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I. Introduction

. A great many materials of interest'invcontinuum physics are
described by constitutive equations which are rate-independent, i.e.,
which are invariant under a change of time scale. The theories of
classical plasticity and the theory of hypoelasticity are important
examples of rate-independent theories.

Mechanical and thermodynamical theories of material behavior
based on a general concept of ;eate—independence recently have been
developed by Pipkin and RiVlin-{ij“and by Owen [2]. In these theories
the physical notion of rate—independencé, stated-in terms of the

mechanical theory, is taken to be the following:

the stress at any time depends upon all past values of strain but

is independent of the rate gg_which these values are assumed. (For
the thermodynamical thebry‘rééd "stress, heat-flux and entropy" for

"stress" and "

strain, temperaturé'and’temperature gradient" for
"strain".) | |

Two mathematical statements of this concept have been proposed;
both appear to be reasonable interpretations of the physical principle.
Pipkin and Rivlin introduce the concept'of rate-independence by
requiring that tﬁe present value of stress depend upon the strain
history through the arc-length parameterization of the strain path.

Thus if E is some strain measure for the motion and Et(') the

history of strain up to time t,

Et(s) = E(t-s), se[0,0),

they assume the value of stress at time t, T(t), is given by

(e o)
() =3 (BT (), - (1)




wheré J 1is some functional‘and Et(-) represents the arc-length
description of Et(').

Trﬁesdell and Noll [3] introduce a second definition of rate-
independence in which they consider the usual time description of

the response to a given history of strain

T(t) = 3* (E (s))
s=0
but in which they require that'thé'fdnctional I* ‘assigﬁ the same
value to all histories of strain which assume the given values
{Et(s) | s€[0,00)} in the same order as does the given history.
In mathematical terms this requirement becdmes

© o o ’
I* (E7(8(s))) = 3% (E"(s)) . ' - (2)
s=0 ol s=0 ‘ ’

. for any monotone function ¢ mapping [0,0) onto [0,00).

Intuitively the two definitions appear to be equivalent; in this
paper we show that they are indeed equivalent if the definitions are
slightly modified. We consider the foliowing generalized form bf
the problem: we take & to be a set of functions mapping [O,®)
into R™ and T some function on the éet § (we assume that the range
of 1r is in some normed vector space,but this assumption is not of relewance
for our proof). We then show that 7 is invariant under a set
of mappings as in (2) if and only if it may be written in terms of
the arc-length parameterizations of functions in &, as in (1) . -

Eésehtially the problem is the same as that of the demonstration
in calculus that the arc-length parameterization of a curve is
equivalent to.the description of the curve as an equivalence class

of parameterizations. 1In the case in question complications arise




from two requirements iﬁposed by the physical context in which the
problem appears: first, the range of the parameterization variable,
time (measured into the past),.may be infinite; second, zero
derivatives of the time parameterization must be included, that is,
we must include the case of a deformation constant over some interval
of time. The first complication is met by enlarging slightly the
class of reparameterization functions (the functions g of (2); the
second merely~necessitates.é?Cér£ain degree of smoothness be required
of the functions in &, -

In sections II and III we develop preiimary'results which are
necessary in order that the definitions of rate—independénce can
be stated in meaningful terms. In sectién IV we present the two
definitions of rate—indeﬁéndence and the proof that they are equiva-
lent. 1In the final Sécfidﬁ wévshow that the concept of fading memory
- is only trivially compatible with the hotion of.rate-ihdependence

and suggest a sense in which it can be made compatibie.




ctional; the Invariance Mappings

Let v denote a functional with domain &, & being a set of
functions each of whose elements f maps the half-line H = [0O,m)
into m-dimensional vector space Rm, and range included in some normed

vector space X. We investigate the invariance of the functional 7 under

transformations of the form f-—+fofd where ge®, a class of real-valued

monotone functions on H

; fod denotes the usual composition of

two functions. As an examplé;fiﬁ5ﬁhe context of a mechanical theory
of material behavior £ can behinterpreted as the history function
of the strain tensorl (m = 6 or 9),and * is_thé space of symmetric
tensors on R3.

Clearly, if the arc-length of a fun@tion fed is to be defined,
f necessarily must be Qf?lécally bounded variation. However, in
order to eliminate the phyéically>undesirable class of "singular
- functions" (non-constant functidns.whiéh.are continuous, of locally
bounded variation and which have zero derivative almost‘everywhere),
we réquire further that each fed¥ be absolutely continuous.

Recall that f is said to bévabsolutely continuous on the interval

[a,b] if

Z|£(8;) - £(a))]

tends to zero with Z(Bi—ai) where {(ai,Bi)} is any countable

family of non-overlapping intervals contained in [a,b]. Here

|| denotes the Euclidean norm in R'. If f is absolutely

1

For the reparameterizations below to be meaningful we necessarily
assume that the quantities £(s) and their arguments s (time) are
dimensionless, and hence some dimensional transformation may be
. necessary to pose the problem in these terms. (The dimensionless
variable corresponding to time will arise naturally in a rate-independent
material since such a material cannot admit a modulus with a time
dimension: cf. Truesdell and Noll [3], p. 402,)




continuous then f has a derivative f(s) for almost every s
and the function £ is integrable with £ as primitive. (These
results are proved, for example, in [4] for the case m = 1 ; the
generalization to 1 < m < o is trivial.) A simple argument then
shows that |%| is also integrable. 1In the next section we use
this fact in order to define the arc-length function for £.
Now let us define
3 = {f:H——le f is absolUtely:continuous on eny finite subinterval
of H}: . o
Of course fed implies £ is of 1ocelly bounded vaiiation on H,

For any fed we define

sg = inf {s > 0 | f(s')_= 0 for almost every s' > s}

where we allow S¢

this implies £ 1is constant ih_ [sf,oo), a fact which is of impor-

tovbe:ihfinite; Since £ is absolutely continuous

.tance in our definition of the invariance transformations g. (We
use the term invariance transformation anticipating definition 2,
section iV.)

In proceeding to the specification of the class of invariance
transformations,“we point out that it is necessary to define many
such classes, each of which depends weakly upon a particular function fed.
This weak dependence is admitted in order to include the arc-length
function corresponding to a given f 1in at least one invariance
class. We couid develop the results which follow without requiring
this weak dependence, but in relaxing this requirement we would
have to exclude from the class & all functions £ wﬁich have finite
arc-length'but for which ‘S_ = 4+ . In no way can we justify this

£
exclusion. Thus we shall define
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¢% = {g: H—H | # is monotone non-decreasing, absolute-

ly continuous on any finite subinterval
of H, and such that g(H) includes
[0,5.) ).

The set ¢% includes all monotone non—decréasing finitely absolute-

ly continuous functions which map H onto H. It is important to note

that every ¢€¢% is such that fod takes on all of the values,

in the same order, as does f.

It is a standard result”thaﬁAan absolutely continuous function

composed with an absolutely continuous monotone function is abso-

lutely continuous: thus for any fed and Be . 'we have also

foded.




III. The Arc-length Parameterization

Let f be any function in the class &. The arc-length

function for £, Lf: H-—+H, is given by

S .
L.(s) =cj) | £(0) |do.

" If f 1is taken to represent theApast history of a quantity (such.
as a strain measure) rglative to the present time +t then if(s)
is the arc-length of the path traversed in the time interval
[t;s,t].

Clearly < is an absolutely continuous monotone non-decreasing

£
function; éf(s) represents the speed of traversal of the path at

s, i.e.
Lo(s) = [£(s)]

almost everywhere in H. Since Lf is. monotone the limit

L. = 1lim 4_(s)
f, S -+ Q0 f

exists (it may be infinite). Whether finite or infinite, Le will

be called the total path length corresponding to the function £ or,
more concisely, the path length of f£. We note that Lfe¢? when -

ever fe¥ is such that sg < Lg.

To obtain a parameterization of f in terms of arc-length we

introduce the right-inverse function for 4_. Thus we define for

f
every se[O,Lf)

ti(s) = min (o[t (0) = s).

If Lf is a strictly increasing function then the function. L; is

the inverse of Lf. We observe that whatever the nature of Lf,

i jtself is a strictl increasing function on [O,L.): if s, < s
£ 4 £ 1 2




in [O,Lf) and we aséume L%(sl) > %%(52) then we may use the
obvious relation Lf(éé(s)) = s to conclude, since Lf is mono-
tone, s, 2 s,, a contradiction. Being monotone, Li has at most
a countable number of jump diséontinuities; it is easy to see that
each point of discontiﬁuity corresponds to exactly one finite

interval on which & is constant.
The following relatlon will be needed in dlscus51ng propertles of the

arc-length parameterlzatlon of f£f:
lim L

spLg f( s) =:sf'i
Since L; is strictly increésing‘the limit on the left exists. To
establish that the limit is sg we first show that
* ) .
s = lim 2% (s) S‘sf.
éfLﬁ  o
This is trivially true if 'sf =+ . Now if sg 1is finite then
. so is Lf' Let 0 < s < Lf, Then 0 = L; (s) .must be less than
Ses if it were greater than S¢ then

Lf(o) = s = Lf:

for Lf must be constant on. [sg;,00). It follows then that

*

s <s Suppose now that s* < s we will show that this supposition

£° £
leads to a contradiction. Indeed, if s* = + o the contradiction
is immediate. If s* < co we choose s finite such that s* < s.

Using the relation

Le(s*) = 4, lim 4 (Ll(s)) lims = L

(lim Lf (s))
£ s}'Lf stf

s/L £

and the monotonicity of Lf we obtain the inequality

Le < 4 ().,

£

The definition of L implies this must be an equality. Since s

£




is any element of H greater than s*¥ it follows that ¢

constant on [s*¥,00) and, therefore,
[s¥,00) . But S
hence

Se < s¥*,

which contradicts the supposition

desired result, i.e. s* = s

fc

£ is

that f 1is constant on

is the least number for which this is true and

s¥ < s_.. This establishes the

£

. A m
We now define f£: [O,Lf)—»R by -

? = waé.

. A . : .
The function £ 1is called the arc-length parameterization correspond-

ing to f. The function

L; is not, in general.

that 4¢

Suppose ce[O,Lf) is a point of

exist two elements of H, a < b,

out the interval [a,b] and at

1o = |f|] = 0 on [a,b] and hence
the limits L; (c¢”) and &; (c+)

b respectively (these relations
q

A . 1
f must be continuous on

[O,Lf) although

’ A
To show that f is continuous, we recall

has only a countable number of jump discontinuities.

discontinuity of 4 Then there

i
f.

such that 4_ has constant value c¢ through.-

f

no other pdint of H. Then

f is constant on [a,b]. Now,
exist and have the values a and

can be demonstrated by means of

arguments &uite similar to the one used in showing lim L; (s) = sf).

Since f(a) =

then immediate.

f(b) the conclqsion %(c') = %(c+)

Sfo
is

Now we shall extend (if Lf < oo) the function % to the

domain

In order to do this we need the following result: if f

H and then show that this extended function is in &.

is such

1 As is stated, although not proved, by Pipkin and Rivlin [1], p.315.
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that Lf < e, f is not only of locally bounded variation but
bf bounded variation on H. That this is so is immediate when one

recognizes that since £ 1is absolutely continuous the total varia-

tion of f on any interval [0,a] is just

a .
&f(a) = ! | £(0) |do.

Since in this case f 1is of bounded variation on H we may conclude,

by a standard argument, that.;

£f = 1lim f(s)
oo S —+ 00

exists and has finite norm. Moreover, since f 1is continuous

lim 2(s) = lim £(i(s)) = £( lim 4% (s)) = f(s,)=f .
_ £ : f f 0
s’”L s’L srL
£ £ £
We define the extehded arc-length parameterization correspond-
. ing to f by | o |
'f(s) 0 <s< Lf
%e(S) = ,
foo_ Lf 5_; <
. . _ . e . Ae A ‘ .
when Lf < o ; otherwise we make the identification f = f. 1In either

case the function is continuous.
A
To show that f°e¢¥ we must prove it to be absolutely continuous
on finite subintervals of H. Central to the proof of this result

is the identity

1, = |
frol. = £ . (3)
To prove this identity we first suppose S¢ <m®m. If s Z.Sf the
definitions of S¢ and of fOIO imply that £(s) = foo’ To show

A .
that (fe°£f)(s) = £, as well, we note that since sy is finite,
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Ly will be finite; hence, te(s) = L whenever s > s. and

301 (s) = 22t () = B2y = £

Now we consider, regardless of the value of Sgs £

Since Lf cannot be constant in [s,sf) it follows that Lf(s) <L

the case s < s_.

£
Then

221, (s)) = £ (4(s))) = £(min [0]4,(0) = L (s)])
and it is clear that Lf(c) = Lf(s) implies f£(0) = f(s). These

arguments suffice to establish the identity (3) for all s.

A
To show that f° is absolutely continuous on finite subinter-

vals of H, we consider first the case Lf = @ . Let [a,b] Dbe
any finite interval in H. Then since L; is a monotone function,

since L;(b) < o0 and since f 1is of locélly bounded variation,
it is easy to show fe - B - fOL; is of bounded variation on
[a,b] . Hence we can write

e
£° = g+h .

~ where g 1is absolutely continuous on [a,b] and h is of bounded
variation with h = O almost everywhere on [a,b] and
h(a)=0. We consider the interval [o,B] where a = L;(a) and

B=1.(). Then o< B <oo and thus 4_ and f are absolutely

f
continuous on ([a,B]. The relation %e°£f = £ then implies
h°Lf = f - g°Lf
so that h°&f is absolutely continuous on [o,B8]. We observe that

.d_g'. (ho{,f) (s) = };('f«f (S))Lf (s)

for almost every se[o,B], and thus for all se[e,B]
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S .
(hot ) (s) i h (L (0)L (0)do + (ho1)) (@)

Lf(s). ’
TF7R®ag + ety @

i

a

since hOLf is absolutely continuous, h is intégrable, and &f is
absolutely continuous. However h(§) = O for almost every £c[a,b], so
(hetp) (s) = (hety) (@) = h(a) = O.

This means h is identically zero on the set 'Lf([a,ﬁ]); since
Lf([a,B]) = [a,b], h 1is identically ze#o on [a,b] and therefore
A .
fe is absolutely continuous on [a,b].

Now we turn to the case L <. If [a,b] € [0,L;) we may

use the above argument't6 show that %e is absolutely continuous on [a,b]
Since fe is constant on -[Lf,oo), we need only show that £€

is absolutely continuous on [O,Lf]‘in'order to c0mplete the proof
that %e is absolutely continuous on fiﬁite subintervéls of H.
We establish the result on [O,Lf] indirectly. This approach is
based on the fact that %e ‘'is absolutely continuoﬁs on closed
subintervals of [O,Lf) and continuous on [O,Lf]; if we show it is

of bounded variation on [O,L it follows that it is absolutely

£l

continuous on [O,Lf] (see, for example, [5], p. 334, exercise 7.6.9).
We have shown that £ is of bounded variation on H when
Lf < o; since L; maps [O,Lf] into [O,sf] C H and is monotone,

. Ne . . Ne |
and since f is continuous on [O,L it follows that f is of

£l

bounded variation on [O,Lf]. This completes the proof: %eeg.
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'IV. Rate Independence; Equivalence of Definitions
Y o d L I S e

Now we may formally define the problem. We let T be a
mapping from ¥ into some normed vector space X . The work in the
pfevious sections ensures that the following definitions are mean-

ingful.

Definition 1: (After Pipkin and Rivlin) The functional 71 is
rate-independent if for every fed

mE) = 1) .

Definition 2: (After Truesdell and Noll) The functional 1 is
rate-independent if for every fed

M(fed) = M(E)  for all ded.

These definitions contain the spifit if not the exact detail
of the originals. Thus, as remarked above, ¢% ontains all of
the monotone transformations considered by Truesdell and Noll; ¢%
will contain additional transformations only when Se < ©o.

- Our main result is the following

Theorem : Definition 1 and definition 2 are eguivalent.
That definition 2 implies definition 1 follows immediately from

our earlier results. Thus in section III we showed that feX

A N "~
implies that f£%e¥, that %égif_= f and that Lfeég for any £
~ in f Ae =
‘such that S S.Lf. But in fgct sie Lf,.so

Ae A
M(£%) = w(£% L) = () .
The proof of the converse is somewhat more involved. We shall
show that for any £ and any ¢e¢%
A

fod e= fe

HUNT LIBRARY
GARNEGIE-MELLON UNIVERSITY
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A

which then implies TY(fog) = TV(f). Here fcgd ? denotes the extend-

ed arc-length function corresponding to feg. We note first

i

s - ___
INEAGHES

{’ngf (s) J

FS. .
X |£(£(0)) |#(0) a0
o]

since the derivatives exist almost everywhere and 5(0) > 0. But

g is absolutely continuous so

Xﬁf(S) o .
Leog(s) = | |£(0) [do = 2. (4(s))

and in particular, since @([0,00)) includes [O,sf),

Leog =S£i,org Leagls) = s_l_fg‘o Le(#(s)) = L.

Moreover, in the case where Lf < oo it is clear that

lim f£(g(0)) = fm .
o.—’sfogf

A
— A
so that fegd © and £° agree by definition on the interval

[Lf,oo). Then, noting that

A : .
(Eh () = £@ Ly 4(s))) and 2(s) = £(L5(s)),

it suffices to show ¢(£é°¢(s)) = L;(s) for s <L To this end

f.
we note that

I

Btz 4(s)) = Blmin(o]L,, ((0) = s))

min(g(0) [z 4(9) = s)

since g is non—decreasing. Because Lfo¢(0) = Lf(¢(0)) the last
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‘relation becomes

i
B(le,4(s)) = min{oft (0) = s} = L. (s).

This completes the proof.
It is of course possible to prove this theorem for a more
restricted class of functions than the set &, For example, instead

of & one could have chosen the class

F = [f:H-*RmI f 1is piecewise continuously differentiable
: on finite subintervals of H and f has
~a finite number of intervals of constancy},

~

‘with ¢E defined in a similar manner. In this case the proofs
~;’ V ~ ~

that %eeﬁ and that fegded whenever ¢e®f become much more in-

volved. Finally we remark that the class & above seems to be

the largest class of functions for which the identity

%eoéf = f

necessarily holds.
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For the purposes of this section let us add an additional
"assumption on the set of functions &. We require that £fed only
if f is bounded at @ (which implies £ is uniformly bounded on
H). It is clear that this in no way interferes with the analysis of
the previbus sections. This condition is sufficient to guarantee &
is included ih the space of functions on H into R" with finite
norm

uF:

el = X (o) |£(0) | + I (@) |k (0) do (5)

o .

where k(s) is a positive real-valued function, integrable over
[0,00). A norm of this sort is used in the theory of fading memory
introduced by Coleman and Noll [6,7] and generalized by Caleman and
‘Mizel [8]. In this theory, a functional is said to obey the postu-
late of fading memory if it is continuous with respect to the topol--
ogy generated by such a norm. As is remarked by Truesdell and Noll
([3],p.402) the assumption of rate-independence is in general incon-
sistent with this theory of fading memory. We below make this precise:
let us say that 17 obeys the CMN principle of fading memory if T

is continuous in the (relative) topology on & defined by (5).

Proposition: A rate-independent functional obeys the CMN principle

of fading memory if and only if it is elastic, i.e., if and

only if there exists a continuous function TT:R™=X such that for

each .fe&

m(f) = JU£(0)). ' . (8)

If 1v satisfies (6) thenntrivially Tr is rate-independent and
satisfies the CMN principle of fading memory. The proof of the converse
follows directly from the definition of rate-independence. For any ‘
aeR" we let at denote the function in & with constant value a and
define

JI(a) = mr(at),
Clearly IT is continuous; we must show that 17 (f) = ﬂTf(O)+)
fed,

for any

For any 0c¢H we define the function ,d(o): H—H by
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t<o

A

(o o
¢ () ={

t-0 0 < t< oo

Then if £ is any function in J, ¢(0)€¢f for each 0eH. The
function f0¢(0)e3 is the static continuation of £ of amount ©
considered by Coleman and Noll ([7]; thé centrality of static
continuations in the theory of fading memory is shown by Coleman
and Mizel [8]). |

. ag) .
Now let us consider the difference f°¢( ). f«)ﬁ :

(¢ 9)
leeg©@ ~ £t = | 1£6@ () - £(0) [k (s as

o

(e o]
{0 - £00) Ix(s)as.

(o)

Our modifications of the set & imply that if fed, |[£f(s)] < Kes

a constant, for all s. Hence

o
¢
leeg (@ - g0t < 2k, [ x(s)as;
g
by choosing 0 sufficiently large we can make this quantity arbi-
trarily small. Thus since T is presumed continuous with respect
to the topology generated by this norm it follows that

.given € > O we can choose 0 sufficiently large that

Ilw(geg () _ (e < e -

(here -H denotes the norm in X ). But since # 1is rate-independent
c
(e8P = w(p .
for any 0. Thus || (f) - p(£(o)V) ]| is less than €; since € is

arbitrary this implies W(f) - W(£f(o)T) = T(£f(0)).

Thus the concept of fading memory as considered by Coleman,Mizel,and Noll
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is only trivially compatible with the concept of rate-independence.
The same argument may be applied to Wang's first treatment of fad-
ing memory [9] since, as is méntioned by Coleman and Mizel [8],
his norm is equivalent fo one of the form (5). The same type
of result can also be proved for Wang's second treatment of
fading memorf [l0]. For Wang's materials of order zero & admits
f°¢(0) whenever it admits £ and it is'easy to show that in this
topology also
1im £04(9 = £(0),

0 —~ -

For Wang's materials or order p > 1 one can consider the

g—retardatioﬁ , £, of £,

o

£,(s) f(as), oeH

and easily show that fa—’f(o) as &—~0,which yields the same
result since w(fa) = m(f) . Hence the above proposition remains
valid if one substitutes "Wang" for "CMN". Of course the result

. is valid for any topology on & in which a constant function

can be approximated arbitrarily closeiy by means of static contin-
uations or retardations (as long as the static continuations or
retardations, themselves, are in J&).

Neverless, the concept 6f_fading memory is not completely empty
for rate-independent functionals; we may cﬁoose to suppose the
memory fades with arc-length rather than time (by applying the
norm (5) to appropriate modifications of the érc-length parameter-
: izations and supposing the functional continuous in the generated
topology) .

Of course there are many other topologies which are compatible

~with rate-independence. One example is that given by
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Pipkin and Rivlin [1]; the topology they consider allows integral

approximations of continuous rate-independent functionals.,
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