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Extrapolating Time Series by Discounted Least Squares

Abstract

An approximating function is fitted to a time series, such

as daily observation. The fitting is carried out over all past

time by weighted least squares with an exponential weight factor•

The approximating function is restricted to be a solution of a

certain linear differential equation of the mth order having

constant coefficients. The solution which minimizes the least

square expression can be continued into the future. In particular

tomorrow1s extrapolated value is defined by this continuation.

To obtain an explicit solution of the problem a formula is con-

structed which gives the extrapolated value as a linear combination

of the last m observed values and the last m extrapolated

values. The coefficients of this extrapolation formula prove to

be simply related to the coefficients of the differential equation.

Another extrapolation formula is of vectorial nature. The com-

ponents of a vector are m independent functionals of the past

observations. Then tomorrow's vector is given as a linear function

of today1s vector and today1s scalar observation.
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EXTRAPOLATING TIME SERIES BY DISCOUNTED LEAST SQUARES*

R. J. Duffin

CARNEGIE INSTITUTE OF TECHNOLOGY

This paper is concerned with extrapolation of an infinite

sequence y.^y^.., of real (or complex) numbers. This is

accomplished by fitting the sequence (yn) by a function p(n)

taken from a space of functions termed exponomials. The criteria

for the fit is given by discounted least squares. This means

that p(n) is that exponomial which minimizes the 'error' expression

E = I°° en|yn - p(n)|
2.

Here 6 is a positive constant termed the discount factor. Then

the extrapolated value of the sequences at the point x is

defined to be p(x).

In the previous paper an exponomial was defined as an

exponential polynomial of the form

p(x) = I

where the f> . are fixed complex numbers assumed distinct and

nonzero. The coefficients d. are arbitrary complex numbers so

an m-dimensional vector space results. In this paper the

definition of exponomial is extended so as to permit polynomial

terms of the form p>*,x &*,..j,x ~ A*. It is seen, therefore,

that the space of exponomials can be defined to be the solution

set of a certain linear differential equation,

jin jin-1

fl_B + e d £ =

dxm m" 1 dx"1"1 °

•^Prepared under Research Grant DA-ARO-D-31-124-G68O, Army Research
Office (Durham).
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where the coefficients e. are complex constants. This space

of exponomials will be denoted as XP. An important special case

is defined by the equation dmp/dxm = 0. Then XP is the space

of polynomials of degree less than m.

There are three reason why the extrapolation procedure just

described can treat a large class of problems in applied mathematics.

The first reason is that the discounted least squares criteria is

suited to problems of mechanics and economics for which the

progressive discount of the past seems natural. Another reason

is that the space XP is invariant under an arbitrary translation

of the x axis. This invariance property makes exponomials

attractive functions for approximating time series. The third

reason for the utility of this extraipolation method is that there

is an underlying algebraic structure which is both interesting

and significant.

The bases £. are arbitrary. The selection of the £ .

and the discount factor 9 should take into account first the genesis

of the data. Also, account must be taken of the genesis of data

error and the smoothing property of the extrapolation. These

questions are not treated in this paper.

A central problem of this paper is the one step extrapolation

of the sequence { y } to obtain an extrapolated value at n = 0.

The extrapolated value is denoted as y* and is defined as

y£ = p(0)• When the minimization is carried out3 it results

that y* is given by a linear functional

v* = 2 Q v .*o ^-. wnyn

Here the coefficients Q do not depend on the sequence



It is then natural to writey y . . .

and define y* as the predicted value of y, based only on

the !previous values1 Yfc+i'Yk+2'#'##

Theorem 3b to follow gives a simple generating function

to evaluate the coefficients Q • Thereby the problem of one-step

extrapolation is essentially solved. Nevertheless, the above

formula is not satisfactory from a computational point of view.

This is so because it is an infinite series and so an infinite

memory is needed. This situation is remedied by Theorem 2 which

provides the following short memory formula,

m m

*£ = £ x T n y n + k + I x <f>ny£+k-

Here the T and the (b are constants which do not depend
n . Tn

on the sequence y . Thus, this identity gives the extrapolation

y* as a linear combination of the m previous values and the

m previous extrapolations. Consequently, the short memory

formula is readily adaptible for computer evaluation.

Also of importance are extrapolation formulas for other

linear functionals of the sequence y-,yo,.... For example

c2

p(l/2),pf (0),pff (-2), j p(x)dx are linear functionals. We
o • **

term such functions extrapolat o r s. Let w(x) be a vector whose

m components are linearly independent extrapolators. Then Theorem

7 gives the following extrapolation formula

w(x) = Aw(x + 1) + by x + 1.

where A is constant matrix and b is a constant vector. This

is termed a very short memory formula because the extrapolation
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is based only on one previous value of w and one previous

value of y.

The extrapolation of time series based on a discounted

least squares criteria has previously been treated by Duffin

and Schmidt [1], Duffin and Whidden [2], and Morrison [3].

(Various other authors have proposed similar extrapolation formulae

but their work is not based on discounted least squares.) The

present paper gives a more general treatment of problems posed

by references [1], [2], and [3]. In particular the theorems

of this paper are aimed at evaluating and interrelating the

constants, p . , ©, Q , T , § * A, and b by algebraic formulae.

To begin the proof, let G(z) be a polynomial of degree m

in the variable z and let G (0) = 1. Then

m

G(z) = 2L g,zj.
j=0 3

Here the g. are arbitrary complex constants except that

g == 1 and g ^ 0. Of central concern are functions p(x)

of the real variable x satisfying the difference equation

o = gQp(x) + g^p(x + ].) + •••+ gmp(x + m) .

Let X denote the translation operation defined by the relation

Xf(x) = f(x + 1) # Then the difference equation can be written

in operation form as

0 = G(X)p(x) = ir (l-^-.X)p(x)

where the ^ . are the roots of G(z) = 0. First suppose that

x is restricted to the integers. If none of the roots are

repeated it is seen that there are m linearly independent



X
solutions having the form p (x) = ^.. The general solution is

a linear combination of such solutions. If the root p . is

repeated k times there are k linearly independent solutions:

x x k 1 x
B,',x6.,...,x B . . The general solution is again a linear
3 v 3 . 3

combination of such solutions and defines an m-dimensional vector

space. This is the space of exponomials and it is denoted as XP.

For some problems of extrapolation it is required to continue

exponomials to non-integral values. One way to do this is to let
a B , ,, , ^ • r, x Bx 27riLx ,. _
p = e and then define P> = e e where L is an

in teger . A fnaturalT choice for L is

-IT < imag B + 2TTL <. TT .

This choice minimizes oscillation. The ambiguity here stems

from the fact that multiplying a solution of the equation by an

arbitrary function of period 1 gives another solution.

Since an exponomial satisfies the difference equation it is

seen that prescribing the value of the exponomial at the integers

l,2,...,m determines the value of the exponomial for all other

positive integers. Thus the space XP is m-dimensional even

if x is restricted to the integers l,2,...,m.

The approximation scheme employed in this paper results from

embedding the finite dimensional space XP in an infinite

Hilbert space of rdiscounted squares1. This Hilbert space is

denoted as DS. The elements of DS are infinite sequences of

complex numbers y.^y^.., such that

2L © | y | < CD .

H e r e ^ is a positive constant termed the discount factor. The

discount factor is required to satisfy the inequality



0| £_.| < 1; j = 1,2,...,m.

It is readily shown from this inequality that exponomials are in

DS. Thus the space XP is a finite dimensional subspace of

DS. Let v and y denote two elements of DS then the Hermitian

bilinear form is defined as
po

[v,y] = X 0 nVn
1

where v denotes the complex conjugate of v . The norm of a

element y of DS is defined as

It is instructive in what follows to regard the sequence

{y } as a time series of observations'. Thus y can be regarded

as the value of the observation at time -x. To extrapolate the

sequence {y } for values of n not a positive integer we first

approximate y by an element p of the subspace XP. By this

is meant that p is chosen to minimize the expression
GO

E = |(y - pll2 = "£ en|yn - p(n)|
2.

1

As in the references [1], [2], and [3] this is termed approximation

by discounted least squares.

The following lemma is aimed at determining p given a

sequence (y }.

Lemma 1. Let p be the exponomial best approximating y in

the Hilbert space. Then

' [r,y] = [r,p]"

for every exponomial r.

Proof. This is merely a reformulation of the basic theorem con-

cerning Hilbert space which states that if p is the best approximation
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to y for p constrained to a subspace then p is the ortho-

gonal projection of y into the subspace.

By choosing a basis for the subspace XP the orthogonality

relation stated by this lemma leads to a system of m linear

equations which could be used to determine p as a unique linear

combination of the basis elements.

Then p is determined uniquely at the positive integer

points. The convention introduced above permits an exponomial,

given at the positive integer points, to be determined for all

real x. Thus it is possible to define the extrapolation of the

sequence y^y^**** at the point x to be p(x).

Lemma 2. Let r be a given exponomial and let k be a

given number. Then there is a unique sequence of numbers

c1.co...,.c such that the formula
r 2 ; m —

[r,v] = ^vfk + 1) + c2v(k + 2)+-*-+ cmv(k + m)

holds for every exponomial v.

Conversely given a number k and a sequence of numbers

cl*C23 •' *''Cm there is a unique exponomial r for which the above

formula holds»

Proof. As is well known the linear functionals f(v) in an

m-dimensional space such as XP have the form f(v) = [r,v].

Moreover, these linear functionals themselves form an m-dimensional

space. Clearly the expression on the right side of the formula

of the lemma is a linear functional for any choice of constants

c-,c ~,-...,c . Suppose that for some choice c.v(k + 1) + ... c v (k + m)l z m 1 m

vanishes for all v in XP. However, an exponomial can be pre-

scribed arbitrarily at a sequence of m points obtained by

successive unit translations to the right. Hence all the constants
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c* must be zero. This shows that v (k + 1), v (k + 2) , . . . ,v (k. + m)

are m independent functionals. There can be no more than m

independent functionals and consequently the left and right side

of the formula represent the same space of linear functionals.

The proof of the lemma follows from this observation.

Theorem 1. Let r be a given exponomial and let k be a given

number, then there is a unique sequence of numbers p ^ c . .#,c

such that the formula

[r,y] = Cjpflc + 1) + c2p(k + 2) + « • • + • cmp(k + m)

holds for every y of the Hilbert space DS provided that p

is the orthogonal projection of y into the exponomial subspace

XP.

Conversely given a sequence of numbers cn.cn^....c there
1— =a ±y z m

is a unique exponomial r satisfying this formula.

Proof. By Lemma 1 we have [r,y] = [r,p]. Then apply Lemma 2

with v = p and the proof is seen to be complete.

A general problem of extrapolation is to extrapolate the

sequence y.,y~, ... to obtain a value for y at a point x

not a positive integer. This extrapolated value is denoted by

the symbol ext(y ) and is defined as ext(y ) = p(x). The
x x

following corollary of Theorem 1 gives a formula for computing

ext(yx). .

Corollary 1. Let p(x) be the approximating exponomial to the

sequence y^y^*- — - Then there is a kernel function q(x,n)

such that CDp(x) = Ienq(x,n)yn= [g,y] .

For n fixed q(x,n) is an exponomial in x. For x fixed
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q(x^n) is an exponomial in n. The kernel function may depend

on 0 but not on y.

Proof. In Theorem 1 take k = x - l , c , = l , c 2=0,...,c = 0 .

This proves the formula of Corollary 1 with q = r. To show that

the kernel function is an exponomial in x take y = 0

except for n = n . This is seen to complete the proof.

A significant special case of the formula of Corollary 1 is

x = 0. This extrapolates the sequence y-i sYj? • • • one unit to the

left to obtain ext(y ). This one step extrapolation is suffi-

ciently important to warrant a special notation and we write

y* = p(0). The general extrapolation formula becomes
° co

Here q(n) = q(0,n) and q(n) is also termed a kernel.

If the sequence y^y^... is in the Hilbert space DS then

the sequences y + 1*Y +2> • • • *
s a^so ^n DS f° r a nY positive or

negative integer x. This follows from the relation
00 OD

As a natural extension of the previous notation let y* denote

the extrapolation of the sequence y +1^y .o^*»« to the point

x. The extrapolation formula given by discounted least squares is
oo

^x ~ LL g* yn+x*
1

This formula involves all values of the sequence y .-ĵ y ,9J • • •

and so is an infinite series. For this reason a formula of this

nature may be termed a long memory formula. It is now to be

shown that y* is also given by a finite recursion relation and

hence by a short memory formula.
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Theorem 2. Let yf be defined by the formula

CD

y* =

n=l

Then y£* the one step extrapolation, is given by the recursion

f o r m u l a m m

n=l n=l

Here, for convenience of notation, f = g /g . Also 6 =

y* - y and is termed the discrepancy.

Proof. Let q1 =0 for n <. 0 and q< = q for n > 0 so

y* = Z. ©nq'(nW+ .
-CD

00

-CD
m

Since q(x) is a polynomial G(X)q(x) = 0. Thus <*L g.q(x + j) = 0
m _ . o D

or Z Q g .q(x + m - j) = 0. A polynomial F(z) related to the

polynomial G(z) plays an important role in what follows. It

is defined as
m m

Q ^ o m m

It is seen that F(X)q(n - x) = 0 for al l n. Consequently

F(X)q! (n - x) =0 for n > x + m or n < x so

CD m
XF(X)0Xy* = ^ [ H f qi (n - x - j) ]©%

x n=-oo j=0 D n

x+m

S y
n=x+l n n

where the s^ are certain absolute constants. To evaluate these

constants,, first set x = 0 in the last relation and obtain
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Next let y, = r(k) an exponomial. Since the extrapolation of

exponomials is error-free, y* = r(k) also. Note that fQ = 1

so after substituting y. = r(k) the relation (*) can be written as
m

r(0) = Z (s. - f .9j)r(j).
j=l 3 3

But since G(X)r(x) =0 it is also true that

m

r(0) = -

Subtracting these two equations for r(0) gives

m

0 = Z (s. - f.Gj + g.)r(j).
4—1 j J J

But an exponomial can be defined arbitrarily on the integers

1,2,...,m. Thus s. = f .-0-' - g, and relation (*•) becomes

m m

(f .eD - g.)y. -

This is seen to be equivalent to the short memory formula stated

in Theorem 2.

Corollary 2. The kernel function q(x) satisfies the constant

coefficient difference equation G(X) q(x) = 0, an equation pf

the mth order. But q(x) does not satisfy any such equation of

lower order.

Proof. Suppose q(x) satisfied the equation GfT(X)q(x) =0

of order m!T < m. Then the proof of Theorem 2 could be carried

out with GT! replacing G. This would lead to a relation of

the form mf

r(0) = H (fit » - ft <-9j)r(j)
j=l ^ 3

for every exponomial r(j). But an exponomial can be defined
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arbitrarily at m successive points. Thus take r(0) = 1 but

r(j) = 0 for j = l,...,mtf. This contradicts the assumed relation

and the proof is complete.

So far the kernel function q(n) of the long formula has

only been defined implicitly. On the other hand the coefficients

of the short formula are given explicitly in Theorem 2. However^

since the short memory formula and the long memory formula are

essentially equivalent it is possible to use the short formula to

give an explicit procedure for evaluating q(n). Different ways

of doing this are given in Theorem 3a and Theorem 3b to follow.

Theorem 3a. The kernel function q(n) satisfies the recursion

formulae:
n-1

q(n) = f - 6ngn - H f^q(n - j) , 1 < n < mn n j==1 D

m

q(n) =-Z. f.q(n - j)
j=l 3 .

Thus

q(2) = f2 -

q(3) = f3 - 3 x 2 \ ^ ^ 2 2l

Proof. Let y. = 0 for all j except that y = 1 . Then it
3 n

follows directly from the long formula that y* = Gnq(n). It

is also seen that: y* = 0n""-'q(n-j) if j < n - 1, y* = 0 if

j >^ n. The short formula may be written in the form

m m

Substituting the above special values of y. and y* in this

formula leads directly to the formulae of Theorem 3a.

HUNT LIBRARY
CARNEGIE-MELLOH UNIVERSITY
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Theorem 3b. The kernel function q(n) satisfies the generating

identity GO

'F(QZ) - <

provided |z| is small.

2
Proof. If |z| is small the sequence l,z,z , ... is in the Hilbert

space DS. Thus, substituting y = z in the long formula gives

oo

y£ == /L © q(n) z = z y*.
1 .

Then substituting y = z11 and , Yjt = z y* in the short formula

m m '

y* = ^ (e^f. - gjz1* - Ze-'f.z-'y^,
° j=l ^ 3 j=l ^ °

But f = g = 1 soo o
m m m

y"̂  ^ f.0 z = 2> f .6 z - Ẑ . g • z
° j=o D j=o D j=o j

and the proof is complete.

We now turn from one-step extrapolation to multi-step

extrapolation. Thus the two-step extrapolation of the sequence

y-\ sYy* • • • is given by ext (y .) = p(-l) etc.

Theorem 4a. Multistep extrapolators of the sequence Y-j^Ypj...

are given by the long memory formulae:
oo

P(O) = "X ellqnYn^
l
oo

1
CO
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p(-3) =

1

Here q is a condensed notation for the kernel q(n).
—- n
Proof. Let Y = y for n > 0 and let Y = p(n) for n < 0.

o o n n • n

Let E = T 0n|Y - P (n) | where P (n) is an exponomial. Thus

o oo

Eo = |P(0) . P ( O ) | 2 + £ en|yn . P(n)|2.
1

Clearly E is minimized when P(n) = p(n). Hence applying the

one-step extrapolation formula to the sequence Y ,Y,,Y~,... gives

oo

P(-D .- £ ©Vn-l
1

B u t co

P
so ' '

(O) = Z «n

CD OO

p { . i , = I e
n + 1

g i % y n + I en + l
% + 1yn .

This proves the formula for the two-step extrapolator.
—,co

Next consider E = > 6 |Y - P(n)I and following similar
-1 / - - ^ n

reasoning to that given above shows that
oo

p(-2) = L 6nqnV2
1 , <*>

P(-2) = eq lP(-i) + e2q2p(o) +

3

Substituting the series expression just derived for p(-l) is

seen to prove the formula given for the three-step extrapolation.

Further formulae are derived analogously and the proof is complete.
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Theorem 4b. Multistep extrapolators of the sequence y 3y 3 ...

are given by the short memory formulae;

m m •

-p(0) = [ gy + I enf 6 >
1 1
m m

• L 'vi
1
m

- I t
1
m

where g =0 and f = 0 JJ[ n > m.

Proof: Apply the short memory formula to the sequence Y ,Y,,...

which was introduced in the proof of Theorem 4a. But Y* = p(-l) '

so m m

* L~ ^n n-1
1 1

Also Y = p ( 0 ) , /^ =0 and so

m m

-p(-D = g^o) + £ g y + ^ enf 6 .
X 11 il"-J» c ~~u 11 1 1 — X

2 2
m m m - 1

-PC-1) = -g( I gnyn + I enfn6n)
i l l

m-1

^- G fn+l6n -

1

This seen to prove the stated formulae for p(-l). Further

formulae are derived analogously.

Theorem 5. The relation
CD

n
F(©z) ~ ^ e t ( n ) z
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gives a one to one linear correspondence between polynomials of
m

the form \ (z) = ^ a.z-' and conjugate exponomials t(n) .

1

Proof. Given such a polynomial L (z) then T(z) = H (z)/F(€)z)

is a convergent power series if |z| is sufficiently small. Thus

write GD

T(z) = ^ ©nt(n)zn

-CD

where t(n) =0 for n £ 0. Since %(z) = F(0z)T(z) we have

m oo

o -oo

Let j + n = k so

oo m

$(z) = £ ekzk £ f.t(k - j)
-oo o

Since *C(z) is a polynomial of degree not exceeding m it follows

from the above relation that
m

o
m

o
m

f .t(k - j) = 0 for k > m, or

f.t(x + m - j) = 0 for x > 0, so

f -it(x + j) = 0 for x > 0.
m-j

o

Hence G(X)t(x) = 0 and it follows that t(x) is an exponomial

for x > 0.

We can conclude from this last result that the m-dimensional

vector space p of polynomials of the form 't(z) is mapped linearly

into a space S of conjugate exponomials. Moreover, this is a

one to one mapping because power series are unique so S has
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' dimension m. However, the space XP of all conjugate exponomials

has dimension m so S = XP and the proof is complete.
m .

Lemma 3. Let 1(z) = S a.z-' be a given polynomial. Then

i D

there are polynomials
m m

H(z) = 2~ h j z a n d K*z)
1

such that

'C(z) = -H(z)G(z) + K(z)F(0z)

Hence the system of 2m equations

are (©/^> .}. The discount factor 6 was choosen so that

a i A ± = - L. 9i^jhj + £- e fi_j k'* X - i - 2m

1 1

can be used to find the coefficients h . and k. . Here Aj = 1
D 3 +

for i < m and A . = 0 for i > m.

Proof. The roots of G(z) are { 6.} and the roots of F (Qz)

ount factor

It follows that the roots of G(z) are outside a circle of radius

1/2
Q ' and the roots of F(0z) are inside this circle. Consequently

G(z) and F(Oz) cannot have a common root so by a basic theorem

in the algebra of polynomials

*C(z)/z = -HQ(z)G(z) + Ko(z)F(Gz)

where H (z) and K
Q(

Z) a r e polynomials of degree less than the

degree of G and F. Of course G and F are of degree m so

multiplying through by z leads to the relation stated in the

lemma.

Theorem 6. Given an arbitrary exponomial t(n) let w(x) be the

correspondinq extrapolat or
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w(x) = 1 ent(n)yn+x.
1

Then a short formula for this extrapolator is

m m

w(x) = 7
D

1 1

Here h' and k; are coefficients defined by the polynomial 'l(z)

which is the image of t(n) according to Theorem 5 and Lemma 3.
CO

Proof. Let Q(z) = 2L ® q(n)z then according to Theorem 3b

1 °° n

1 - Q(z) = G(z)/F(ez). "Let T(z) = ^ e t(n)z . Then according

to Theorem 5 we have T(z) = /C(z)/F(Gz). Then Lemma 3 with X

replacing z gives

T(X) = H(X) [Q(X) - 1] + K(X) .

Here X is interpreted as the translation operator. Operating

on the function y .with the above identity we see that [Q(X) - l]y =
x x

•6 and so the short formula follows. This formalism is justified

by the absolute convergence of the resulting series when y is in

the Hilbert space and so the proof is complete.

A different proof for the existence of the short formula for

w(x) results from combining Theorem 1 with k = -m and Theorem 4b.

The short memory formulae given in Theorem 2 and Theorem 6 may

be termed m th order formulae because the right sides are expressed

as translation operators of order m. Thus the extrapolator of

Theorem 6 can be written as

m m

w(x) = (Ih.Xj)6x+ ( I kjX
D)yx.

1 1

Now an mth order scalar difference equation is equivalent to a

first-order vector difference equation. This suggests that the
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mth order scalar extrapolation formula can be replaced by a

first order vector extrapolation formula. In fact such formulae

are to be found in the paper by Morrison [3]. for the special case

of polynomial extrapolation. Moreover, Morrison's paper indicates

that first order vector extrapolators may be advantageous in

numerical work because of economy in memory.

The following is a general theorem on first order vector .

extrapolation formula.

Theorem 7. Let w'(x),...,w (x) denote a set of m independent

extrapolators. Then there is a set of constants a.. and b.
.„ _ Xj 2_
such that

w. (x) = 21 a-Mw-; (x + 1) + b.

This is termed a very short memory formula.
co n

Proof. Then w. (x)- = 2L 6 r. (n)y and the exponomials

1 _ 1 n"r~x

f 1 (n) , fp(n),,..,f (n) form a basis for the space XP. Hence

it is possible to find constants a.. such that
m

Gr. (n .+ 1) = "H a. .r.(n) j i = 1, . . . ,m
because 0r.(n + 1) is also an exponomial. These identities

are multiplied by -0 y , and summed. This gives

co m

ci^ Q r. (n + x)y , , n = c~ a. .w. (x + 1)
\ l Jn+x+l r~- in in=l 3=1 J J

CD m

0nr,(n)

Let b. = 0r.(1) and this is seen to complete the proof of the

very short formula.

Corollary 3. The extrapolation of y jat m successive points

is given by a very short memory formula.
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Proof. The extrapolation of yn at m successive points is

p(x + 1} , p(x + 2),...,p(x + m) . By virtue of Theorem 1 these

are independent extrapolators and the proof is complete.

Lemma 4. Let x denote an arbitrary fixed point and let v(x)
Q

denote a function of the exponomial space XP. Then

v ( x o ) ' dx I '•••' Tisrr t
x=x dx x=x

o o

are a set of m independent linear functionals on the space XP.

Proof. The above expressions are obviously linear functionals.

If they were not independent then there would be an identity of

the form m-1
11 c.v(l) (x) = 0 ; x = x

1=0 1 ° • •

which holds for v in XP. But if v(x) is in XP so also is

v(x + k) for every k. Hence the above identity actually holds

for all x. It is a differential equation of order m - 1 and can

have at most m - 1 independent solutions. This is a contradiction,

since there are m independent functions in XP,

Corollary 4. The extrapolation of y together with its deri-

vatives up to order m - 1 evaluated of the same point is given

by the very short memory formula.

Proof. The extrapolators are p(x), p* (x) , . . . ,pm (x) evaluated

at a certain point x = x . Then the corollary follows from Lemma

4 and Theorem 7.
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