Extremal Problems for a Class of Functionals Defined on Convex Sets

By

Zeev Nehari

Research Report 66-10

Extremal problems for a class of functionals defined on convex sets

Zeev Nehari

1. Let X = (X,2) be a measurable space, and let T be a class of positive measures M^* defined on 2^- . we consider a set H of non-negative functions belonging to P(K) on X for all A e 77 $(1 \le p < \infty)$, and we denote by C(H) the convex hull of H. If < is an arbitrary positive measure on X, we define the functional

The following result is a useful tool in the treatment of numerous extremal problems involving eigenvalues of differential and integral equations.

Theorem I. rf j (.(r)) JLS the functional defined by (1), then

(2)
$$\sup A(r) = \sup A(s)$$
$$reC(H) S \in H$$

The proof of (2) is very simple. Since \overline{HC} C(H),.(2) will follow from the inequality

(3)
$$\sup_{r \in C(H)} \sup_{s \in H} A(s),$$

and it is sufficient to establish (3) for finite sums of the form

(4)
$$r = \alpha_1 s_1 + \cdots + \alpha_n s_n, \alpha_k > 0, \sum_{k=1}^n \alpha_k = 1, s_k \in H.$$

By Minkowski's inequality, we have

$$\left[\int\limits_{X} r^{p} d\mu\right]^{p} \leq \sum\limits_{k=1}^{L} \alpha_{k} \left[\int\limits_{X} s_{k}^{p} d\mu\right]^{p}$$

Research sponsored by the Air Force Office of Scientific Research, Office of Aerospace Research, United States Air Force, under Grant No. 28.

and thus, by (1),

(5)
$$t \sum_{X}^{p} r^{p} d\mu^{\frac{1}{p}} \leq \sum_{k=1}^{n} \alpha_{k} \Lambda(s_{k}) \int_{X} s_{k} d\sigma.$$

Since this holds for all A et, it follows from (1) and (5) that

$$\Lambda(r) / rd < r < \sum_{k=1}^{n} < \Lambda(s_k) \int s_k d\sigma$$

$$X \qquad n X$$

$$\leq seH \qquad k=1 \quad X \quad$$

$$= sup \Lambda(s) / rd < T.$$

$$S6H \qquad X$$

Thus,

if r is of the form (4). Since these functions are dense in C(H), this implies (3) and completes the proof of Theorem I.

- 2. As an example of a functional which can be brought into the form (1), we consider the lowest eigenvalue A = A(R) of the differential system
- (6) $y^{(2n)}$. $(-1)^nAR(X)y 0$, U(y) = 0, . (A = A(R)) where R > 0, RGL^1 on an interval $[a,b]_9$ U(y) = 0 is a set of self-adjoint boundary conditions, and n is a positive integer. By classical results,

$$\frac{1}{\lambda(R)} = \sup_{R \to \infty} \int_{0}^{R} R d\mu ,$$

where $d_{x} = u^{2}(x)$ dx and u(x) ranges over the class of functions with the following properties: (a) u satisfies the conditions u(u) = 0; (b) u(u) is of class L^{2} on [a,b] and is normalized by the condition

b
$$(u^v)$$
 dx = 1.

In this case, we thus have

(7)
$$[ACRP]]^{-1} = A^{P}(R) j R^{P} d < T,$$

and Theorem I shows that

If the value of the right-hand side of (8) can be found, (8)

thus provides the exact lower bound for the expression (7), where R ranges over C(H) or over a subset of C(H) which contains H. 3. The use of Theorem I as a source of estimates for functionals $%V(^{r})$ is most likely to be successful in the case of convex sets C(H) which are spanned by sets H of functions of very simple type. There are many such sets which are of interest in the applications. Two well-known examples are:

- (a) the class of bounded non-increasing non-negative functions on an interval [a,b]; in this case H may be identified with the set of functions $A/(t\in(a,b])$, where A is a suitable positive constant and -t is the characteristic function of the interval [a,t];
- (b) the class of non-negative concave functions on an interval [a,b]; this class is spanned by the functions g(x,t) (te[a,b]), where g(x,t) = A(x-a) (b t) for xe[a,t] and g(x,t) = A(t-a) (b x) for $X \in [t,b]$.

Another example of this type--which does not seem to be found in the literature-is described in the following statement.

Theorem II. Let (X, f, A) be ja finite positive measure space, and let K = K(m, M, J) by the class of measurable functions

F on X for which

$$-a> < m \le F £ M < oo$$

<u>and</u>

 $(0 \le . y \le . 1)$, where m—and M—are, respectively, the essential infimum and the essential supremum of F on X.

If we set. F = m + (M - m) f, (9) and (10) take the form $0 \le f \le 1$ and

$$ffd/t = *bA(X),$$
x

respectively. It is thus sufficient to prove Theorem II for the case $m=0\,,\,M=1\,.$

Another simplification which can be made is the assumption that f be a step-function which takes only the values $0, \in 2e, \ldots, NE$, where eN = 1 and N is an arbitrary positive integer. Indeed, f may be approximated by functions f^* defined by setting $f^* = ek$ on the subset of X on which e(k - 0) < f < extcal e = 0, where extcal e is a number in $extcal e = 0, 1, \ldots, N$. Evidently, inf extcal e = 0, sup extcal e = 0, and

$$-\epsilon \theta \mu(\mathbf{x}) < \int \mathbf{f} d\mu - \int \mathbf{f} d\mu < \epsilon (1 - 0).$$

Since J f*dij. is a continuous function of 0, this shows that X 0 may be so chosen that J f*d/t = J fd/t and thus, by (10'), X X X X X

If S, denotes the subset of X on which $f \ge ek$ (k = 1,2,...,N - 1), we have

(11)
$${}^{S}k+1 \notin S_{k}, k=1,...,N-2$$

and

(12)
$$eNytt(S_{\underline{N}1}) \leq /fdA \leq eN/(S_{\underline{1}}).$$

Since, by (10'),

$$/^{fd}/* = 7 \in Nyk(X) = ^>k(X) \sup t,$$

(12) implies that

(14)
$$/ i(S_{N-1}) \leq 7 \mu(x) \leq \mu(S_1)$$
.

We denote by S_1^* a subset of S_1 for which

$$yMs_1^*) = zMx$$

and which, in addition, is such that

(16)
$$S_1^* \supseteq S_{N-1}$$
.

The right-hand inequality (14) shows that there are subsets $Si_{\mathbf{1}}^{\mathbf{*}}$ of $S_{\mathbf{1}}$ for which (15) holds and it follows from (11) and the left-hand inequality (14) that $S_{\mathbf{1}}^{\mathbf{*}}$ may be so chosen as to satisfy (16).

We now consider the function

(17)
$$f_1 = f - \epsilon/(s|)$$
.

Since S \subseteq C Sp we have fT > . °- Because of (.16), we have $\sup f_{\textbf{l}'} = \sup f - e = (N - \bullet 1) \in$

and, by (13) and (15),

(18)
$$/^{f}1^{d}/* = ?^{f(N - 1)}/A^{t(X)} = J/*W**J? f!$$

A comparison of (13) and (18) shows that the procedure leading from (13) to (18) can be repeated. There will thus exist a subset S_3 ; of X such that the function

$$f_2 = f_x - \mathcal{E}/(S_2^*)$$

is non-negative and satisfies

$$Jf_2cU = ^e(N - 2)U. (X) = _{*}/t(X)sup f_2.$$

By applying this process N times, we arrive at a function f_{-}^{*} which vanishes identically, and we thus obtain a decomposition

(19)
$$f = \underset{k=1}{\in} X ^{(S^*)}$$

We set

$$g^* = Ne7(S£) = / (S_k^*),$$

and we observe that, by (15) (and the corresponding formulas for $S_{\boldsymbol{k}'}^{\star}$, $k=2,\ldots,N$)

$$\int_{x} g_{k} d\mu = 2\mu (x),$$

i.e., $9v^{\in H}$ * Since, with of e^{-1} = e^{-1} , (19) may be written in the form

$$f = \sum_{k=1}^{N} \mathcal{A}_{k} g_{k}, \quad \sum_{k=1}^{N} \mathcal{A}_{k} = 1,$$

this shows that $f \in C(H)$, and Theorem II is proved.

- 4. As an illustration of the type of explicit inequality obtainable by means of Theorem I, we consider the eigenvalue problem

 (6) with the boundary conditions
- (20) $u(a) = u < (a) = \bullet \bullet = u \wedge 1 * (a) = u^{(n)} (b) = u^{(n+1)}fc) = . \bullet u \wedge V) = 0.$ If the coefficient R(x) belongs to the class listed under (a) in Section 3, we have the following result.

Theorem III. Let A = A(R) = A(R;a,b) be the lowest eigenvalue of the differential equation

(21)
$$y^{(2n)} - (-1)^n AR(x)y = 0$$

with the boundary conditions (20), where R > 0, ReL^{1} on [a,b]

and n is a positive integer. If R(x) is non-increasing in

(22) *P(R) J [(x - a)
$$^{2n}R(x)$$
] $\frac{1}{p} \frac{dx}{x - a} \ge \frac{p}{2n} \lambda^{p}$ (1;0,1)

for any $p \ge 1$. There will be equality in (22) whenever R(x) coincides with ja characteristic function Y[a,t], where te(a,b].

If we set
$$\frac{2n}{d < f} = (x - a)^{p} dx,$$

it follows from (8) that (22) will be established if we can show

that
$$\inf_{te(a,b]} \lambda^{\frac{1}{p}} (\lambda_t) \int_{a}^{\frac{1}{p}} (x - a)^{2n} \lambda_t^{\frac{1}{p}} \frac{dx}{x-a} = \frac{p}{2n} \lambda^{\frac{1}{p}} (1;0,1),$$

where $Jt_{\mathbf{t}} = ^{[a,t]}$. Since

$$\int_{a}^{b} (x - a)^{2} / t + \int_{t}^{t} (x - a)^{2} / t +$$

this will follow from the identity

(23)
$$A^{P} (/_{t}) (t - a)^{P} = A^{P}(1;0,1) .$$

To establish (23) we note that, by an elementary argument,

$$M/l_{\tau};a,b) = A(l;a,t);$$
t
moreover, since $r_{lu}(n)$ dx

$$A(l;a,t) = \inf \frac{a}{t},$$

$$3udx$$

where u is subject to the boundary conditions (20) (with b = t), it is evident that

$$A(l;a,t) = (t - a)^{n}Mlj0,l).$$

This completes the proof of Theorem III.

For n = 1, we have $A(1;0,1) = ^{-2}$, and Theorem III yields the inequality

$$\frac{1}{\lambda^{\mathbf{p}}(\mathbf{R})} \int_{\mathbf{a}}^{\mathbf{b}} \frac{1}{(1-\lambda^{2})^{2}} \frac{1}{\lambda^{2}} \frac{1}{(1-\lambda^{2})^{2}} \frac{1}{(1-\lambda^{2})^$$

for the lowest eigenvalue of the problem

$$yi' + AR(x)y = 0$$
, $y(a) = y'(b) = 0$.

For p = 2, this reduces to the known inequality [2]

$$I \qquad b \qquad 1$$

$$A^{2}(R) / R^{2}(x) dx \geq . ^{.}$$

а

5, If the coefficient R(x) in (21) satisfies the condition $0 \text{ fm} \leftarrow R(x) \leftarrow C \text{ M} < \infty_9$ an application of Theorem II leads to the following result.

Theorem IV. Let A = A(R) be, the lowest eigenvalue of the differential equation (21) with the boundary conditions (20), where $0 \le m \le R(x) \le M < \infty$ and n is at positive integer. If the number * is defined by

$$A(R) \ge A(R_0)$$
,

where $R_0 = m$ for $a \le x < a*i_L + t>(1 -*)$ and $R_0 = M$ for $a \uparrow + b(1 - \gamma) \le x \le b$.

By (8) and Theorem II,

if T ranges over the class of functions T = m+ (M - m) y^ (X $_{f o}$, and X $_{\Bbb Q}$ is a subset of [a,b] of Lebesgue measure y (b - a) $_{\Bbb Z}$ where J is defined in (24). Since

b
$$\underline{I}$$
 b \underline{f} R^p $dx = \int_{-R}^{R} T^p dx$,

we thus have

(25)
$$A(R) > \inf A(T) .$$

If $y_{\mathbf{R}}$ is the solution of (21)-(20) associated with the lowest eigenvalue, it is well known that $y_{\mathbf{R}}^2$ is non-decreasing in [a,b] if R is non-negative. Since, for a non-decreasing y^2 , the value of

$$J [m + (M - m) / (X_Q)]y^2dx$$

is largest if X. is the interval $[ay + b(1 - *_{\boldsymbol{\ell}}), b]$, it follows that

$$\frac{1}{\lambda(T)} = \int_{a}^{b} Ty_{T}^{2} dx \leq \int_{a}^{b} R_{o}y_{T}^{2} dx \leq ^{o} y.$$

In view of (25), this proves Theorem IV.

For n = 1, p = 1, Theorem IV reduces to a result of Krein [1].

References

- 1. M. G. Krein, On certain problems on the maximum and minimum of characteristic values and on the Lyapunov zones of stability, Akad. Nauk SSSR. Prikl. Mat. Meh. 15, pp. 323-348 (1951).
- 2. Z. Nehari, Some eigenvalue estimates, J. d^fAnal. Math. 7, pp. 79-88 (1959).