ defined by $g(x)=\sum_{i \geq 1} f_{i} x_{i}$. Now if the sequence x is such that $M_{O}(x) \leq 1$ then $M_{p-1}(x \mid p) \leq 1$ for every p-vector $x \mid p$.
Thus $\left|\sum_{i=1}^{p} f_{i} x_{i}\right| \leq N_{p-1}\left(f_{1}, f_{2}, \ldots, f_{p}\right)$. Hence
$|g(x)| \leq \sup _{p \geq 2} N_{p-1}\left(f_{1}, f_{2}, \ldots, f_{p}\right)=N_{O}(f)$. Thus
$M_{0} \sup _{(x) \leq 1}|g(x)| \leq N_{O}(f)$. Hence $g \in C_{M_{O}}^{*}, \quad \sigma(g)=f$ and
(2) $\|g\| \leq N_{\mathrm{O}}(\mathrm{f})=\mathrm{N}_{\mathrm{O}}(\sigma(\mathrm{g}))$. Thus σ is onto $\mathrm{B}_{\mathrm{N}_{\mathrm{O}}}$ and from inequalities (1) and (2) it follows that σ is an isometry. Thus ${ }_{B_{N}}$ is isometrically isomorphic to $C_{M_{O}}^{*}$.

Corollary. The Banach space $\mathrm{B}_{\mathrm{N}_{\mathrm{O}}}$ is separable if and only if $\left\{e^{i}\right\}_{i \geq 1}$ is a base for the space.

Proof. We note that as a consequence of the monotonicity of M_{O} ie. $x, y \in C_{M_{O}}$ and $x_{i} \geq y_{i} \geq 0$ imply $M_{O}(x) \geq M_{O}(y)$ for every $x \in C_{M_{0}}$ the series $x=\Sigma x_{i} e^{i}$ is subseries convergent. Thus $\left\{e^{i}\right\}_{i \geq 1}$ is an unconditional base for the space $C_{M_{0}}$. Since $C_{M_{0}}^{*}=B_{N_{O}}, B_{N_{O}}$ is separable if and only if the sequence biorthogonal to $\left\{e^{i}\right\}_{i \geq 1}$ is a base for the space $B_{N_{O}}$ as a consequence of Theorem 5 on page 77, Day [2].

Remark 3. As a consequence of the above corollary it follows that the following statements are equivalent. (l) $\mathrm{B}_{\mathrm{N}_{\mathrm{O}}}$ is
separable (2) $B_{N_{0}}=C_{N_{O}}$ i.e. $\left\{e^{i}\right\}_{i \geq 1}$ is a base of $B_{N_{O}}$
(3) ${ }^{B_{N}}{ }_{O}$ has a base. Further if $B_{N_{O}}$ is separable then $B_{N_{0}}^{*}$ is isometrically isomorphic to $\mathrm{B}_{\mathrm{M}_{\mathrm{O}}}$

The next theorem provides a characterization of reflexive Banach spaces $\mathrm{B}_{\mathrm{N}_{\mathrm{O}}}$. Theorem 2. The Banach space ${ }^{B_{N}}{ }_{O}$ is reflexive if and only if $\mathrm{B}_{\mathrm{N}_{\mathrm{O}}}$ and $\mathrm{B}_{\mathrm{M}_{\mathrm{O}}}$ are separable.
Proof. Suppose $\mathrm{B}_{\mathrm{N}_{\mathrm{O}}}$ and $\mathrm{B}_{\mathrm{M}_{\mathrm{O}}}$ are separable. Then $\mathrm{B}_{\mathrm{N}_{\mathrm{O}}}^{* *}=\left(\mathrm{B}_{\mathrm{M}_{\mathrm{O}}}\right){ }^{*}=$ $\mathrm{B}_{\mathrm{N}_{\mathrm{O}}}$ by Remark 3. As already noted in proving the preceding corollary, $B_{N_{O_{0}}}$ has an unconditional base. Further $B_{N_{0}}^{* *}=B_{N_{0}}$ implies that ${ }_{B_{N_{O}}^{* *}}^{O_{n}}$ is separable. Hence by Theorem 4 on $p .76$ of [2], $B_{N_{0}}$ is reflexive. Conversely suppose $B_{N_{O}}$ is reflexive. Then the closed subspace $C_{N_{0}}$ is also reflexive. Hence the base $\left\{e^{i}\right\}_{i \geq 1}$ of $C_{N_{0}}$ is boundedly complete by a theorem of James. (cf Theorem 3 on page 71, Day [2]). Thus if $x=\left\{x_{i}\right\}_{i \geq 1} \in B_{N}$ then since $N_{O}\left(\sum_{i=1}^{p} x_{i} e^{i}\right) \leq N_{O}(x)$ for $p \geq 1$ and since $\left\{e^{i}\right\}_{i \geq 1}^{0}$
is a boundedly complete base of $C_{N_{O}}$ it follows that $x \in C_{N_{0}}$. Thus ${ }^{B_{N_{O}}}=C_{N_{O}}$ and ${ }^{B_{N_{O}}}$ is separable. Since $C_{N_{O}}^{*}=B_{M_{O}}$ and $C_{N_{O}}$ is reflexive it follows that $\mathrm{B}_{\mathrm{M}_{\mathrm{O}}}$ is also separable.

We are not able to obtain a complete characterization for the separability of the Banach space $B_{N_{N}}$ intrinsically in terms of N_{1}. However, we establish three theorems. The first one provides a sufficient condition for the existence of a base in $\mathrm{B}_{\mathrm{N}_{\mathrm{O}}}$ (equivalently for the separability of $\mathrm{B}_{\mathrm{N}_{\mathrm{O}}}$) in terms of the norm N_{2}. The second and third provide a necessary and a sufficerent condition for the existence of a base (equivalently for the separability of $B_{N_{\mathrm{O}}}$) in terms of the norm N_{1}.
example of a two dimensional norm N_{1} such that each sequence in the corresponding Banach space $B_{N_{O}}$ is a null sequence, yet $\mathrm{B}_{\mathrm{N}_{\mathrm{O}}}$ fails to be separable.

Theorem 3. If for some $\delta>0,0 \leq x_{i} \leq \delta \quad i=1,2,3$ implies $N_{1}\left(N_{1}\left(x_{1}, x_{2}\right), x_{3}\right) \geq N_{1}\left(x_{1}, N_{1}\left(x_{2}, x_{3}\right)\right)$ and $N_{1}(1, a)>1$ for all $a>0$ then the sequence $\left\{e^{i}\right\}_{i \geq 1}$ is a base for the Banach space $\mathrm{B}_{\mathrm{N}_{\mathrm{O}}}$.
Proof. Since $N_{1}(1, a)>1$ for $a>0 \quad$ lemma 1 implies that the sequences in $B_{N_{O}}$ are null sequences. Suppose $\left\{e^{i}\right\}_{i \geq 1}$ fails to be a base for $B_{N_{O}}$. Then there exists a sequence $x=\left\{x_{i}\right\}_{i \geq 1}$ and a sequence of integers p_{i} such that $0 \leq x_{i} \leq \delta$ and for some $\epsilon>0$ for all $i \geq 2$
$N_{p_{i}-1}\left(x_{q_{i}+1}, x_{q_{i}+2}, \ldots, x_{q_{i}+p_{i}}\right) \geq \epsilon$ where $q_{i}=\sum_{t=1}^{i-1} p_{t}$.
Since $N_{1}\left(N_{1}\left(x_{1}, x_{2}\right), x_{3}\right) \geq N_{1}\left(x_{1}, N_{1}\left(x_{2}, x_{3}\right)\right)$ it is verified inductively that

$$
\begin{align*}
& N_{i=1}^{n} p_{i}-1\left(x_{1}, x_{2}, \ldots, x_{i=1}^{n} p_{i}\right) \\
& \geq N_{n-1}\left(z_{1}, z_{2}, \ldots, z_{n}\right) \tag{A}
\end{align*}
$$

where for $1 \leq i \leq \gamma-1$

$$
z_{i}=N_{p_{i}-1}\left(x_{q_{i}+1}, x_{q_{i}+2} \ldots, x_{q_{i}+p_{i}}\right)
$$

where $q_{i}=\sum_{t=1}^{i-1} p_{t}$.

By the choice of the sequence $x, z_{i} \geq \epsilon$ for $1 \leq i \leq r-1$. Thus the inequality (A) implies
$N_{O}(x) \geq N_{r-2}(\xi)$ where ξ is the $(r-1)$ - vector with each coordinate $\xi_{i}=\epsilon$. Since this inequality is satisfied for large r the constant sequence with range $\{\epsilon\}$ is in ${ }^{B_{N_{0}}}$ which is a contradiction. The proof is complete.

Next we proceed to obtain a necessary condition and a sufficient condition for the nonexistence of a basis in $\mathrm{B}_{\mathrm{N}}{ }_{\mathrm{O}}$ in terms of the asymptotic behavior of the function $\alpha(s)=$ $N_{1}(1, s)-1$ as $S \rightarrow 0+$. We assume in the rest of this paper that $N_{1}(1, a)>1$ for $a>0$ so that every sequence in $B_{N_{0}}$ is a null sequence. We start by establishing a useful lemma. With a little abuse of notation we denote the norm of an n-vector $\left(x_{1}, \ldots, x_{n}\right)$ by $N_{0}\left(x_{1}, \ldots, x_{n}\right)$ instead of $N_{n-1}\left(x_{1}, \ldots, x_{n}\right)$.

Lemma 3. The Banach space $\mathrm{B}_{\mathrm{N}_{\mathrm{O}}}$ does not admit a base if and only if for some $\epsilon>0$ there exists for each pair of positive numbers δ, η a finite sequence $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$ such that
(1) $0<\mathrm{x}_{\mathrm{i}}<\eta_{\epsilon} \quad 1 \leq \mathrm{i} \leq \mathrm{N}$
(2) $N_{0}\left(x_{1}, \ldots, x_{n}\right)=\epsilon$
(3) $N_{0}\left(\epsilon, x_{1}, \ldots, x_{n}\right) \leq(1+\delta) \in$.

Proof. Suppose N_{0} satisfies the above property. With a fixed
choice of $\delta_{0}>0$ select positive sequences $\left\{\delta_{i}\right\}_{i \geq 1}$ and $\left\{\eta_{i}\right\}_{i \geq 1}$ such that
(4) $\prod_{i}^{\infty}\left(1+\delta_{i}\right)=1+\delta_{0}$
(5) $\stackrel{\rightharpoonup}{\eta}_{i} \rightarrow 0$

By hypothesis we can select for each i a finite sequence $x^{i}=\left(x_{1}^{i}, x_{2}^{i}, \ldots, x_{N_{i}}^{i}\right)$ which satisfies
$\left(\sigma_{1}\right) \quad 0<x_{j}{ }^{i}<\eta_{i} \epsilon$
$\left(\sigma_{2}\right) \quad N_{0}\left(x^{i}\right)=\epsilon$
and $\left(6_{3}\right) \quad N_{0}\left(\epsilon, x^{i}\right) \leq\left(1+\delta_{i}\right) \in$.
Now let X denote the countable sequence

$$
x=\left(x^{1}, x^{2}, x^{3}, \ldots\right)
$$

(5) and (6_{1}) imply x is a null sequence. We proceed to show that $x \in B_{N_{O}}$. It follows from (σ_{2}) and the definition of N_{O} that
(7) $N_{0}\left(x^{1} ; \ldots ; x^{q}\right)=N_{0}\left(N_{0}\left(\in ; x^{2}\right) ; x^{3} ; \ldots ; x^{q}\right)$.

Using (σ_{3}) we deduce from (7)
(8)

$$
\begin{aligned}
N_{0}\left(x^{1} ; \ldots ; x^{q}\right) & \leq N_{0}\left(\left(1+\delta_{2}\right) \in ;{\underset{\sim}{x}}^{3} ; \ldots ; x^{q}\right) \\
& \leq\left(1+\delta_{2}\right) N_{0}\left(\epsilon ;\left(1+\delta_{2}\right)^{-1}{\underset{\sim}{x}}^{3} ; \ldots ;\left(1+\delta_{2} \Gamma_{\sim}^{1}{\underset{\sim}{x}}^{q}\right)\right. \\
& \leq\left(1+\delta_{2}\right) N_{0}\left(\epsilon ; x^{3} ; \ldots ; x^{q}\right)
\end{aligned}
$$

by the monotonicity of N_{0}. By repeating the computations in (7) and (8) we deduce that
(9) $N_{0}\left(x^{1} ;{\underset{\sim}{x}}^{2} ; \ldots ; x^{q}\right) \leq\left(1+\delta_{2}\right)\left(1+\delta_{3}\right) N_{0}\left(\in ; x^{4} ; \ldots ;{\underset{\sim}{x}}^{q}\right)$

By induction we conclude
(10)

$$
\begin{aligned}
N_{O}\left(x^{1} ; x^{2} ; \ldots ; x^{q}\right) & \left.\leq \in \underset{2}{\prod_{2}}\left(1+\delta_{i}\right)<\prod_{2}^{\infty}\left(\left(1+\delta_{i}\right)\right)\right] \epsilon \\
& =\left(1+\delta_{0}\right) \epsilon .
\end{aligned}
$$

(10) implies that $\underset{\sim}{x} \in B_{N_{O}}$.

In order to see that $\mathrm{B}_{\mathrm{N}_{\mathrm{O}}}$ has no base by the monotomicity of N_{O} observe that

$$
\begin{equation*}
N_{O}\left({\underset{\sim}{x}}^{K} ;{\underset{\sim}{x}}^{K+1} ; \ldots\right) \geq N_{O}\left(x^{K} ; 0,0, \ldots\right)=\epsilon \tag{11}
\end{equation*}
$$

so that $N_{O}\left({\underset{\sim}{x}}^{K} ; x^{K+1} ; \ldots\right) \rightarrow 0$ as $K \rightarrow \infty$. Thus $\left\{e^{i}\right\}_{i \geq 1}$ is not a base of $\mathrm{B}_{\mathrm{N}_{\mathrm{O}}}$. Hence by Remark $3 \mathrm{~B}_{\mathrm{N}_{\mathrm{O}}}$ does not admit a base.

Conversely suppose the sequence $\left\{e^{i}\right\}_{i \geq 1}$ is not a base for the space $B_{N_{O}}$. Then by earlier results we can find a null sequence $x=\left(x_{1}, x_{2}, \ldots\right) \in B_{N_{O}}$ such that for some $\epsilon>0$
(12) $\quad N_{0}(x)=A<\infty$

$$
\begin{equation*}
A \geq N_{0}\left(x_{m}, x_{m+1}, \ldots\right)>2 \epsilon>0 \text { for } m=1,2, \ldots \tag{13}
\end{equation*}
$$

By discarding an initial segment of x if necessary we can suppose without loss of generality that $0<\mathrm{x}_{\mathrm{i}}<\eta_{\epsilon}$ for a preassigned $\eta>0$. Now define a sequence of integers $\left\{J_{i}\right\}_{i \geq 1}$ such that

$$
\epsilon<N_{0}\left(x_{q_{i}+1}, \ldots, x_{q_{i}+N_{i+1}}\right) \leq 2 \epsilon
$$

where $q_{i}=\sum_{t=1}^{i-1} J_{t}$
By (13) this is certainly possible for sufficiently small η.

Let us decompose the sequence $\underset{\sim}{x}$ as

$$
\begin{aligned}
x & =\left(x_{1}, \ldots, x_{J_{1}} ; x_{J_{1}+1}, \ldots, x_{J_{1}+J_{2}} ; \ldots\right) \\
& =\left(x_{\sim}^{1} ; x^{2} ; \ldots\right)
\end{aligned}
$$

where $2 \epsilon \geq N_{0}\left({\underset{\sim}{i}}^{i}\right)>\epsilon$.
Now multiply the finite sequences x^{i} by $\theta_{i}=\frac{\epsilon}{N_{0}\left(x^{i}\right)}$ (clearly $\frac{1}{2} \leq \theta_{i}<1$). Thus if $y^{i}=\theta_{i} x^{i}, i \geq 1$, than (14) $Y_{0}{ }^{i}<\eta_{\epsilon}$ and $N_{O}\left(\chi^{i}\right)=\epsilon$.

By the monotonicity of $N_{0}, \underset{\sim}{y}=\left(\underset{\sim}{y}{ }^{i} ; \underset{\sim}{y}{ }^{2} ; \ldots\right) \in B_{N_{0}}$ since $x \in B_{N_{0}}$.

We complete the proof by showing that for each δ there is a finite sequence x_{1}, \ldots, x_{N} such that $0<x_{i}<\eta_{\epsilon}$, $N_{0}\left(x_{1}, \ldots, x_{N}\right)=\epsilon$ and $N_{0}\left(\epsilon, x_{1}, \ldots, x_{N}\right) \leq(1+\delta) \in$. If this is false there exists a $\delta^{l}>0$ for which $0<x_{i}<\eta_{\epsilon}$ and $N_{0}\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\epsilon$ imply $N_{0}\left(\epsilon, x_{1}, x_{2}, \ldots, x_{N}\right) \geq\left(1+\delta^{1}\right) \epsilon$. However in this case we claim that for every sequence

$$
\underset{\sim}{x}=\left(x^{1} ; x^{2} ; \ldots x^{2^{K}}\right)=\left(x_{1}, \ldots x_{N_{K}}\right)
$$

which satisfies $0<x_{j}^{i}<\eta_{\epsilon}, N_{0}\left(x^{i}\right)=\epsilon \quad$ that

$$
\begin{equation*}
N_{0}(x) \geq\left(1+\delta^{1}\right)^{K} \epsilon, \quad K \geq 1 . \quad \text { This claim is justified } \tag{16}
\end{equation*}
$$ as follows by induction. For $K=1$ (16) is clearly satisfied. Suppose (16) is true for some $K>1$. Then

$$
\begin{align*}
& N_{0}\left({\underset{\sim}{x}}^{1} ; x^{2} ; \ldots ; x^{2^{K}} ; x^{2^{K}+1} ; \ldots{\underset{\sim}{x}}^{2^{K+1}}\right) \tag{17}\\
& =N_{0}\left(N_{0}\left({\underset{\sim}{x}}^{1} ;{\underset{\sim}{x}}^{2} ; \ldots ;{\underset{\sim}{2^{2}}}^{K}\right) ;{\underset{\sim}{x}}^{2^{K}+1} ; \ldots ;{\underset{\sim}{x}}^{2^{K+1}}\right) \\
& \geq N_{0}\left(\left(1+\delta^{1}\right){ }^{K} \in{\underset{\sim}{x}}^{2^{K}+1} ; \ldots ; x^{2^{K+1}}\right)
\end{align*}
$$

and in addition

$$
\begin{equation*}
N_{0}\left(x^{2^{K}+1} ; \ldots ; x^{2^{K+1}}\right) \geq\left(1+\delta^{1}\right)^{K} \epsilon \tag{18}
\end{equation*}
$$

By (18) we see that for some $c, 0<c \leq 1$,

$$
N_{0}\left(c{\underset{\sim}{x}}^{2^{K}+1} ; \ldots ; \mathrm{cx}_{\underset{\sim}{2}}{ }^{K+1}\right)=\left(1+\delta^{1}\right)^{K} \epsilon
$$

while by using the monotonicity and (15) we obtain

$$
\begin{align*}
N_{0} & \left(x^{1} ; x^{2} ; \ldots ; x^{2^{K}} ;{\underset{\sim}{x}}^{2^{K}+1} ; \ldots ; x^{2}\right) \tag{19}\\
& \geq N_{0}\left(\left(1+\delta^{1}\right)^{K} \epsilon ; C x^{2^{K}+1} ; \ldots ; C x^{2^{K+1}}\right) \\
& =\left(1+\delta^{1}\right)^{K_{N}} N_{0}\left(\epsilon ;\left(1+\delta^{1}\right)^{-K} C x^{2^{K}+1} ; \ldots ;\left(1+\delta^{1}\right)^{-K} C x^{2^{K+1}}\right) \\
& \geq\left(1+\delta^{1}\right)^{K+1} \epsilon .
\end{align*}
$$

This completes the induction argument.
Now (16) clearly implies that $\underset{Z}{ }=\left({\underset{\sim}{y}}^{l} ;{\underset{\sim}{y}}^{2} ; \ldots\right) \in B_{N_{O}} \quad$ which is the desired contradiction.

Let us recall that α denotes the increasing function defined by $\alpha(s)=N_{1}(1, s)-1, \quad s \geq 0$.

Theorem 4. $B_{N_{O}}$ fails to have a base provided the function α satisfies the following condition for each $\lambda>1$,
(*) $\quad(\ln 1 / \eta)^{-1}\left(\min _{t \leq \eta} \frac{\alpha(\lambda t)}{\alpha(t)}\right) \rightarrow \infty$ as $\eta \rightarrow 0$.
Proof. By the lemma it suffices to show that for some fixed $\epsilon>0$ there exists for each pair $\delta, \eta>0$ a sequence x_{1}, \ldots, x_{N} such that
(1) $0<\mathrm{x}_{\mathrm{i}} \leq \eta_{\epsilon}$
(2) $N_{0}\left(x_{1}, \ldots, x_{N}\right)=\epsilon$ and (3) $N_{0}\left(\epsilon, x_{1}, \ldots, x_{N}\right) \leq(1+\delta) \in$. Moreover we may with out loss of generality require η to be sufficiently small so that the following conditions are satisfied
(41) $\quad \alpha(\eta) \leq 1 / 2, \quad \eta \leq 1 / 2$,
$\left(42^{2} \quad(\ln 1 / \eta)^{-1} \underset{t \leq \eta}{(\min } \frac{\alpha(1+\delta / 2) t}{\alpha(t)}\right) \geq \frac{4}{\ln (1+\delta / 4)}$,
and $\left(4_{3}\right) \quad\left[N_{1}(1, \eta)\right]^{2}(1+\delta / 2)(1+\delta / 4) \leq 1+\delta$.
We now construct the desired sequence by taking
(5) $\mathrm{x}_{1}=\eta \epsilon, \quad \mathrm{x}_{2}=\mathrm{x}_{3}=\ldots=\mathrm{x}_{\mathrm{N}-1}=\eta^{2} \epsilon \quad$ where N is determined by
(6) $N_{0}\left(x_{1}, x_{2}, \ldots, x_{N-1}\right)<\epsilon \leq N_{0}\left(x_{1}, x_{2}, \ldots, x_{N-1}, \eta^{2} \epsilon\right)$ and then selecting $\mathrm{x}_{\mathrm{N}} \in\left(0, \eta^{2} \epsilon\right)$ so that (2) holds. That there exists an N satisfying (6) follows from the fact that $\mathrm{B}_{\mathrm{N}_{\mathrm{O}}}$ contains only null sequences.

$$
\text { If we denote } N_{0}\left(x_{1}, \ldots, x_{j}\right)=c_{j}, \quad 1 \leq j \leq N \text { then the }
$$

scalars c_{j} are recursively determined by
(7) $\quad c_{1}=x_{1}, \quad c_{j+1}=c_{j} N_{1}\left(1, \frac{x_{j+1}}{c_{j}}\right)=c_{j}\left[1+\alpha\left(\frac{x_{j+1}}{c_{j}}\right)\right]$

Hence by (2)
(8) $x_{1} \prod_{j=1}^{N-1}\left(1+\alpha\left(\frac{x_{j+1}}{c_{j}}\right)\right)=c_{N}=\epsilon$

Moreover

(9) $\quad c_{j} \leq \epsilon, \quad \frac{x_{j+1}}{c_{j}} \leq \frac{x_{j+1}}{x_{1}} \leq \eta, j=1, \ldots, N-1$.

On the other hand if we denote $N_{0}\left(\epsilon, x_{1}, \ldots, x_{j}\right)=d_{j}$ for $\mid \leq j \leq N$ then the scalars d_{j} are recursively determined by (10) $d_{1}=N_{0}\left(\epsilon, x_{1}\right)=\epsilon N_{1}(1, \eta)$

$$
d_{j+1}=d_{j} N_{1}\left(1, \frac{x_{j+1}}{c_{j}}\right)=d_{j}\left[1+\alpha\left(\frac{x_{j+1}}{d_{j}}\right)\right]
$$

Thus we have
(11) $\epsilon N_{1}(1, \eta) \prod_{j=1}^{N-1}\left[1+\alpha\left(\frac{x_{j+1}}{d_{j}}\right)\right]=\alpha_{N}=N_{0}\left(\epsilon, x_{1}, \ldots, x_{N}\right)$
and (12) $d_{j} \geq \epsilon$. Select the index m so that

$$
\begin{equation*}
x_{1} \prod_{j=1}^{m-1}\left[1+\alpha\left(\frac{x_{j+1}}{c_{j}}\right)\right] \leq \frac{\epsilon}{1+\delta / 2}<x_{1} \prod_{j=1}^{m}\left[1+\alpha\left(\frac{x_{j+1}}{c_{j}}\right)\right] \tag{13}
\end{equation*}
$$

Then by (8) we deduce that
(14) $\prod_{j=m+1}^{N-1}\left[1+\alpha\left(\frac{x_{j+1}}{c_{j}}\right)\right] \leq 1+\delta / 2$.

We proceed to appraise $N_{0}\left(\epsilon, x_{1}, \ldots, x_{N}\right)$. By monotonicity of $\alpha(s)$ for $s \geq 0$ we conclude since $d_{j}>c_{j}$ that
(15) $\prod_{j=M+1}^{N-1}\left(1+\alpha\left(\frac{x_{j+1}}{d_{j}}\right)\right) \leq 1+\delta / 2$.

On the other hand since (14) ensures that $c_{j} \leq \frac{\epsilon}{1+\delta / 2}$,
$1 \leq j \leq m-1$. We have

$$
\begin{align*}
\prod_{j=1}^{m-1}\left[1+\alpha\left(\frac{x_{j+1}}{d_{j}}\right)\right] & =\prod_{j=1}^{m-1}\left[1+\alpha\left(\frac{c_{j}}{d_{j}} \frac{x_{j+1}}{c_{j}}\right)\right] \tag{16}\\
& \leq \prod_{j=1}^{m-1}\left[1+\alpha\left(\frac{1}{1+\delta / 2} \frac{x_{j+1}}{c_{j}}\right)\right] \\
& \leq \exp \left[\sum_{j=1}^{m-1} \alpha\left(\frac{1}{1+\delta / 2} \frac{x_{j+1}}{c_{j}}\right)\right]
\end{align*}
$$

Now by (13) we have
(17) $\sum_{j=1}^{m-1} \ln \left[1+\alpha\left(\frac{x_{j+1}}{e_{j}}\right)\right] \leq \ln \frac{\epsilon}{(1+\delta / 2) x_{1}}=\ln \frac{1}{(1+\delta / 2) \eta}$

By (9) and (4 $) \quad \alpha\left(\frac{x_{j+1}}{c_{j}}\right) \leq \alpha(\eta) \leq 1 / 2$
whereby $\ln \left[1+\alpha\left(\frac{x_{j+1}}{c_{j}}\right)\right]=\sum_{K=1}^{\infty} \frac{(-1)^{K+1}}{K}\left[\alpha\left(\frac{x_{j+1}}{c_{j}}\right)\right]^{K}$

$$
>1 / 2 \alpha\left(\frac{x_{j+1}}{c_{j}}\right)
$$

Thus (17) implies
(18)

$$
\sum_{j=1}^{m-1} \alpha\left(\frac{x_{j+1}}{c_{j}} \leq 2 \ln \frac{1}{(1+\delta / 2) \eta}\right.
$$

From (4_{2}) and (4_{1}) it follows that

$$
\begin{equation*}
\sum_{j=1}^{m-1} \alpha\left(\frac{1}{1+\delta / 2} \frac{x_{j+1}}{c_{j}}\right) \leq \frac{\ln (1+\delta / 4)}{4 \ln 1 / \eta} \cdot 2 \ln \frac{1}{(1+\delta / 2) \eta} \leq \ln (1+\delta / 4) \tag{19}
\end{equation*}
$$

Substituting (19) into (16) we obtain

$$
\begin{equation*}
\sum_{j=1}^{m-1}\left[1+\alpha\left(\frac{x_{j+1}}{d_{j}}\right)\right] \leq 1+\delta / 4 \tag{20}
\end{equation*}
$$

Finally inserting (15) and (20) into (12) we obtain

$$
\begin{aligned}
N_{0}\left(\epsilon, x_{1},\right. & \left.x_{2}, \ldots, x_{n}\right) \\
& \leq \in N_{1}(1, \eta)(1+\delta / 4)\left[1+\alpha\left(\frac{x_{m+1}}{\alpha_{m}}\right)\right](1+\delta / 2) \\
& \leq \in\left[N_{1}(1, \eta)\right]^{2}(1+\delta / 4)(1+\delta / 2)
\end{aligned}
$$

Using (43) it is verified that

$$
N_{0}\left(\epsilon, x_{1}, \ldots, x_{n}\right) \leq \in(1+\delta) .
$$

The proof is complete.

Adopting techniques similar to the proof of the preceeding theorem we obtain the following necessary condition for the nonexistence of a base.

Theorem 5. In order that ${ }^{B_{N_{0}}}$ may not have a base it is necessary that for each $\lambda>1$

$$
\max _{t \leq \eta}\left(\frac{\alpha(\lambda t)}{\alpha(t)}\right) \rightarrow \infty \quad \text { as } \eta \rightarrow 0
$$

Next we proceed to construct an example of a nonseparable Banach space $\mathrm{B}_{\mathrm{N}_{\mathrm{O}}}$ whose elements are n :all sequences.

Example. Let $\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$ represent the coordinates of a point in the plane with reference to a pair of orthogonal axes. Consider the arc determined by $x_{1}+x_{1} e^{-x_{1} / x_{2}}=1$, $3 / 4 \leq x_{1} \leq 1$ and the line segment joining. $(0,1)$ and the point on the above arc corresponding to $x_{1}=3 / 4$. The above curve together with the line segments joining the origin to (0,1) and to (1,0) forms the boundary of a fan. This fan together with its reflections through the origin and across the axes is a convex set and determines a Minkowskian norm N_{1} on R^{2}. It is verified that $\mathrm{N}_{1}(\mathrm{l}, \mathrm{s})$ $=1+e^{-1 / s}$ and $\alpha(s)=e^{-1 / s}$ for small $s \geq 0$. Since $N_{1}(1, s)>1$ for $s \geq 0$ every member of $B_{N_{0}}$ is a null sequince. Futher since

$$
\left(\ln \frac{1}{\eta}\right)^{-1}\left(\min _{t \leq \eta} \frac{\alpha(\lambda t)}{\alpha(t)}\right) \rightarrow \infty \quad \text { as } \eta \rightarrow 0
$$

it follows by theorem 4 that $\mathrm{B}_{\mathrm{N}_{\mathrm{O}}}$ does not admit a base. From the remark 3 we conclude that ${ }^{B_{N_{O}}}$ is not even separable.

REFERENCES

1. Harry Corson and Victor Klee, Topological Classification of Convex Sets, Proceedings of Symposia in Pure Mathematics, Vol. VII CONVEXITY 37-51.
2. Mahlon M. Day, Normed Linear Spaces, Springer-Verlag (1958).

Carnegie Institute of Technology Pittsburgh, Pennsylvania (U.S.A.)

