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I. Introduction

. A great many materials of interest in continuum physics are

described by constitutive equations which are rate-independent, i.e.,

which are invariant under a change of time scale. The theories of

classical plasticity and the theory of hypoelasticity are important

examples of rate-independent theories.

Mechanical and thermodynamical theories of material behavior

based on a general concept of reate-independence recently have been

developed by Pipkin and Rivlin .[1] and by Owen [2]. In these theories

the physical notion of rate-independence, stated in terms of the

mechanical theory, is taken to be the following:

the stress at any time depends upon all past values of strain but

is independent of the rate at which these values are assumed. (For

the thermodynamical theory read "stress, heat-flux and entropy11 for

"stress1' and "strain, temperature and temperature gradient" for

"strain".)

Two mathematical statements of this concept have been proposed;

both appear to be reasonable interpretations of the physical principle,

Pipkin and Rivlin introduce the concept of rate-independence by

requiring that the present value of stress depend upon the strain

history through the arc-length parameterization of the strain path.

Thus if E is some strain measure for the motion and E (•) the

history of strain up to time t,

Et(s) = E(t-s), se[O,oo),

they assume the value of stress at time t, T (t), is given by

" T ( t ) =a=0



where <T is some functional and E (•) represents the arc-length

description of E (•) .

Truesdell and Noll [3] introduce a second definition of rate-

independence in which they consider the usual time description of

the response to a given history of strain

T(t) = S (Et(s))
s=0

but in which they require that the functional 3** assign the same

value to all histories of strain which assume the given values

{E (S) I se[0,oo)} in the same order as does the given history.

In mathematical terms this requirement becomes

: (2)
s=o ; s=o

.for any monotone function tf mapping [0,oo) onto [O,oo) .

Intuitively the two definitions appear to be equivalent; in this

paper we show that they are indeed equivalent if the definitions are

slightly modified. We consider the following generalized form of

the problem: we take 3 to be a set of functions mapping [0,<D )

into R and Tf some function on the set 5 (we assume that the range

of Tt is in some normed vector space^but this assumption is not cfrelevance

for our proof). We then show that Tf is invariant under a set

of mappings as in (2) if and only if it may be written in terms of

the arc-length parameterizations of functions in 3^ as in (1) .

Essentially the problem is the same as that of the demonstration

in calculus that the arc-length parameterization of a curve is

equivalent to the description of the curve as an equivalence class

of parameterizations. In the case in question complications arise
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from two requirements imposed by the physical context in which the

problem appears: first, the range of the parameterization variable,

time (measured into the past), may be infinite; second, zero

derivatives of the time parameterization must be included, that is,

we must include the case of a deformation constant over some interval

of time. The first complication is met by enlarging slightly the

class of reparameterization functions (the functions rf of (2); the

second merely necessitates a certain degree of smoothness be required

of the functions in 3*.

In sections II and III we develop prelimary results which are

necessary in order that the definitions of rate-independence can

be stated in meaningful terms. In section IV we present the two

definitions of rate-independence and the proof that they are equiva-

lent. In the final section we show that the concept of fading memory

is only trivially compatible with the notion of rate-independence

and suggest a sense in which it can be made compatible.



II. The Domain of the Functional- the Invariance Mappings

Let FT denote a functional with domain 3^ 3 being a set of

functions each of whose elements f maps the half-line H = [O,oo )

into m-dimensional vector space R , and range included in some normed

vector space X . We investigate the invariance of the functional TT under

transformations of the form f-^fo^ where ^ € ^ a class of real-valued

monotone functions on H ; fojz? denotes the usual composition of

two functions. As an example'/ in the context of a mechanical theory

of material behavior f can be interpreted as the history function

of the strain tensor (m = 6 or 9), and 3£ is the space of symmetric

tensors on R .

Clearly, if the arc-length of a function fe<f is to be defined,

f necessarily must be of"locally bounded variation. However, in

order to eliminate the physically undesirable class of "singular

• functionsft (non-constant functions which are continuous, of locally

bounded variation and which have zero derivative almost everywhere),

we require further that each f€$ be absolutely continuous.

Recall that f is said to be absolutely continuous on the interval

[a,b] if

L \f(P±) - f(a±) |

tends to zero with L(jS.-a.) where {(#.,£.)} is any countable

family of non-overlapping intervals contained in [a,b]. Here

|•| denotes the Euclidean norm in R . If f is absolutely

1
For the reparameterizations below to be meaningful we necessarily

assume that the quantities f(s) and their arguments s (time) are
dimensionlessj and hence some dimensional transformation may be
. necessary to pose the problem in these terms* (The dimensionles,s
variable corresponding to time will arise naturally in a rate-independent
material since such a material cannot admit a modulus with a time
dimension: cf. Truesdell and Noll [3], p. 402,)
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continuous then f has a derivative f(s) for almost every s

and the function f is integrable with f as primitive. (These

results are proved, for example, in [4] for the case m = 1 ; the

generalization to 1 < m < oo is trivial.) A simple argument then

shows that |f| is also integrable. In the next section we use

this fact in order to define the arc-length function for f.

Now let us define

3 = {f:H-**R | f is absolutely continuous on any finite subinterval

of H}i

Of course fe<? implies f is of locally bounded variation on H.

For any feJ? we define

s = inf (s > 0 | f(sf) = 0 for almost every sT >_ s}

where we allow s.c to be infinite. Since f is absolutely continuous

this implies f is constant in [s.p,oo), a fact which is of impor-

tance in our definition of the invariance transformations fi. (We

use the term invariance transformation anticipating definition 2,

section IV.)

In proceeding to the specification of the class of invariance

transformations, we point out that it is necessary to define many

such classes, each of which depends weakly upon a particular function feff,

This weak dependence is admitted in order to include the arc-length

function corresponding to a given f in at least one invariance

class. We could develop the results which follow without requiring

this weak dependence, but in relaxing this requirement we would

have to exclude from the class 3 all functions f which have finite

arc-length but for which s = -foo , In no way can we justify this

exclusion. Thus we shall define



3?p ~ [$> H-+H I ̂  is monotone non-decreasing, absolute-
ly continuous on any finite subinterval
of Hj and such that $(H) includes
[0,sf)}.

The set 3> includes all monotone non-decreasing finitely absolute-

ly continuous functions which map H onto H. It is important to note

that every êS&p is such that fofi takes on all of the values,

in the same order, as does f•

It is a standard result that an absolutely continuous function

composed with an absolutely continuous monotone function is abso-

lutely continuous: thus for any fe? and jzfê p we have also
1 • r ——— ' —————



Let f be any function in the class 3*. The 5££-1^23Jt?i

for f, £ f : H-^H, i s given by

%s
|da#f J

o

If f is taken- to represent the past history of a quantity (such,

as a strain measure) relative to the present time t then .̂p(s)

is the arc-length of the path traversed in the time interval

[t-s,t].

Clearly -t- is an absolutely continuous monotone non-decreasing

function; ^^(s) represents the speed of traversal of the path at

s, i.e.

lf(s) = |f(s) |

almost everywhere in H. Since t is monotone the limit

Lf = lim £- (s)

exists (it may be infinite). Whether finite or infinite, L- will

be called the total path length corresponding to the function f or,

more concisely, the path length of f. We note that L e&? when-

ever fed' is such that s^ < L-.

To obtain a parameterization of f in terms of arc-length we

introduce the right-inverse function for t Thus we define for

every s€ [0,Lf)

^(s) = min [o\l

If £ f is a strictly increasing function then the function, t't is

the inverse of lf. We observe that whatever the nature of ^f,

£i itself is a strictly increasing function on [0,Lf) : if s^ <
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in [0,Lf) and we assume t (s,) > £- (s2) then we may use the

obvious relation ^f(^i(s)) = s to conclude, since t is mono-

tone, s. >_ s?, a contradiction. Being monotone, ^^ has at most

a countable number of jump discontinuities; it is easy to see that

each point of discontinuity corresponds to exactly one finite

interval on which is constant.
The following relation will be needed in discussing properties of the

arc-length parameterization of f:
lim 9i. t \

/ ( s ) s

Since -t is strictly increasing the limit on the left exists. To

establish that the limit is s^ we first show that

= lim
s>L

(s) </

This is trivially true if s; = + oo . Now if

so is L

is finite then

^.
Let 0 <_ s < L-, Then cr = t (s) must be less than

; if it were greater than s^

lf(O) = s = Lf,

then

for £- must be constant on [sf>oo) . It follows then that

s < sf. Suppose now that s^ < sf; we will show that this supposition

leads to a contradiction. Indeed, if s* = + oo the contradiction

is immediate. If s^ < oo we choose *s finite such that s* < s*.

Using the relation

(lim (s)) = lim
s/L

= lim s = L
s/Lf

and the monotonicity of t we obtain the inequality

The definition of L- implies this must be an equality. Since s



is any element of H greater than s* it follows that I is

constant on [s*,oo) and, therefore, that f is constant on

[s*,oo). But s f is the least number for which this is true and

hence

which contradicts the supposition s* < sf. This establishes the

desired result, i.e. s* = sf.

We now define f: [O,Lf)-*R
m by

i = fo-tj.

The function f is called the axc-len&th Earameteri^ation corres^ond-

iricj; to, f. The function f must be continuous on [O,L.p) although

lh is not, in general. To show that f is continuous, we recall

that L has only a countable number of jump discontinuities.

Suppose CG[O,L,-) is a point of discontinuity of ^̂ .. Then there

exist two elements of H, a < b, such that t has constant value c through-

out the interval [a,b] and at no other point of H, Then

£rr = |f| = 0 on [a,b] and hence f is constant on [a,b] . Now,

the limits £ (c~) and £^ (c ) exist and have the values a and

b respectively (these relations can be demonstrated by means of

arguments quite similar to the one used in showing lim t (s) = s j .

A A + s^ Lf
Since f (a) = f(b) the conclusion r(c ) = f (c ) is

then immediate.

Now we shall extend (if L f < oo) the function f to the

domain H and then show that this extended function is in ##

In order to do this we need the following result: if f is such

As is stated, although not proved,, by Pipkin and Rivlin [1], p.315 .
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that L,. < (30 , f is not only of locally bounded variation but

of bounded variation on H. That this is so is immediate when one

recognizes that since f is absolutely continuous the total varia-

tion of f on any interval [0,a] is just

I (a) = J |f (ex) | da.
o

Since in this case f is of bounded variation on H we may conclude,

by a standard argument, that

f = lim f (s)v .
s—oo

exists and has finite norm. Moreover, since f is continuous

lim f(s) = lim f(*i(sj) = f( lim Oi (s)) = f(sf)=f
s/Lf s/Lf

 £- —- t £ oo

We define the extended â -/lerigth.

ing to f by

f (s) 0 < s < Lf

f L - < s" < GO
V OO f —

when Lf < oo ; otherwise we make the identification fe = f. In either

case the function is continuous.

To show that f ed- we must prove it to be absolutely continuous

on finite subintervals of H. Central to the proof of this result

is the identity

fBolf = f . (3)

To prove this identity we first suppose sf < oo . If s >. s£ the

definitions of sf and of f imply that f (s) = f . To show

that (f ©£f)(s) = fQo, as well, we note that since sf is finite,
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L f will be finite; hence, £f(s) = Lf whenever s >̂  s f and

(feolf) (s) = £
e(lf (s)) = £

e(Lf) = f^.

Now we consider, regardless of the value of sf, the case s < sf.

Since l^ cannot be constant in [s,sf) it follows that I (s) < Lf,

Then

fe(^f(s)) = f ( ^ (*f(
s))) = f(min [o\lf(a) = *f(s)})

and it is clear that t (or) = I (s) implies f (cr) = f (s) . These

arguments suffice to establish the identity (3) for all s.

To show that fe is absolutely continuous on finite subinter-

vals of Hj we consider first the case L- = oo . Let [a,b] be

any finite interval in H. Then since I't is a monotone function,

since t (b) < oo and since f is of locally bounded variation,

it is easy to show fe = f = f ol3- is of bounded variation on

[a^b]. Hence we can write

£e = g + h

where g is absolutely continuous on [a,b] and h is of bounded

variation with h = 0 almost everywhere on [a,b] and

h(a)=O. We consider the interval [a,j8] where a = I't (a) and

i8 = ^ f (b) . Then a < £ < oo and thus I- and f are absolutely

continuous on [a, jS] . The relation fe°-t = f then implies

h°lf = f - g°£f

so that h°t is absolutely continuous on [a, jS] . We observe that

f ) (s) = h(tf (s))if (s)

for almost every se [a, j3] , and thus for all se[a, j8]
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(s) = J h(lf(v))tf(o)do + Ch°lf) (<*)
a.

-r
since h^^is absolutely continuous, h is integrable, and £,- is

absolutely continuous. However h(£) = 0 for almost every £e [a,b], so

(h°£f) (s) = (h°£f) (a) = h(a) = 0 .

This means h is identically sero on the set £f ([a,£]) ; since

^f([°^0]) = ta^b] y h is identically zero on [a,b] and therefore

Ae
f is absolutely continuous on [a,b].

Now we turn to the case L- < oo . If [â b] c [Ô L̂ .) we may

use the above argument to show that f is absolutely continuous on [a^b]
Ae AQ

Since f is constant on [Lf ̂oo) , we need only show that f
is absolutely continuous on [0^Lf] in order to complete the proof

Aethat f is absolutely continuous on finite subintervals of H.

We establish the result on [0,Lf] indirectly. This approach is
Aebased on the fact that f is absolutely continuous on closed

subintervals of [0,Lf) and continuous on [0,Lf]; if we show it is

of bounded variation on [0,Lf] it follows that it is absolutely

continuous on [0,Lf] (see, for example, [5], p. 334, exercise 7.6.9)

We have shown that f is of bounded variation on H when

Lf < oo ; since £f maps [0,Lf] into [0,sf] <= H and is monotone,
A3 Ae

and since f is continuous on [0,Lf], it follows that f is of

bounded variation on [0,Lf]. This completes the proof:



13

IV. Rate Independence: Eguivalence of Definitions

Now we may formally define the problem. We let TT be a

mapping from 3 into some normed vector space X . The work in the

previous sections ensures that the following definitions are mean-

ingful .

Defijiitiori 1̂: (After Pipkin and Rivlin) The functional Tf iŝ

rate-independent if for every fe$

tf(f) = n (fe).

De£ijiitiori !2: (After Truesdell and Noll) The functional Tt is.

rate-independent if for every fe$

Ti(fofi) = TT(f) for aljL ^€* f.

These definitions contain the spirit if not the exact detail

of the originals. Thus, as remarked above, <1> contains all of

the monotone transformations considered by Truesdell and Noll; $-

will contain additional transformations only when sf < co .

Our main result is the following

Theorem : Definition 1 and definition 2 are equivalent.

That definition 2 implies definition 1 follows immediately from

our earlier results. Thus in section III we showed that

implies that £ee%, that /f e°^ f = f and that lfe&g for any ff

such that s~ < L . But in fact s^e = L-, so

$ e f e^ f)= TT(f) .

The proof of the converse is somewhat more involved. We shall

show that for any f and any jzfe*.

A

fojrf =

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSITY
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- 0

which then implies Tf(fof6) = TT(f) . Here fv$ . denotes the extend-

ed arc-length function corresponding to f°$. We note first

since the derivatives exist almost everywhere and $(cr) >_ 0. But

f£ is absolutely continuous so

and in particular^ since includes [0,s ) ,

= L

s-«oo —oo

Moreover, in the case where L f < oo it is clear that

lira f(tfC<0) = f m

A A

so that fô f and f agree by definition on the interval

[LfjOo). Then, noting that

A
and f(s) =

it suffices to show

we note that

-t̂ (s) for s < Lf. To this end

= s})

= s}

since is non-decreasing. Because ^ ,(ff) = £ - (jzf (cr)) the last
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relation becomes

*llfojls)) = min{<x|*f(a). = s} = -tf(s).

This completes the proof.

It is of course possible to prove this theorem for a more
i

restricted class of functions than the set # # For example, instead

of 5 one could have chosen the class

5 = {f:H--*R | f is piecewise continuously dif ferentiable
on finite subintervals of H and f has
a finite number of intervals of constancy},

with <!> defined in a similar manner. In this case the proofs

Ae ** ~ ~
that f e5 and that f*f4e$ whenever jzfê p become much more in-

volved. Finally we remark that the class 3 above seems to be

the largest class of functions for which the identity

necessarily holds.
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V. Rate-Independence and Fading Memory

For the purposes of this section let us add an additional

assumption on the set of functions 5. We require that feff only

if f i_s bounded at GD (which implies f is uniformly bounded on

H) . It is clear that this in no way interferes with the analysis of

the previous sections. This condition is sufficient to guarantee 25

is included in the space of functions on H into R with finite

norm

||f|| - k(o) |f (o) | + H f (a) |k(a)da (5)
Jo

where k(s) is a positive real-valued function, integrable over

[0,oo). A norm of this sort is used in the theory of fading memory
/

introduced by Coleman and Noll [6,7] and generalized by Coleman and

Mizel [8]. In this theory, a functional is said to obey the postu-

late of fading memory if it is continuous with respect to the topol-

ogy generated by such a norm. As is remarked by Truesdell and Noll

([3],p.402) the assumption of rate-independence is in general incon-

sistent with this theory of fading memory. We below make this precise:

let us say that TT obeys the CMN gr̂ inĉ igle o£ f̂ading; jnemô r̂ ; if IT

is continuous in the (relative) topology on 3 defined by (5) .

J&£9£2Siti2S: £L rate-independent functional obeys the CMN principle

of fading memory if and only if it is elastic, i.e., if and

only if there exists â  continuous function IT: R -*3£ such that for

each fel?

TT(f) = JT(f(o)) . (6)

If rr satisfies (6) then trivially Tt is rate-independent and

satisfies the CMN principle of fading memory. The proof of the converse

follows directly from the definition of rate-independence• For any '

aeRm we let a + denote the function in 3 with constant value a and

define

JT(a) = ma+) .

Clearly IT is continuous; we must show that TT (f) = TT(f(O)+) for any

For any creH we define the function 0^O) : H — H by
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( t ) =<
0

It-a

0

a

<

<

t

t

<

<

a

oo .

Then if f i s any function in 3, tf^ €<£> for each creH. The

function f°jzP e3f i s the f̂eafeiG J&QGt4>GU&̂ ^ of f of amount a

considered by Coleman and Noll ([7]• the centrality of static

continuations in the theory of fading memory is shown by Coleman

and Mizel [8]) .

Now let us consider the difference f°jẑ  - f (0) :

- f(o)1! = ja>|f(rf(Cr)(s)) - f(o)|k(s)ds

nOO

= \ |f (s-a) - f(o) |k(s)ds.

Our modifications of the set 9 imply that if fe3, |f (s) | < Kf,

a constant, for all s. Hence

||fo^(0r) - f(o)t|j < 2Kf

by choosing o sufficiently large we can make this quantity arbi-

trarily small. Thus since Tf is presumed continuous with respect

to the topology generated by this norm it follows that

,given e > 0 we can choose o sufficiently large that

(here || • || denotes the norm in X ) . But since ft is rate-independent

= rr(f) •"

for any a. Thus ||tf(f) - &(f(o)'t)\\ is less than e; since € is

arbitrary this implies 7T(f) ^rf(f(o)f) =7T(f(o)).

Thus the concept of fading memory as considered by Coleman^Mizel^and ISbll
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is only trivially compatible with the concept of rate-independence.

The same argument may be applied to Wang's first treatment of fad-

ing memory [9] since, as is mentioned by Coleman and Mizel [8],

his norm is equivalent to one of the form (5). The same type

of result can also be proved for Wang's second treatment of

fading memory [10]. For Wang's materials of order zero 3 admits

f o ^ ' whenever it admits f and it is easy to show that in this

topology also

lim fojrf(a) = f (o)f
a-^oo

For Wang's materials or order p >_ 1 one can consider the

tt-retarda^tiojn. , f , of f >

fa(s) = f(as), aeH

and easily show that f —*f (o) as #-^0, which yields the same

result since T(fa) = Tr(f) . Hence the above proposition remains

valid if one substitutes "Wang11 for flCMNn. Of course the result

is valid for any topology on 3 in which a constant function

can be approximated arbitrarily closely by means of static contin-

uations or retardations (as long as the static continuations or

retardations, themselves, are in 3) .

Neverless, the concept of fading memory is not completely empty

for rate-independent functionals; we may choose to suppose the

memory fades with arc-length rather than time (by applying the

norm (5) to appropriate modifications of the arc-length parameter-

izations and supposing the functional continuous in the generated

topology).

Of course there are many other topologies which are compatible

with rate-independence. One example is that given by
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Pipkin and Rivlin [1]; the topology they consider allows integral

approximations of continuous rate-independent functionals.
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