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functional s defined on convex sets
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1. Let X = (X, 2) be a nmeasurable space, and let T be a cl aes
of positive rreasures/l\/r defined on 2- . we consider a set H of
non-negati ve fuhcti ons belonging to \P{/K) on X for all /A e 77
(1<, p<o00), and we denote by C(H the convex hull of ‘H If <5

Is an arbitrary positive neasure on X, we define the functional

AAdr) (reC(H),LY0")) by \
6 . [frp%]r

(1) A(r) =swp Hao—
! - X
The following result is a useful tool in the treatnment of numerous

extremal problems involving eigenvalues of differential and integral

equati ons.

Theorem|. rf_j\l.{r) JLS the functional defined by (1) , then

(2) SUPA(T) = SupA(s)
reC(H) SEH

The proof of (2) is very sinple. Since HC C(H),.(2) will

follow fromthe inequality

(3 - SUPA(r) < supA(s),

reC(H seH .
and it is sufficient to establish (3) for finite suns of the form
(@) r=0(131+--+0(s,0(>02'¥ s 8y €H.

=1

By Minkowski's inequality, we have
[ | Pan 1P < o [ ) sPam P
' ,3{ f k=1 k X k/"
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and thus, by (1),
. 1 n .

P

(5) i ;frgd/k] < kgo{k/\(sk) )_(f_skdr .

Since this holds for all Aet, it follows from (1) and (5 that

AC) g <]§1°<kA(Sk) -(Skdd-

X : n X
<
seH k=l Y X~
= sup Ads) /rd«T.
S6H x

Thus,

y\ (r) < supyV(s)”
- SEH

if r is of the form (4). Since these functions are dense in

C(H), this inplies (3) and'conpletes t he proof of Theoreml.

2. As an exanple of a functional whi ch can be brought into the
form (1), we consider the |owest eigenvalue A = A(R) of the
differential system _

(6) y Mo (-1)"AR(X)y - 0, U(y) =0, . (A=A(R)

1 on an interval [a,b]g Uly) =0 is a set of

where R> 0, RGL
sel f-adjoint boundary conditions, and n s a positive integer

By classical results,

o]
1
"R} -~ .sup IR% ’
a

wher e df =u %@” dc ' and u(x) ranges over the class of functions
with the foll ow ng properties: (a) -u satisfies the conditions
U(ﬁ) =0; (b) Jn) is of class L2' on [a,b] and is nornalized

"by the condition

[VIN P ey
B
~
o
X
1
=




In this case, we thus have

~

(7 . [ACRP)|"! = A’(R) | R® d<T,
a
and Theorem | shows that
1l b 1 L b L
(8) Anf XP(R) j Rd<T = Ainf AP(T) J* TPd<T .
~ RPeC(H) a, TPEH a

If the value of the right-hand side of (8) can be found, (8)

thus provides the exact |ower bound for the expression (7) , where
R ranges over C(H) or over a subset of C(H) which contains H.
3. The use of Theorem | as a source of esfinates_for functionals
é/V(W Is most likely to be successful in the case of convex

sets - C(H) which are spanned by sets H of functions Of very
simle fype; There are many such sets which are of interest

in the applications. Two well-known exanples are:

(a) the class of bounded non-increasing non-negative functions
on an interval [a,b]; in this case H my be identified with the
set of functions A/(é:€(aq b]), where A is a suitable positive
c'onstant_and_-yf‘,t is the characteristic function of the i nterval
[a,t]; |

(b) the class of non-negative concave functions on an interval

[a,b]; this class is spanned by the functions g(x,t) (te[a,b]),
where g(x,t) = A(X - a) (b-t) for xe[a, t] and g(x,t) =
A(t - a) (b - x) for XE[t,b] .
Another exanple of this type--which does ndt seemto be
found in the literature—s described in the follow ng statement.
Theorem!Il. Let (X "£,/A) bejafinite positive measure

space, and let K=KmM J) bis.the class of measurable functions




(9) -a> <m< F £ M< oo

and
A

(10) Jbdig = [ A+ (1 -\ 2wl )
X .

(0. y <, 1) ~where m—and M -are, tespectively, -the.essential
J_DI_Lmima.[ld.Lh.&.ESS.E.DIJ_aJ_SMDLEDum.QL F on X _ |
lf H denotes the subhset of K _consisting of the functians
g =m+ (M- /(Xg ,—where XoCX *t(X9 = %M , .and
1"(Xy) jid_the characteristic function of Xg: then KCQH) .
If we set. F=m+ (M- mf, (9 and (10) take the form

0<f <1 and
r.

(10') ' ffdt = *bA(X) .
X .
respectively. It is thus sufficient to prove Theoreml|l for the

case m=0, M= 1.
Anot her sinplification which can be made is the assunption .
that f be a step-function which takes only the values O, €, 2e, . . ., NE,
where eN=1 and N is an arbitrary positive integer. Indeed,
f nmay be approximated by functions f* defined by setting

f* = ek on the subset of X on which e(k - 0) <f <Ce(k+ 1-0),

where © is a nunber in (0,1), and k = 0,1,...,N Evidently,
| inf f* =0, sup f*-= 1, and
—-ee/u(x) < \]/fd/« - jf*d/c < €1 - 0) .

o , X X ‘
Since J f*di}. is a continuous function of 0, this shows that

: X ( .
O may be so chosen that J f*d/} = J fd//t and t hus, by (10'),
] X X

dfxd/*-= 7 pX).
ol /




If S, denotes the subset of X on which f > ek (k =

1,2,...,N- 1), we have
(11) Sk+l £Sy, k=1,...,N- 2
~and
12 Nytt < /fdA < eN S.).
N ey(SNl)—xf—/"‘l’
Since, by (10'),
(13) T = TENYK(X) = A;k(X)sup t,
. X r r .
(12) inplies that
W denote by S*l a subset of 81 for which
(15) yMs?y) =2z M)
and whi ch, in addition, is 'such that
(16) st 8. ;-

The right-hand inequality (14) shows that there are subsets S’i
of S,l for 'which (15) holds and it follows from (11) and the
| eft-hand inequality (14) that Sj_ may be so chosen as to satisfy
(16). |
We now consi der the function

(17) . B f,=f1f - €/(9]) . _

Si nce Si_ _C;Spﬁ we have fTL>._ °- Because of (.16), we have
_ supfl =supf -e=(N-1) €

and, by (13) and (15), ‘
(18) JRpaps = o8N 1) AT = g 9 1

‘ X

A conparison of (13) and (18) shows that the procedure
| eading from (13) to (18) can be repeated. There w || t hus

exist a subset S3 of X such that the function




fo = fy - €/(S§)
s non-negative and satisfies

J?QC'}J_ = "e(N - 2)}1. (X = ">/t(X)sup fo.

By applying this process N times, we arrive at a function f~

whi ch vani shes identically, and we thus obtain a deconposition

(19 f = € X"(S*)
k=l
V¢ set

g" = Ne7(SE) =/ (SY),

ahd we observe that, by (15 (and the correspondi'ng formul as

% —_

for S, k=2,...,N

“{gkd/“ = 7/“- {x),

X .
i.e., 9v®™ Since, with o",K = e = N1 (19) may be witten in
the form N

= pl

f Z‘zkgk, k__O( J
this shows that f€C(H), and Theorem Il is proved.
4. As an illustration of the type of explicit inequality obtain-
abl e by nmeans  of Theorem I, we consider the eigenval ue problem

(6) with the boundary conditions
(20) u(a) =u<(a) =ee=unrt*(a) =ul™ (h) =u™fc)=.e-urrv) =0,
- If the coefficient R(x) belongs to the class li sted under (a) |

in Section 3, we have the following result.

Theoremlll. Let A= AR = A(Ra,b) be the |lowest eigenval ue

- of the di fferential equation

(21) y(2m . (L1)"AR(x)y =

W|th t he boundary conditions (20), where R> 0, ReLl on [a,b]




7

and n is_a positive integer. |f R(x) _is non-increasing in
[a, b], then

b 1 1
(22) *P(R J[(x- a)?Pr(x) 1® x5 > 3= 2P (150,1)

a o

for any. p= 1. Jhere will be equality in (22) Mwhenever R(x)

coincides withja characteristic function X[a,t], where te(a,b].

If we set 2N _n
| d<f = (x - a)P dx,

it follows from (8) that (22) will be established if we can show:

t hat i ' i
inf AR Tx - %Y ]Pd" = £ P (1500,
te(a, b]
a
wher e Jt, = “"a,t] . Since
b . 1 t In_y I n
![(x-a,z"/t)A./(x-. Sk .a)P,
a .
this will followfromthe identity
1 20 1
(23) A" (1) (t - a)P=AP1:01) .
To est ablish (23) we note that, by an elenentary argunment,
M1 a,b) =At(|;a,t);
. )
nor eover, since ()] dx
Al;at) =inf 2 ,
-
3 udx
a
where u is subject to the boundary conditions (20) (wth
b=1t), it is evident that
A(l;a, t) = (t - a)"Mmjo,l) .
This conpletes the proof of Theorem .
_ 2 _
“For n =1 we have A(l;0,1) =7, and Theorem IIIl yields

the inequality




1o0b o 2
?\P(R)S Fs. A2 0P ax ~ B iy !T ~ T
a

for the | owest eigenval ue of the problem
yi '+ AR(X)y =0, y(a) =y (b =0.
For p =2, this reduces to the known inequality [2]
b
I 1
A%(R) | R(x)dx >, ~.
a
5 If the coeffici_ent R(x) in (21) satisfies the condition
0 £m< R(x) <C M< 00y an application of TheoremlIl leads to
the following result. ,
Fheorem | V. Let A = A(R be; 4he +owest eigenvalue of the
di-f-fer-ential eguation (21) w-t—h-t—he-beanda-r—yue-e-nd-i-t-i-ens-(ZO),
where 0 < m< R(X) < M< 00 and n is-at positive integer.
£ the nurber * is defined by |
" b~XT - N T '
(24) | R(x)dx = (b - a) [M2+ nf(1 -~)], (0<”<1),

t hen a

AR =z A(R) ,

wher e Ro:m for a<_x<a*iL+t?(I -*@_ ) and I%:M for
a2+b(l-z)§_x_<_b.
By (8 and Theoreml |,

| P 1 1 P 1
AN(R j* Rdx>inf A(T) j TPdx,
a a

if T ranges over the class of functions T =m (M- n y’\(Xg,
and Xo is a subset of [a,b] of Lebesgue neasure y (b - a)s;

~where J is defined in (24). Since

(on

1
R’ dx = TPdx,

p KU

f
a




we thus have

(25) ARy >_inf AT . _
| f ygp is the solution of (21)-(20) associated with the | owest
ei genvalue, it is well known that fi IS non-decreasing fn
[a,b] if R .is non-negative. Since, for a.non-decreasing y2,

t he val ue of

i o]
J[m+ (M- m /(X9 y?dx
N _
is largest if X is the interval [ay + b(l -*2 ,b] , it follows
t hat b b
iy = § TyRdx < 1 Roysfdx < Ay

a a
In viewof (25), this proves Theoreml|V.

For n =1, p =1 TheoremIV reduces to a result of Krein

[1].
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