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1. Let X = (X,2) be a measurable space, and let T be a class

of positive measures M* defined on 2- . we consider a set H of

non-negative functions belonging to \P{K) on X for all A e 77

(1 <, p < oo) , and we denote by C (H) the convex hull of H. If <

is an arbitrary positive measure on X, we define the functional

) (r6C(H),L
1(0')) by \

(1) A(r) = sup —^
1 X

The following result is a useful tool in the treatment of numerous

extremal problems involving eigenvalues of differential and integral

equations.

Theorem I. rf j\.{r) JLS the functional defined by (1) , then

(2) supA(r) = supA(s)

reC(H) S€H

The proof of (2) is very simple. Since HC C(H),.(2) will

follow from the inequality

(3) supA(r) < supA(s),
reC(H) seH

and it is sufficient to establish (3) for finite sums of the form
n

JC~~ 1

By Minkowski's inequality, we have
i n l

iP
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and thus, by (1),
1 n

d

(5) t
X k~1 X

Since this holds for all A et, it follows from (1) and (5) that

' n

/rd<r <

X

seH k=l x

) /rd«T.
S6H x

Thus,

y\(r) < supyV(s)^
S€H

if r is of the form (4). Since these functions are dense in

C(H), this implies (3) and completes the proof of Theorem I.

2. As an example of a functional which can be brought into the

form (1), we consider the lowest eigenvalue A = A(R) of the

differential system

(6) y ( 2 n ). (-l)nAR(X)y - 0, U(y) = 0 , . (A = A (R) )

where R > 0, R G L on an interval [a,b] 9 U(y) = 0 is a set of

self-adjoint boundary conditions, and n is a positive integer.

By classical results, ,

1
= s u p

a
2

where cUt = u (x)" obc ' and u(x) ranges over the class of functions

with the following properties: (a) u satisfies the conditions

U(u) = 0; (b) u is of class L on [a,b] and is normalized

by the condition
b
\ [uv ' ] dx = 1.

a



In this case, we thus have

(7) [ A C R P ) ] " 1 = AP(R) j RP d<T,

a

and Theorem I shows that
1 b 1 I b I

(8) -^nf XP(R) j RPd<T = ^inf AP(T) J* Tpd<T .

RpeC(H) a TP€H a

If the value of the right-hand side of (8) can be found, (8)

thus provides the exact lower bound for the expression (7) , where

R ranges over C(H) or over a subset of C(H) which contains H.

3. The use of Theorem I as a source of estimates for functionals

«/V(r) is most likely to be successful in the case of convex

sets C(H) which are spanned by sets H of functions of very

simple type. There are many such sets which are of interest

in the applications. Two well-known examples are:

(a) the class of bounded non-increasing non-negative functions

on an interval [a,b]; in this case H may be identified with the

set of functions A / ( t € ( a , b ] ) , where A is a suitable positive

constant and -yC is the characteristic function of the interval

[a,t];

(b) the class of non-negative concave functions on an interval

[a,b]; this class is spanned by the functions g(x,t) (te[a,b]),

where g(x,t) = A(x - a) (b - t) for xe[a,t] and g(x,t) =

A(t - a) (b - x) for X€[t,b] .

Another example of this type--which does not seem to be

found in the literature—is described in the following statement.

Theorem II. Let (X, ̂ £, A ) be ja finite positive measure

space, and let K = K(m,M, J ) bjs the class of measurable functions



F on X for which

(9) -a> < m < F £ M < oo

and

j(10) J Fd/c = [ ̂  M + (1 - \
X

(0 <. y <, 1) , where m and M are, respectively, the essential

infimum and the essential supremum of F on X.

If H denotes the subset of K consisting of the functions

g = m + (M - m) /(XQ) , where XQ C X, *t(XQ) = % MX) , and

/ (X ) jj=L the characteristic function of X ; then K C C(H) .

If we set. F = m + (M - m) f, (9) and (10) take the form

0 < f < 1 and

(10!) f f d/t = *b A(X) .

X

respectively. It is thus sufficient to prove Theorem II for the

case m = 0, M = 1.

Another simplification which can be made is the assumption

that f be a step-function which takes only the values 0, €,2e, . . .,NE,

where eN = 1 and N is an arbitrary positive integer. Indeed,

f may be approximated by functions f* defined by setting

f* = ek on the subset of X on which e (k - 0) < f <C e (k + 1 - 0 ) ,

where © is a number in (0,1), and k = 0,1,...,N. Evidently,

inf f* = 0, sup f*-= 1, and
/

< €(1 - 0) .
J
x x

Since J f*dii. is a continuous function of 0, this shows that

X ( f

0 may be so chosen that J f*d/t = J fd/t and thus, by
/ X X
I f * d /*- =



If S, denotes the subset of X on which f >_ ek (k =

1,2,...,N - 1), we have

(11) S k + l £ Sk, k = 1,...,N - 2

and

(12) eNytt(SN1) < / f d A < e

X
Since, by (10'),

(13) /fd/* = 7€Nyk(X) = ^>k(X)sup t,

X
(12) implies that

(14) / i (

We denote by S* a subset of S.. for which

(15) yMs*) = z Mx)

and which, in addition, is such that

The right-hand inequality (14) shows that there are subsets Si*

of S, for which (15) holds and it follows from (11) and the

left-hand inequality (14) that S* may be so chosen as to satisfy

(16).

We now consider the function

(17) f1 = f - €/(S|) .

Since S| C Sp we have fT >. °- Because of (.16), we have

sup f, = sup f - e = (N - • 1) €

and, by (13) and (15),

(18) / fl d/* = ? £ ( N " 1)
/A

t(X) = J/*W**J? f!
X

A comparison of (13) and (18) shows that the procedure

leading from (13) to (18) can be repeated. There will thus

exist a subset S3; of X such that the function



f2 = fx - € /(S*)

is non-negative and satisfies

Jf 2cU = ^e(N - 2)U. (X) = >/t(X)sup f2.

By applying this process N times, we arrive at a function f^

which vanishes identically, and we thus obtain a decomposition

N

(19) f = € X ^(S*)
k=l K

We set

g^ = Ne7(S£) = / (S*),

and we observe that, by (15) (and the corresponding formulas

for S*, k = 2,.. . ,N)

X

i.e., 9v€H* Since, with o^, = e = N~ , (19) may be written in

the form N N

this shows that f€C(H), and Theorem II is proved.

4. As an illustration of the type of explicit inequality obtain-

able by means of Theorem I, we consider the eigenvalue problem

(6) with the boundary conditions

(20) u(a) = u< (a) =•••= u ^ 1 * (a) = u ( n ) (b) = u (n+1)fc) = . • - u ^ ^ V ) = 0.

If the coefficient R(x) belongs to the class listed under (a)

in Section 3, we have the following result.

Theorem III. Let A = A(R) = A(R;a,b) be the lowest eigenvalue

of the differential equation

(21) y ( 2 n ) - (-l)nAR(x)y = 0

with the boundary conditions (20), where R > 0, ReL on [a,b]



7

and n is _a positive integer. If R(x) _is non-increasing in

[a,b], then
AA

(22) *P(R) J [(x -
a

for any p >. 1. There will be equality in (22) whenever R(x)

coincides with ja characteristic function Y[a,t], where te(a,b].

If we set 2n ,

d<f = (x - a ) p dx,

it follows from (8) that (22) will be established if we can show

that i -u i i

(x - a , 2 " / t ) ^ . / (x - . . T ^ . JL (t .

inf
te(a,b]

where Jt = ^[a,t] . Since

b 1 t In n In

2n
a a

this will follow from the identity
1 2n 1

(23) AP (/t) (t - a )
P = AP(1;O,1) .

To establish (23) we note that, by an elementary argument,

M/l_;a,b) = A(l;a,t);
t 2

moreover, since ^r (n)] dx

A(l;a,t) = inf ~ ,

3 u dx
a

where u is subject to the boundary conditions (20) (with

b = t), it is evident that

A(l;a,t) = (t - a)nMlj0,l) .
This completes the proof of Theorem III.

2
For n = 1, we have A(l;0,l) = ^, and Theorem III yields

the inequality



8

I 2

a

for the lowest eigenvalue of the problem

yi ' + AR(x)y = 0, y(a) = y' (b) = 0.

For p = 2, this reduces to the known inequality [2]

I b 1
A2(R) / R2(x)dx >. ̂ .

a

5, If the coefficient R(x) in (21) satisfies the condition

0 £ m <. R(x) <C M < oo 9 an application of Theorem II leads to

the following result.

Theorem IV. Let A = A (R) be, the lowest eigenvalue of the

differential equation (21) with the boundary conditions (20),

where 0 <, m <, R(x) <. M < oo and n is. at positive integer.

If the number * is defined by

" b~ \T l i
(24) | Rp(x)dx = (b - a) [MP2+ mP(l - ^ ) ] , (0 < ̂  < 1) ,

then a

A (R) > A (RQ) ,

where R = m for a < x < a*i + t>(l -*» ) and R = M foro — — — L C o

By (8) and Theorem II,

I b 1 1 b 1
AP(R) j* RPdx > inf AP(T) j Tpdx,

a a

if T ranges over the class of functions T = m+ (M - m) y^ (X ) ,

and XQ is a subset of [a,b] of Lebesgue measure y (b - a) 3

where J is defined in (24). Since

b 1

f Rp dx = J Tpdx,
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we thus have

(25) A(R) > inf A(T) .

If y is the solution of (21)-(20) associated with the lowest

2
eigenvalue, it is well known that yR is non-decreasing in

2
[a,b] if R is non-negative. Since, for a non-decreasing y ,

the value of ,

J [m + (M - m) /(XQ)]y
2dx

a

is largest if X. is the interval [a y + b(l -* ) ,b] , it follows

that b b

TyT
2dx < / RoyT

2dx < ^ ^ y .

a a

In view of (25), this proves Theorem IV.

For n = 1, p = 1, Theorem IV reduces to a result of Krein

[1].
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