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BANACH SEQUENCE SPACES

by Victor J. Mizel% and Kondagunta Sundaresan2

Let (Rz,Nl) be a two dimensional normed linear space.

If N, satisfies the condition (a) below it is shown by

1
adopting an iteration procedure that Ny determines a Banach

Sequence space B This class of Banach spaces is a gener-

NO'
alization of the classical lp spaces (1 < p < o). In this
paper it is proposed to discuss the separability and reflex-
ivity of these spaces intrinsically in terms of Nl'

In what follows N, is a norm on the coordinatized plane

1
R2 satisfying the condition
(a) if U is the unit ball of (R°, N;) and P is the

positive quadrant of the plane then

Convex hull { (1,0, (0,1),(0,0)}c P N U < Convex hull{(1,0), Lo, 0),

(0,1),(1,1)}.

" Convex sets which satisfy the above inequality are known as
fans and their relation to substitutive bases are discussed
in Corson and Klee [1].

1 may be’utilized to define a norm NK_l(K > 2)

on the K-dimensional space RK by an iteration procedure as

The norm N

follows, If'(xl, X5, X eR let N, (x 2,x3) =

3)
Nl(Nl(xl’XZ)’ ]x3]). Since P N U is a fan it is verified

‘b .
that N; (a;, B) < N (ay, by) if 0<3 <a,and0< b < b,
As a consequence of this monotonicity it follows at once that

N, is a norm on R3. Proceeding inductively having defined

the norm NK-l on RN let Ny e defined on RK+l by setting NK(X)=
Nl(NK-l(Xl, e ooy XK), l}cK‘l"ll) if x = (Xl;"') ’{!(: xK+l)'
Then NK is a norm on RK+1. With any sequence x let us denote
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- the K-vector (xl, Koy +ees xK) by x|K. It is verified that

K
the set of all sequences x such that {Nk(x[K+l)]

N (x| K) is an increasing sequence. Let B denote
-1 K > 2 g gq

K> 1 1s

bounded. Then B is a linear space and the function No(x) =

sup [NK l(X{K)] is a norm on B. The normed linear space
K>2 - :
(B, NO) is denoted by BNO.

| p p 1
Remark 1. If Ny(x;,%,) =[]xl| + |x2| ] /P for some P,

l <p< ® then By is the lp sequence space and of course
o)

conversely.

Proposition 1. The normed linear space B is a Banach space.

No

Proof. Let [xl}i be a Cauchy sequence in B Clearly

> 1 N~ °
. —_ (0]
[xKl} is a Cauchy sequence of reals for a fixed K > 1. Hence

[xl] converges coordinatewise to a sequence y. Further
since {xl] is a Cauchy sequence No(xl) < K for all i and for
some nonnegative real number K. Thus N, l(ylp)=

lim N (xllp) <N (xl) < K. Hence yeB,. . From the defin-
ition of No it follows that for any € > O for large p, No(y-xl)

i ) i ‘
S_Np_lx(y - x)|p) + €. Since Np_l((y - x7) |p)=0, as idw,

i . i . .
No(y - X )20 1i.e. x"=»y in the space BNO. Hence BNo is a

Banach space.
Before proceeding to discuss separability and reflexivity

of the space B we establish a lemma.

Nog

Lemma 1. If xe BN then x is a bounded sequence and
o

sg;ilxi] < Ny (x) . Further if N, (1,a) = 1 for some a > O then

the Banach space 1l is isomorphic to By

o while if Nl(l,a) > 1

for all a > O then every sequence in B is a null sequence.

No




Proof. Suppose x € B Since the condition (a) implies

N L]
(0] .
that the unit ball U of (R2, Nl) is a subset of the unit

‘ball of R% with the supremum norm it follows that
sup([xll,[le) < N, (x;, x,). Thus for every integer p > 2

suplxil < Np_l(xl, > S xp). Hence sup |x, | < Ny (x) .
. : i>1
1<ic<p -

Next let for some a > O Nl(l,a) = 1., From the definition of

N. it readily follows that No(y) 1 where y is the sequence such

o
that y; = 1 and y; = a for all i >1 . Hence if x is the
constant sequence whose range is {a} then xe BNO. Thus every

is i i spaces 1
bounded sequence is in BNo i.e. the vector sp o and BNo
consist of the same elements. Since su%_[x.l < N, (x) for
iz 1 -0
all xe BNo and BNO and 1OD are Banach spaces, B
to loo' In particular B

is isomorphic '
NO _

is not separable.
No

Next let us assume Nl(l,a) > 1 for all a > 0. We note

that non-zero constant sequences are not in By - For if such
o)
a sequence is in B then clearly the sequence I,the constant

Ny

sequence with range {1},is in B Let NO(I) = m. Since

N L]
(0]
Nl(l,l) > 1, m> 1., It is verified by induction that

_ p-2
No(Ilp +1) 2 [N (1, I/m)] N (1,1)

for p > 2. Thus NO(I) is infinite and Ie BNO. Next let

Xe€ BN . If possible for some € > O let there be a subsequence
0O

{x_ ) in x such that |x_ | > ¢ for all i > 1. Since xe B_ ,
ny < ny - No
the sequence x in which all elements of x other than xn are
: i

replaced by zero is also in B By definition of the norm

N °
o
N, it then follows that the sequence y for which Y; = X, is

i




in By . However N_(eI) < N_ (y). Thus Ie By which is a
contradiction. Hence xe By implies x is a null sequence.
o

Remark‘z. From the above lemma it follows that either BN
0

. c .
is the same as the space 1OO or BNO Co where Coy 1s the

linear space of null sequences. Further since the condition

. : : 2
(a) implies le] + [le > Ny (%, x,) for all (x;, x,)eR

it follows that xell

implies 2&>l|xil > N, (x) and xe BNO.

1

Thus if BNO# loo then 1 o

c BNO C ¢, and the identity mappings

i: 11—-)BNO and i: BNéa_cO are continuous. However it does
not follow in this second case that By 1is separable (cf

(o]
example at the end of this note).

We next proceed to show that the Banach space By is
(0]
isometrically isomorphic to the conjugate of a Banach Space.

In lemma 2 we obtain the adjoint of the norm on RK.

Ng1

Let Ml be the adjoint norm of N IfU Ubo denote

1l 1’
the unit balls of R? corresponding to the norms

lxll + |x and Sup(|x |x2|) then the unit ball U_ of

2” ll’

Ny
(Rz, N,) satisfies the inequality U, € U_. < U__. Hence
1 1 N, 0o
U, €Uy < U by considering the polar sets. Thus (Rz, Ml)

1
also satisfies the condition (a) and the iteration procedure

determines the Banach Space B .
Mg
Lemma 2. The adjoint space of (Rp, Np 1) is the space

P
(R™, Mp-l) where Mp-l

by Ml through iteration procedure.

is the p dimensional norm determined

~Proof. It suffices to show that if (fl, f fp)eRp then

2’-.0




p

= <
Mp_l(fl, f2,...,fp) sup | anixi| where Np_l(xl, x2,...{xp)_.l.
The proof of this statementl=lis by induction. Suppose that
for some K > 2 every K-vector (f,, f£,,..., £ ) satisfies
= \ -
Me o (£1, £5,00., £4) = sup liél fixilas X = (X),X,, 000 ,%)
varies over the unit ball Uy of (RK’NK-l)' Let
g = (gl; Fpsenes gK+l)€RK+1. By definition of My

Mo (975 IgsevesTpyy) = M My (97,955 0459 5 lag )
_>_ M-K_l (gl’gZ’ . -;gK) NK—]. (Xl,Xz, . .,}(K)

+ gl Irgeq

if NK(xl’XZ""’XK+f §kl. Thus by the induction hypothesis

N

Mg (915975 ++ -5 9k41) Z"igi 95%; | + l9gy1¥gq1 | since

(x),%,, .00 X ) €Uy, Hence My (9,955 -59, ;) > |lgll where |-

is the adjoint norm of Ny

Let us next show that MK(gl’gZ""’gK) < llgll. Since

MK-l is the adjoint of NK there exists a vector x =

-1
(xl,xz,...,xK)§Uk such that

K
%(_l (gl,gz, o o o ,gK) =iZlgixi. Further

M.K(gl’gZ’ oo "gK-i'l) = Ml (MK-]. (gl’gZ’ o -,gK) ) ng+l])

K
(f,igixi’ g 1) -

My

Thus there exists a vector (23,2;)e R2 with 25 > 0 for i=1,2

and Nl(zl’z2) < 1 such that




K
Mg 915905 - 09ken) = 0 F 9% % + log4112;
K

izlgixizl * 9g41S190 Ixy12)

Since K+1 > 2 and (Xl’XZ”"’XK) eUp
NK(XlZl’ X2Z1""’XKZl’ sign gK{lZZ)
= Nl(NK—l(lel’XZZl’""XKZl)’ZZ)
S.Nl(zl,zz) < 1. Hence

Mxﬁgl,gz,...,gK+l) < llgll. The proof is complete.

In the next theorem C is the closure of the linear

No
subspace of finite sequences in BNO. Clearly the set of
. i i T e . i
unit vectors fe ]i > 1 where ey = 1 if i =3j and ey = o}

if i #j is a Schauder base for the space CNO"

Theorem 1. The Banach space BNO is isometrically isomorphic

with the conjugate space of CMO.

N _
Proof. Let CMo denote the conjugate of CMO and let the ad-
s s L . i . .
joint norm be ” J. Since {e }i > 1 is a base of CMO it

* . _ i
follows that feCMO implies that f(x) —iéﬁfixi where fi = f(e™)
and x = [xi]i > 1 is a sequence in CMg - Since for z =

: b

(zl’ZZ""’zp) € Up_l)the unit ball of (RY, Mp—lb

p
|£(z) | = I'Z:i £,2;] < ll£ll it follows that

P
| Z% f.zil S_Hf” for all zeUp_l.

Thus N, (f),f,,...,£) < l£ll for all p > 2.

2




Hence the sequence [fi]i Z.lEBNo and NO([fi]i 2'1) < I£]l.

*
Since each function feC

Mo

i . . * .
where fi = f(e”) the mapping O: CMd",BN defined by

determines a unique sequence

(£5)551
o(f) = [fi]iz; is a linear operator and (l)No(G(f)) < Hf”.
is

The mapping 0 is onto, For if the sequence f = [fi}iZ}

in By then consider the linear functional g on CMO defined
o
by g(x) = 2L, £.x;. Now if the sequence x is such that
i>1
Mg(x) <1 then Mp_l(xlp) < 1 for every p-vector x|p.

P
Thus | :2% £,x, | f_Np_l (fl’f2""’fp)' Hence
1=

lg (%) | _<__sup2 Np-l(fl’fZ”"’fp) = Ny (f) . Thus
Pz

Moiggkﬂg(x)l f_No(f). Hence gecﬁo s o(g) = £ and

(2) llgll € Ny(£) = N, (0(g)). Thus ¢ is onto B and from
- (¢} Nb
inequalities (1) and (2) it follows that 0 is an isometry.
’ ¥*
Thus By is isometrically isomorphic to C, .

o . ')

Corollary. The Banach spacé BN is separable if and only if
. (0]
i .

(e }iz_l is a base for the space.

Proof. We note that as a consequence of the monotonicity of

. . . S

M, i.e. x,yeCM0 and X; 2y; 20 imply MO(X) __Mo(y) for

every xeCy the series x = Zkiel is subseries convergent.
s O

Thus [el]i>l is an unconditional base for the space CMO.

Since CM* = B, , B is separable if and only if the sequence
o) NO NO

biorthogonal to {el} is a base for the space By as a

i>1 0

consequence of Theorem 5 on page 77, Day [2].

Remark 3. As a consequence of the above corollary it follows

that the following statements are equivalent. (1) By is

(0)




separable (2) By = CNO i.e. [el}i>l is a base of BNO
O —

*
(3) By has a base. Further if By is separable then By
o o o

is isometrically isomorphic to By
0]
The next theorem provides a characterization of reflexive

Banach spaces B

No
Theorem 2. The Banach space By is reflexive if and only if
(o)
By and By are separable.
o 0
* %

Proof. Suppose By and By are separable. Then BNO = (BM ) ¥ =

(o] 0] . O

By by Remark 3. As already noted in proving the preceding
o

* %
corollary, By has an unconditional base. Further By = By
(o] o
* %
implies that BNO is separable. Hence by Theorem 4 on p. 76 of

[2], By is reflexive. Conversely suppose By is reflexive.
o (0]

Then the closed subspace Cy is also reflexive. Hence the base
(0]

{el}i>l of Cy 1is boundedly complete by a theorem of James.
(cf Theorem 3 on page 71, Day [2]). Thus if x = €By

0
i>1

. (%5155
. i . i
then since No (2:<xie ) f_No(x) for p > 1 and since {e™)

i=1

is a boundedly complete base of Cy it follows that =xeCy . Thus
(0] (0]
*
= C and B is separable. Since Cy = B and C is
No Mo No o M No
reflexive it follows that By 1is also separable.
o
We are not able to obtain a complete characterization for

B

the separability of the Banach space By intrinsically in terms
of Nl. However, we establish three theorems. The first one
provides a sufficient condition for the existence of a base in

N ) in terms of the
(0]

norm N2. The second and third provide a necessary and a suffic-

By (equivalently for the separability of B
(0]

ient condition for the existence of a base (equivalently for the

separability of BNO) in terms of the norm N, .




example of a two dimensional norm N, such that each sequence
in the corresponding Banach space By is a null sequence,

(¢
yet By fails to be separable.
o

Theorem 3. If for some 6 > 0, 0 < X <46 i=1,2,3 implies
Nl(Nl(xl’XZ)’ x3) z_Nl(xl,Nl(xz,x3)) and Nl(l,a) > 1 for
all a > O then the sequence [el}i>l is a base for the

Banach space By -

(o]
Proof. Since Nl(l,a) > 1 for a>o0 lemma 1 implies
that the sequences in By are null sequences. Suppose
. (0]
[el}i>l fails to be a base for By . Then there exists a

(0]
sequence X =_[Xi}i2; and a sequence of integers P; such

that O < x; < 6 and for some € > O for all i > 2
i-1

(x , X yesesy X _
p;-1 “q+1’ Tq;+2 | qi+pi) 2 € where q; = Eélpt.

N

Since Nl(Nl(xl’xz)’ x3) Z_Nl(xl,Nl(xz,x3)) it is verified

inductively that

N n 17 Xoseees X j)
3.p; -1 ip-
. i &

i=1

qun-l (zl,zz,...,zn) : (a)

where for 1.5 i S Y -1
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i-1
where q; = EZ% Py -

By the choice of the sequence Xx, z; > e for 1< i< r-1.

Thus the inequality (A) implies

N (x) Z_Nr_z(ﬁ) where £ is the (r-1) - vector with each
coordinate €i = €. Since this inequality is satisfied for
large r the constant sequence with range (e} is in BNO
which is a contradiction. The proof is complete.

Next we proceed to obtain a necessary condition and a
sufficient condition for the nonexisfence of a basis in By
in terms of the asymptotic behavior of the function «a(s) =o
Ny (1,s) -1 as §5O0+. We assume in the rest of this paper
that Nl(l,a) > 1 for a > O so that every sequence in BNO is
a null sequence. We start by establishing a useful lemma.
With a litﬁle abuse of notation we denote the norm of an

n-vector (xl,...,xn) by No(xl,...,xn) instead of

Nn—l (Xl, LI ,Xn) .

Lemma 3. The Banach space By does not admit a base if and
, o
only if for some € > O there exists for each pair of positive

numbers 6,7 a finite sequence XXy eoosX such that

(1) 0 <x; <ne 1<i<N
(2) No(xl,...,xn) = €

(3) No(e,xl,...,xn) < (1+9) €.

Proof. Suppose N

o satisfies the above property. With a fixed




11

choice of 50 > 0 select positive sequences {6i}i2} and

[ni}iZ} such that

(4) .°r°L~(1+ai) =1+ 8

2
(5) ;= 0
By hypothesis we can select for each i a finite sequence
X . (xi, x%,...,xép) which satisfies
i
(61) 0 < xji < n;e
(6,)  Nolx ') =
and (6,) Nyle, x %) < (1+5)¢ .

Now let x denote the countable sequence

§=(,’Slxxz:§3:"')

(5) and (61) imply x is a null sequence. We proceea to show

that x € By . It follows from (62) and the definition of N,
o :

that

2

1
(M Nolx = 5...5 % ) = No(MNplesx © )5 % 3 see3x T

Using (63) we deduce from (7)

1
(8) No(;g 5e.03x ) gNo((l+62)€;,>s3s---;zq)

-1,.3 ;...;(1+62f1x a

< (148,)N, (e; (1+5,) )

3
S (L+8,)N (€5 %~ 5...3% 9,

by the monotonicity of NO‘ By repeating the computations in (7)

and (8) we deduce that

(9) N,(x 1 5 X 2 5...3x 9) < (1+8,) (1+85) N, (e5% 4 HERRES S 1)
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By induction we conclude

a . o . :
(10) NoGelsx?s..x ) S eTmesy) < T ((1+8))]e
2 2
= (1+5°5 €.

(10) implies that x € BNO.

In order to see that By has no base by the monotomicity
(0]
of N, oObserve that

K+1

K .
(11) N (x K 5 X 5000) 2 No(x 5 0,0,...) = €

so that No(;sK 5 X K+l 35...) 20 as K->m®. Thus [el]i>l

is not a base of By . Hence by Remark 3 BN does not admit
(0] (0]

a base,

Conversely suppose the sequence [ei}i>l is not a basé
for the space BNO' Then by earlier result;.we can find a
null seqﬁence x=(x,%,...) € BNO such that for some
€e>0
(12) N (x) =A< @

(13) A z_No(xm, ) > 2¢ > 0 for m=1,2,...

Xt12 e
By discarding an initial segment of x if necessary we can
suppose Without loss of generality that 0 < Xy < NMe for a
preassigned 7N > O. Now define a sequence of integers

[Ji] 12_1 such that

<N - <
€S Noltqyrrreeos Xqpuwy gy = %€

i-1
where q; =éZth

By (13) this is certainly possible for sufficiently small 7.
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Let us decompose the sequence X as
X = (Xqgeeey, X1 3 X R
1’ ? Jl’ J1+l J1+J2,...)
1.2
= (x3 X75...)

where 2e¢ > N_(x") > e.

Now multiply the finite sequences x- by 8, = —&
N_(x1)
O '~
(clearly 2 <6, <1). Thus if y' = 6x', i>1, than
i i, _
(14) Yo < Me and No(x ) = €.

By the monotonicity of N, , y = (v 75 vy 5...) € By since
. ~ (0]

X € B .
No

We complete the proof by showing that for each & there
is a finite sequence XyseeesXyg such that O < X5 < Te,
No(xl,...,xN) = € and No(e,xl,...,xN) < (1+6)e. If this
is false there exists a 61 > 0 for which 0 < X5 < 7Ne

. : ' 1
= >
and No(xl, x2""’XN) € lmply' No(e, xl,xz,...,xN)_jl+6 )e.
However in this case we claim that for every sequence

K
1 2
9$=(?5,;?52;---,2s ) =(xl,---xNK)

which satisfies 0O < x; < 7Ne, No(gl) = € that
(16) N G > (1 +shH%e, x> 1. This clain is justified
as follows by induction. For K =1 (16) is clearly satis-

fied. Suppose (16) is true for some K > 1. Then

K K K+1
1 2 2 2°+1 2
(17)  N_o(x7; 375...5%" 5 % 5eees X )
K K K+1
1l 2
= NO(NO(§ HE 4 3...;§2 )3 §2 +l;...;§2 )
K K+1
Z_No((l+6l)Ke; 52 +l;...; x2 )

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSITY
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and in addition
K1 oK+l

(1) w_(x® *iiix® ) 2 a+eh¥e

By (18) we see that for some ¢, 0<c <1,

K K+1
NO(C§2 +l;...; 052 ) = (l+6l)Ke

while by using the monotonicity and (15)we obtain

(19) No(zsl; 52;..-; ,}52 H 122 +l;~-;,>52)
Z_No((l + 61)Ke; C x2K+l;...; C x2K+1)
= @+ KN (e; (146 Ko, 241 oo (146T) ‘ch2K+l)
> (+eT) KHle,

This completes the induction argument,

Now (16) clearly implies that y = (zl; zzg...)e BNg which
is the desired contradiction.

Let us recall that o denotes the increasing function defined

by @(s) = Nl(l,s)—l s > 0,

]

Theorem 4. By fails to have a base provided the function «
o

satisfies the following condition for each A > 1,

(*) (1n 1/77)—l (2%2 g%%%lJ-9co as nN=0.

Proof. By the lemma it guffices to show that for some fixed

€ > O there exists for each pair &, 7> O a sequence
Xys+-+5Xy such that (1) o < X4 < ne (2) No(xl,...,xN)= €
and (3) No(e, xl,...,xN) < (1 + d)e. Moreover we may with-
out loss of generality require'n to be sufficiently small so

that the following conditions are satisfied
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(4,) a(m <172, n<1/2,

1 Gs/2) e 4
(4,) (In 1/7) (ﬁgg a(t) ) > Tn(1+5/4) °
and (4,) [N, (1,M1% (148/2) (1+8/4) < 1+8.

We now construct the desired sequence by taking

(5) Xy =Ne, X, = X3 = .. = XN-1 ='n26 where N is determined

by
2
{6) No(xl’XZ""’xN-l) < € S_No (xl’XZ"”’xN—l’ ne)

and then selecting x,.€ (O,nze) so that (2) holds. That

N
there exists an N satisfying (6) follows from the fact that

BNO contains only null sequences.

If we denote No(xl""’xj) = cj; 1 < j £ N then the
scalars cj are recursively determined by
X. X,
= - s 22 S i+l
(7) cy = Xy, cj+l = cjgl(l, cj ) = cj[1+a( cj )]
Hence by (2)
N-1 *j+1
8 x; g @+ al=)) =cp =«
J=1 » 3
Moreover
*j+1 *j+1

(9) C-S_e, < < n, j=l,oo.’ N-l.

J <y - % - .

On the other hand if we denote No(e,xl,...,xj) = dj for

| <3 <N then the scalars dj are recursively determined
by (10) d1 = No(e, xl) = € Nl(l,n)

X X.
= —J;'-—]; — _J+_l.. '
i = 45 N (1, s ) =dy [1+ al 3 )]
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Thus we have

X
an  en @,m JT 01+ o-FL)] = a; = N (e,x),...,%)

J=1 J
and (12) dj > €. Select the index m 'so that
' m-1 X. m X..
(13) x, | 1+ ey < <x LI+ a1t
j=1 3 1+5/2 j=1 3

Then by (8) we deduce that

. N-1 Xi1
(1) T M+o (L=)1 < 1+8/2.
j=m+1 3 |

We proceed to appraise No(e, xl,...,xN). By moncotonicity

of «(s) for s > O we conclude since dj > cj that

N-1 X4
1s) T @+ a(—2=)) <1+ 8/2.
j=M+1 j
On the other hand since (14) ensures that c. < 3
J 1+5/2
1< j<m-1. We have
m-1 X. m-1 c. X.
(16) T +oa(—3L)y =7 [+ 2ty
.« . J . c.
j=1 J j=1 J J
m-1 X.
1 +1

m-1 X.
1 "+ 1
exp [ 2o )1
i3 1+6/2 <y

IA

Now by (13) we have

m-1 X.

_J+1 — € _ _ — 1
(17) g;; In [1 + of e )] £ 1n T5/27%, = In 3537

Xa41
By (9) and (41) a ( —gf—-9 <a(m < 1/2

X J K+1 . K

whereby 1n [1+0/( —gi!%] = gi i:;%f—' [a(fgi!;ﬁl

j K=1 J

X.
> 1/2 « ci?ﬂa
J
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Thus (17) implies

m-1 1
(18) :):‘:,1 o ( —l—c] < 2 1n YK

From (4 ) and (41) it follows that

1

¥i+1y. 1n(1+8/4)
(1+6/2)n

TRV < 1n (1+5/4).

(19) a( 2 1n

j=1 1+5/z %5
Substituting (19) into (16) we obtain

m-1
(20) z [1+o( —J-—H < 1+8/4.

j=1 J
Finally inserting (15) and (20) into (12) we obtain

No(e,xl,xz,...,xn)

*ma1
< e N (1,m) (148/4) [1+a( —g) ] (1+6/2)

I

< e N (L,mM17% (1+8/4) (1+6/2)

Using (43) it is verified that

No(e, X .,xn) < € (1+6) .

l’-o

The proof is complete.

Adopting techniques similar to the proof of the pre-
ceeding theorem we obtain the following necessary condition

for the nonexistence of a base.

Theorem 5. In order that B may not have a base it is

No

necessary that for each A > 1

max o (At
£<n (a—%t—)l)—)co as ”N=0

Next we proceed to construct an example of a nonseparable

Banach space BNy whose elements are nill sequences.




18

Example. Let (xl, x2) represent‘ the coordinates of a
point in the plane with reference to a pair of orthogonal
axes. Consider the arc determined by x; + xle‘xl/X2= 1,
3/4 £ x4 S.l and the line segment joining (0,1) and the
point on the above arc corresponding to Xy = 3/4. The
above curve together with the line segments joining the
origin to (0,1) and to (1,0) forms the boundary of a
fan. This fan together with its reflections through the
origin and across the axes is a convex set and determines a
Minkowskian norm N; on R2. It is verified that Nl(l,s)

-1/s

=1 + e_l/s and a(s) = e for small s > O. Since

Nl(l,s) > 1 for s 2 O every member of By is a null se-

0]
quence. Futher since

(1n-,3-"-)-:L (IE;_; %%%—L)—-)oo as - N=0

it follows by theorem 4 that BNO does not admit a base. From

the remark 3 we conclude that BNO is not even separable.
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